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Although the appropriate evaluation of mouse behavior is crucial in

pharmacological research, most current methods focus on single mouse

behavior under light conditions, owing to the limitations of human

observation and experimental tools. In this study, we aimed to develop a

novel marker-less tracking method for multiple mice with top-view videos

using deep-learning-based techniques. The following stepwise method was

introduced: (i) detection of mouse contours, (ii) assignment of identifiers

(IDs) to each mouse, and (iii) correction of mis-predictions. The behavior

of C57BL/6 mice was recorded in an open-field arena, and the mouse

contours were manually annotated for hundreds of frame images. Then, we

trained the mask regional convolutional neural network (Mask R-CNN) with

all annotated images. The mouse contours predicted by the trained model

in each frame were assigned to IDs by calculating the similarities of every

mouse pair between frames. After assigning IDs, correction steps were applied

to remove the predictive errors semi-automatically. The established method

could accurately predict two to four mice for first-look videos recorded under

light conditions. The method could also be applied to videos recorded under

dark conditions, extending our ability to accurately observe and analyze the

sociality of nocturnal mice. This technology would enable a new approach to

understand mouse sociality and advance the pharmacological research.

KEYWORDS

mouse behavior, multi-rodent tracking, translational research, psychiatric disorders,
Mask R-CNN

1. Introduction

Worldwide, approximately 970 million people suffer from psychiatric symptoms,
such as anxiety and social difficulties, due to various diseases, including autism
spectrum disorders and schizophrenia (GBD 2019 Mental Disorders Collaborators,
2022). In clinical settings, physicians can examine individual cases using verbal
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information, such as chief complaints and information from
family and friends. In contrast, the psychological phenotypes
of experimental animals, particularly rodents, are mainly
investigated by observing their behavior experimentally, as
animals are non-verbal. Therefore, the appropriate evaluation
of animal behavior is indispensable for translational research on
psychological disorders.

Currently, such studies usually focus on the behavior of a
single animal. For example, the anxiety tendency of rodents has
been evaluated using thigmotaxis in the open field test and/or
elevated plus maze for single mice (Pellow et al., 1985; Simon
et al., 1994). However, as humans sometimes feel anxious in
social situations, rodent behavior in social groups should be
evaluated as well. Another example is the three-chamber test,
commonly used to evaluate the sociality of rodents. This test
quantifies how long a subject mouse is in contact with stranger
and familiar mice (Moy et al., 2004). Nevertheless, only a
subject freely explores the three chambers, whereas stranger and
familiar mice are trapped in wire cages. This test only evaluates
unidirectional communication, which is far from the human
clinical situation. Thus, examining multi-rodent behavior can
be better for accurate determination of rodent mental status. In
addition, since mice are nocturnal, evaluating behavior under
dark environments can be useful.

The lack of appropriate tools prevents the evaluation of
multi-rodent behavior. Although most researchers have visually
evaluated rodent behavior at the present time, tracking multiple
rodents with eyes is practically impossible. Hence, tracking tools
using specific markers have been developed for multiple animals
(Shemesh et al., 2013; Endo et al., 2018; Peleh et al., 2019).
For example, Shemesh et al. (2013) stained the mouse body
using fluorescent hair dye. Peleh et al. (2019) subcutaneously
implanted radio-frequency identification (RFID) chips into
mice. Although these methods can accurately track rodents for
a long time, we cannot completely exclude the effects of markers
on behavior, such as the odor of the staining dye. Maker-less
tracking methods are expected to replace the marker-required
ones in future.

Recently, deep learning methods have evolved rapidly and
been applied to pose estimation and behavior classification tasks
in rodents (Mathis et al., 2018; Graving et al., 2019; Pereira
et al., 2019; Kobayashi et al., 2021; Ebbesen and Froemke, 2022).
Marker-less tracking methods also benefit from the evolution
of these technologies (Romero-Ferrero et al., 2019). In 2017,
mask regional convolutional neural network (Mask R-CNN) was
proposed as a method for identifying the regions of objects in
an image (He et al., 2017). This network has been utilized to
solve many tasks, such as the detection of lesions in pathological
sections (Cao et al., 2019) and organs in medical images (Shieh
et al., 2022). Mask R-CNN-based methods can be useful for
identifying mouse contour regions.

