
6  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

OPINIONWhy Offensive Security Needs
Engineering Textbooks
Or, How to Avoid a Replay of “Crypto Wars” in Security Research

S E R G E Y B R A T U S , I V Á N A R C E , M I C H A E L E . L O C A S T O , A N D S T E F A N O Z A N E R O

Offensive security—or, in plain English, the practice of exploitation—
has greatly enhanced our understanding of what it means for com-
puters to be trustworthy. Having grown from hacker conventions

that fit into a single room into a distinct engineering discipline in all but
the name, offensive computing has so far been content with a jargon and an
informal “hacker curriculum.” Now that it is unmistakably an industry, and
an engineering specialization, it faces the challenge of defining itself as one,
in a language that is understood beyond its own confines—most importantly,
by makers of law and policy.

Currently, lawmakers and policy-makers have no choice but to operate with pieces of our
professional jargon that have been publicized by journalists. But writing laws based on pro-
fessional jargon is dangerous: This jargon will be misunderstood by lawmakers and judges
alike. It’s not the wisdom of the judge or the legislator that is in question, it’s their ability to
guess the course of a discipline years in advance.

Consider the concept of unauthorized access at the heart of (and criminalized by) the Com-
puter Fraud and Abuse Act (CFAA). The unanticipated, “unauthorized” uses of today will
be primary uses or business models of tomorrow. When CFAA was written, connecting to
a computer on which one had no account was pointless. Cold-calling a server could serve
no legitimate purpose, as no servers were meant for random members of the public; each
computer had its relatively small and well-defined set of authorized users. Then the World
Wide Web happened, and connecting to computers without any kind of prior authorization
became not just the norm but also the foundation of all related business. Yet the law stands as
written then, and now produces conundrums such as whether port scans, screen-scraping,
or URL crafting are illegal, or even whether telling journalists of a successful URL-crafting
trick that revealed their email addresses could be a felony (as in the recent US v. Auern-
heimer case). Even accessing your own data on a Web portal in a manner unforeseen by the
portal operator—as in the case of ApplyYourself users who could see their admission status
prematurely—may similarly be a crime under CFAA (for discussion of these cases and differ-
ent institutions’ reactions to them, see [14]).

Lawmaking with regard to offensive security artifacts has already started. Article 6 of the
Budapest Convention on Cybercrime requires signatories to issue laws that criminalize
“production, sale, procurement for use, import, distribution or otherwise making available
of…a device, including a computer program, designed or adapted primarily for the purpose
of committing any of the offences” it established as criminal; Germany and UK have since
enacted laws targeting so-called “hacking tools.” Although, to the best of our knowledge,
no prosecution of security researchers has yet taken place under these laws, they have had
nontrivial chilling effects. More recently, intrusion software has been categorized by the
December 2013 Wassenaar Arrangement as dual use technology subject to exports control;
such software is defined as capable of “extraction of data or information, from a computer
or network capable device, or the modification of system or user data or modification of the
standard execution path of a program or process in order to allow the execution of externally
provided instructions.” This is, of course, what debuggers and hypervisors do, not to mention

Sergey Bratus is a research
associate professor of computer
science at Dartmouth College.
He sees state-of-the-art
hacking as a distinct research

and engineering discipline that, although not
yet recognized as such, harbors deep insights
into the nature of computing. He has a PhD
in mathematics from Northeastern University
and worked at BBN Technologies on natural
language processing research before coming to
Dartmouth. sergey@cs.dartmouth.edu

Iván Arce is director of
security in the Information and
Communications Technology
(ICT) R&D program at
Fundación Dr. Manuel

Sadosky, a mixed (public-private) non-profit
organization in Buenos Aires, Argentina,
whose goal is to promote stronger and closer
interaction between industry, government, and
academia in all aspects related to ICT. Arce is
also the co-founder and former CTO of Core
Security Technologies. ivan.w.arce@gmail.com

