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ABSTRACT: Turbulent solid-liquid slurry flows in pipes are encountered in many engineering fields, such as 

mining. In particular, the distribution of the solids is a serious concern to engineers, but its determination involves 

considerable technical and economic difficulties. A two-fluid model for the numerical prediction of this parameter is 

presented. The model is robust and numerically stable, and requires relatively short computer time to provide a 

converged steady-state solution. The novelty of the proposed model and its better performance compared to similar 

ones reside in the method of accounting for some key physical mechanisms governing these flows, namely turbulent 

dispersion, interphase friction, and viscous and mechanical contributions to friction. The model is first validated by 

comparison with many experimental data available in literature regarding the horizontal pipe case over a wide range 

of operating conditions: delivered solid volume fraction between 9 and 40%; slurry velocity between 1 m/s and 5.5 

m/s; and pipe diameter between 50 and 160 mm. A further comparison was performed with respect to recent 

experiments concerning a horizontal 90° bend. 
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1. INTRODUCTION 
 

Pipe flows of solid-liquid mixtures in the form of 

slurry are commonly encountered in many 
applications. A significant example is given by 

the slurry pipelines, used to transport mineral 

concentrate from a mineral processing plant near 

a mine. Pressure gradient and concentration 
distribution have been the most serious concern of 

researchers, as they dictate the selection of pump 

capacity and may be used to determine parameters 
of direct importance (mixture and solid flow 

rates) as well as secondary effects like wall 

abrasion and particle degradation. 

The flow of solid-liquid mixtures is very 
complex. Doron and Barnea (1996) identified the 

flow patterns that characterize the flow of slurries 

through horizontal pipes. If the flow rate is 
sufficiently high, turbulence is effective in 

keeping all the solids suspended (fully suspended 

flow); otherwise the particles accumulate at the 
pipe bottom and form a packed bed, either sliding 

(flow with a moving bed) or not (flow with a 

stationary bed). The transitions between flow 

patterns are not always so clear and they are 
usually identified by post-processing analysis of 

the measured data in terms of solid volume 

fraction profile and pressure gradient (Albunaga, 
2002). 

Numerous experimental investigations have been 

carried out to determine the main features of 

slurry flows in pipes. Almost all of them concern 
the case of horizontal pipes; the dispersed phase is 

usually sand (Roco and Shook, 1983; Colwell and 

Shook, 1988; Shaan et al., 2000; Matousek, 2000 
and 2002; Gillies et al., 2004; Skudarnov et al., 

2004; Kim et al., 2008), but spherical glass beads 

(Kaushal and Tomita, 2003 and 2007; Kaushal et 

al., 2005 and 2012), ash (Kumar et al., 2003), and 
solid nitrogen particles (Jiang and Zhang, 2012) 

have also been considered. Only few studies were 

focused on vertical pipes (Shook and Bartosik, 
1994) and bends (Hsu, 1981; Turian et al., 1998; 

Kaushal et al., 2013). The distribution of the 

solids is very hard to determine experimentally. 

Local values of solid volume fraction can be 
measured by isokinetic probe sampling, but these 

techniques may produce significant errors near 

both the pipe wall (Nasr-el-Din et al., 1984) and 
the pipe axis (Colwell and Shook, 1988). More 

accurate results – but with uncertainties of a few 

percent – are obtained using expensive gamma-
ray density gauges, which are used to determine 

chord-average values of solids concentration. The 

mean volumetric concentration of the slurry is 

characterized in different ways by researchers. 
Kaushal and Tomita (2003 and 2007) and 

Kaushal et al. (2005) considered an overall-area 

average concentration, evaluated by integrating 
the local concentration profile measured by an 

isokinetic sampling probe. Matousek (2000 and 

2002) measured the delivered solid volume 
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fraction in the pipeline by a counter flow meter. 

Other authors (Shaan et al., 2000; Gillies et al., 
2004) have made reference to a mean in-situ 

volume fraction, obtained by adding weighted 

quantities of solids to the loop, whose volume 

was known. In all cases, the uncertainty about this 
parameter must be considered when making 

reference to literature data. 

In the past simplified models have been 
developed based on a global formulation to 

predict the pressure gradient of slurries in 

horizontal pipes for all the flow configurations: 
equivalent liquid models for fully-suspended flow 

(Matousek, 2002; Pecker and Helvaci, 2008), 

two-layer models for flows with a moving bed 

(Gillies and Shook, 2000; Gillies et al., 2004; 
Doron et al., 1987), three layer models for flows 

with a stationary deposit (Doron and Barnea, 

1993 and 1995; Matousek, 2009). Improved 
versions have been proposed to account for the 

presence of multi-sized particles (Kumar et al., 

2003), the influence of particle shape (Shaan et al., 
2000), the additional stresses due to particle-wall 

interactions (Pecker and Helvaci, 2008), and the 

repulsion of particles from the wall observed 

under certain conditions (Wilson et al., 2010). 
Using those models, the major losses in horizontal 

pipes can be estimated easily and the predictions 

agree with the experimental evidence over a wide 
range of operating conditions. Therefore, these 

models represent a very powerful tool for most 

engineering applications. However, their global 

formulation makes them unsuitable for predicting 
the solids concentration distribution as well as for 

application to more complex flows; meeting these 

needs requires the development and validation of 
distributed models. 

CFD has been used to investigate slurry flows in 

pipes, mostly with regard to the horizontal pipe 
case. Anyway, the development of a model that is 

both reliable over a wide range of flow conditions 

and computationally economical – therefore 

attractive to engineers – is a goal which has not 
been completely reached yet.  

The majority of existing CFD models employs an 

Eulerian-Eulerian approach, since Eulerian-
Lagrangian models are not applicable to dense 

mixtures due to their excessive computational 

cost. Some workers studied the problem by means 
of the Algebraic Slip Model (ASM), which solves 

the momentum equation for the mixture rather 

than for both phases, thereby saving 

computational time. However, the ASM assumes 
that local equilibrium is achieved between the 

phases over short spatial length scales. Therefore, 

it can be used only for very low values of the 

Stokes number. Also when applicable, the ASM 

proved inadequate to estimate the pressure drop 
even for fully-suspended flows in straight pipes 

(Kaushal et al., 2012), and it does not seem very 

accurate in predicting the solid volume fraction 

distribution (Ling et al., 2003; Kaushal et al., 
2012; Pathak, 2011). 

