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Identification of the
osteoarthritis signature gene
PDK1 by machine learning
and its regulatory mechanisms
on chondrocyte autophagy
and apoptosis

Jinzhi Meng1†, Huawei Du1†, Haiyuan Lv1†, Jinfeng Lu2,
Jia Li2 and Jun Yao1*

1Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
2Department of Pathology, The First Affiliated Hospital of Guangxi Medical University,
Nanning, China
Background: Osteoarthritis (OA) is a degenerative joint disease frequently

diagnosed in the elderly and middle-aged population. However, its specific

pathogenesis has not been clarified. This study aimed to identify biomarkers for

OA diagnosis and elucidate their potential mechanisms for restoring OA-

dysregulated autophagy and inhibiting chondrocyte apoptosis in vitro.

Material and methods: Two publicly available transcriptomic mRNA OA-

related datasets (GSE10575 and GSE51588) were explored for biomarker

identification by least absolute shrinkage and selection operator (LASSO)

regression, weighted gene co-expression network analysis (WGCNA), and

support vector machine recursive feature elimination (SVM-RFE). We applied

the GSE32317 and GSE55457 cohorts to validate the markers’ efficacy for

diagnosis. The connections of markers to chondrocyte autophagy and

apoptosis in OA were also comprehensively explored in vitro using molecular

biology approaches, including qRT-PCR and Western blot.

Results: We identified 286 differentially expressed genes (DEGs). These DEGs

were enriched in the ECM-receptor interaction and PI3K/AKT signaling

pathway. After external cohort validation and protein-protein interaction (PPI)

network construction, PDK1 was finally identified as a diagnostic marker for OA.

The pharmacological properties of BX795-downregulated PDK1 expression

inhibited LPS-induced chondrocyte inflammation and apoptosis and rescued

OA-dysregulated autophagy. Additionally, the phosphorylation of the

mediators associated with the MAPK and PI3K/AKT pathways was significantly

downregulated, indicating the regulatory function of PDK1 in apoptosis and

autophagy via MAPK and PI3K/AKT-associated signaling pathways in

chondrocytes. A significantly positive association between the PDK1

expression and Neutrophils, Eosinophils, Plasma cells, and activated CD4
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memory T cells, as well as an evident negative correlation between T cells

follicular helper and CD4 naive T cells, were detected in the immune cell

infiltration analysis.

Conclusions: PDK1 can be used as a diagnostic marker for OA. Inhibition of its

expression can rescue OA-dysregulated autophagy and inhibit apoptosis by

reducing the phosphorylation of PI3K/AKT and MAPK signaling pathways.
KEYWORDS
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1 Introduction

Osteoarthritis (OA) is a degenerative joint disease and the

most common joint disorder affecting the quality of life of older

adults (1). Massive loss of the cartilage extracellular matrix leads

to cartilage destruction and fibrous tissue growth, representing

the main pathological features of OA (2, 3). Currently, it is

possible to reduce OA symptoms by increasing the lubrication of

the joint with some medications. However, due to its complex

pathology, OA treatment strategies are unavailable. Increasing

studies have shown that inflammatory storms during OA

development cause apoptosis and autophagy dysregulation in

chondrocytes, resulting in a decreased ability of cells to clear

damaged organelles and incomplete proteins (4–6). Therefore,

finding precise targets that regulate apoptosis and autophagy in

OA chondrocytes is of great clinical importance.

Increasing evidence has shown that OA progression occurs

along with autophagy attenuation in cells (7). As a protein

degradation system in cells, autophagy protects cells from

abnormal physiological conditions, such as hypoalimentation,

endoplasmic reticulum stress (ERS), and hypoxia, by

phagocytosis of dysfunctional organelles and incomplete

proteins (8, 9). Attenuating autophagy in OA causes

aggregation of different molecular proteins, leading to

functional defects, cell degeneration, and eventually apoptosis.

Currently, inhibiting chondrocyte apoptosis by activating and

repairing dysregulated autophagy has become an interesting

strategy for OA (10). Additionally, autophagic cell function is

tightly mediated by signaling pathways, including MAPK- and

PI3K/AKT-associated pathways.

Recently, gene microarray technology and bioinformatics

have allowed the study of diseases in multiple dimensions, from

transcriptomes and epigenetic changes to cellular mutations and

copy number variations, to identify driver genes influencing

disease progression. Bioinformatics is an emerging discipline

that combines information technology and molecular biology. It

is also an important tool for investigating the mechanisms

underlying various diseases. Although many studies have
02
explored OA diagnostic markers, their diagnostic value has not

been well validated. Herein, we found and validated OA

signature genes in GSE10575, GSE51588, GSE32317, and

GSE55457 cohorts using bioinformatics tools. Additionally, the

specific mechanisms between the identified OA signature genes

in regulating cellular autophagy and apoptosis were further

explored using in vitro experiments. The association of OA

signature genes with the infiltration of 22 immune cells was also

evaluated using the CIBERSORT (11, 12) algorithm and

correlation analysis.
2 Materials and methods

2.1 Data acquisition and analysis

The transcriptome (GSE10575; GSE51588; GSE32317;

GSE55457) of OA and normal cartilage tissues used for raw

analysis were downloaded from the Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/) platform. To reduce the

error bias of individual samples, we used the “limma” and “SVA” R

packages to combine and correct the GSE10575 and GSE51588

datasets as the training cohort for screening OA signature genes.