Dr. Michael E. Locasto is an
assistant professor in the
Computer Science Department
at the University of Calgary.
He seeks to understand why

it seems difficult to build secure, trustworthy
systems and how we can get better at it.
He graduated magna cum laude from The
College of New Jersey (TCNJ) with a BSc
degree in computer science. Dr. Locasto
also holds an MSc and PhD from Columbia
University. locasto@ucalgary.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55246387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 7

OPINION
Why Offensive Security Needs Engineering Textbooks

all varieties of JTAGs; although the document further stipulates that “‘Intrusion software’
does not include any…hypervisors, debuggers, or Software Reverse Engineering (SRE) tools,”
the above functional description fits them perfectly.

Such language demonstrates the challenge we face. As native speakers of the jargon, we
understand that an exploit, a rootkit, and a defensive module that inserts itself into a piece of
software are all likely to use the same technique of reliably composing their own code with
the target’s; however, lawmakers do not see their unity.

Will jailbreaking or composition beyond well-defined APIs such as DLL injection survive
these challenges? Many sufficiently advanced techniques in both defense and exploitation
perform some of a debugger’s or linker’s tasks without being either debuggers or linkers;
new debugging and dynamic linking techniques are informed by exploitation. For example,
BlackIce Defender, the first Windows firewall, linked itself into the kernel by “modifying the
standard execution path” to defend the system, and even patented the technique that many
rootkits have since rediscovered; Robert Graham tells the story in “The Debate over Evil
Code” [2]. “Bring Your Own Linker” has long been a composition pattern for both offense and
defense [1].

Proposals for stricter regulation of exploits are not hard to come by. A good example is pro-
vided by Stockton and Golabek-Goldman [3], which makes an aggressive and ill-informed
call for regulation (and spells øday with a symbol for “empty set”). It defines “weaponized” on
its first page to mean “disrupt, disable, or destroy computer networks and their components”
and then on the next page claims that “Criminals buy and use weaponized øday exploits to
steal passwords, intellectual property, and other data,” even though disabling or destroying a
compromised computer in order to steal passwords or secrets is counterproductive; in fact, it
would be just plain stupid, as it would alert the victim of the breach and likely eliminate the
value of stolen passwords or data. Apparent lack of familiarity with the field, however, doesn’t
stop the authors from calling for prosecution of security researchers under the CFAA—a law so
broad and vague that prominent legal scholars argue it should be void for vagueness [15] .

If anything, we can expect more laws and regulations on the basic artifacts of our profession.
The only way for us to avoid overly broad formulations that would snare every technique we
use is to develop a language that puts offensive computing in perspective with other com-
puter engineering.

In short, we need textbooks and textbook definitions that describe offensive computing so
that policy-makers need neither puzzle over jargon nor design their own language—both
approaches being potentially disastrous to the future state of practical computer security.

Why Offensive Computing Matters for
Security in General

If you shame attack research, you misjudge its contribution. Offense and defense
aren’t peers. Defense is offense’s child. —John Lambert [4]

Exploitation is programming. It is the kind of programming that every programmer should,
if not directly practice, at least understand in terms of its capabilities and limits, because it
will be practiced on his code. Our security is only as good as our understanding of this kind of
programming, because it’s the essential nature of general-purpose systems (or perhaps of all
rich enough computing systems) to allow a myriad of other execution paths than merely the
intended ones. Until all possible latent, unintended execution models are understood, they
can neither be eliminated nor triaged.

Security and trustworthiness of code means attackers’ inability to program it. In computer
science theory, we emphasize results that show what can and cannot be programmed; in

Stefano Zanero received a PhD
in computer engineering from
Politecnico di Milano, where
he is currently an assistant
professor. His research focuses

on mobile malware, malware analysis, and
systems security. He’s a senior member of the
IEEE, the ACM, and the ISSA, and sits on the
Board of Governors of the Computer Society.
stefano.zanero@polimi.it

file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE

8  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

OPINION
Why Offensive Security Needs Engineering Textbooks

fact, our very notions of computer architectures derive from
these results. Programmers and designers of a trusted system
must be equally focused on what can and cannot be programmed
on (or against) their code, no less than a theorist is concerned
with what can and cannot be computed by particular execution
models, type systems, automatic theorem provers, verifiers, and
the like.

