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Quantitative tissue proteome
profile reveals neutrophil
degranulation and remodeling
of extracellular matrix proteins
in early stage gallbladder cancer
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Gallbladder cancer (GBC) is an aggressive malignancy of the gastrointestinal

tract with a poor prognosis. It is important to understand the molecular

processes associated with the pathogenesis of early stage GBC and identify

proteins useful for diagnostic and therapeutic strategies. Here, we have carried

out an iTRAQ-based quantitative proteomic analysis of tumor tissues from early

stage GBC cases (stage I, n=7 and stage II, n=5) and non-tumor controls (n=6)

from gallstone disease (GSD). We identified 357 differentially expressed proteins

(DEPs) based on ≥ 2 unique peptides and ≥ 2 fold change with p value < 0.05.

Pathway analysis using the STRING database showed, ‘neutrophil

degranulation’ to be the major upregulated pathway that includes proteins

such as MPO, PRTN3, S100A8, MMP9, DEFA1, AZU, and ‘ECM organization’ to

be the major downregulated pathway that includes proteins such as COL14A1,

COL1A2, COL6A1, COL6A2, COL6A3, BGN, DCN. Western blot and/or IHC

analysis confirmed the elevated expression of MPO, PRTN3 and S100A8 in early

stage of the disease. Based on the above results, we hypothesize that there is an

increased neutrophil infiltration in tumor tissue and neutrophil degranulation

leading to degradation of extracellular matrix (ECM) proteins promoting cancer

cell invasion in the early stage GBC. Some of the proteins (MPO, MMP9, DEFA1)

associated with ‘neutrophil degranulation’ showed the presence of ‘signal

sequence’ suggesting their potential as circulatory markers for early

detection of GBC. Overall, the study presents a protein dataset associated

with early stage GBC.
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1 Introduction

Gallbladder cancer (GBC) is the fifth most common and

aggressive malignancy of the gastrointestinal tract, with a

marked geographical variation in its incidence. There are two

major groups of high-risk populations for GBC, in Latin

America (Chile, US Native Americans, Mexicans) and in Asia

(Northern India, Pakistan, Korea, Japan and China) (1, 2).

Among the Asian countries, GBC has the highest prevalence

and incidence rate in northern and northeast India (1, 3, 4).

Gallstone disease (GSD) cases and female population are at high

risk for GBC (5). GBC is generally diagnosed at an advanced

stage due to its anatomic position and non-specific symptoms.

Imaging techniques and the available blood tests (CEA, CA19-9)

are generally employed for the diagnosis of GBC, however, the

detection of the disease at early stage remains a challenge. The

treatment includes extended resection in combination with

chemotherapy, radio-therapy and targeted therapy (6).

In early stage GBC (Stage I and II), the tumor is restricted to

the gallbladder while in advanced stages (Stages III and IV), the

tumor invades beyond the gallbladder serosa to the liver or other

nearby structures via direct invasion or lymphatic, peritoneal

and hematogenous dissemination (7). Application of high

throughput approaches to understand the molecular profile of

‘early stage GBC’ is important to identify ‘tumor-associated

proteins’ and associated molecular pathways which may be

useful as new diagnostic markers and therapeutic targets.

There are several studies on genetic, epigenetic and transcript

analysis of tumor tissues and cell lines to understand the

molecular changes associated with GBC (8–10). p53 mutation,

mitochondrial DNA mutation, cyclooxygenase-2 (COX2)

overexpression, methylation of tumor suppressor gene (TSG)

promoters and/or KRAS mutations have been reported to be

associated with the development of GBC (2, 11). Various groups

have applied high-throughput proteomic approaches to study

altered expression levels of proteins in tumor tissue from GBC

patients. Tan et al. studied protein expression profiles of benign

and GBC tissue using two-dimensional gel electrophoresis (2-DE)

and identified 17 differentially expressed proteins (DEPs) (12, 13).

The proteomic patterns of primary gallbladder cancer (PGC) in

comparison to cholecystitis and normal gallbladder tissues using

2-DE revealed six DEPs (14). Another group applied iTRAQ-

based quantitative proteomics using pooled GBC tissue lysate and

identified 512 DEPs (15). However, the proteomic analysis using

tumor tissue from early stage GBC is not yet performed.

In the present study, we have applied iTRAQ-based

quantitative proteomic analysis to identify DEPs in early stage

GBC in comparison to GSD (non-tumor controls) followed by

verification of functionally relevant proteins byWestern blot and

IHC analysis.
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2 Materials and methods

2.1 Clinical samples

Adult patients with age ≥ 20 years diagnosed with GBC or GSD

cases (non-tumor control) visiting Govind Ballabh Pant Institute of

Postgraduate Medical Education and Research (GIPMER), New

Delhi, were recruited for the study. Clinical samples and data were

also obtained from National Liver Disease Biobank- Institute of

Liver and Biliary Sciences (NLDB-ILBS), New Delhi, India, after

approval from the Maulana Azad Medical College- Institutional

Ethics Committee, New Delhi (F.1/IEC/MAMC/80/08/2020/No.