We collected 62 samples, including 16 normal cartilage and 46 OA

samples. Two independent datasets, GSE32317 and GSE55457,

were used as validation cohorts. GSE32317 comprises early- and

end-stage OA, and the GSE55457 dataset contained 10 normal and

23 OA samples. Additionally, differentially expressed genes (DEGs)

were screened under the criterion of |log2 FC| ≥ 1 and FDR < 0.05

using the “limma” R package.
2.2 Molecular pathway and biological
function enrichment analyses

We used KEGG analysis to detect the signaling pathways

associated with DEGs in OA. Similarly, we conducted GO

functional enrichment analysis to explore the biological
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functions of identified DEGs, including molecular functions

(MFs), cellular components (CCs), and biological processes

(BPs). To investigate the signaling pathways and biological

functions activated in OA, we conducted Gene Set Enrichment

Analysis (GSEA) (13).
2.3 Screening for signature genes

Three machine learning algorithms were used to identify

significant markers to predict OA status. The LASSO regression

analysis allows variable selection and complexity regularization

to obtain accurate predictors. We performed the LASSO

regression to identify genes with OA diagnostic significance

using the “glmnet” R package. The SVM algorithm is based on

supervised learning and binary data classification and has been

widely used for classifying and subclassifying disease genomes

(14). SVM’s powerful classification capabilities in disease

genome learning can help discover new biomarkers and

understand disease driver genes (15). The WGCNA (16) can

identify gene modules with the highest relevance to diseases.

Therefore, we used LASSO regression analysis, WGCNA, and

the SVM-RFE algorithm to screen diagnostic genes in OA and

the intersection of the three algorithms for further validation.
2.4 Validating the diagnostic value of OA
signature genes

To evaluate the diagnostic accuracy of these signature genes for

OA, receiver operating characteristics (ROC) curves were generated

using the mRNA expression datasets from 16 normal cartilage and

46 OA samples of the training cohort. The area under the ROC

curve (AUC) can accurately reflect the validity of the signature gene

as a diagnostic marker. The results were further validated in the

GSE32317 and GSE55457 cohorts. The screened diagnostic genes

were also separately validated for differential expression in the two

independent validation cohorts.
2.5 Protein-protein interaction network
construction and correlation analysis

A PPI network was constructed using the online STRING

database (https://cn.string-db.org/) (17), with the minimum

required interaction score of 0.7, to explore PPIs between

signature genes and the classical PI3K/AKT and MAPK

inflammatory signaling pathway. The interrelationships

between signature genes and inflammatory signaling pathways,

chondrocyte autophagy, and apoptosis were further explored

using the same approach to clarify the functions of signature

genes in OA development.
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2.6 Extraction and culture
of chondrocytes

As previously described (18, 19), we collected knee cartilages

from Sprague–Dawley (SD) rats (3-7 days old) under aseptic

conditions, then extracted and cultured the chondrocytes in

vitro. Briefly, after cutting into small pieces and 30-min digestion

using trypsin (Solabio, China) at 37°C, the mixture was

incubated with collagenase type II (1 mg/mL; Gibco), and high

Glucose-containing DMEM medium (Gibco, USA) for 6 h.

Chondrocytes were collected after centrifugation at 1500 rpm/

3 min and cultured in FBS (10%; Gibco, USA) and penicillin/

streptomycin (Solarbio, China) DMEM medium at 37°C. Third-

generation chondrocytes were used for further studies. All

experiments were approved by the Medical Ethics Committee

of the First Affiliated Hospital of Guangxi Medical University

(Approval number: 2022-E320-01).
2.7 Cytotoxicity and activity assay

We used the Cell Counting Kit-8 (CCK-8, C0037, Beyotime,

China) assay to determine the safe concentration of the PDK1

inhibitor BX795 (HY-10514, MCE) and the PDK1 activator

PS48 (GC13920, GLPBIO) on chondrocytes. Briefly, BX795

and PS48 were dissolved in dimethyl sulfoxide (DMSO,

Beyotime, China) as a storage solution and stored at -20°C. To

exclude the effects of DMSO on chondrocytes, storage solutions

were diluted with phosphate-buffered saline (PBS, Solarbio,

China) or DMEM medium during the experiment. The

solubility of BX795 and PS48 was increased by heating to 37°C

before the experiment. Third-generation chondrocytes were

cultured in a 96-well plate (8×103 cells per well) for 24 h, then

intervened using BX795 (0.1-32 mM) and PS48 (2.5-320 mM) for

two days. After adding 10 mL CCK-8 into each well of

chondrocytes and 2-h culture, the absorbance values at 460

nm were recorded. To evaluate the viability of chondrocytes, we

employed a live/dead cell staining kit (40747ES76, YEASEN,

China). Briefly, chondrocytes were treated with BX795 (1 mM) or

PS48 (5 mM) in 6-well plates (n = 8×104 cells) after two days of

incubation. PBS was rinsed clean of cell culture medium, then

incubated with 4.5-mM propidium iodide (PI) and 2-mM
Calcein-AM solution at 37°C for 30 min in the dark. After