In this study, we introduced a stepwise method to track
multiple mice in top-view videos, without using any markers

(Figure 1). First, Mask R-CNN was utilized to identify the mouse
contours in each frame image. The acquired contours were
then assigned identifiers (IDs) by calculating their similarities
between frames using a color-correlogram-based method. Our
proposed method successfully tracked two–four C57BL/6 mice
in an open-field arena. Additionally, we showed that this
method can be applied to videos recorded not only under light
conditions but also under dark conditions.

2. Materials and methods

2.1. Mice

C57BL/6J mice (9–57 weeks old, male and female; Charles
River Laboratories Japan, Inc., Yokohama, Japan) were used.
All the experiments were approved by the Institutional Animal
Care and Use Committee of The University of Tokyo (P19-031).
Animal care and treatment were performed in accordance with
the guidelines outlined in the Guide to Animal Use and Care of
The University of Tokyo.

2.2. Video recording

Two, three, or four mice were placed in a white arena
(32 cm × 32 cm × 28 cm) and their behavior was recorded
for approximately 5 min using a video camera (HDR-CX720V
or HXR-NX80, Sony, Tokyo, Japan) set at a height of 110 cm.
The recording conditions were as follows: frame rate, 60 Hz;
resolution, 1,920 × 1,080 pixels. Mouse behavior under dark
conditions were recorded with infrared light and darkroom
safe light (the illuminance of room was 2–5 lx). The videos
are summarized in Supplementary Table 1. All videos were
recorded during daytime (8:00–20:00).

2.3. Manual annotation of mouse
contours

Mouse contours in each frame image were annotated using
VGG Image Annotator (Dutta and Zisserman, 2019) (version
2.0.8). Representative examples are shown in Figure 2A. A total
of 203 images in video #1 and 51 images in video #2 were
manually annotated and used to train and validate the tentative
contour detection model. The contours in videos #3 and #4
were predicted using the tentative detection model. Of these,
400 mis-predicted images were selected and corrected manually.
These 203 + 51 + 400 images were used training the final
detection model. In videos #5, #6, and #7, every 60th frame
image was predicted using the tentative detection model. These
predicted contours were manually corrected and used as the
human annotation for the test dataset.
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FIGURE 1

Schematic flow of the proposed method. Mouse contours in
each frame were independently identified (detection step). Every
mouse was assigned IDs by calculating of similarities (tracking
step). Finally, the prediction was semi-automatically corrected
(correction step). The background of images for mouse contour
regions were removed for visibility.

2.4. Contour detection by the tentative
model

This study adopted the Mask R-CNN pre-trained with the
Microsoft Common Object in Context (COCO) dataset (Lin
et al., 2014; He et al., 2017; Waleed Abdulla, 2017) to identify
the mouse contours. We fine-tuned Resnet101 stage 4 and
the following layers with 203 images and validated it with 51
images for 350 epochs. The hyperparameters were set to default
values (Waleed Abdulla, 2017). The model trained for 298
epochs was used as a tentative detection model. The obtained
contours were expanded for five pixels and simplified by Ramer–
Douglas–Peucker algorithm, where ε = 1.5. The ε value was
decided as the number of simplified plots were similar to that
of human plots.

2.5. Training the final detection model

Four-fold cross-validation was performed to examine the
optimal epoch to train the Mask R-CNN (Supplementary

Figures 1B, C). The hyperparameters were set to default
values (Waleed Abdulla, 2017). We surveyed all validation
loss values for 350 epochs and calculated their mean values
(Supplementary Figure 1B). Because the lowest mean value was
recorded at 341 epochs, we fine-tuned the Mask R-CNN pre-
trained with the COCO dataset for 341 epochs with the full
training dataset. The trained model is used as the final detection
model.

2.6. Tracking of identified mice

Contour regions were acquired by Mask R-CNN and
buffered under the following conditions: dilation (10 iterations,
3 × 3 kernel) and Gaussian blur (7 × 7 kernel). The
frame images were cropped along each buffered contour. The
buffered images were resized to one-fourth size for reducing
computational time and converted to grayscale. Then, the
distance and sum of intensities for every pair of pixels in the
images were calculated for each contour region (Figure 3A), and
two-dimensional histograms were created (Figure 3B). Absolute
values of the difference between the pair’s histograms were
calculated and averaged to compare the similarities between
mouse pairs. The most similar pairs were assigned the same ID.
When the number of mice was n, n contours were assigned IDs
and the others were ignored.