314) and ICMR-National Institute of Pathology- Institutional

Ethics Committee, New Delhi (NIP-IEC/10-12-19/06). All the

participants provided written informed consent to participate in

the study. Tumor Staging was done on the basis of clinical data of

patients, histopathological evaluation and imaging tools, as per

AJCC, 8th edition staging system (7). Tissue samples from GBC

cases (n=12) and GSD cases with no dysplasia (n=6) were used in

this study. Tissue samples were collected immediately after surgical

resection from patients with GBC or GSD and stored at -80° C until

used for further analysis. Formalin fixed paraffin embedded (FFPE)

tissue samples were used for ‘immunohistochemistry’ (IHC)

analysis. Clinico-pathological data of these subjects are detailed in

Table 1. Clinical parameters for the patients, wherever available

(~50%), such as white cell count, liver enzymes (SGOT/SGPT/ALP)

and cholestasis, and details of the sample used for quantitative

proteomics and/or Western blot and/or IHC analysis are shown in

Supplementary data Table S1.
2.2 Protein extraction

Tissue from individual cases (tumor tissue from GBC patients)

or controls (GB tissue from GSD cases) was ground in liquid

nitrogen followed by the addition of modified RIPA buffer with a

2% protease inhibitor cocktail. The tissue homogenate was then

sonicated and centrifuged at 13,000 g for 20 min at 4°C. The

supernatant was collected and protein estimation was done using

the Bradford assay. SDS-PAGE was performed to analyze the

protein profile of the tissue lysate from different groups and

normalized the protein concentration based on total density.
2.3 iTRAQ labeling

For iTRAQ experiments, a pool of GSD tissue lysate (n=6) was

used as a control while individual tissue lysate fromGBC cases (n=7

for stage I and n=5 for stage II) was used for the analysis. For this,

two iTRAQ experiments were performed. Experiment I included
frontiersin.org
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pooled GSD vs individual GBC cases (stage I) while Experiment II

included pooled GSD vs individual GBC cases (stage II). The

experimental design is shown in Supplementary Figures S1, S2.

For Experiment I, proteins (100 µg) from control (n=6, pooled

sample) and GBC stage-I (n=7, individual samples) were reduced,

alkylated and digested with trypsin followed by labeling of peptides

with 8-plex iTRAQ reagents separately with specific iTRAQ labels

(Reagent 113, 114, 115, 116, 117, 118, 119 and 121) as per the

manufacturer’s instructions (iTRAQReagentsMultiplex kit;Applied

Biosystems). The labeled samples were pooled vacuum-dried and

subjected to strongcationexchange (SCX)cleanup (Cationexchange

cartridge, Sciex, US), and desalted using a C18 column (Zorbax

300SB-C18, Agilent Technologies, US) as per the manufacturer’s

instructions.The sampleswere thenvacuum-driedandused formass

spectrometric analysis (nano-LC MS/MS analysis).

Similarly, for Experiment II, proteins (100 µg) from control

(n=6, pooled samples) and GBC stage-II (n=5, individual samples)

were reduced, alkylated and subjected to trypsin digestion and the

peptides were labeled with 6-plex iTRAQ reagents separately with

specific iTRAQ labels (Reagent 113, 114, 115, 116, 117 and 118) as

mentioned above. The same pool of GSD samples was used as a

control in both the iTRAQ experiments. The labeled samples were

pooled vacuum-dried and subjected to SCX clean up and desalted

using a C18 column followed by nano-LC MS/MS analysis.
2.4 LC-MS/MS analysis

Nanoflow electrospray ionizat ion tandem mass

spectrometric analysis was carried out using Orbitrap Fusion
Frontiers in Oncology 03
(Thermo Scientific, Bremen, Germany) interfaced with Easy-

nLC 1000 nanoflow LC system. Peptides from each sample were

enriched using a C18 trap column (75 mm × 2 cm) at a flow rate

of 3 ml/min and fractionated on an analytical column (75 mm ×

50 cm) at a flow rate of 280 nl/min using a linear gradient of 8-

60% acetonitrile (ACN) over 46 min. Mass spectrometric

analysis was performed in a data dependent manner with a

cycle time of 3 seconds using the Orbitrap mass analyzer at a

mass resolution of 120,000 at m/z 200. For each MS cycle, top

most intense precursor ions were selected and subjected to MS/

MS fragmentation and detected at a mass resolution of 50,000 at

m/z 200. The fragmentation was carried out using higher-energy

collision dissociation (HCD) mode. Normalized collision energy

(CE) of 30% was used to obtain the release of reporter ions from

all peptides detected in the full scan. The ions selected for

fragmentation were excluded for the next 30 sec. The

automatic gain control for full FT MS and FT MS/MS was set

to 3e6 ions and 1e5 ions respectively with a maximum time of

accumulation of 50 msec for MS and 75 msec for MS/MS. The

lock mass with a 10 ppm error window option was enabled for

accurate mass measurements (16). The LC-MS/MS analysis was

performed three times for both experiments (I and II).
2.5 Identification and quantification
of proteins

Protein identification, quantification and annotations of

DEPs were carried out as described earlier by Priya et al. (16).