washing with PBS, a fluorescence imaging microscope

(Olympus, BX53) was used to view and record the results.
2.8 Safranin-O staining

Third-generation primary chondrocytes were cultured in 6-

well plates (8×104 cells/well) for 48 h. The medium was aspirated

and washed 3 times with PBS, followed by 4% paraformaldehyde
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(POM, Biosharp, China) soaking for 15-30 min. Finally, they

were incubated with 0.2 mg/mL of L safranin-O staining

solution (Solarbio, China) for 5 min in the dark.
2.9 RNA extraction and qRT-PCR

We used the RNAeasy™ Plus Animal RNA Isolation Kit

with Spin Column (Beyotime, R0032, China) to extract total

RNA from chondrocytes. The PrimeScript™ RT reagent Kit

with gDNA Eraser (Takara, China) was used to reversibly

transcribe 1 mg of the extracted RNA into cDNA. The

expressions of PDK1, apoptosis-related genes (Bcl-2, Bax,

and Casp-3), and autophagy-related genes (ATG7, LC3 I/II,

and Beclin-1) in chondrocytes were measured by qRT-PCR.

Primer sequences were designed according to the GenBank

database and are shown in Table 1. A total reaction volume

of 20 mL mix containing 10 mL SYBR Premix Ex Taq mixture

(Thermo Fisher Scientific, USA), 0.8 mL of each primer, 3.4

mL sterile distilled water, and 5 mL cDNA was prepared

before amplification. Target mRNA levels were compared to

the control and normal ized to GAPDH by the 2-

DDCt method.
2.10 Western blot

Total chondrocyte protein was extracted using a 1%

phosphatase inhibitor cocktail (CW2383, CWBIO), protease

inhibitor cocktail (HY-K0010, MCE), and phenylmethanesulfonyl

fluoride (PMSF, BOSTER, China)-contained RIPA lysis buffer

(Beyotime, China). After determining the concentration using a

BCA protein assay (Beyotime, China) and mixing with loading

buffer and 10-min boiling at 100°C, protein samples were separated

by 10% polyacrylamide gels. After transferring the protein bands

using polyvinylidene fluoride (PVDF) membranes, membranes

were blocked with 5% nonfat milk and incubated for 2 h at room

temperature. Subsequently, blocked membranes were incubated
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with primary antibodies against GAPDH (Abcam), PDK1

(Thermo Fisher Scientific), Beclin-1(Proteintech, China), LC3 I/II

(Abcam), Atg7 (ZENBIO, China), P38 (Abcam), p-P38 (Abcam),

JNK (CST), p-JNK (CST), ERK (Abcam), p-ERK (Abcam), p‐PI3K

(Abcam), PI3K (Abcam), p‐Akt (Abcam), and Akt (Abcam) at 4°C

overnight with 1:1000 dilution. After three washes with PBST and

1 h of incubation at room temperature with Rabbit anti-Goat IgG

(H+L) Secondary Antibody (Thermo Fisher Scientific), signals were

visualized with enhanced chemiluminescence (ECL, Beyotime) and

recorded by Odyssey Infrared Imaging System.
2.11 Immunohistochemical analysis and
Tunel staining

The donors agreed to use human-derived cartilage

samples, and this study was approved by the Medical Ethics

Committee of the First Affiliated Hospital of Guangxi Medical

University (Approval number: 2022-E320-01). Cartilage

sample sections were pretreated with 3% hydrogen

peroxide, blocked with 10% goat serum (Gibco), and probed

with PDK1 (1:400) primary antibody overnight at 4°C.

Unbound antibodies were washed away with PBS and

incubated with IgG secondary antibody (1:300, Thermo

Fisher Scientific) for 2 h at room temperature. Next,

diaminobenzidine (DAB) substrates (Boster, China) were

used to develop the positively stained areas, and sections

were counterstained with hematoxylin. Tunel staining

(Promega) was performed to determine the level of

apoptosis in sectioned bone tissues. Finally, sections were

observed using an upright microscope (Olympus).
2.12 Immune cell infiltration and
correlation analysis

The CIBERSORT (http://cibersort.stanford.edu/) (20)

algorithm was used to quantify the content of infiltrated
TABLE 1 Primer sequences used in this study.