2.7. Computer hardware and software

The training and prediction of neural networks and other
calculations were conducted on a desktop computer equipped
with an Intel Core i9-9900KS CPU, 64 GB RAM, and NVIDIA
GeForce RTX 2080 Ti. Image processing and training of the
neural networks were conducted using the Python.

3. Results

3.1. Overview of the method

In this study, we recorded top-view videos of multiple mice
in an open-field arena. The following steps were used to track
multiple mice (Figure 1). First, we divided the videos into frame
images and identified the mouse contours in each frame image
(detection step). Next, we assigned the ID to each mouse by
calculating contour similarities (tracking step). Finally, sporadic
misses in mice and unnatural predictions were detected and
semi-automatically corrected (correction step).

3.2. Contour detection

In the detection step, video files were divided into frames,
and individual mouse contour regions in each frame were
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FIGURE 2

Detection of mouse contours. (A) Representative annotated images. Red points and yellow lines indicate vertices and edges of contour.
(B) Schematic flow of training mask regional convolutional neural network (Mask R-CNN). RDP: Ramer–Douglas–Peucker algorithm.
(C) Representative images of contour detection. The left, middle and right image show the contours predicted by the tentative detection model,
the human-corrected contours, and the contours predicted by the final detection model, respectively. (D) The training loss values for the final
detection model.
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FIGURE 3

Assigning IDs to identified mice. (A) Schematic images of calculating the sum of intensities between two pixels. (B) Schematic images of the
method to calculate the similarities. The number alongside the arrows indicates the averaged absolute differential values between pair’s
histograms at N and N + 1 frame. Pairs that have first and second lowest values were assigned to same ID. The background of images for mouse
contour regions were removed for visibility.

independently detected using a Mask R-CNN (He et al.,
2017; Waleed Abdulla, 2017). Because Mask R-CNN requires
a training dataset to identify mouse regions, we had to
annotate the contour of each mouse for hundreds of images
(Figure 2A). However, such annotation processes are generally
labor intensive and time consuming.

In this study, we introduced a stepwise method to reduce
the annotation labor (Figure 2B). First, because utilizing models
pre-trained with large-scale datasets, known as transfer learning,
can efficiently reduce the necessary number of annotations,
this study adopted the Mask R-CNN model pre-trained with
the Microsoft COCO dataset (Lin et al., 2014) and fine-tuned
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it with the following simple dataset. The behavior of two
C57BL/6 mice in an open-field arena was recorded using a
video camera. The video files were divided into frames, and
203 and 51 frames were selected to train the Mask R-CNN and
to validate its performance, respectively. During the training,
loss values, which show the difference between Mask R-CNN
predictions and human annotations, gradually decreased and
reached a plateau at approximately 300 epochs (Supplementary
Figure 1A). This trained model is hereafter referred to as the
“tentative detection model.”

Next, using this tentative detection model, we predicted
mouse contours in videos of three–four C57BL/6 mice. We
found that some mice were missed and/or mis-plotted when
one mouse contacted and/or occluded other mice (Figure 2C).
We manually selected 400 mis-plotted frames and modified
the contours. Finally, we trained the Mask R-CNN with the
203 + 51 + 400 dataset (details in section “Materials and
methods” and Supplementary Figures 1B, C). The training
loss values converged successfully (Figure 2D). This model was
referred to as “final detection model.” The final detection model
successfully predicted difficult images in which a mouse was
missed by the tentative detection model (Figure 2C).

3.3. Tracking of identified mice

Next, we predicted the mouse contours in each video frame
using the final detection model. Because the relationship of
detected mice between frames remains unknown, assigning IDs
to individual mice is necessary in every frame. First, the mice
identified in the first frame were assigned unique IDs. We
then calculated the similarities of the detected mice between
frames using the color-correlogram-based method, as adopted
in idTraker (Pérez-Escudero et al., 2014) (also see section
“Materials and methods”), and assigned correct IDs to contours
in each frame. Briefly, we calculated the distance and sum of
intensities for every pair of pixels in the images of each counter
region (Figure 3A) and created two-dimensional histograms
(Figure 3B). Then, to compare the similarities between mouse
pairs, absolute differential values between pair histograms were
calculated and averaged. The values for all pairs were sorted in
ascending order, and the corresponding IDs were assigned in
order (Figure 3B).