Other authors made use of an Eulerian two-fluid 

model with closures derived either from empirical 
or semi-empirical relations (Chen, 1994), or from 

kinetic theory of granular flow (KTGF) (Chen et 

al., 2009; Ekambara et al., 2009; Lahiri and 
Ghanta, 2010; Kaushal et al., 2012 and 2013). 

Anyway, even for straight pipe flows, the existing 

two-fluid models show some problems which 

may complicate their application to more complex 
flows of engineering interest, such as those 

through bends and pipeline fittings. The first 

impression is that these models are easily 
susceptible to numerical instabilities, which often 

result in solutions characterized by non-physical 

asymmetry (Kaushal et al., 2012) or oscillations 
(Lahiri and Ghanta, 2010). In some cases, the 

simulations are very time-consuming; for 

example, Ekambara and co-workers (2009) 

attained a stable steady-state solution performing 
a U-RANS simulation and then averaged the 

solution over a considerable time interval. A 

similar procedure may not be easily applicable 
when dealing with complex geometries, since the 

calculation time would probably become 

prohibitively expensive. In other cases, the 

validation of these models with respect to the 
experimental evidence is often rather poor, in the 

sense that the comparison is either limited to a 

few flow conditions (Chen et al., 2009; Kaushal et 
al., 2012) or highlights a occasionally excellent 

capacity of the model to describe adequately the 

main features of the flow (Lahiri and Ghantha, 
2010). 

Within the flow conditions commonly 

encountered in slurry pipelines, the recent work of 

Kaushal et al. (2013) seems the only application 
of a two-fluid model to a more complex flow 

configuration (i.e. through a 90° bend in a 

horizontal pipe), with the predictions compared 
with experimental data. 

In the present work a mathematical model is 

presented for the numerical prediction of the 
particle distribution of solid-liquid slurry flows in 

pipes, which is based on an Euler-Euler approach 

that uses the Inter-Phase Slip Algorithm (IPSA) 

of Spalding (1980). The proposed model shows 
comparable or better agreement with the 

experimental evidence than similar models 

(Ekambara et al., 2009; Lahiri and Ghanta, 2010; 
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Kaushal et al., 2012 and 2013), and it also 

overcomes the main limitations inferred from 
inspection of these earlier papers, namely 

susceptibility to numerical instability and high 

computational cost. In fact, the new model 

requires relatively short computer time to attain a 
converged steady-state solution and is capable of 

providing a numerical solution without non-

physical asymmetries or oscillations. The novelty 
of the proposed model, which is the basis for its 

good performance, resides in the combined use of 

modelling strategies previously developed but 
never employed simultaneously to the flows 

considered in this paper: phase diffusion fluxes 

are introduced in all conservation equations to 

reproduce the effect of the turbulent dispersion of 
particles; the presence of other particles on the 

interfacial momentum transfer is taken into 

account by considering their effect on a mixture 
viscosity; a wall function is employed to model 

the viscous (due to the fluid) and mechanical (due 

to the particles) contributions to the wall shear 
stress. The model is considerably simpler and 

solves one transport equation fewer than those 

based on the KTGF. 

In the interests of guaranteeing the widest 
possible applicability, the model predictions of 

the concentration distribution are validated with 

respect to various sets of experimental data from 
the literature. The measurements from Roco and 

Shook (1983), Shaan et al. (2000), Matousek 

(2000 and 2002), and Gillies et al. (2004) allow 

establishing the predictive capacity of the model 
in the horizontal pipe case over different flow 

configurations (fully-suspended flow, and flow 

with a moving bed) and a large range of operating 
conditions: delivered solid volume fraction 

between 9 and 40%; particle size between 90 and 

520 μm; slurry velocity between 1 m/s and 5.5 
m/s; pipe diameter between 50 and 160 mm. 

Finally, the model was applied to a more complex 

flow, which is that through a 90° bend in a 

horizontal pipe, and the predictions were 
successfully compared with the experiments from 

Kaushal et al. (2013). The uncertainties of both 

computations and measurements are discussed 
when comparing the numerical results with 

experimental data. 

2. MATHEMATICAL MODEL 

2.1 Conservation equations 

The two-phase flow is represented by using an 
Eulerian approach in which both phases are 

treated as interpenetrating continua. The flow is 

assumed to be statistically steady in the sense that 

Reynolds-averaging has been applied and so the 

continuity equation for phase ,k C p  takes the 

following form: 

   k k k k kD     U                               (1) 

where the subscript k is a phase indicator 

parameter which is equal to C for the carrier fluid 

and p for the particles.  Moreover k  is the 

volume fraction; k  is the density; kU  is the 

velocity vector; and D  is a phase diffusion 
coefficient, which appears in the phase diffusion 

term that represents the turbulent flux associated 

with correlations between fluctuating velocity and 
volume fraction. The phase diffusion fluxes are 

modeled in terms of a gradient diffusion 

approximation with the phase-diffusion 
coefficient D  given by: 

,t C
D







                                                             (2) 

where ,t C  is the turbulent kinematic viscosity of 

the carrier fluid phase, determined by turbulence 

modeling; and   is the turbulent Schmidt number 

for volume fractions. The turbulent Schmidt 

number for volume fractions is not well 
established, in the sense that no single constant 

value of σα can be used in the numerical 

simulations to match the various sets of 
experimental data (Shirolkar et al., 1996), but 

rather previous workers (Chen, 1994; Chen et al., 

2011) have found that different constant values 

are needed for different cases. These values 
typically fall in the range of 0.2 to 0.9. In the 

present work, a constant value was used in the 

simulations, and as will be discussed later, the 
choice of a unique value procured good overall 

agreement with the various sets of experimental 

data. The presence of phase diffusion fluxes in all 
conservation equations, which has the advantage 

of promoting numerical stability, distinguishes the 

present model from similar ones applied to slurry 

flows. The mean global continuity is given by the 
equation that states that the two volume fractions 

must sum to unity.  