Gene name Forward primer (5′ to 3′) Reverse primer (5′ to 3′)

GAPDH AGTGCCAGCCTCGTCTCATA GGTAACCAGGCGTCCGATAC

PDK1 CTTAGAGGGCTACGGGACGGATG TCGTGGTTGGTTCTGTAATGCTTCC

BAX AGACACCTGAGCTGACCTTGGAG TTCATCGCCAATTCGCCTGAGAC

BCL-2 TGGAGAGCGTCAACAGGGAGATG GTGCAGATGCCGGTTCAGGTAC

CASP-3 GCGGTATTGAGACAGACAGTGGAAC AACCATGACCCGTCCCTTGAATTTC

ATG7 GATGGTGAACCTCAGCGGATGTATG CAGCAGCAGGCACTTGACAGAC

LC3 I/II GAGCGAGTTGGTCAAGATCATCCG GATGTCAGCGATGGGTGTGGATAC

Beclin-1 TCAAGATCCTGGACCGAGTGACC CTCCTCTCCTGAGTTAGCCTCTTCC
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immune cells between OA and normal cartilage. We used the

“corrplot” R package to analyze and visualize the relationship of

the 22 infiltrated immune cells. We applied the “vioplot” R

package to represent the variations of infiltrated immune cells

between normal and OA cartilage samples with violin plots.

Spearman’s rank correlation was conducted to clarify the

correlation between infiltrated immune cell levels and PDK1

expression in different samples. Finally, the “ggplot2” R package

was applied to visualize the associations.
2.13 Statistical analyses

Bioinformatics analyses were implemented in R (x64 4.0.2)

and RStudio. The results of in vitro experiments are presented as

means ± standard deviations. One-way analysis of variance

(ANOVA) was performed between groups, followed by

Tukey’s and t-test to determine significant differences. The

significance level was set at p < 0.05, and figure legends

indicate sample sizes.
Frontiers in Immunology 05
3 Results

3.1 Identification of DEGs and functional
enrichment analysis

After eliminating the batch effect of the two cohorts

(GSE10575 and GSE51588), the ‘limma’ R package was used

to calculate the merged cohorts’ differences. After screening, we

identified 286 DEGs, 161 downregulated and 125 upregulated

(Figures 1A, C). The distribution of DEGs among different

cohorts and samples was visualized using a heatmap

(Figure 1B). Meanwhile, we conducted KEGG and GO

enrichment analyses to clarify the signaling regulatory

pathways and biological functions of DEGs. The associations

of the DEGs with the ECM-receptor interaction and the

pathways associated with PI3K/AKT and chemokine were also

observed (Figure 2A). Inhibition of the PI3K/AKT signaling

pathway can promote autophagy activity and reduce the

inflammatory response in chondrocytes (21, 22). We also

found that DEGs were associated with neutrophil
A B

C

FIGURE 1

Visualization of DEG screening. (A) Volcano plot. Blue represents upregulated genes, red represents downregulated genes, and black represents
genes with no difference. (B) Heatmap of the first 60 DEGs between different cohorts (GSE10575 and GSE51588) and sample types (Normal and
OA). (C) Histogram of DEGs.
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degranulation, humoral immune response, and neutrophil

migration in the biological processes (BPs), suggesting that

DEGs might have a regulatory relationship with immune

regulation in OA (Figure 2B). Collagen fibers are important

components of the extracellular matrix (ECM) of cartilage and

play an important role in maintaining the growth and

development of cartilage cells. In the cellular components

(CCs) module, DGEs were significantly enriched on collagen

fibers, banded collagen, and complex of collagen, indicating a

close association between DGEs and cartilage development

(Figure 2C). In terms of molecular functions (MFs), we also

observed that DEGs were associated with extracellular matrix

structural constituent conferring tensile strength, suggesting that

DEGs were involved in the production of cartilage ECM and

were associated with chondrocyte growth and development

(Figure 2D). The degradation and abnormal metabolism of
Frontiers in Immunology 06
cartilage ECM are pathological features of OA development.

The inhibition of cartilage ECM degradation and loss is an

effective way to treat OA (23).
3.2 Gene set enrichment analysis

The GSEA can be based on the entire gene expression dataset for

biological functions and can more comprehensively and

systematically reveal the different biological behavior and functional

pathways between treatment and control groups. Herein, we found

that the main biological behaviors enriched in the treatment group

were related to skeletal system development, mainly bone

development, cartilage development, chondrocyte differentiation,

and collagen fibril organization (Figure 3A). Regarding the

regulation of signaling pathways, the treatment group was mainly
A B

DC

FIGURE 2

Pathway and biofunctional enrichment analyses. (A) KEGG pathway enrichment analysis. (B-D) GO functional enrichment analysis, including
biological processes (B), cellular components (C), and molecular functions (D).
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enriched in axon guidance, and ECM preceptor interaction

(Figure 3B). Cartilage ECM plays a crucial role in cartilage

development and differentiation. Increased cartilage ECM

catabolism is a key factor in OA disease progression (24). The

main enriched biological functions and signaling pathways in the

control groupwereATP syntheses coupled electron transport, cellular

respiration (Figure 3C), cell cycle, and DNA replication (Figure 3D).
3.3 Identification and validation of OA
signature genes

We used three algorithms to identify OA signature genes more

accurately: WGCNA, LASSO regression, and SVM-RFE. WGCNA

can classify and visualize genes into different modules according to

their different relevance to the disease (Figure 4A). We identified the

genes in theMElighcyanmodule as themost relevant gene set for OA
Frontiers in Immunology 07
based on the highest absolute value of correlation (Figure 4B). Thus,

we selected the MElightcyan gene set with the highest correlation

coefficient for subsequent analysis, containing 224 genes (Table S1).