3.4. Corrections of predictive errors

We created videos that displayed the geometric centers of
contours and assigned IDs for each mouse, and checked their
predictive performance. There were two types of problematic
predictions: (i) sporadic misses (Supplementary Video 1;
mouse ID #3 at 0:00:02) and (ii) irreversible ID switches
(Supplementary Video 2; mouse ID #0 and #1 at 0:00:00).

TABLE 1 Corrected errors and warnings in the training dataset.

Video
no.

Number
of mice

Misses/All
frames (%)

Tracking
warning
(count)

Irreversible
ID switches

(count)

1 2 0.46 0 0

2 2 0.21 0 0

3 3 1.00 1 1

4 4 1.85 4 0

Sporadic misses were defined as cases in which the final
detection model underestimated the number of mice per frame.
Irreversible ID switches were defined as cases where the assigned
IDs were accidentally but persistently interchanged between
individual mice. The proportion of sporadic misses in all frames
tended to increase according to the number of mice in the
videos, and an irreversible ID switch was found in one video
(Table 1).

To address these problems, semi-automated processing was
applied to predictions. First, sporadic misses were automatically
fulfilled with previously predicted IDs (Supplementary
Figure 2A, Video 3). Next, to identify the ID switches,
the distances between the geometric centers of all pairs of
continuous frames were calculated (Supplementary Figure 2B).
When the distances between the coordinates of mouse ID i
at frame N and N + 1 were not the shortest among those of
all ID pairs, we set our method to offer “tracking warning.”
Consequently, five tracking warnings were identified in the
predicted videos (Table 1). One of the tracking warnings
successfully identified irreversible ID switching, whereas
the other three warnings were irrelevant to irreversible ID
switching. Here, we manually exchanged IDs when switching
occurred (Supplementary Video 4). These semi-automated
correction steps were applied to the following predictions.

3.5. Evaluation of the performance

A test dataset was created to evaluate the performance of the
proposed method. The contours of the videos of two, three, and
four C57BL/6 mice were acquired using the tentative detection
model. These contours were checked and corrected by humans
every 60th frame and used as manually annotated contours.

Next, each video was predicted using the established
method. In the correction step, 0.03–0.82% of the frames
per video were compensated as sporadic misses. Additionally,
three tracking warnings were proposed, although irreversible
ID switches were not observed (Table 2). After the corrections,
we evaluated the predictive performance by calculating the
distances between the geometric centers of the predicted and
manually annotated contours every 60th frame. All values were
less than 1.5 cm, and 99.8% values were less than 0.5 cm
(Figure 4A). As the body size of the recorded mice was
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TABLE 2 Corrected errors and warnings in the test dataset and night application.

Video no. Number of mice Misses/All frames (%) Tracking warning
(count)

Irreversible ID
switches (count)

Day 5 2 0.03 0 0

6 3 0.16 0 0

7 4 0.82 3 0

Night 8 2 0.79 6 0

9 3 0.78 7 1

10 4 4.37 26 1

FIGURE 4

Evaluation of the proposed method. (A) Distance between
geometric centers of mouse contours annotated by humans and
those predicted by the proposed method. v5, v6, and v7 indicate
the video no. 5, 6, and 7, respectively (see Supplementary
Table 1). These videos were recorded under light conditions. #0,
#1, #2, and #3 indicate the individual mouse IDs. (B) Cumulative
traveled distances of individual mice in the video no. 7.
(C) Distances between #0 mouse and other mice in the video
no. 7. (D) Cumulative proximity time between #0 mouse and
other mice in video no 7. We defined “proximate” when distance
between geometric centers of each pair was less than 6 cm.

approximately 8 cm (Supplementary Figure 3), these results
suggest that our method precisely predicts the coordinates of
geometric centers.

In addition, we examined whether our system could be
applied to videos recorded under dark conditions that were
not used for the training dataset. Videos of two, three, and
four C57BL/6 mice in an open field arena were recorded with

infrared light and predicted using the established method. In
the correcting step, 0.79–4.37% of the frames per video were
compensated as sporadic misses. and 42 tracking warnings
were proposed, which identified irreversible ID switches twice
(Table 2). These results were comparable to those of the
videos of two and three mice recorded under light conditions.
However, the predictive performance for the video of the
four mice under dark conditions was slightly inferior to that
under light conditions. Adding a training dataset of images
recorded under dark conditions can improve performance.
Representative performances under light and dark conditions
after the corrections are shown in Supplementary Videos 5, 6.