The momentum equation for phase ,k C p  is: 

 

 

 

, ,

  

k k k k

k k k t k k k

k k k k

P

D



  

         

   

U U

g

M U

T T                  (3) 

where P  is the pressure, shared by the phases; g  

is the gravitational acceleration; ,kT  and ,t kT  are 

the viscous and turbulent stress tensors 

respectively; and kM  is the generalized drag force 

per  unit  volume,  which  will  be  discussed  later. 
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The stress tensors are given by: 

, , , ,2               2k k l k k t k k t k k      T D T D
               (4) 

where ,l k  and ,t k are the laminar and turbulent 

kinematic viscosity of phase k  respectively, and 

kD is the deformation tensor, equal to: 

 0.5k k k

    
 

U UD                                      (5) 

where the superscript “+” indicates that the 

transpose of the dyadic kU is taken.  

Two viscosities appear in Eq. (4) for the particle 

phase, namely, the turbulent eddy viscosity ,t p , 

and the laminar viscosity ,l p . The former is 

determined from a turbulence model, as will be 
discussed later. The latter is commonly associated 

with the inter-granular stresses which characterize 

bed flows (Chen et al., 2011); the model of 

Ahilan and Sleath (1987) for ,l p  was briefly 

explored but finally ,l p  was set to 0 after 

discovering the negligible influence of the term 

, pT  on the predictions of the solids volume 

fraction for all the flow conditions simulated. This 

can be explained by the fact that the laminar 

viscosity of the particles is small compared to the 

eddy viscosity, except very close to the pipe 
bottom, where however, the interfacial 

momentum transfer term dominates. 

The interfacial momentum transfer term accounts 
for the momentum transfer between phases, and is 

given by stationary drag, lift, added mass, history 

and other forces (Ishii and Mishima, 1984). The 
two-fluid model represents the turbulent 

dispersion of particles by means of a turbulent 

diffusion term in the phasic continuity equation 

(Eq. (1)), and so an explicit turbulent-dispersion 
force term does not appear in the momentum 

equation. A literature review revealed that the 

history force is negligible for the flows 
considered here (Chung and Troutt, 1988), and 

therefore was not included in this model. Under 

the assumption of mono-dispersed spherical 

particles, the interfacial momentum transfer term 
is given by: 

 
3

6 p

C p d l vm

pd


    


M M F F F                                (6) 

where Fd, Fl, and Fvm are the drag, lift, and virtual 

mass forces, calculated respectively as follows: 

 
2

1
=

2 4

p

d d C p C p C

d
C

 
     
 

F U U U U                         (7) 

   3=l l C p p C CC d   F U U U                                (8) 

 
3

4
=

3 8

p

vm vm C p p C C

d
C

 
      

 

F U U U U                   (9) 

where dp is the particle diameter; Cd is the drag 

coefficient, which will be discussed later; Cl is the 
lift coefficient; and Cvm is the virtual mass 

coefficient. As per the indications of Kaushal et al. 

(2012), both Cl and Cvm were set equal to 0.5.  

The drag coefficient is given by the well known 
Schiller and Naumann (1935) formula: 

 0.68724
C max 1 0.15Re ,0.44

Re
d p

p

 
  

  
              (10) 

in which Rep is the particle Reynolds number. The 

use of alternative correlations (Clift et al., 1978; 

Ishii and Mishima, 1984) does not seem to have 
significant impact on the results, as they do not 

differ very much from Eq. (10) in the range of Rep 

considered. Following a well-established 

approach (Barnea and Mizrahi, 1973; Ishii and 
Mishima, 1984) to account for the presence of 

other particles, the particle Reynolds number is 

defined as Rep = ρCdp|Ur|/μm, where μm is the 
viscosity of the mixture. Several correlations for 

the mixture viscosity are available in literature 

(Clift el al., 1978). They are basically empirical, 
or semi-empirical, and they depend on parameters 

that account for the shape and size distribution of 

the particles. In the present work use is made of 

the Mooney (1951) formula: 

 
, exp

1 /

p

m C l C

p pm

  
     

   
                       (11) 

in which the two fitting parameters are the 

maximum packing concentration αpm and the 
intrinsic viscosity [η].  The former accounts for 

the shape and size distribution of the particles, as 

well as the shear rate (Pecker and Helvaci, 2008); 

whereas the latter accounts for particle shape. For 
the first time, the mixture viscosity approach is 

employed in a two-fluid model for the simulation 

of slurry flows in pipes. In particular, the 
asymptotic behaviour of the viscosity of the 

mixture, which tends to infinity as the solids 

volume fraction approaches the maximum 
packing one, sets an upper limit to the 

concentration of particles, preventing the solids 

from over-packing. This avoids the need to 

introduce a collisional pressure term in the 
dispersed phase momentum equations. The 

absence of this term contributes to the numerical 

stability of the present model. 
Some authors have argued for the existence of a 

wall lubrication force in the generalized drag term 

to account for the repulsion of particles from the 

pipe wall observed in some experiments 
(Matousek, 2002; Kaushal and Tomita, 2007), but 

this effect is not considered in the present work. A 

semi-theoretical model for this force was derived 

, 
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by Antal et al. (1991) for air-water bubbly flow in 

the laminar regime, but it proved unsuitable for 
slurry flows, confirming the observations of 

Ekambara et al. (2009). Wilson and Sellgren 

(2003) and Wilson et al. (2010) proposed a model 

for the wall-lubrication force in slurry flows, but 
the global nature of its formulation precludes its 

implementation in a CFD code. 

2.2 Turbulence modeling 

The following modified form of the k-ε model is 

used for turbulence modeling of the fluid phase: 

 

 ,

,

,
  

C C C

t C

C C l C C C k

k

t C

C C

k

k P

k


  

  
             

   

 
    

 

U

        (12) 

 

 

,

,

,

1 2  

C C C

t C

C C l C

t C

C C k C CC P C
k



 



   

  
         

   

 
        

 

U

     (13) 

2

,t C

k
C 


                                                      (14) 

in which ,2 :k t C C CP   UD  is the volumetric 

production rate of k due to the working of the 

Reynolds stresses against the mean flow. The 
usual values of the model constants are employed, 

namely 1.0k  , 1.314  , 0.09C  , 

1 1.44C   , and 2 1.92C   . 