The MS/MS data was analyzed using Proteome Discoverer
TABLE 1 Clinico-pathological parameters of the patients used for the study.

Subjects Total number Number of males Number of females Mean age (Years) Age range (years)

Total GBC Cases 24 5 19 51.5 27-65

Stages

GBC, Stage I 8 3 5 51.5 38-65

GBC, Stage II 6 0 6 56.8 36-65

GBC, Stage III 6 2 4 42.7 27-65

GBC, Stage IV 4 0 4 56.8 47-61

Histological grade

Well-differentiated (G1) 5 2 3 — —

Moderately-differentiated (G2) 10 2 8 — —

Poorly-differentiated (G3) 8 1 7 — —

LN status

LN negative 20 3 17 — —

LN positive 4 2 2 — —

Controls- GSD 16 2 14 46.6 24-68
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(Thermo Fisher Scientific, version 2.2) with Mascot and Sequest

HT search engine nodes using NCBI RefSeq database (release

89). Search parameters included trypsin as the enzyme with 2

missed cleavage allowed; precursor and fragment mass tolerance

were set to 10 ppm and 0.1 Da, respectively; Methionine

oxidation and deamidation of asparagines and glutamine

amino acids was set as a dynamic modification while

methylthio modification at cysteine and iTRAQ modification

at N-terminus of the peptide and lysines were set as static

modifications. The peptide and protein information was

extracted using high peptide confidence and top one peptide

rank filters. The FDR was calculated using percolator node in

proteome discoverer 2.2. High confidence peptide identifications

were obtained by setting a target FDR threshold of 1% at the

peptide level. The labeling efficiency was > 95% for both the

iTRAQ experiments (Stage I and II).

The iTRAQ intensity of proteins from each of the three

replicates was used for the PCA plot analysis (17) to determine

the correlation among the triplicate dataset as well as the

correlation of GSD vs individual GBC stage I or stage II

proteome dataset.

Relative quantitation of proteins was carried out based on

the intensities of reporter ions released during MS/MS

fragmentation of peptides. The proteins identified in all three

replicates were used for the analysis. The average relative

intensities of the two reporter ions for each of the unique

peptide identifiers for a protein were used to determine the

relative quantity of a protein and percentage variability. Proteins

identified with ≥ 2 unique peptides, with 2-fold-change or above

and FDR adjusted p value < 0.05 were considered significant and

used for further analysis (16). The volcano maps were prepared

by using log2 fold change and -log10 (p-value) as the co-

ordinates and significant fold change ≥ 2.0 and p-value < 0.05

were considered to screen the proteins.

The data was analyzed for DEPs in individual patient with

stage I or stage II and represented as Venn diagram. Further, the

non-redundant list of DEPs in early stage GBC was derived and

used for bioinformatics analysis.
2.6 Transcriptomics data comparison

We have compared the non-redundant list of DEPs from our

study with the published transcriptome data in GBC (18–21).

The proteins showing a positive correlation in their expression

levels with transcriptome data are represented as scatter plot.
2.7 Bioinformatic analysis

Mapping of DEPs in early stage GBC (non-redundant list of

DEPs from stage I and II) for localization, associated molecular

functions, pathways and protein-protein interaction analysis was
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performed using the STRING (Search Tool for the Retrieval of

Interacting Genes/Proteins) database (22). Signal sequence was

predicted using SignalP software version 6.0 (https://services.

healthtech.dtu.dk/service.php?SignalP) (23). From the non-

redundant list of DEPs, the proteins with quantitation values

for all 12 GBC patients were used for hierarchical clustering

using Perseus software (17).
2.8 Western blot analysis

Western blot analysis was performed to further confirm the

expression of myeloperoxidase precursor (MPO), myeloblastin

precursor (PRTN3) and protein S100-A8 isoform d (S100A8) in

the tissue lysates from individual GBC and GSD specimens

(GBC stage I, n=7; GBC stage II, n=5; GSD, n=6). Briefly, tissue

lysates were resolved on 12% SDS gel and transferred onto the

PVDF membrane. Non-specific sites were blocked using 5%

skimmed milk followed by incubation with primary antibody

overnight (MPO, catalogue no. ab208670, dilution 1:4000;

PRTN3, catalogue no. ab133613, dilution 1:10,000; S100A8,

catalogue no. ab92331, dilution 1:2000). The blots were then

incubated with secondary antibody (anti Rabbit-HRP, catalogue

no. G-21234, 1/20,000) for 1 hr at RT and developed using the

enhanced chemiluminescent (ECL) Kit (Millipore, USA)

followed by image acquisition (24). The total density of the

proteins in each lane was analyzed using densitometric analysis

after SDS-PAGE analysis and was used for normalization (24).