3.6. Analysis of mouse activities

Finally, we showed the typical methods to evaluate activities
and social interactions using the predicted coordinates of the
video recorded under light conditions. Our method enabled us
to calculate the cumulative travel distances of the individual
mice (Figure 4B). This might reflect the characters in social
groups such as “quiet” and “restless.” In addition, sociality can
be evaluated by calculating the distance between individuals and
the duration during which the mice are located close together
(Figures 4C, D). These analyses can reveal whether a mouse
accompanies other mice. In conclusion, our established method
can help us analyze the behavior of social groups.

4. Discussion

Evaluating the social behavior of rodents is indispensable for
research on psychiatric disorders. Automated tracking methods
are required because we cannot simultaneously follow multiple
rodents with eyes. In this study, we established a marker-less
tracking system for multiple mice using Mask R-CNN and a
color-correlogram-based method.

The current methods for evaluating social behavior among
rodents have limitations. Rodents are usually bred in groups
and exhibit social interactions with other individuals under both
light and dark conditions. These interactions in a social group
can reflect the sociality of rodents and are expected to be useful
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indicators in translational research. However, the limitations
of human observations and technological tools have prevented
the evaluation of natural interactions among multiple rodents.
Researchers usually assess unidirectional social behavior with
a three-chamber test (Moy et al., 2004) and/or interactions
between only two individuals using a social interaction test
(File and Hyde, 1978) under light conditions. Our proposed
method can simultaneously track two–four C57BL/6 mice in
an open field arena under both light and dark conditions. As
shown in Figures 4B–D, the predicted tracking data enabled
us to analyze activities in social groups and social proximity.
Endo et al. (2018) revealed that social proximity was influenced
by breeding conditions during the development phase of mice,
which indicates that the analysis of social proximity is important
for assessing sociality. The established method can be used to
discover novel findings that conventional methods could not.

This study applied the step that semi-automatically correct
predictive errors: sporadic misses of mice and irreversible
ID switches. Given that these errors significantly affect the
analyses of mouse behavior, this correction step is important
to understand mouse interactions precisely. In contrast, since
it is also true that we cannot check numerous errors one by
one, the pre-corrected predictions should have low errors. As
shown in Table 2, the errors under dark conditions tend to be
more than those under light conditions, especially as the number
of mice increased. Since the training dataset of Mask R-CNN
did not contain any images recorded under dark conditions,
adding their images to the training dataset can contribute to the
improvement of performances, and further reduce the burden
to check errors in the correction step.

The established method enabled us to conduct different
types of experiments. The simplest application is to screen
social-deficient symptoms in psychiatric model mice, such as
autism spectrum disorders and depression (Kazdoba et al., 2016;
Wang et al., 2017). The new screening system would more
precisely assess the therapeutic effects of drug candidates than
the classical methods. In addition, since psychiatric disorders
sometimes affect not only patients but also people living
together (Benazon and Coyne, 2000), another application is
to investigate how the psychiatric phenotypes of psychiatric
model mice affect those of co-housed healthy mice. Similar
to humans, rodent behavior is influenced by the emotions
of others (Keysers et al., 2022). Boyko et al. (2015) reported
that healthy rats co-housed with depressed rats for 5 weeks
exhibited depressive-like behavior. In contrast, Wu et al. (2021)
showed that mice groomed stressed cagemates more than
control ones and relieved stressed ones. We expect that this
kind of experiment will contribute to the consideration of
appropriate interactions between patients and those living
together.

Over the last few decades, tracking methods for multiple
animals have been developed (Shemesh et al., 2013; Pérez-
Escudero et al., 2014; Endo et al., 2018; Peleh et al., 2019;

Romero-Ferrero et al., 2019; Panadeiro et al., 2021). As
adopted in this study, tracking methods often consist of two
steps: detection and tracking. The most classical method for
detecting an animal’s region is the thresholding of frame
images (Panadeiro et al., 2021). Although this method has
the advantage of high computational speed, it is vulnerable
to changes in recording conditions, such as light. Thus,
deep-learning technologies that can robustly identify object
positions and/or contours have replaced the classical method.
Barreiros et al. (2021) utilized You only look once version
2 (YOLOv2), a neural network for object detection, to track
multiple zebrafish. In this study, we also showed that Mask
R-CNN successfully identified the mouse contour regions.
Our results were consistent with those of Le et al. (2021).
More recently, pose estimation toolkits for multiple animals
using deep learning have been proposed, such as multi-animal
DeepLabCut (maDLC) and social LEAP (SLEAP) (Lauer et al.,
2022; Pereira et al., 2022). These innovative methods can be used
to analyze social behavior in detail. Whether our methods can
expand functions, such as pose estimation, will be investigated
in future work.