There appears to be no simple model of general 

validity for evaluation of the particle eddy 

viscosity ,t p  in dense particle flows. 

Nevertheless, even the simple model of , ,t p t C    

indicated by Issa and Oliveira (1997) was found 
to yield accurate predictions of the solid volume 

fraction distribution, which is the focus of this 

paper. 

2.3 Computational domain and boundary 

conditions 

Two validation cases are considered in this work, 

namely a straight horizontal pipe and a horizontal 
90° pipe bend. The two computational domains 

are reported in Figs. 1 and 2 respectively. In the 

straight pipe case (Fig. 1), the flow and 
geometrical symmetry of the phenomenon about 

the vertical axis (Roco and Shook, 1983; Kaushal 

et al., 2005) has been exploited by solving only 

over one half of the pipe section. 

In both cases, a fully-developed turbulent flow 

profile is specified at the pipe inlet, with the 
distribution of the axial velocity, turbulence 

kinetic energy and dissipation rate determined 

from Nikuradse's boundary-layer theory 

(Schlichting, 1960) for single-phase flow in 
straight pipes. No slip is assumed between the 

phases at the inlet section, therefore the same 

velocity distribution is applied to the fluid and the 
particles. 

  

 

1/

, , 2

2

,

1 2 1 2 1
1

2

1.82log Re 1.64             Re

N

in in

C z p z s

p

s p

l C

N N r
u u V N

DN f

V D
f



  
    

 
 

     

(15) 
 

 

 

Fig. 1 Computational domain and boundary 

conditions for horizontal pipe. 

 

 

 

Fig. 2 Computational domain, boundary conditions, 

and reference sections for 90° bend (S1=bend 

inlet; S2=bend centre; S3=bend exit; S4=5Dp 

from bend exit; S5=25Dp from bend exit; 

S6=50Dp from bend exit). 
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3/2

4
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2
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m

p

m
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k

l

D r r
l

D D

 

  
     

    

                (17) 

In Eq. (15), sV  is the superficial velocity of the 

slurry, which is the ratio between the volumetric 

slurry flow rate and the pipe area. The inlet 

volume fractions of both phases are taken as 
uniformly distributed. At the outlet, the normal 

gradients of all variables and the value of the 

pressure are set to zero. The length of the 

computational domain in the straight pipe case is 
100Dp to ensure that fully-developed flow 

conditions are attained, which typically occurs 

some 50Dp downstream of the inlet, confirming 
the results of previous workers (Ling et al., 2003). 

For this reason 50Dp of straight pipe were 

simulated upstream the 90° bend (Fig. 2) whilst 

the outlet boundary is located about 50Dp 
downstream the bend exit in order to analyze the 

development of the flow downstream the bend 

and compare the numerical results with the 
experimental evidence. 

At the pipe wall, no slip conditions are imposed to 

both phases, and the equilibrium wall function of 
Launder and Spalding (1972) is employed to 

evaluate the velocity component parallel to the 

wall for the two phases ,

w

k C pu  , the turbulence 

kinetic energy wk , and its dissipation rate w in the 

near wall cells: 

*

*

,

1
ln

w

k k

k l C

u u y
E

u

 
     

                                         (18) 

*
w Cu

k
C

                                                         (19) 

3/2
3/4w wk

C
y

 


                                                 (20) 

where 
*

ku  is the friction velocity of phase 

,k C p ; 0.41   is von Karman constant; E  

is a roughness parameter; and y  is the normal 

distance of the first grid point from the wall. The 
parameter E  is considered as a function of the 

roughness Reynolds number 
*

,Re /r C l Cu r  , 

where r  is the equivalent sand-grain roughness 

height. The formula for E , developed by 

Jayatillika (1969), is as follows. 

1
2

2

Re 3.7

Re 1
3.7 Re 100

Re 100
Re

m r

r
r

m

r

r

E

a
E a

b E

b







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where 8.6mE   is the value of E  appropriate for 

smooth walls, and a  and b  are given by: 
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100 Re
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Re

r

r

a x x x b


    

                                                                          (22) 
 

2.4 Computational methodology and consistency

of numerical solution 

 
The general-purpose, commercial CFD code 

PHOENICS was employed for the numerical 

solution of the finite-volume analogue of the 

mathematical described above. This was done by 
using the built-in Eulerian, two-fluid, Inter-Phase 

Slip Algorithm (IPSA) of Spalding (1980) 

together with user-defined functions for 
implementation of specific constitutive equations 

and boundary conditions. The calculations are 

performed following the elliptic-staggered 

formulation in which the scalar variables are 
evaluated at the cell centers and the velocity 

components at the cell faces. Central differencing 

is employed for the diffusion terms, while the 
convection terms are discretized using the hybrid 

differencing scheme of Spalding (1972) for the 

straight pipe case and the MINMOD scheme 
(Versteeg and Malalasekera, 2007) for the 90° 

bend. The finite-volume equations are solved 

iteratively by means of the SIMPLEST and IPSA 

algorithms of Spalding (1980). The calculation 
procedure is organized in a slab-by-slab manner, 

in which all the dependent variables are solved at 

the current slab before the solver routine moves to 
the next slab. 

The PHOENICS solver was run until the sum of 

the absolute residual sources over the whole 
solution domain is less than 1 per cent of 

reference quantities based on the total inflow of 

the variable in question. An additional 

requirement is that the values of the monitored 
dependent variables at a selected location do not 

change by more than 0.1% between subsequent 

iteration cycles. 
The consistency of the numerical solution with 

respect to the domain discretization is now 

discussed for the two scenarios simulated. A 

cylindrical-polar structured mesh was employed 

, , 
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in the straight pipe case. A grid sensitivity study 

was performed to determine the optimum 
discretization of the domain by reference to the 

predicted solids volume fraction profiles. For this 

purpose the following case was taken from Roco 

and Shook (1983): pipe diameter = 50.7 mm; 
particle diameter = 520 μm; delivered solid 

volume fraction = 0.2473; slurry superficial 

velocity = 2.00 m/s. The pipe is assumed 

hydraulically smooth ( 0r  ). This case exhibits a 

high degree of slurry stratification which is 

expected to enhance the effect of mesh resolution. 