For quantitative analysis, the maximum density among GSD

cases was considered to define the fold change in expression in

individual GBC cases. The relative expression of target proteins

in the individual GBC cases in Western blot analysis and

quantitative proteomics data was represented as a bar diagram

using Log2 fold change values.
2.9 Immunohistochemistry analysis

IHC was performed on FFPE tissues using individual tissue

sections from controls (GSD cases), early stage GBC and

advanced GBC cases (n=10 in each group) (Supplementary

Table S1) to analyze the expression of MPO and S100A8

protein. IHC analysis was performed as described earlier by

Akhtar et al. (25). In brief, after deparaffinization and

rehydration of FFPE tissue sections, antigen retrieval was

performed by immersing the slide in antigen retrieval buffer

(20 mM Tris buffer, pH 9.0) at 90°C for 20 min. Endogenous

peroxidases were blocked with 0.03% hydrogen peroxide, and

nonspecific binding was blocked with protein blocking reagent.

Sections were then incubated for 1 h at RT with primary

antibody against MPO (dilution 1:8000, catalogue no.

ab208670, Abcam, USA) and S100A8 (dilution 1:2000,

catalogue no. ab92331) followed by incubation with PolyExcel
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https://services.healthtech.dtu.dk/service.php?SignalP
https://services.healthtech.dtu.dk/service.php?SignalP
https://doi.org/10.3389/fonc.2022.1046974
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Akhtar et al. 10.3389/fonc.2022.1046974
PolyHRP for 40 minutes at RT. Tissue sections were then

incubated with Stunn DAB working solution for 5 min at RT

(PathnSitu Biotechnologies, USA). Sections were counter stained

with Mayer’s hematoxylin, dehydrated and images were taken

under the microscope. The distribution of staining and staining

intensity across the section was observed under the microscope.

For MPO, the number of neutrophils was counted and ≥20 was

considered as ‘Positive’, while <20 was considered as ‘Negative’.

For S100A8, scoring criteria were based on both staining

intensity and distribution. The 2+ or higher intensity, with

≥10% distribution was considered as ‘Positive’, while 1+

positivity or < 10% distribution was considered as ‘Negative’.

IHC data analysis was done by two independent pathologists.

The statistical analysis (Fisher’s exact test) was performed

using GraphPad Prism 5 (26) to study the correlation of MPO and

S100A8 expression among cases and controls (early stage GBC vs

controls; advanced stage vs controls; all GBC vs controls). The p-

value less than 0.05 indicated statistical significance.
3 Results

In the present study, we performed the differential protein

profiling of tumor tissue from early stage GBC cases to identify

the proteins and associated molecular pathways. The overall

work plan of the study is shown in Figure 1.
Frontiers in Oncology 05
3.1 Identification of differentially
expressed proteins in early stage GBC

We performed iTRAQ based LC-MS/MS analysis of 12 early

stage GBC patients (stage I-n=7, stage II- n=5) using two

independent experimental setups. The experimental setup-1

consists of 7 GBC - stage I samples vs pooled GSD samples while

the experimental setup-2 consists of 5 GBC -stage II samples vs

pooled GSD samples (Figure 1, Supplementary Figure S1, S2). The

analysis led to the identificationof a total of 1450proteins fromstage I

and 2662 proteins in stage II. PCA plot analysis of the proteome

profile of 12 GBC patients along with GSD control showed a

significant correlation among the three replicate datasets of each

stage (Figure 2). We found 184 DEPs with ≥ 2 fold change and

adjusted p-value ≤0.05 in GBC stage I (Supplementary Table S2)

while a total of 256 DEPs with ≥ 2 fold change and adjusted p-value

≤0.05 were identified in GBC stage II (Supplementary Table S3).

We analyzed the DEPs across individual patients and the

data is represented as Volcano plots in Supplementary Figure S3.

The analysis showed a total of 357 DEPs (non-redundant) in

early stage GBC (stage I and II). We further compared our

proteomics data with the published transcriptome data in GBC

and found 97 proteins mapping with the transcriptome data. Of

these, 71 proteins (73%) showed a positive correlation with

transcript data. The proteins showing positive correlation are

represented in Supplementary Figure S4.
FIGURE 1

Overall workflow of the study. GSD, Gallstone disease; GBC, Gallbladder cancer; DEPs, Differentially expressed proteins.
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Out of 357 DEPs, a total of 83 proteins are common to both

stage I and II, while 101 proteins are specific to stage I and 173

proteins are specific to stage II (Figure 3, Supplementary Table

S4). Out of 83 DEPs, the majority of the proteins (~95%) showed

a similar trend (up or down) of expression in both stages. A total

of 29 proteins were found to be differentially expressed in ≥ 50%

GBC cases (i.e. 6 patients) and are shown in Table 2. Some of the

functionally relevant proteins include Myeloperoxidase

precursor (MPO), Myeloblastin precursor (PRTN3),

Neutrophil defensin 1 isoform X1 (DEFA1), Protein S100-A8

isoform d (S100A8), Desmin (DES), creatine kinase B-type

isoform 2 (CKB), Transgelin (TAGLN), Annexin A3 (ANXA3).
3.2 Signal sequence analysis and
literature survey