Besides, 15 genes were identified as OA diagnostic markers via

LASSO regression (Figure 4C). Thirty-one OA signature genes

were identified by the SVM-RFE algorithm (Figure 4D).

Furthermore, the intersection of the feature genes obtained by the

three algorithms was retrieved, and two (PDK1, CA2) were

confirmed as OA diagnostic signature genes (Figure 4E). Next, we

constructed ROC curves to evaluate the diagnostic ability of these two

biomarkers to discriminate OA and control samples. The AUC was

0.898 for PDK1 and 0.856 for CA2 (Figure S1A). These results were

further validated in the GSE32317 and GSE55457 cohorts. In the

GSE32317 cohort, PDK1 and CA2 showed favorable diagnostic

values with AUC of 0.875 and 0.903, respectively (Figure S1B).

Similarly, in the GSE55457 cohort, PDK1 and CA2 also showed

good diagnostic efficacy with AUC values of 0.796 and 0.661,
A B

DC

FIGURE 3

Gene Set Enrichment Analysis (GSEA) between treatment and control groups. (A) GO function and (B) KEGG signaling pathway enrichment in
the treat group. (C) GO function and (D) KEGG signaling pathway enrichment in the control group.
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respectively (Figure S1C). Furthermore, the model accuracy of the

signature genes PDK1 and CA2 for predicting disease was further

evaluated with an AUC of 0.918, indicating that the signature genes

have a very credible value for predicting OA disease (Figure 5A).

Subsequently, we validated the differential expression of

PDK1 and CA2 in OA using the GSE32317 and GSE55457

cohorts. PDK1 expression was higher in end-stage OA than in
Frontiers in Immunology 08
early-stage and higher in OA tissue than in normal cartilage

(Figures 5B, C), suggesting that as OA disease progresses and the

degree of inflammation increases, the expression level of PDK1

increases. This hypothesis was further confirmed by in vitro

cellular experiments. We used different concentrations (0.5 and

1mg/mL) of LPS-induced OA chondrocyte models and

characterized the survival of chondrocytes by calcein-AM/PI
A

B

D

E

C

FIGURE 4

Identification of OA signature genes. (A) Module trait-related tree diagram in WGCNA. In the tree diagram, the top half is a hierarchical
clustering diagram of genes, and the bottom half is a diagram of gene modules, with the top and bottom corresponding to each other.
(B) Visualization of gene modules associated with OA. Each module is represented by a row and each trait by a column. The leftmost color
block represents the module, the rightmost color bar represents the range of correlations, and the two middle columns represent the traits of
normal cartilage and OA cartilage, respectively. In the middle heatmap section, the darker the color, the higher the correlation. Red indicates a
positive correlation, blue indicates a negative correlation, and the number in each cell indicates the correlation and significance p-value. (C) The
plot of OA disease signature genes was screened using the LASSO regression model. (D) OA disease signature genes identified by the SVM-RFE
algorithm. (E) Venn diagram showing two signature genes (PDK1, CA2) crossed by the WGCNA, LASSO regression, and SVM-RFE algorithm.
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staining (Figures 5D, E). We observed that the growth activity of

chondrocytes decreased with the increasing of LPS

concentration, and the same result was observed in the

safranin-o staining (Figure 5F) of the chondrocytes. The

growth activity of the chondrocytes in the control group was

significantly better than in the LPS group. Additionally, a

positive correlation of the PDK1 expression with the dose of

LPS was observed in both qRT-PCR (Figure 5G) and Western

blot (Figure 5H). In contrast, there was no difference in CA2

expression between OA and normal cartilage (Figure S1E),

except in early and end-stage OA samples (Figure S1D).
Frontiers in Immunology 09
3.4 PDK1 was associated with the
regulation of PI3K/AKT and
MAPK pathways

Based on the insights into the enrichment of DEGs in the

PI3K/AKT signaling pathway (Figure 2A), we constructed PPI

networks of diagnostic markers PDK1, CA2 with classical

inflammatory signaling pathways (PI3K/AKT and MAPK),

autophagy-related factors, and apoptosis-related factors to

explore the potential relationship between diagnostic markers

and inflammation regulation, autophagy, and apoptosis in OA
A B

D E

F

G H

C

FIGURE 5

Analysis and validation of differential expression of the feature gene PDK1. (A) The ROC curve of the signature genes model for predicting
disease. (B, C) Differential expression analysis of PDK1 in the (B) GSE55457and (C) GSE32317 cohorts. In the OA cell model, (D) Calcein-AM/PI
staining was used to observe cell viability and (E) quantitative analysis. Chondrocytes in the control group were left untreated and were induced
with 0.5 and 1 mg/mL LPS in the LPS group (means ± SD, n=3, *P<0.05, significantly different with control; #P<0.05, significantly different as
indicated). (F) Safranin O for GAG production. (G, H) The relative expression of PDK1 mRNA (G) and protein expression levels (H) between OA
and normal chondrocytes in the LPS group. Values are presented as means ± SD (n ≥ 3). ** p < 0.01; *** p < 0.001; **** p < 0.0001, relative to
the control group. OA: osteoarthritis; qRT‐PCR: quantitative real‐time polymerase chain reaction; SD: standard deviation.
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(Figure 6A). Only PDK1 interacted with PI3K/AKT and MAPK