Three different meshes were employed, as 

follows: 9 angular by 12 radial by 85 axial (Grid 
1), 12 by 19 by 126 (Grid 2), 15 by 30 by 200 

(Grid 3), and 20 by 40 by 300 (Grid 4) cells. For 

consistency with measurements made using γ-ray 
density gauges, the predicted solids volume 

fraction at a distance y from the pipe bottom is 

evaluated by using the chord-average value, i.e: 

chord

0

1
( ) ( , )

x

p py x y dx
x

                                         (23) 

where x accounts for the horizontal variation of 

concentration in the pipe cross-section (Fig. 1). 
The predicted volume fraction profiles for each 

grid are shown in Fig. 3. The solutions obtained 

on the three finest meshes (Grids 2, 3 and 4) are 
very close to each other, whilst that for Grid 1 

deviates slightly from the finer grid solutions.  

The   Grid   3   solution   is   considered   adequate  

for    comparison   with     the   experiments.    For  

each vertical location y, the difference 
chord chord

,4 ,3( ) ( )p py y   - in which 
chord

,3p and 
chord

,4p  

are the values obtained on Grids 3 and 4 

respectively - is assumed an indicator of the effect 
of further mesh refinement. The quantity 

chord chord

,4 ,3( ) ( )p py y   was found to be lower than 

0.005 for all y/Dp, less than the error usually 
associated with the measurements. The 

application of the method proposed by Eça and 

Hoekstra (2006) for estimating the grid 
discretization error confirmed the reliability of 

Grid 3. 

A curvilinear structured mesh in body-fitted 

coordinates was instead employed in the 90° bend 
case. The grid independence study was performed 

with respect to the following flow condition: 

particle diameter = 2645 kg/m
3
; delivered solid 

volume fraction = 0.0882; slurry superficial 

velocity = 2.67 m/s; pipe roughness = 0.015 mm. 

The four meshes used consisted of: 300 slabwise 
by 300 axial (Grid 1), 600 by 350 (Grid 2), 1040 

by 450 (Grid 3, details of which are shown in Fig. 

4), and 1170 by 500 (Grid 4) cells. For consistency  

 

Fig.3 Solid volume fraction profiles calculated on 

three different grid levels for straight pipe 

case. 

 

Fig.4 Details of mesh for 90° bend. 

 

Fig.5 Vertical solid volume fraction profiles at 

distance of 5Dp downstream bend exit (Section 
S4 in Fig. 2) calculated on different grid 

levels. The Grid 3 solution has error bars 

corresponding to the grid discretization error 

estimated by the method of Eça and Hoekstra 

(2006). 
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with the sampling probe measurements of 

Kaushal et al. (2013), the predicted solids volume 
fraction at a distance y from the pipe bottom is 

now evaluated by using the value along the 

vertical diameter, i.e.: 

 axis ( ) 0,p py y                                                 (24) 

The predicted volume fraction profiles for each 

grid at a distance of 5Dp downstream the bend 
exit (Section S4 in Fig. 2) are shown in Fig. 5, 

and indicate that Grid 3 is capable to procure a 

consistent numerical solution, the difference 
axis axis

,4 ,3( ) ( )p py y   being less than 0.014 for all y . 

In Fig. 5, the Grid 3 solution has error bars 

corresponding to the grid discretization error 
estimated following the method of Eça and 

Hoekstra (2006). Grid 3 was used in the 

simulations. 

2.5 Governing terms and calibration of 

numerical  constants 

In the two-fluid model different empirical sub-

models are employed for the inter-phase 
processes and closure of the various turbulence 

correlations. These submodels contain adjustable 

coefficients which are in practice treated as 
calibration parameters, their values being 

determined by matching computations with 

experiments. The submodels which mainly affect 

the solid volume fraction distribution refer to two 
main terms. The former is the phase diffusion of 

each conserved property   ( 1   for mass 

conservation), equal to  k kD   , in which 

the phase-diffusion coefficient D  is given by Eq. 

(2). The phase diffusion, besides making the 

model    numerically    more   stable   and  thereby  
 

contributing to its speed in attaining convergence, 

has a smoothing effect on the solids concentration 
profile, reducing its variation along the vertical 

direction. The impact of phase diffusion is 

controlled by an empirical parameter, which is the 

turbulent Schmidt number for volume fractions   

which appear in Eq. (2). A sensitivity analysis to 

quantify the influence of   on the solid volume 

fraction profile was performed. 

The results are depicted in Fig. 6 for horizontal 

pipe flows with very different flow conditions, 
both taken from Roco and Shook (1983): A) pipe 

diameter = 51.5 mm; particle diameter = 165 μm; 

particle density = 2650 kg/m
3
; delivered solid 

volume fraction = 0.09; slurry superficial velocity 
= 3.78 m/s; B) pipe diameter = 50.7 mm; particle 

diameter = 520 μm; particle density = 2650 

kg/m
3
; delivered solid volume fraction = 0.2473; 

slurry superficial velocity = 2.00 m/s. In both 

cases, the pipe is regarded is hydraulically 

smooth. It is observed that a reduction of   

results in a flatter profile as a consequence of the 

increase in diffusivity. 
The latter term which most influences the solid 

volume fraction profile is the interfacial 

momentum transfer (Eq. (6)) and, particularly, the 
drag force (Eq. (7)). As already noticed, the 

definition of the particle Reynolds number with 

respect to the viscosity of the mixture m , instead 

of that of the fluid phase C , puts an upper limit 

to the solids concentration due to the asymptotic 

trend of m  (Eq. (11)). The mixture viscosity, as 

derived from the correlation of Mooney (Eq. 
(11)), depends on two empirical parameters, the 

intrinsic viscosity    and the maximum packing 

concentration pm .  The effect  of    and pm  on 

 

 

Fig. 6 Effect of turbulent Schmidt number for volume fractions   on solid volume fraction profiles for two flow 

conditions (: experiments from Roco and Shook (1983); –––: 0.3  ; –––: 0.5  ;  –––: 0.7  ; –––: 

0.9   ). 
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Fig. 7 Effect of parameters [η] and pm  in mixture viscosity correlation of Mooney (Eq. 11) on solid volume fraction 

profiles for two flow conditions (: experiments from Roco and Shook (1983); continuous lines: predictions). 