The Signal sequence analysis of 357 proteins showed 109

proteins with a signal sequence. Literature survey showed a total
Frontiers in Oncology 06
of 106 proteins that are reported to be differentially abundant in

plasma or serum in cancer. Overall, we found 51 proteins to have

signal sequence as well as reported to be differentially abundant

in plasma or serum in cancer (Supplementary Figure S5,

Supplementary Table S5). These proteins are potential

circulatory markers for the detection of GBC
3.3 Bioinformatic analysis

A gene ontology analysis for the localization of 357 DEPs

showed that 54.3% of them belong to the cytoplasm, 18.8% are

from the extracellular region, 13.7% are associated to the nucleus,

12.6% are from the plasma membrane and less than 1% are

associated with other localization (Figure 4A). The top molecular

functions include Opsonin binding, MHC class II protein

complex binding, Lipase inhibitor activity, Lipoprotein particle

receptor binding and MHC class I protein binding (Figure 4B,

Supplementary Table S6). Pathway analysis using 191 upregulated
FIGURE 3

Venn diagram showing DEPs in early stage GBC. A total of 83 proteins are common to both stage I and II, while 101 proteins are specific to
stage I and 173 proteins are specific to stage II. The details of all the proteins are shown in Supplementary Table S4.
A B

FIGURE 2

PCA Plot showing the correlation of the individual patients with GBC stage I and II. (A) includes seven individual samples from GBC stage I and
one pooled GSD control while (B) includes five individual samples from GBC stage II along with one pooled GSD control. Four patients, two
from stage I (GBC-1 and 6) (A) and two from stage II (GBC-8 and 9) (B) showed similar profile as GSD (non-tumor control). The technical
replicates showed a significant correlation. Replicates R1, R2 and R3 are shown in red, green and blue color. The PCA plot is derived using the
iTRAQ reporter intensity from the quantitative proteomics data.
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TABLE 2 A list of 29 DEPs in ≥ 6 early stage GBC patients.