In conclusion, we established a marker-less tracking system
for multiple mice and showed that this system can be used
under both dark and light conditions. The development of these
techniques will allow researchers to assess animal sociality in
a natural environment and observe the phenotypes of animals
that have been previously missed. The proposed method would
be helpful to understand similarities and differences between
mouse and human sociality, and advance translational research
on psychiatric disorders.

Data availability statement

The original contributions presented in this study are
included in this article/Supplementary material, further
inquiries can be directed to the corresponding author.

Ethics statement

The animal study was reviewed and approved by the
Institutional Animal Care and Use Committee of The University
of Tokyo (P19-031). Animal care and treatment were performed
in accordance with the guidelines outlined in the Guide to
Animal Use and Care of The University of Tokyo.

Author contributions

TM, NS, and HK designed and managed the project. NS and
HK performed the experiments. NS, NO, YM, and KK analyzed
the data. NS, KK, and TM drafted the manuscript. All authors

Frontiers in Behavioral Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.1086242
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-1086242 January 3, 2023 Time: 11:39 # 9

Sakamoto et al. 10.3389/fnbeh.2022.1086242

have read and approved the final manuscript and have agreed to
be accountable for all aspects of the work.

Funding

This work was supported by a Grant-in-aid for Scientific
Research from the Japan Society for the Promotion of Science
(19K15975 to KK and 20H05678 to TM) and by the University
of Tokyo Gap Fund Program (to TM). This study was
also supported by the Kobayashi Foundation, Asahi Group
Foundation, and Sekisui Chemical Co., Ltd. (to TM). The
authors declare that this study received funding from the
Revamp Corporation. The funder was not involved in the
study design, collection, analysis, interpretation of data, and the
writing of this article or the decision to submit it for publication.

Conflict of interest

KK and TM belong to endowed course (Food and Animal
Systemics) provided by the Revamp Corporation.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential
conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbeh.
2022.1086242/full#supplementary-material

References

Barreiros, M. O., Dantas, D. O., Silva, L. C. O., Ribeiro, S., and Barros, A. K.
(2021). Zebrafish tracking using YOLOv2 and Kalman filter. Sci. Rep. 11:3219.
doi: 10.1038/s41598-021-81997-9

Benazon, N. R., and Coyne, J. C. (2000). Living with a depressed spouse. J. Fam.
Psychol. 14, 71–79. doi: 10.I037//0893-3200.14.1.71

Boyko, M., Kutz, R., Grinshpun, J., Zvenigorodsky, V., Gruenbaum, S. E.,
Gruenbaum, B. F., et al. (2015). Establishment of an animal model of
depression contagion. Behav. Brain Res. 281, 358–363. doi: 10.1016/j.bbr.2014.
12.017

Cao, G., Song, W., and Zhao, Z. (2019). “Gastric cancer diagnosis with Mask
R-CNN; gastric cancer diagnosis with Mask R-CNN,” in Proceedings of the
2019 11th international conference on intelligent human-machine systems and
cybernetics (IHMSC), Hangzhou. doi: 10.1109/IHM

Dutta, A., and Zisserman, A. (2019). “The VIA annotation software for images,
audio and video,” in Proceedings of the 27th ACM international conference on
multimedia: MM 2019, (New York, NY: Association for Computing Machinery,
Inc.), 2276–2279. doi: 10.1145/3343031.3350535

Ebbesen, C. L., and Froemke, R. C. (2022). Automatic mapping of multiplexed
social receptive fields by deep learning and GPU-accelerated 3D videography. Nat.
Commun. 13:593. doi: 10.1038/s41467-022-28153-7

Endo, N., Ujita, W., Fujiwara, M., Miyauchi, H., Mishima, H., Makino, Y.,
et al. (2018). Multiple animal positioning system shows that socially-reared mice
influence the social proximity of isolation-reared cagemates. Commun. Biol. 1:225.
doi: 10.1038/s42003-018-0213-5