The dependence on [η] is studied for 0.7pm  ; that on pm  for [η] = 2.5. 

Table 1 Flow conditions considered for comparison. 

Reference System  [mm]pD
 

/  [-]pr D  
 [ ]pd m   [%]C   [m/s]sV  3 [kg/m ]p  

Roco and Shook (1983) Pipe 50.7-51.5 - 165-520 9.0-29.6 1.90-4.33 2650 

Gillies et al. (2004) Pipe 103.0 2∙10-5 90-280 10.6-40.7 1.33-5.40 2650 

Matousek (2000 and 2002) Pipe 150.0 - 120-370 25.0-43.0 2.04-6.00 - 

Shaan et al. (2000) Pipe 158.5 6∙10-6 90 15.0-32.0 1.40-3.00 2655 

Kaushal et al. (2013) 90° Bend 53.0 3∙10-4 450 8.82 2.67 2645 

 

the solid volume fraction profile is analyzed one 
at a time in Fig. 7 for the two above mentioned 

flow conditions from Roco and Shook (1983). In 

particular, the results highlight that pm  affects 

the behaviour of the mixture only at high 

concentration, therefore as a direct effect on the 
prevention of particle over-packing. As already 

mentioned, this avoids the need to introduce a 

collisional pressure term in the momentum 
equation of the solid phase, further promoting the 

numerical stability of the model and the rapid 

achievement of a converged solution. 
Our investigations showed that a unique 

combination of the three empirical parameters –

0.7  ,   2.5   and 0.7pm   (all within the 

range of variability found in literature) –  
produced estimations of the solids concentration 

profile in good agreement with the experimental 

evidence for all the flow conditions considered in 
the present work, referring to both the horizontal 

pipe case and the 90° bend case. This feature, 

together with the numerical stability and the 

relatively short computer time required, 
contributes to make the model particularly useful 

for the applications. 

3. RESULTS 

The numerical model is validated by comparing 

the results of the simulations against experimental 

data reported by the authors listed in Table 1. This 
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table provides the flow conditions for each set of 

measurements. As already mentioned, two 
scenarios have been considered, namely a straight 

horizontal pipe and a 90° bend, which will be 

discussed in separate sub-sections. 

 

3.1 Straight horizontal pipe 

 

The predictions of the model have been compared 
with experimental data for 26 flow conditions, 

summarized in Table 2, which differ in terms of 

pipe diameter, pipe roughness, particle size, slurry 
superficial velocity, and delivered solid volume 

fraction. Each set of measurements allows an 

assessment of the model's capability for 

reproducing the influence of specific features 
affecting the distribution of the solid volume 

fraction. The data of Roco and Shook (1983) and 

Gillies et al. (2004) are used to investigate the 
effect of particle diameter and slurry velocity with 

different delivered solid volume fraction. The 

measurements of Matousek (2000, 2002) provide 
the opportunity to extend the validity of the model 

up to a pipe Reynolds number Re (Eq. (15)) of 

about 10
6
. Finally, the data of Shaan et al. (2000) 

are used to assess the performance of the model in 

case of natural sands with irregularly-shaped 
grains. Almost all the data refer to configurations 

in which all the solids are kept suspended, but 

moving bed flows have also been briefly explored 

to check how far one can go in employing the 
model for the purpose of achieving useful 

information from an engineering point of view. 

Measurements of solids concentration – either 
bulk-mean or local – are subjected to errors 

depending mainly on the instrumentation used, as 

discussed in Section 1. All the data reported in 
Table 2 are obtained using gamma-ray absorption 

methods, perhaps the technique which provides 

the highest accuracy attainable, with errors of the 

order of a few percentage points. Since this 
technique allows measuring chord-average values 

of solid volume fraction, the computed volume 

fraction profile was evaluated by means of Eq. 
(23). In the experiments from Roco and Shook 

(1983) – cases A1 to A5 in Table 2 – the 

dispersed phase consists of three kinds of sand, 
with narrow size distribution and mean particle 

diameters  of  165 and 520 μm. The solids density 

is  2650 kg/m
3
,  the pipe diameter is about 51 mm, 

 

Table 2 Details of experimental conditions for straight pipe case (A1 to A5: experimental data from Roco and Shook 
(1983); B1 to B12: experimental data from Gillies et al. (2004); C1 to C6: experimental data from Matousek 

(2000 and 2002); D1 to D4: experimental data from Shaan et al. (2000); * values not declared by 

experimenters). 
 

Test ID  [mm]pD
 

/  [-]pr D  
 [ ]pd m   [%]C   [m/s]sV  3 [kg/m ]p  

Flow pattern 

A1 51.5 0* 165 9 3.78 2650 FS 

A2 51.5 0* 165 19 4.17 2650 FS 

A3 51.5 0* 165 28 4.33 2650 FS 

A4 50.7 0* 520 12.12 1.90 2650 MB 

A5 50.7 0* 520 24.73 2.00 2650 MB 

B1 103 2∙10-5 90 19.8 1.33 2650 FS 

B2 103 2∙10-5 90 28.3 1.33 2650 FS 

B3 103 2∙10-5 90 19 3.00 2650 FS 

B4 103 2∙10-5 90 28.4 3.00 2650 FS 
B5 103 2∙10-5 280 12 2.55 2650 FS 

B6 103 2∙10-5 280 20.8 2.60 2650 FS 

B7 103 2∙10-5 280 31.0 2.50 2650 FS 

B8 103 2∙10-5 280 40.7 2.60 2650 FS 

B9 103 2∙10-5 280 10.6 5.40 2650 FS 

B10 103 2∙10-5 280 20.3 5.40 2650 FS 

B11 103 2∙10-5 280 30.1 5.40 2650 FS 

B12 103 2∙10-5 280 40.5 5.40 2650 FS 

C1 150 0* 120 25 2.04 2650* FS 

C2 150 0* 120 35 2.04 2650* - 

C3 150 0* 120 34 6.00 2650* - 

C4 150 0* 370 25 6.00 2650* FS 

C5 150 0* 370 34 6.00 2650* - 
C6 150 0* 370 43 6.00 2650* MB 

D1 158.5 6∙10-6 90 15 1.5 2655 FS 

D2 158.5 6∙10-6 90 32 1.4 2655 FS 

D3 158.5 6∙10-6 90 15 3.0 2655 FS 

D4 158.5 6∙10-6 90 32 3.0 2655 FS 
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the slurry bulk-mean velocity varies from 1.90 to 