pathways, autophagy-related factors, and apoptosis-related

factors, suggesting that PDK1 might be involved in the

autophagy and apoptosis of chondrocytes via PI3K/AKT and

MAPK pathways. Therefore, we excluded CA2 from the

subsequent experiments and used only PDK1. The CCK-8 kit

was used to assess the potential cytotoxicity of the PDK1
Frontiers in Immunology 10
inhibitor BX795 and the PDK1 activator PS48. Chondrocytes

were cultured with different concentrations of BX795 (0.1-32

mM) and PS48 (2.5-320 mM). BX795 did not present cytotoxicity

to chondrocytes between 0.1-1 mM compared to controls

(Figure 6B), as well as PS48 between 2.5-10 mM (Figure 6C).

Therefore, 1 mM of BX795 and 5 mM of PS48 were used for

subsequent experiments.
A

B

D
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C

FIGURE 6

Exploring the potential signaling pathway of PDK1 involved in OA disease. (A) PPI network between PDK1 and the MAPK, PI3K/AKT signaling
pathways, apoptosis, and autophagy-related mediators. Cytotoxic effect of different (B) BX795 (0.1-32 mM) and (C) PS48 (2.5-320 mM)
concentrations on chondrocytes by the CCK-8 assay. (D) Calcein-AM/PI staining to detect the effects of BX795 (1 mM) and PS48 (5 mM) working
concentrations on chondrocyte activity. Green represents viable cells, and red represents dead cells (scale bars = 200 mm.). (E) Safranin O
staining was used for GAG production. Control: untreated chondrocytes; OA: chondrocytes cultured with 1 mg/mL LPS; BX795: LPS induction of
chondrocytes for 24 h, then 1 mM of BX795 was added to continue the culture for 24 h; PS48: LPS induction of chondrocytes for 24 h, then
5mM of PS48 was added for culture for 24 h. (F) The quantitative analysis of Calcein-AM/PI staining (means ± SD, n=3, *P<0.05, significantly
different with control; #P<0.05, significantly different as indicated). (G) Wstern blot analysis verified that BX795 inhibited PDK1 protein expression
and quantification (means ± SD, n=3, *** p < 0.001; **** p < 0.0001).
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3.5 LPS-induced chondrocytes and live/
dead staining

Furthermore, we used 1 mg/mL LPS (Solarbio, China) to

induce OA cell models in vitro. We divided the chondrocytes

into four groups: (1) the control group, no treatment was given

to the cells; (2) the OA group, chondrocytes were cultured with

LPS (1 mg/mL); (3) OA+BX795 group, chondrocytes were

induced by LPS for 24 h, then 1 mM of BX795 was added for

culture for 24 h; (4) the OA+PS48 group, chondrocytes were

induced by LPS for 24 h, then 5mM of PS48 for culture for 24 h.

Our observations showed that most viable cells were found in the

control group, followed by the BX795, OA, and PS48 groups

(Figures 6D, F), and the same result was observed in the

safranin-o staining (Figure 6E). Moreover, to understand the

effect of PDK1 inhibitor BX795 and agonist PS48 on PDK1

protein expression, western blot was used to detect PDK1

protein expression between different groups, and the results

showed that PDK1 protein expression in chondrocytes was

decreased under the influence of BX795 (Figure 6G).
3.6 Inhibition of PDK1 can inhibit the
activation of PI3K/AKT and MAPK
inflammatory signaling pathways

Through bioinformatic analysis and PPI construction, we have

identified that PDK1 is involved in OA disease process and has

protein interactions with mediators related to MAPK, PI3K/AKT

signaling pathway. The phosphorylation of PI3K/AKTmediated by

LPS was significantly attenuated after the PDK1 inhibitor was used

in chondrocytes (Figures 7A-C). Similarly, we performed aWestern

blot analysis of the MAPK pathway and found that PDK1

downregulation using a PDK1 inhibitor significantly reduced the

phosphorylation levels of MAPK inflammatory signaling pathway-

related mediators (ERK, P38, and JNK) (Figures 7D-G). In

summary, the phosphorylation of MAPK and PI3K/AKT

inflammatory signaling pathways was attenuated by inhibiting

PDK1 expression in OA cartilage, providing novel insights into

inflammation inhibition and treatment in OA.
3.7 Inhibition of PDK1 in OA
chondrocytes promotes autophagy and
suppresses apoptosis