File, S. E., and Hyde, J. R. G. (1978). Can social interaction be used to
measure anxiety? Br. J. Pharmacol. 62, 19–24. doi: 10.1111/j.1476-5381.1978.tb07
001.x

GBD 2019 Mental Disorders Collaborators (2022). Global, regional, and
national burden of 12 mental disorders in 204 countries and territories, 1990–
2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet
Psychiatry 9, 137–150. doi: 10.1016/S2215-0366(21)00395-3

Graving, J. M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B. R., et al. (2019).
Deepposekit, a software toolkit for fast and robust animal pose estimation using
deep learning. Elife 8:e47994. doi: 10.7554/eLife.47994

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. Available
online at: http://arxiv.org/abs/1703.06870 (accessed January 24, 2018).

Kazdoba, T. M., Leach, P. T., Yang, M., Silverman, J. L., Solomon, M., and
Crawley, J. N. (2016). Translational mouse models of autism: Advancing toward
pharmacological therapeutics. Curr. Top. Behav. Neurosci. 28, 1–52. doi: 10.1007/
7854_2015_5003

Keysers, C., Knapska, E., Moita, M. A., and Gazzola, V. (2022). Emotional
contagion and prosocial behavior in rodents. Trends Cogn. Sci. 26, 688–706. doi:
10.1016/j.tics.2022.05.005

Kobayashi, K., Matsushita, S., Shimizu, N., Masuko, S., Yamamoto, M., and
Murata, T. (2021). Automated detection of mouse scratching behaviour using
convolutional recurrent neural network. Sci. Rep. 11:658. doi: 10.1038/s41598-
020-79965-w

Lauer, J., Zhou, M., Ye, S., Menegas, W., Schneider, S., Nath, T., et al. (2022).
Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat.
Methods 19, 496–504. doi: 10.1038/s41592-022-01443-0

Le, V. A., Sterley, T.-L., Cheng, N., Bains, J. S., and Murari, K. (2021). Markerless
mouse tracking for social experiments. bioRxiv [Preprint]. doi: 10.1101/2021.10.
20.464614

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., et al. (2014).
Microsoft COCO: Common objects in context. arXiv [Preprint]. doi: 10.48550/
arXiv.1405.0312

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W.,
et al. (2018). DeepLabCut: Markerless pose estimation of user-defined body parts
with deep learning.Nat. Neurosci. 21, 1281–1289. doi: 10.1038/s41593-018-0209-y

Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R.,
et al. (2004). Sociability and preference for social novelty in five inbred strains: An
approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287–302.
doi: 10.1111/j.1601-183X.2004.00076.x

Panadeiro, V., Rodriguez, A., Henry, J., Wlodkowic, D., and Andersson, M.
(2021). A review of 28 free animal-tracking software applications: Current features
and limitations. Lab. Anim. (N. Y.) 50, 246–254. doi: 10.1038/s41684-021-00811-1

Peleh, T., Bai, X., Kas, M. J. H., and Hengerer, B. (2019). RFID-supported video
tracking for automated analysis of social behaviour in groups of mice. J. Neurosci.
Methods 325:108323. doi: 10.1016/j.jneumeth.2019.108323

Pellow, S., Chopin, P., File, S. E., and Briley, M. (1985). Validation of open closed
arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci.
Methods 14, 149–167. doi: 10.1016/0165-0270(85)90031-7

Frontiers in Behavioral Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.1086242
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.1086242/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.1086242/full#supplementary-material
https://doi.org/10.1038/s41598-021-81997-9
https://doi.org/10.I037//0893-3200.14.1.71
https://doi.org/10.1016/j.bbr.2014.12.017
https://doi.org/10.1016/j.bbr.2014.12.017
https://doi.org/10.1109/IHM
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1038/s41467-022-28153-7
https://doi.org/10.1038/s42003-018-0213-5
https://doi.org/10.1111/j.1476-5381.1978.tb07001.x
https://doi.org/10.1111/j.1476-5381.1978.tb07001.x
https://doi.org/10.1016/S2215-0366(21)00395-3
https://doi.org/10.7554/eLife.47994
http://arxiv.org/abs/1703.06870
https://doi.org/10.1007/7854_2015_5003
https://doi.org/10.1007/7854_2015_5003
https://doi.org/10.1016/j.tics.2022.05.005
https://doi.org/10.1016/j.tics.2022.05.005
https://doi.org/10.1038/s41598-020-79965-w
https://doi.org/10.1038/s41598-020-79965-w
https://doi.org/10.1038/s41592-022-01443-0
https://doi.org/10.1101/2021.10.20.464614
https://doi.org/10.1101/2021.10.20.464614
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1111/j.1601-183X.2004.00076.x
https://doi.org/10.1038/s41684-021-00811-1
https://doi.org/10.1016/j.jneumeth.2019.108323
https://doi.org/10.1016/0165-0270(85)90031-7
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-1086242 January 3, 2023 Time: 11:39 # 10