4.33 m/s, and the pipe Reynolds number from 
between 9.6·10

4
 and 2.1·10

5
. The delivered solid 

volume fraction ranges from 9% to 30%. The 

authors did not indicate the roughness of the pipe, 

which was assumed hydraulically smooth. No 
evaluation of measurement uncertainty was 

reported by the experimenters, and they did not 

identify the flow patterns according to the more 
recent classification of Doron and Barnea (1996). 

However, for the smallest particle diameter the 

data suggest suspended flow, whereas for the 
largest diameter the indications are for moving-

bed flow. Fig. 8 compares the computed and 

measured solid volume fraction profiles. The 
good agreement between computation and 

measurements reveals the ability of the model to 

reproduce the effect of particle diameter on the 

particle distribution for slurries with different 
delivered solid volume fraction. The simple two-

fluid model proposed in this work appears 

capable to predict with reasonable accuracy the 
solid volume fraction profile not only in case of 

fully-suspended flow, but also in case of moving 

bed flows. This indicates that the asymptotic trend 
of    the    interfacial   momentum   transfer     term 

 

Fig. 8 Solids concentration profiles for flow conditions A1 to A5 in Table 2 (: experiments from Roco and 

Shook (1983); –––: predictions). 

 

Fig. 9 Solids concentration profile for flow conditions B1 to B12 in Table 2 (: experiments from Gillies et al. 

(2004); –––: predictions). 
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produces on the solid volume fraction profile the 

same effect that is traditionally achieved by the 

collisional pressure and the tensor ,kT . 

Gillies et al. (2004) measured the concentration 

profiles of sand-water slurries in a 103 mm 

diameter pipe using gamma-ray absorption 

gauges, without reporting the uncertainty. The 
roughness of the pipe is 2 nm. Two kinds of sand 

were considered, with narrow size distribution 

and mean particle diameter of 90 and 280 μm. In 
both cases the particle density was 2650 kg/m

3
, 

and the slurry superficial velocity varies from 

1.33 to 5.4 m/s (corresponding to a pipe Reynolds 

number between 1.4·10
5
 and 5.6·10

5
). The 

delivered solid volume fraction varies from about 

10% to about 45%. Details of the flow conditions 

considered for comparison are reported in Table 
2, cases B1 to B12. From an examination of the 

measured data for the pressure gradient, it can be 

inferred that in all cases the flow is fully-
suspended. This is a good test for the model’s 

ability to predict the combined effect of slurry 

velocity, solids loading, and particle diameter in a 

larger pipe. Fig. 9 shows comparison of the 
computational and the experimental results for the 

vertical distribution of the solid volume fraction. 

The model produces good overall agreement with 
the data. The largest deviations are observed near 

the pipe wall for the small particles at high 

concentration (cases B2 and B4 in Table 4), but as 
noted by the authors themselves these 

measurements are subject to the largest 

experimental error. 

Matousek (2000 and 2002) measured the 
concentration profiles of sand-water slurries in a 

150 mm diameter pipe using gamma-ray 

absorption method, quantifying a 4% uncertainty 
of the data. We reproduced numerically the flow 

conditions reported in Table 2 (cases C1 to C6), 

in which the dispersed phase consists of two kinds 

of sand with narrow size distribution and mean 
particle diameters of 120 and 370 μm. 

Unfortunately neither the density of the solid 

particles nor the pipe roughness are reported in 
the experiments of Matousek (2000 and 2002); 

and so in the simulations the former was set to 

2650 kg/m
3
, which is the value declared by Roco 

and Shook (1983) and Gillies et al. (2004), and 

the pipe was regarded as hydraulically smooth. 

The slurry superficial velocity was 2 or 6 m/s, 

corresponding to a pipe Reynolds number up to 
10

6
. The delivered solid volume fraction ranged 

between 25 and 43%.  According to the author, 

the flows are either fully suspended or with a 
moving bed, but only for three cases the flow 

pattern could be clearly identified from the plot of 

pressure gradient versus slurry superficial 

velocity. Fig. 10 compares the computed and 
measured solid volume fraction profiles; each set 

of experimental data has error bars indicating the 

uncertainty declared by the experimenter. The 

rather good agreement between computations and 
measurements confirm the reliability of the model 

for high pipe Reynolds numbers. A closer 

inspection reveals that for case C6 the computed 
concentration is lower than the experimental 

results in the lower part of the pipe and higher in 

the upper region. However, the pressure gradient 
curve clearly reveals that in case C6 a moving bed 

of particles is formed. It is again confirmed that 

the proposed model is capable to procure a rough 

indication of the distribution of the solid also for 
flows in which the inter-granular stresses play an 

important role. 