GBC Stage I GBC Stage II

C stage I
with DE

No. of GBC stage II
patients with DE

No. of early stage GBC
patients with DE

3 8

3 7

2 7

2 7

3 10

2 6

2 8

4 7

4 10

2 7

3 7

3 6

1 6

2 6

2 6

2 6

2 7

2 7

2 7

2 8

1 6

2 7

4 8

2 7

(Continued)
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Gene
Symbol

GBC-
1

GBC-
2

GBC-
3

GBC-
4

GBC-
5

GBC-
6

GBC-
7

GBC-
8

GBC-
9

GBC-
10

GBC-
11

GBC-
12

No. of GB
patients

ALB 1.25 0.41 0.21 0.29 0.87 0.44 0.40 0.46 0.40 0.65 0.18 0.53 5

ANXA3 1.44 2.60 3.76 3.91 2.43 1.23 2.45 1.19 1.04 2.71 2.30 2.51 4

AOC3 0.69 0.24 0.29 0.21 0.26 0.42 0.18 0.72 1.56 0.35 0.29 0.28 5

BGN 1.21 0.40 0.39 0.47 0.29 0.72 0.38 1.06 0.93 0.42 0.44 0.34 5

CKB 0.41 0.46 0.35 0.42 0.26 0.29 0.39 0.47 0.88 0.51 0.42 0.29 7

COL6A1 1.29 0.41 0.37 0.38 0.27 0.43 0.38 2.64 1.12 0.54 0.72 0.41 4

DCN 2.06 0.29 0.26 0.29 0.27 0.73 0.29 0.62 1.42 0.48 0.30 0.30 6

DEFA1 2.61 3.61 10.42 2.59 4.62 2.16 4.01 3.62 0.94 4.95 4.54 3.12 3

DES 0.40 0.09 0.09 0.08 0.07 0.09 0.08 0.48 0.27 0.12 0.10 0.09 6

FLNA 0.66 0.47 0.40 0.39 0.35 0.71 0.47 0.93 0.56 0.33 0.34 0.37 5

HBB 0.70 0.31 0.26 1.30 0.79 0.42 0.48 0.57 0.50 7.28 0.50 0.52 4

HSP90B1 0.64 2.60 2.22 1.86 1.09 3.24 2.40 1.68 2.15 1.07 2.06 2.11 3

HSPA5 0.97 2.52 2.26 2.13 1.16 2.46 2.19 1.49 1.71 1.11 2.03 1.73 5

HSPE1 0.80 3.02 3.50 3.35 1.42 1.51 2.54 0.98 1.26 1.04 4.45 3.37 4

KRT18 0.48 1.18 3.18 2.65 1.41 0.48 2.43 0.45 0.43 0.33 0.69 1.58 4

KRT8 0.61 2.24 3.61 2.09 1.30 0.42 1.93 0.44 0.41 0.40 0.96 1.87 4

LUM 1.89 0.17 0.15 0.31 0.20 0.84 0.17 0.55 1.52 0.42 0.20 0.23 5

MPO 2.53 2.57 6.15 2.60 10.27 1.60 2.97 2.78 1.28 2.82 3.09 1.16 5

MYL6 0.80 0.30 0.27 0.49 0.37 0.58 0.28 0.67 1.03 0.25 0.46 0.38 5

MYL9 0.61 0.18 0.14 0.23 0.12 0.39 0.14 0.57 0.98 0.16 0.18 0.15 6

P4HB 0.99 2.53 3.83 2.43 1.53 2.94 3.53 1.23 1.23 0.95 1.31 2.93 5

PRELP 1.45 0.21 0.19 0.22 0.27 0.45 0.20 1.16 1.56 0.47 0.25 0.31 5

PRTN3 3.59 11.49 30.01 13.09 16.06 2.94 7.52 2.82 1.45 16.93 2.40 2.23 4

S100A8 3.43 3.51 4.97 2.12 6.96 2.49 4.66 2.80 0.81 1.99 2.25 1.42 5
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proteins showed ‘Neutrophil degranulation’ among the top

upregulated pathway (Figure 4C, Supplementary Table 7A)

while the analysis using 62 downregulated proteins showed

‘ECM organization’ to be the top downregulated pathway

(Figure 4D, Supplementary Table 7B).

Protein-protein interaction analysis of 29 proteins (DE in ≥

6 patients) revealed three clusters which include the proteins

associated with neutrophil degranulation (MPO, DEFA1,

S100A8, PRTN3, AOC3), ECM proteins (COL6A1, BGN,

DCN, LUM, PRELP) and cytoskeletal or intermediate filament

(DES, MYL6, MYL9, TPM2) (Figure 5).

We also performed the pathway analysis using the DEPs

across individual patients and obtained the data for 10 out of 12

patients. ‘Neutrophil degranulation’ was among the top

pathways in 9 patients (Supplementary Table S8). The data for

two patients was not obtained as the number of DEPs was low.

A hierarchical clustering analysis done using a non-redundant

list of 308 proteins with quantitation value for all the 12 patients

showed two distinct clusters or groups on the basis of their

molecular profile (Figure 6A). The majority of Stage I and II

samples were clustered and represented as Cluster A and B

respectively. Among 308 proteins, we observed keratin family

proteins (KRT7, KRT8, KRT18 and KRT19) to be upregulated in

cluster A and downregulated in cluster B (Figure 6B).
3.4 Validation of target protein
expression by western blot and
immunohistochemistry analysis

We selected three proteins (MPO3, PRTN3 and S100A8) based

on their association with ‘neutrophil degranulation pathway’ and

‘overexpression in ≥6 patients in quantitative proteomics data’ for

validation by Western blot analysis. Their relative expression (log2

fold change) in individual patients from the quantitative proteomics

dataset is shown in Figure 7. Western blot analysis was performed

using individual tissue lysates and showed overexpression of MPO,

PRTN3 and S100A8 in early stage GBC cases and GSD controls.

BothMPO and PRTN3 showed significant overexpression in 66.7%

(n=8/12) of the GBC cases whereas there was a weak or no signal

observed in GSD. The protein S100A8 showed significant

overexpression in 83.3% (n=10/12) of the GBC cases in

comparison to GSD. Western blot image is shown in Figure 8

and full-length blot image is shown in Supplementary Figure S6.

The relative expression of selected proteins in the individual GBC

cases using Western blot analysis and quantitative proteomics data

is shown in Supplementary Figure S7.

We performed IHC analysis to study the expression of two of

the proteins, MPO and S100A8 in controls, early stage GBC and

advanced stage GBC (n=10 in each group). Figure 9A shows the

representative IHC images of controls, early stage GBC and

advanced stage GBC. The number of MPO positive neutrophils

was found to be ‘positive’ in 50% of early stage GBC and 30% of
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advanced stage GBC cases. All GSD cases showed ‘negative’

expression. The expression of S100A8 was found to be ‘positive’

in 10% GSD cases, 60% early and 50% advanced stage GBC. The

statistical analysis between cases and controls showed a significant

difference (p value ≤0.05) ofMPO positive neutrophils in early stage

GBC vs controls and all GBC vs controls while a significant

difference of S100A8 was observed in all GBC vs controls

(Figure 9B). The controls (≥ 90%) showed ‘Negative’ expression

levels. We performed IHC analysis for PRTN3, however, the results

were not clear due to technical reasons.
4 Discussion

GBC is generally diagnosed at advanced stages and has a poor

prognosis. The detection of the disease at the early stage may

significantly improve the treatment strategy and survival outcome

of the patients. There are few studies applying high throughput

proteomics approach to understand the molecular processes in

GBC (12–15), however, none of these focused on early stage GBC.