The strongest kind of trust in systems security, just as in cryp-
tography, derives from some programs provably not existing—or
at least from their existence being highly unlikely. Ciphers are
only trusted because no efficient algorithms to solve certain
algebraic problems are believed to exist. Cryptographic proto-
cols are only deemed trustworthy when no sequence of attacker
manipulations of their messages can interfere with their trans-
actions, and so on.

To stress the role of anticipating and precluding attackers’
programs in the realm of cryptographic protocols, Anderson and
Needham call the protocol designers’ task programming Satan’s
computer:

In effect, [the protocol designer’s] task is to program
a computer which gives answers which are subtly and
maliciously wrong at the most inconvenient possible
moment… and we hope that the lessons learned from
programming Satan’s computer may be helpful in
tackling the more common problem of programming
Murphy’s. [5]

For applied systems tasks, the primitives of adversarial pro-
gramming may be different, but the essence of trustworthiness
is the same: Such attacker programming must fail, preferably
due to the provable impossibility of certain tasks.

We can trust any system only so far as we understand its
unintended programming models (so-called “weird machines”
[6], building on prior work by many others, such as Gerardo
Richarte’s About Exploits Writing [7]) and their limits. Exploits
are merely artifacts and expressions of this understanding; the
essence of the discipline is the skill to discover, validate, and gen-
eralize such models. Yet no research activity can develop without
free exchange of its artifacts, and the discipline of systems secu-
rity needs to develop a lot further before we can trust it even to
the same extent as we trust analysis of cryptographic protocols.

Exploits are the primary tools in exploring the unexpected,
latent models of programming that are inherent in the ways we
currently build computing systems. Thus, we must be able to
speak about them in all their unity and differences, and to be
understood.

Exploits: Research or Development?
Proof-of-Concept or “Weaponized”?
Compared with software engineering, arguably its most closely
related field, security focuses much less on its engineering
process. Unlike software engineering, which continually invents
new processes and methodologies, and has an industry-wide
shared vocabulary for the outcomes of different process stages
(such as “design,” “architecture,” “prototype,” “alpha-,” “beta-,”
“production quality,” etc.), the security industry does not appear
concerned with defining its process or its product through the
stages of its development and maturity.

Terms occasionally used to qualify important industry artifacts,
such as exploits, do not appear to have consensus definitions.
Perhaps the best example is the use of “weaponized” [8] to refer to
a certain grade of readiness or effectiveness (or ease-of-use?) that
must inspire awe in the prospective buyer (note also how such
use in turn affects misuse in policy proposals, as quoted above).

Even terms purely technical in origin raise questions regard-
ing their usefulness, for example, the use of “memory corrup-
tion” in advisories [9]. Even the typically used term remote code
execution is somewhat ambiguous, because it obscures whether
introduction of external code by a remote party is necessary or
whether full control is achievable by manipulating the platform’s
existing code, with remotely crafted data inputs acting as the de
facto exploit program.

It gets worse when we get to characterizing intentions of a
particular research or engineering activity. Suppose some
lawmakers would like to protect security research results while
attempting to curb what they see as software developed with
ill intent. Our industry’s language, however, lacks the ability to
clearly distinguish research results from engineering artifacts.
An in-depth technical description of a software vulnerability
may or may not be equivalent to an actual exploit program that
leverages said vulnerability. How much detail and analysis do
you need to consider the two equivalent? Is it possible to regulate
one but not the other? And, if so, to regulate what exactly?