Moreover, in the case of highly dense slurries like 
case C6, the experimental data are subject to the 

most uncertainty, and the numerical solutions are 

sensitive to the empirical parameters pm  and    

which appear in the mixture viscosity correlation 

(Eq. (11)). For the same case, the measured solids 
concentration profile shows a drop near the pipe 

bottom. This reversal is not predicted by the 

numerical model, which is probably due to the 
absence of the wall lift force discussed earlier in 

Section 2.1. The same limitation was reported by 

Ekambara et al. (2009). 
The paper of Shaan et al. (2000) focuses on the 

effect of particle shape upon pressure gradient and 

deposition velocity, but these workers also 

reported some measurements of the solid volume 
fraction profiles. Shaan et al. (2000) quantified 

the particle shape by reference to the following 

quantities, evaluated from photos of the particles: 
the axes ratio, i.e. the ratio between the major and 

minor axes of an ellipse circumscribing the 

grains; the circularity index, i.e. the ratio between 

the area of the particle, multiplied by 4π, and its 
perimeter. The sand particles have a very irregular 

shape, as can be inferred by comparing the 

measured values of axes ratio (1.6) and circularity 
(0.62) against typical values reported in the 

literature for sand grains. The mass-median value 

of the particle size distribution curve is taken as 
the characteristic particle diameter. The flow 

conditions reported in Table 2 (cases D1 to D4) 

were reproduced to check the behaviour of the 

model for the case of irregularly-shaped sand 
particles. The pipe diameter (158.5 mm), 

delivered solid volume fraction (15% or 35%), 

slurry superficial velocity (1.4 or 3 m/s), particle 
density (2655 Kg/m

3
), and particle diameter (90 

μm)   are   all   approximately   within   the   range 
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Fig. 10 Solids concentration profiles for flow conditions C1 to C6 in Table 2 (: experiments from Matousek 

(2000 and 2002); –––: predictions). 

 

Fig. 11 Solids concentration profiles for flow conditions D1 to D4 in Table 2 (: experiments from Shaan et al. 

(2000); –––: predictions). 

covered by the earlier simulations.  
The numerical and experimental results are 

compared in Fig. 11. The agreement between the 

numerical predictions and the experimental 

evidence is fairly good; inadequacies of the 
numerical model – especially in the wall 

boundary conditions for the solid phase – and 

measurements error can both contribute to the 
discrepancies observed near the pipe bottom for 

case D2. The results seem to indicate that the 

numerical model is a suitable tool for predicting 
the solid volume fraction distribution produced by 

sands with a very irregular shape. 

 

3.2 Horizontal 90° bend 
 

The predictions of the model have been compared 

with the recent experiments of Kaushal et al. 
(2013) regarding a horizontal 90° bend. Among 

the different flow conditions considered by these 

authors, reference is made to those characterized 

by delivered solid volume fraction of 8.82%, 
within the range of interest in this work. The 

experimenters used a sampling probe to measure 

the volume fraction profile of the slurry in the 53 

mm diameter pipe along the vertical axis at 
distances of 5Dp, 25Dp, and 50Dp downstream the 

bend exit (referred to as sections S4, S5, and S6 in 

Fig. 2, respectively). They quantified a 2% 

uncertainty of the data. The solid phase consists 
of silica sand particles with narrow size 

distribution and mean particle diameter of 450 

μm. The slurry superficial velocity is 1.78, 2.67, 
or 3.56 m/s. 

The flow within the bend is much more complex 

compared to that through the straight pipe since 
secondary motions develop in the crosswise 

direction. These motions affect significantly the 

distribution of the solids and, as a consequence, 

the volume fraction distribution is no longer 
constant over horizontal planes. This is evident in 

Fig. 12, which shows the color plot of the solids 

volumetric concentration over the six cross 
sections highlighted in Fig. 2. As shown in Fig. 

13, the predictions of our model generally agree 

with the experimental data available. Greater 

discrepancies are observed for the highest 
superficial velocity (3.56 m/s), where the model 

seems  to  underestimate  the  quantity of particles 

dragged   by    the   secondary   motions.   This   is 
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Fig. 12 Solid volume fraction distributions on sections 

S1 to S6 in Fig. 2 for delivered solid volume 

fraction of 8.82%. Left hand side is the outer 

wall of the pipe. 

opposite to the KTGF based model of Kaushal et 

al. (2013), which tends to over-enhance the effect 

of the secondary motions on the solids for the 

lowest velocities. Fig. 13 also reveals that our 
model tends to overestimate the solids volume 

fraction close to the pipe bottom far from the 

bend exit. It is expected that the predictions could 

be improved if the effect of the wall lubrication 
force, for which a suitable model does not exist at 

present, were accounted for. 

4. CONCLUSIONS 

A mathematical model has been described for the 

estimation of solid volume fraction distribution of 

solid-liquid slurry flows in horizontal pipes and 
bends. The model is based on an Eulerian-

Eulerian approach, and uses the Inter-Phase Slip 

Algorithm (IPSA) of Spalding (1980). The 

novelty of this model resides in the combined use 
of existing modelling strategies never previously 

employed simultaneously for the predictions of 

slurry flows. In order to account for turbulent 
dispersion of particles, phase diffusion terms have 

been included in the phase continuity equations, 

together with all the conservation equations. The 
mixture viscosity approach is adopted to model 

the effect of multiple particles on the inter-phase 

friction. A wall function is employed to model the 

flow in the near-wall region in case of both 
hydraulically smooth and rough walls. All these 

strategies result in a model which, despite being 

simpler that those commonly used for addressing 
solid-liquid slurry flows, shows comparable or 

even better predictive capacity. Moreover, this 

model is robust and numerically stable, and 

requires relatively short CPU time to procure 
converged steady-state solutions. 

The model has been first validated by comparison 

with experimental data for the horizontal pipe 
case over a wide range of operating conditions: 

delivered solid volume fraction between 10% and 

40% by volume; mean particle diameter between 
90 and 520 μm; slurry superficial velocity 

between 1 m/s and 5.5 m/s; and pipe diameter 

between 50 and 158 mm. The model predictions 

were found to be in good agreement with the 
experimental evidence for all the flow conditions 

considered for comparison. Even if the model is 

originally intended to address fully-suspended 
flows, the results indicated its capability to 

provide rough indications of the solid volume 

fraction distribution also in case of bed flows. 
At last, the comparison with the recent 

measurements of Kaushal et al. (2013) revealed 

that this model is capable to procure reliable 

predictions of the particle distribution 
downstream a 90° bend in a horizontal pipe. 
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Fig. 13 Solid volume fraction along vertical diameter on sections S4 to S6 in Fig. 2 for delivered solid volume fraction 

of 8.82% (: experiments from Kaushal et al. (2013); –––: predictions). 
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