The present study applied iTRAQ-based quantitative proteomics

approach and analyzed the differential proteome in early stage GBC

(stage I and II). The data from both the stages were combined to
Frontiers in Oncology 09
obtain a non-redundant list of DEPs. The correlation of expression

between these DE proteins (our study) and DE transcript dataset in

GBC available in the public domain was analyzed. Further, gene

ontology analysis was carried out to identify the significantly altered

pathways. Based on the pathway analysis, we propose a hypothesis

on the dysregulated molecular processes/events in early stage GBC.

We then analyzed the proteins for the presence of ‘signal sequence’

to identify those having the potential for early detection of GBC.

The present study identified a non-redundant list of 357

DEPs in early stage GBC, of these, 68 proteins are reported

earlier in GBC including KRTs (KRT7, KRT8, KRT18 KRT19,

KRT20), VIM, DES, CEACAM5 or CEA, S100A8, TAGLN,

HMGB1, ANXA3, while others are novel to GBC. A total of

272 proteins are reported to be differentially expressed in other

cancers and 17 are novel. Comparison with the already

published transcriptome dataset showed 97 proteins mapping

with the transcriptome data, of which 71 proteins (73%) showed

a positive correlation in expression. Pathway analysis showed

‘neutrophil degranulation’ to be the top upregulated pathway

and ‘ECM organization’ to be the top downregulated pathway in

early stage GBC. The individual patient data analysis showed 29

DEPs in ≥ 50% of GBC cases (≥ 6 patients) (Table 2). Some of

the proteins associated with neutrophil degranulation such as
A B

C

D

FIGURE 4

Gene ontology of 357 DEPs in early stage GBC. (A) Localization of (B) Molecular functions (C) Reactome pathways using upregulated proteins
and (D) downregulated proteins as observed using STRING database.
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A

B

FIGURE 6

Hierarchical clustering using non-redundant list of 308 DE proteins in 12 early stage GBC patients. (A) Hierarchical clustering showed two
clusters with cluster A majorly including stage I samples and cluster B majorly including stage II samples. (B) We observed cytokeratins KRT7,
KRT8, KRT18 and KRT19 showing upregulation in Cluster A and downregulation in Cluster B. Log2 (fold change) values for 308 proteins were
used for the analysis. Red- Upregulated, Green- Downregulated.
FIGURE 5

Protein-protein-interaction (PPI) network of 29 deregulated proteins. PPI analysis showed four clusters including majorly the proteins associated
with neutrophil degranulation (MPO, DEFA1, S100A8, PRTN3, AOC3) (marked in red), ECM proteins (COL6A1, BGN, DCN, LUM, PRELP) (green),
cytoskeletal or intermediate filament (DES, MYL6, MYL9, TPM2) (blue). The subset of 29 proteins showed differential expression in ≥ 50% of early
stage GBC (i.e. ≥ 6 patients).
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MPO, MMP9, DEFA1 showed the presence of ‘signal sequence’

and could be the potential circulatory markers for early detection

of GBC.

Immune cell infiltration (neutrophils, macrophages) is well

reported in several cancers. Neutrophils are associated with

cancer-related inflammation with a dual role in pro and anti-

tumor effects (27). In different types of cancer, neutrophils have

been reported to have pro-tumorigenic properties via DNA

damage, immunosuppression and angiogenesis, which

contribute to the progression of the disease in the tumor

microenvironment (TME) (28). We found overexpression of

PRTN3 (proteomics data) which is reported to be associated

with neutrophil trans-endothelial migration to the tissue (29).

We observed an overexpression of neutrophil intracellular

marker protein (MPO) and cell surface marker proteins

(CEACAM8, ITGAM and ITGB2) in early stage GBC in

comparison to GSD (non-tumor controls) suggesting

neutrophil infiltration in tumor tissue. Increased expression of

CEACAM8, ITGAM and ITGB2 is reported to be associated

with exocytosis or degranulation of primary, secondary and

tertiary neutrophil granules respectively. We also found

overexpression of various neutrophil granule proteins

including primary granule (Azurophil) proteins such as AZU1,
Frontiers in Oncology 11
DEFA1, PRTN3, CD63, CTSG, ELANE, MPO, secondary

granule proteins such as LCN2, LTF, tertiary granules

(Gelatinase) such as MMP9 and other granule proteins such as

S100A8 and S100A9, in the early stage GBC (our proteomics

data). As per the HPA data, AZU1, DEFA1, PRTN3, CTSG,

ELANE, MPO, LTF, MMP9, S100A8 and S100A9 are bone

marrow and lymphoid tissue specific or enriched proteins

suggesting that the expression of these proteins detected in our

data is from immune cells.