Even though there is a lot of architecting, programming, and
testing involved in producing what could be called a “commercial
grade exploit”—all activities that can be more closely associated
with software engineering than with research as such—this
nuance seems to be lost on much of the security industry, and
certainly on the outside world, which speaks of “vulnerabilities,”
“PoCs,” “triggers,” “payloads,” and “weaponized exploits” as if
they were interchangeable. Given such usage, the difference
between an open source research tool and a commercially backed
software product that includes exploits is too nuanced to explain
(see, e.g., Iván Arce’s RSA 2005 presentation [10] on the subject).

All the more so, a “textbook” gradation of exploits with respect to
their power and reliability is necessary. As a direct consequence

file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 9

OPINION
Why Offensive Security Needs Engineering Textbooks

of such a gradation, an evaluation of effort necessary to elevate
privilege from any given exploit achievement becomes desirable.
In other words, it is not enough for a customer of an engineering
effort to know that a product or design is flawed; one might want
to know how deeply the rabbit hole goes.

In plain English, what does it mean for software to withstand a
particular kind of adversarial audit or testing? Once a vulnera-
bility has been found, how general is its description as presented
in an advisory or an exploit? Does the description need to capture
an entire class of related vulnerabilities or merely a particular
instance of an exploitable bug? How far should an exploitable bug
be pursued by the researcher beyond the creation of code that
exploits a particular platform or platforms? How resilient is the
exploit against defenses such as address space randomization,
non-executable memory, various canaries, and other memory
integrity checks? How resilient can it become after a man-month
of engineering effort by the exploit developer, and how qualified
should this developer be to pull it off?

For all of these, there appear to be neither accepted answers nor
a common language to provide them. Our industry still lacks a
consensus vocabulary to describe the generality of knowledge
about a flaw as encapsulated in an exploit or an advisory. For
example, has the primary effort been spent on the discovery of
the flaw or on constructing the exploit machine? How likely is
the flaw to be present and/or exploitable in other instances of
related codebases? Is the exploitability of the flaw an (un)happy
accident, or does it reveal a general principle applicable even
beyond related codebases?

Most of these answers become clear to experts after a care-
ful study of the exploit, but no textbook or other authoritative
publication captures them, which makes it hard to explain the
insights and the impact. Not surprisingly, it is a often a hard
task to explain the impact of an “attack paper” to academics not
versed in exploitation, as they, too, lack the terms for different
degrees of impact and generality and have no referent in industry
language.

In short, a “Rainbow Series” for offensive computing suddenly
sounds like a good idea.

Common Criteria or FIPS for Offensive
Computing?
Contrast the lack of terms to describe the generality, the resil-
iency, or the reliability of an exploit with the well-known criteria
for government procurement of trusted computing systems, such
as the Common Criteria or the FIPS certifications. Their dif-
ferent levels enumerate processes and methodologies applied in
development of the software, with those at higher levels expected
to provide relatively stronger assurance. A ranking, however
imperfect, of software construction and testing methodologies is

implied with respect to their relative power to provide assurance
and verification.

A similar ranking of attack and assessment methodologies may
be possible, with respect to their power to reveal flaws. The
similarity would, of course, extend to the cautions and provisos
that apply to software construction methods, namely, that their
ranking is relative rather than absolute, and provides evidence of
effort invested rather than proof of security in any given sense.

However, no such ranking is enshrined to date in a form avail-
able to industry outsiders. Some policy-makers may understand
that certain grades and levels of offensive skills, activities, and
artifacts are indispensable to security education of every com-
puter professional. They may understand that major advances
in computer security have been made by the “Citizen Science” of
hacking and only then adopted by industry or academia, and that
curbing this citizen science by turning the respective activities
into legal minefields will shrink the talent pool of “cyberdefend-
ers.” Yet, even so, they lack the concepts and terms to clearly
distinguish activities they want regulated from the basic tools of
the discipline.