Sakamoto et al. 10.3389/fnbeh.2022.1086242

Pereira, T. D., Aldarondo, D. E., Willmore, L., Kislin, M., Wang, S. S. H., Murthy,
M., et al. (2019). Fast animal pose estimation using deep neural networks. Nat.
Methods 16, 117–125. doi: 10.1038/s41592-018-0234-5

Pereira, T. D., Tabris, N., Matsliah, A., Turner, D. M., Li, J., Ravindranath, S.,
et al. (2022). SLEAP: A deep learning system for multi-animal pose tracking. Nat.
Methods 19, 486–495. doi: 10.1038/s41592-022-01426-1

Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S., and de
Polavieja, G. G. (2014). IdTracker: Tracking individuals in a group by automatic
identification of unmarked animals. Nat. Methods 11, 743–748.

Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J. H., and de
Polavieja, G. G. (2019). idtracker.ai: Tracking all individuals in small or large
collectives of unmarked animals. Nat. Methods 16, 179–182. doi: 10.1038/s41592-
018-0295-5

Shemesh, Y., Sztainberg, Y., Forkosh, O., Shlapobersky, T., Chen, A., and
Schneidman, E. (2013). High-order social interactions in groups of mice. Elife
3:e00759. doi: 10.7554/eLife.00759

Shieh, C.-S., Faisal, A., Khin Wee Lai, C., Dhanalakshmi, S., and Wu, X. (2022).
Comparative studies of deep learning segmentation models for left ventricle
segmentation. Front. Public Health 10:981019. doi: 10.3389/fpubh.2022.98
1019

Simon, P., Dupuis, R., and Costentin, J. (1994). Thigmotaxis as an index of
anxiety in mice. Influence of dopaminergic transmissions. Behav. Brain Res. 61,
59–64. doi: 10.1016/0166-4328(94)90008-6

Waleed Abdulla. (2017). Mask R-CNN for object detection and instance
segmentation on Keras and TensorFlow. GitHub repository. Available online at:
https://github.com/matterport/Mask_RCNN (accessed September 26, 2022).

Wang, Q., Timberlake, M. A. II, Prall, K., and Dwivedi, Y. (2017). The recent
progress in animal models of depression. Prog. Neuropsychopharmacol. Biol.
Psychiatry 77, 99–109. doi: 10.1016/j.pnpbp

Wu, Y. E., Dang, J., Kingsbury, L., Zhang, M., Sun, F., Hu, R. K., et al. (2021).
Neural control of affiliative touch in prosocial interaction. Nature 599, 262–267.
doi: 10.1038/s41586-021-03962-w

Frontiers in Behavioral Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.1086242
https://doi.org/10.1038/s41592-018-0234-5
https://doi.org/10.1038/s41592-022-01426-1
https://doi.org/10.1038/s41592-018-0295-5
https://doi.org/10.1038/s41592-018-0295-5
https://doi.org/10.7554/eLife.00759
https://doi.org/10.3389/fpubh.2022.981019
https://doi.org/10.3389/fpubh.2022.981019
https://doi.org/10.1016/0166-4328(94)90008-6
https://github.com/matterport/Mask_RCNN
https://doi.org/10.1016/j.pnpbp
https://doi.org/10.1038/s41586-021-03962-w
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/

	Marker-less tracking system for multiple mice using Mask R-CNN
	1. Introduction
	2. Materials and methods
	2.1. Mice
	2.2. Video recording
	2.3. Manual annotation of mouse contours
	2.4. Contour detection by the tentative model
	2.5. Training the final detection model
	2.6. Tracking of identified mice
	2.7. Computer hardware and software

	3. Results
	3.1. Overview of the method
	3.2. Contour detection
	3.3. Tracking of identified mice
	3.4. Corrections of predictive errors
	3.5. Evaluation of the performance
	3.6. Analysis of mouse activities

	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