The apoptosis and autophagy of the chondrocytes are

significantly connected to OA progression. Autophagy is a

cellular activity that maintains cellular homeostasis and

cellular activity by scavenging free oxygen radicals and

fragmented organelles (25). Restoration of dysregulated
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autophagy in OA can increase cartilage protection and

attenuates cartilage matrix degradation. Conversely, increased

chondrocyte apoptosis exacerbates the degradation of the

cartilage ECM and OA (25, 26). Here, we have found that

PDK1 interacted with apoptosis and autophagy in

chondrocytes through the MAPK and PI3K/AKT signaling

pathways (Figure 6A). The qRT-PCR results confirmed this

hypothesis (Figures 8A-C). The mRNA expression of

autophagy-related markers (Beclin-1, Lc3I/II, and Atg7) was

elevated in chondrocytes with suppressed PDK1 expression by

BX795 compared to the OA group. The same results were

further validated at the protein expression level via western

blot analysis (Figure 8D). We collected cartilage from OA

patients with their corresponding adjacent normal cartilage for

Tunel staining in the OA chondrocyte apoptosis analysis. We

detected more apoptotic cells in the OA cartilage than in normal

cartilage (Figure 8E), suggesting that inhibition of apoptosis in

chondrocytes is a desirable option for treating OA progression.

The qRT-PCR results revealed that PDK1 inhibition

downregulated various proteins associated with cell apoptosis,

such as Bax, Bcl-2, and Casp-3. These results indicated that

PDK1 inhibition rescued OA chondrocyte apoptosis

(Figures 8F-H).
3.8 Relationship between PDK1 and
immune regulation in OA

The immune system is divided into adaptive and innate

immunity and is related to the body’s defense. Innate immune

activation has been observed in cartilage damage in OA (27). To

further understand the correlation between PDK1 and 22

immune cell infiltration in OA. First, we collected human

cartilage tissues and used immunohistochemical analysis to

confirm once again that PDK1 was overexpressed in OA

cartilage tissues (Figure 9A). Next, we used the CIBERSORT

algorithm to systematically analyze the association of PDK1

expression with the infiltration of 22 immune cells. The

abundance of 22 immune cell infiltrates between normal and

OA samples is shown in Figure S2A and Figure S2B. In addition,

we observed differences in different types of immune cell

infiltration between normal and OA samples, including T cells

follicular helper, NK cells, Monocytes, Macrophages M1,

Dendritic cells, Eosinophils, and Neutrophils (Figure S2C).

PDK1 expression was positively associated with activated CD4

memory T cells (r = 0.29, p = 0.021), Plasma cells (r = 0.3, p =

0.016), Eosinophils (r = 0.36, p = 0.0044), and Neutrophils (r =

0.48, p<0.0001), while negatively associated with follicular helper

T cells (r = -0.3, p = 0.016), and naïve CD4 T cells (r = -0.32, p =

0.01) (Figure 9B). The association of PDK1 with 22 immune cells

can be visualized in Figure 9C.
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4 Discussion

Current clinical treatment options for OA include

conservative medication and joint replacement surgery. Drug

therapy temporarily delays OA progression and does not reverse

the patient’s disease state. Timely and early intervention is

significant for OA treatment. Therefore, exploring useful

diagnostic markers for early detection and timely treatment is

of great clinical significance for OA prevention and therapy.
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However, early diagnostic tools for OA are still lacking in clinical

care and are only captured by clinical imaging tools when the

disease exhibits pathological features (28, 29). Therefore, in the

present study, we systematically and comprehensively screened

for the first-time disease signature genes for OA based on

publicly available databases and conducted a series of in vitro

cell experiments for validation and exploration. We detected 286

DEGs using differential analysis, and enrichments in the PI3K/

AKT pathway were also observed (Figure 2A), suggesting that
A B
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FIGURE 7

Western blot and quantitative analysis of the effects on MAPK and PI3K/AKT signaling pathways after targeted PDK1 downregulation.
(A-C) Protein levels of mediators related to the PI3K/AKT signaling pathway by Western blot and quantification analysis. B: quantification analysis
of p-AKT/AKT; C: quantification analysis of p-PI3K/PI3K. (D-G) Western blot and quantification analysis for the protein levels of MAPK signaling
pathway mediators. E, F, and G: quantitative analysis of p-ERK/ERK, p-p38/p38, and p-JNK/JNK, respectively. Values are presented as means ±
SD (n =3). * p < 0.05; ** p<0.01; *** p < 0.001; **** p < 0.0001; ns, no significance, relative to the OA group. OA, osteoarthritis; SD, standard
deviation.
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OA signature genes might regulate OA through the PI3K/AKT

pathway. This hypothesis was supported by previous studies in

which the PI3K/AKT inflammatory signaling pathway was

involved in regulating OA (22, 30).

Moreover, we extended our exploration of the MAPK

inflammatory signaling pathway and found that it was equally

involved in the regulation of OA as PI3K/AKT (Figure 6A).

Finally, we identified PDK1 as an OA disease signature gene

using WGCNA, LASSO regression, SVM-RFE algorithm, and

PPI network, which was comprehensively validated using the

GSE32317, GSE55457 cohorts, and in vitro cellular experiments.
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Overall, we provided a new potential target for OA treatment

and therapy.

Autophagy is a metabolic and innate immune process that

maintains cellular self-stabilization and supports organelle

renewal by removing broken proteins and degraded organelles

(31). To avoid apoptosis and preserve cellular homeostasis,

autophagy is frequently triggered during stressful situations

such as hypoxia, malnutrition, and ROS generation (32–34).