Moreover, perhaps their very ideas of what they want regulated
will be changed once a proper language that shows the relative
importance of offensive activities is available.

Have We Learned the Lesson of the
“Crypto Wars”?
The 1990s were a formative decade for the commercial Internet
in the United States. Unfortunately, during this same time the
US government policy was to treat strong encryption as a threat
and to control implementations of certain cryptographic algo-
rithms as munitions, subject to vigorous enforcement of export
regulations. In 1993, the author of the original PGP software,
Phil Zimmerman, became the target of an FBI investigation for
munitions export without a license, which lasted until 1996. At
the same time, a series of failed technological “solutions” and
mandates, such as the backdoored-by-design Clipper chip [11]
and third-party key escrow were promoted as a legally safe way
for the telecommunications industry to implement compliant
encryption—which would have essentially amounted to pretend
security.

Export restrictions on artifacts of cryptography have doubtlessly
harmed its practical progress. It’s not only that Johnny Q. Public
still can’t encrypt [12], but John the Special Agent can’t encrypt
either! [13] No matter where one stands on whether and how
much the latter should be allowed to wiretap the former, John
certainly has things to hide and in fact a duty to hide them—in
which he is conspicuously failing.

Could it be that both of these failures are due to the fact that
deployment of strong crypto was stymied just when today’s

file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFtNtAAE

10  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

OPINION
Why Offensive Security Needs Engineering Textbooks

dominant communication protocols and infrastructure were
rapidly developing? The fact is, these technologies ended up leav-
ing crypto behind and matured without incorporating cryptog-
raphy at their core. Superiors of John the Special Agent may have
had visions of him using separate, special technologies vastly
stronger than Johnny Q. Public’s and obtained from sources
untainted by the weaknesses of public commodity communica-
tions; it appears their vision was wishful thinking.

If having to pretend that poor cryptography was secure because
practically exploring stronger crypto was a legal minefield led us
to this point, where would pretending that computers are secure
because of a likely minefield arising in exploitation engineer-
ing lead us from here? It will likely be worse, because the field
of cryptography by the 1990s already had mature mathematical
theory not easily undercut by the drag created on its engineering
practice. Systems security, on the other hand, is only building up
its theoretical foundations and is in need of much more feedback
and generalization of its practice and its failures.

If the practice of exploring the programming of programs’ faults
becomes subject to regulation as vigorous as the 1990s “Crypto
Wars,” will this practice develop enough to warn us before unse-
curable designs come to dominate critical infrastructure, power
management, medicine, or even household appliances beyond
any hope of replacement? Will we be surrounded by an Internet
of Untrustworthy Things just as we are surrounded today by an
Internet of Things that Can’t Keep a Secret (or at least are no
help to an ordinary person for doing so)?

Conclusions
Offensive computing—by now a research and engineering
discipline that cuts across many technologies and abstraction
layers—is central to the security and trustworthiness of com-
puter systems. However, the further one stands from security
research, the less prominent the role of offensive computing
appears. Even in the eyes of traditionally trained computer sci-
entists and engineers this role looks somewhat peripheral; in the
view of policy-makers, offensive computing is often completely
marginalized and confused with the criminality and ill intent of
surveillance and repression.

These diverging views of offensive computing are a clear and
present danger to the development of the discipline, and thus to
our hope for improving the trustworthiness of everyday comput-
ing. Without a concerted effort to claim its place, offensive com-
puting will end up being further marginalized, nearly impossible
to practice outside of costly legal protection, and completely
impossible to practice as a citizens’ science.

To protect our discipline, we need to make sure that good
approachable textbooks, or at least comprehensive dictionar-
ies, exist for it, that put it into proper perspective not only to
experts but also to a much broader audience. Distracting as the
task of writing these books may be, failure to communicate the
importance of offensive research will be a lot more damaging in
the long run, both to all of us and to the society that our research
ultimately serves to protect.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 11

OPINION
Why Offensive Security Needs Engineering Textbooks

References
[1] Bratus et al., “Composition Patterns of Hacking,” in Proceedings of the 1st International Workshop on Cyber Patterns, Abingdon,
Oxfordshire, UK, July 2012, pp. 80–85.