MPO is a member of the heme peroxidase superfamily and is

the most abundant protein expressed by neutrophils. It is

reported to generate reactive oxygen species (ROS) leading to

DNA damage and mutation inducing carcinogenesis and thus

resulting in tissue damage (30). PRTN3 is a serine protease

secreted by cells of myeloid lineage and allocated to the cell

surface of neutrophils and endothelial cells. It has an elastase-

like specificity for small aliphatic residues such as Ala, Val, Ser,

Met and degrades various ECM proteins and known to activate

MMP and is associated with tumor invasion and metastasis (31).

S100A8 is a calcium-binding S100 protein secreted by

granulocytes and monocytes. S100A8 has emerged as an

inflammatory factor and is associated with cancer. S100A8

overexpression is associated with tumorigenesis and poor
FIGURE 8

Western blot images showing expression of MPO, PRTN3, S100A8 in the individual tissue samples from early stage GBC and GSD cases.
A significant overexpression of MPO, PRTN3, S100A8 was found in 66.7% (n=8/12), 66.7% (n=8/12) and 83.3% (10/12) early stage GBC
cases respectively.
FIGURE 7

Altered levels of functionally relevant proteins in early stage GBC as observed in quantitative proteomics data. The plot showing the levels of
MPO, PRTN3 and S100A8 in individual patients, GBC stage-I (n=7) and stage-II (n=5).
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differentiation in melanoma and prostate cancers, although the

biological function of S100A8 in cancer is not clear (32).

Western blot analysis confirmed the overexpression of tissue

MPO, PRTN3 and S100A8 in early stage GBC cases (Figure 8)

and IHC analysis confirmed the overexpression of MPO in early

stage GBC.

PRTN3, ELANE, CTSG and MMP9 are the serine proteases

released by the activated neutrophils and have been reported to
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degrade ECM proteins and promote cancer cell invasion (33–36).

We also observed downregulation of ECM proteins (COL14A1,

COL1A2, COL6A1, COL6A2, COL6A3, BGN, DCN, LUM,

PRELP). Majority of these proteins are already reported to be

involved in cell invasion. Based on the above results, we

hypothesize that there is an increased neutrophil infiltration and

degranulation in the tumor tissue leading to degradation of ECM

proteins and promoting cancer cell invasion in early stage GBC
A B

FIGURE 9

IHC analysis to study the expression of MPO and S100A8 in controls and GBC cases. (A) Representative IHC images showing the expression of
MPO and S100A8 in controls and GBC cases. IHC was performed on formalin-fixed paraffin-embedded (FFPE) individual tissue sections of 10
controls (GSD cases with no dysplasia), 10 early stage GBC (stage I and II) cases and 10 advanced stage GBC cases (stage III and IV). The IHC
results showed that the number of MPO positive neutrophils was found to be ‘positive’ in 50% of early stage GBC and 30% of advanced stage
GBC cases. All GSD cases showed ‘negative’ expression. The expression of S100A8 was found to be ‘positive’ in 10% GSD cases, 60% early and
50% advanced stage GBC. (B) The statistical analysis between cases and controls showed a significant difference of MPO positive neutrophils in
early stage GBC vs controls and all GBC vs controls while a significant difference of S100A8 was observed in all GBC vs controls. The controls (≥
90%) showed ‘Negative’ expression levels.
FIGURE 10

Hypothesis showing molecular events in early stage GBC. We observed overexpression of neutrophil degranulation pathway proteins and
downregulation of ECM proteins. We hypothesize that there is neutrophil infiltration and degranulation in GBC tissue resulting in release of
proteases which possibly degrades ECM proteins promoting cancer cell invasion.
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(Figure 10). Protein-protein interaction analysis of the proteins

associated with ‘neutrophil degranulation’ showed MPO, ELANE,

ITGAM, MMP9, LTF to be the hub molecules (Supplementary

Figure S8). Based on the bioinformatic analysis and literature

search, some of the proteins associated with neutrophil

degranulation such as MPO, ELANE, DEFA1, MMP9 were

found to have ‘signal sequence’ and could be further explored as

circulatory markers for early detection of GBC.

The limitations of the study include the low sample size. We

used GSD cases as non-tumor controls in the present study,

however, inclusion of other controls such as GB polyp,

xanthogranulomatous cholecystitis would be important.
5 Conclusions

In the present study, we analyzed the differential proteome

profile of early stage GBC patients and identified 357

differentially expressed proteins. ‘Neutrophil degranulation’

pathway was found to be enriched with upregulated proteins

and ‘ECM organization’ with downregulated proteins. We

hypothesize that there is neutrophil infiltration and

degranulation in tumor tissue which leads to degradation of

ECM proteins and promote tumor progression from early stage

GBC. The overexpression of ‘neutrophil degranulation’ pathway

proteins was further confirmed by Western blot and IHC

analysis. The neutrophil degranulation proteins having signal

sequences identified in the present study could be explored as

circulatory markers for early detection of GBC.
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