Unfortunately, the inflammatory microenvironment of OA

disrupts autophagic activity and the energy balance of

chondrocytes (35). Indeed, we observed significantly
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FIGURE 8

Inhibition of PDK1 expression restores OA-dysregulated autophagy and suppresses apoptosis. (A-C) Relative mRNA levels of Beclin-1, LC3I/II,
and Atg7 by qRT-PCR. (D) The expression levels of autophagy-related proteins Beclin-1, LC3I/II, and Atg7 were detected by Western blot. In the
quantitative plot, the bars with different letters are significantly different from each other, and the same letter represents no difference (P<0.05).
(E) Tunel staining between OA and normal cartilage tissues revealed that apoptosis was significantly higher in the OA group than in the normal
group (scale bars = 200 mm, n = 5). (F-H) Relative mRNA levels of Bax, Bcl-2, and caspase-3 (Casp-3) by qRT-PCR. Values are presented as
means ± SD (n = 3). * p < 0.05; ** p<0.01; *** p < 0.001; ns, no significance, relative to the OA group. OA, osteoarthritis; SD, standard deviation.
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suppressed ATG7, LC3-I/II, and Beclin-1 expressions in

chondrocytes after LPS induction, while this autophagic

imbalance activity was rescued by PDK1inhibit ion

(Figures 8A-D). As a pathological manifestation of OA, the

apoptosis of chondrocytes is positively connected to the

destruction severity of cartilage tissue and matrix depletion in

OA (36, 37). The Tunel staining demonstrated that, compared to
Frontiers in Immunology 14
normal cartilage tissues, OA tissues exhibited significantly

increased cell apoptosis (Figure 8E). Therefore, exploring a

pathway that can inhibit cartilage apoptosis would bring new

insights into the clinical treatment of OA. We found that PDK1

inhibition reduced BAX and Casp-3 expression, significantly

associated with apoptosis, and enhanced BCL-2 expression, a

BAX antagonist (Figures 8F-H). Thus, we speculated that, as an
A

B

C

FIGURE 9

Correlation between PDK1 expression and immune cell abundance. (A) PDK1 immunohistochemical analysis between human normal cartilage
and OA cartilage showed that PDK1 was highly expressed in OA tissues (means ± SD, n = 4,*** P < 0.001). (B) PDK1 expression levels were
positively correlated with Neutrophils, Eosinophils, Plasma cells, and activated CD4 memory T cells and negatively associated with CD4 naive T
cells and follicular helper T cells (p < 0.05). (C) Lollipop plot for the correlation between PDK1 and 22 immune cells. A p < 0.05 was considered
statistically significant.
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OA signature gene, PDK1 inhibition could repair the OA-

dysregulated autophagy and interrupt the apoptotic program

to play a cartilage-protective role.

As a significant member of the GAG protein kinase family,

PDK1 functions in cells through various pathways, including

PI3K/AKT and MAPK (38, 39). As pathways that significantly

participate in pro-inflammatory responses, MAPK-related

pathways are associated with OA pathogenesis and can provide

cartilage protection by downregulating the MAPK signaling

pathway (40, 41). Consistently, we found that PDK1

significantly participated in the mediation of the MAPK

pathway, and PDK1 inhibi t ion downregulated the

phosphorylation of MAPK signaling pathway-related mediators

(Figures 7D-G). Hence, we hypothesized that PDK1, as an

upstream factor of the MAPK pathway, tightly participates in

the regulation of inflammatory signaling in OA, and PDK1

inhibition could attenuate inflammation and restore OA-

dysregulated autophagy. Additionally, the signaling pathway

mediated by PI3K/AKT significantly regulates inflammation and

chondrocyte activity in OA, such as apoptosis and autophagy.

PDK1 has been identified as an upstream activator of PI3K/AKT.

Upon PDK1 activation, downstream PI3K/AKT phosphorylation

affects the expression of Bax/Bcl-2 and Casp-3, mediating

apoptosis (42). Using the small molecule inhibitor BX795,

which pharmacologically targets the specific reduction of PDK1

expression, we observed a reduction in the phosphorylation level

of the PI3K/AKT signaling pathway and significant

downregulation of autophagy-related (ATG7, LC3-I/II, and

Beclin-1) and apoptosis-related (Bax, Bcl-2, and Casp-3) genes

in chondrocytes (Figures 7A, 8). These results revealed that PDK1

can be used as a diagnostic marker for OA. Additionally, PDK1 is

involved in inflammation-mediated autophagy and apoptosis

in chondrocytes through the PI3K/AKT and MAPK

signaling pathways.

In summary, we found that PDK1 is a signature gene for

OA and might provide insights into its early diagnosis and

clinical treatment. The chondroprotective effect by target-

specific PDK1 inhibition is mediated by the repression of

MAPK and PI3K/AKT signaling axes. The mechanisms

include attenuation of LPS-induced inflammation levels and

apoptosis while repairing autophagy in OA cartilage

dysregulation. Although our findings are preliminary, we

provided a new potential target for OA treatment and

therapy. Nevertheless, further validation and promotion of its

applications in clinical studies are needed.
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