[2] http://blog.erratasec.com/2013/03/the-debate-over-evil-code.html.

[3] Paul N. Stockton and Michele Golabek-Goldman, “Curbing the Market for Cyber Weapons,” Yale Law & Policy Review (December
2013): http://www.sonecon.com/docs/studies/SSRN-id2364658.pdf.

[4] https://twitter.com/JohnLaTwC/status/442760491111178240.

[5] www.cl.cam.ac.uk/~rja14/Papers/satan.pdf.

[6] Bratus et al., “Exploit Programming,” ;login:, vol. 36, no. 6 (December 2011): http://langsec.org/papers/Bratus.pdf.

[7] Gerardo Richarte, “About Exploits Writing,” Core Security Technologies presentation, 2002: http://corelabs.coresecurity.com/
index.php?module=Wiki&action=view&type=publication&name=About_Exploits_Writing.

[8] Core Security Technologies, “Speaking the Language of IT Security”: http://blog.coresecurity.com/2009/11/05/speaking
-the-language-of-it-security/.

[9] Risk-Based Security, “Memory Corruption… And Why We Dislike that Term”: http://www.riskbasedsecurity.com/2013
/08/memory-corruption-and-why-we-dislike-that-term/.

[10] “On the Quality of Exploit Code: An Evaluation of Publicly Available Exploit Code”: http://corelabs.coresecurity.com/index
.php?module=Wiki&action=view&type=publication&name=rsa2005_quality_of_exploit_code.

[11] M. Blaze, “Protocol Failure in the Escrowed Encryption Standard,” Proceedings of Second ACM Conference on Computer and
Communications Security, Fairfax, VA, November 1994.

[12] A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt,” Proceedings of the 8th USENIX Security Symposium, Washington, DC,
1999: https://www.usenix.org/legacy/events/sec99/full_papers/whitten/whitten.pdf.

[13] S. Clark et al., “Why (Special Agent) Johnny (Still) Can’t Encrypt,” USENIX Security Symposium, 2011: https://www.usenix.
org/legacy/event/sec11/tech/full_papers/Clark.pdf.

[14] S. W. Smith, “Pretending that Systems Are Secure,” IEEE Security and Privacy, vol. 3, no. 6 (November/December 2005), pp.
73–76.

[15] Orin S. Kerr, “Vagueness Challenges to the Computer Fraud and Abuse Act,” Minnesota Law Review (2010): http://www.
minnesotalawreview.org/wp-content/uploads/2012/03/Kerr_MLR.pdf.

file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefAAB
http://www.cs.dartmouth.edu/~sergey/drafts/hacker-composition.pdf
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefAAC
http://blog.erratasec.com/2013/03/the-debate-over-evil-code.html
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefAAD
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefAAE
https://twitter.com/JohnLaTwC/status/442760491111178240
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefAAF
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/www.cl.cam.ac.uk/~rja14/Papers/satan.pdf
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefAAG
http://langsec.org/papers/Bratus.pdf
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefAAH
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefAAI
http://blog.coresecurity.com/2009/11/05/speaking-the-language-of-it-security/
http://blog.coresecurity.com/2009/11/05/speaking-the-language-of-it-security/
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefAAJ
http://www.riskbasedsecurity.com/2013/08/memory-corruption-and-why-we-dislike-that-term/
http://www.riskbasedsecurity.com/2013/08/memory-corruption-and-why-we-dislike-that-term/
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefABA
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=rsa2005_quality_of_exploit_code
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=rsa2005_quality_of_exploit_code
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefABB
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefABC
file:///Users/linda/Clients/USENIX/2014August_login/login_batch1/2bratus/#tthFrefABD

