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Abstract: Continuous monitoring of food loss and waste (FLW) is crucial for improving food security
and mitigating climate change. By measuring quality parameters such as temperature and humidity,
real-time sensors are technologies that can continuously monitor the quality of food and thereby help
reduce FLW. While there is enough literature on sensors, there is still a lack of understanding on how,
where and to what extent these sensors have been applied to monitor FLW. In this paper, a systematic
review of 59 published studies focused on sensor technologies to reduce food waste in food supply
chains was performed with a view to synthesising the experience and lessons learnt. This review
examines two aspects of the field, namely, the type of IoT technologies applied and the characteristics
of the supply chains in which it has been deployed. Supply chain characteristics according to the
type of product, supply chain stage, and region were examined, while sensor technology explores the
monitored parameters, communication protocols, data storage, and application layers. This article
shows that, while due to their high perishability and short shelf lives, monitoring fruit and vegetables
using a combination of temperature and humidity sensors is the most recurring goal of the research,
there are many other applications and technologies being explored in the research space for the
reduction of food waste. In addition, it was demonstrated that there is huge potential in the field,
and that IoT technologies should be continually explored and applied to improve food production,
management, transportation, and storage to support the cause of reducing FLW.

Keywords: food loss and waste; IoT technologies; real-time; sensors; food supply chains

1. Introduction

Reducing food loss and waste (FLW) is a significant concern to many fresh food
producers due to its high socio-economic costs and its relationship to waste management
and climate change challenges [1]. First, wasting food when other parts of the world are
starving is a moral issue [2]. Another problem is that the earth’s resources are finite and
must be handled cautiously [3]. To provide a reference as to the magnitude of FLW’s
cost to Earth’s resources, food waste carbon footprint has been estimated at 3.3 Gt of
CO2-eq each year, which represents a 6% of global greenhouse gases (GHG) emissions,
and also considering that this figure excludes GHG emissions related to land use change,
deforestation and organic soils management [4]. Furthermore, financial resources are
squandered when food is produced but not consumed [5]. In fact, the economical costs
associated with food waste have been estimated at nearly USD 1 trillion per year, of which
USD 680 billion correspond to economical loses in developed countries and 310 billion in
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developing ones [4]. The 2030 Agenda for Sustainable Development reflects the increased
global awareness of the problem, mainly Target 12.3 calls for reducing food waste along
the production and supply chains [6].

The FLW can occur throughout the whole supply chain, from the agricultural stage,
through producers, distributors, and retailers to the consumer level. The percentage of
loss varies depending on the food product, being exceptionally high for fresh produce,
e.g., around 50% of all fruits and vegetables are disposed of in the EU each year [7].
About one-third of fruit and vegetable wastes are caused by produce perishing between
being harvested and reaching the consumer, mainly due to long distribution routes and
inadequate technologies used in transport and storage [5].

The growing food industry and increased demand for long-term food preservation
have necessitated the development of systems for readily tracking and preserving food
freshness and safety [8]. Recently, digital tools have become a viable solution for FLW
prevention [9,10]. Intelligent identification, tracking, monitoring, and management can be
achieved with the help of digital tools, such as sensors, barcode identification equipment,
laser scanners, wireless, mobile, blockchain technologies, global positioning systems, and
other information sensing equipment [11–13]. These technologies can influence the FLW
within the broader food security landscape [14] and continuously monitor different product
types, such as meat, milk, and other food products [8]. These technologies can also facilitate
the development of alternative food networks that can modify the traditional linear food
chain [15]. The application of the Internet of Things (IoT), for example, can support
the actors to control FLW by monitoring food quality, managing food close to its shelf
life, and improving the management of inventory and store layout. At the same time,
sensor technologies can help reduce FLW by administering the right physical environment,
especially concerning temperature and humidity [16].

Different types of technologies are used to collect information on food products, e.g.,
external and internal devices. External devices are attached outside the package; examples
of these devices are temperature and physical shock sensors [17]. The second type is placed
inside the package, in the headspace of the package, or attached to the lid, for example,
biosensors and biological growth indicators [17]. The internal sensors need a communication
tool to communicate their information to the users. It is also possible to combine technologies
to display food’s features such as time, location, and environmental information [18,19].

The sensor can be used throughout the whole product’s shelf life and supply chain
(production, storage, distribution, and consumption). In the production stage, the consump-
tion data of water, electricity, and other raw materials could be collected by sensing devices
installed on manufacturing equipment [20]. During the storage stage, food temperature
and air humidity can also be collected from sensors in warehouses [21]. In the transportation
stage, the fuel consumption, weight of product transported, and transportation distance can
be collected by sensors on vehicles [21]. Environmental emission data could be obtained from
intelligent sensors and environmental monitoring systems at any stage of the supply chain [20].

As shown above, the use of new real-time monitoring technologies that are based
on IoT is a promising new area in food supply chains, with applications in precision,
traceability, visibility, and controllability. IoT is growing exponentially and can become
an enormous source of information. However, although it is expected that these new
technologies will bring more efficient, and sustainable food chains in the near future, little
attention has been paid to its potential use in the food sector. Thus, this study contributes
to the research gap on the lack of understanding of the applications of real-time monitoring
technologies based on IoT devices in the food sector and the common practices associated
with these technologies.

In this sense, it is necessary to study systematically and thoroughly the potential
applications of intelligent monitoring equipment to reduce food waste issues. To achieve
this goal, the study discussed in this paper encompasses a systematic literature review to
address the following research questions: (1) what are the main characteristics of the food
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supply chain that have used food monitoring technologies to date? and (2) what real-time
monitoring technologies have been deployed for these food supply chain applications?

2. Materials and Methods
2.1. Research Methodology

This section presents the systematic literature review methodology of the applications
of real-time monitoring technologies for reducing FLW in different stages of the food
supply chain. The literature review was conducted to answer the following research
questions: (1) What are the main characteristics of the food supply chain that have used
food monitoring technologies to date?; and (2) What real-time monitoring technologies
have been deployed for these food supply chain applications? To answer these questions,
a review was conducted by searching for studies published in peer-reviewed indexed
journals in an electronic database in the last 20 years. The identification of studies in
scientific journals was performed following a three-step procedure, in light of the PRISMA
standard guidelines, as shown in Figure 1.
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Figure 1. Studies identified and selected from the database.

Scientific articles were first systematically screened via the Web of Science search
engine (https://www.webofscience.com/, accessed on 1 July 2022). The combined search
terms “food waste” or “food loss” and “dynamic” or “real-time” or “IoT” and “sensor”
on titles, abstracts, and keywords, were considered. Only literature reported in English
was included in the review scope. The literature search resulted in a total of 313 potentially
relevant articles. In a second step, all proceeding abstracts, review articles, book chapters
and grey literature were excluded, and only full-length articles were selected, totalling 199
articles. In a third step, an additional screening was made to check the relevance of the
articles. The relevance of each study was assessed based on the abstract of the articles; in
case of doubt, the entire paper was read.

Several definitions of food loss and waste exist, and for this article, food loss and waste
are defined as the decrease in quantity or quality of food along the food supply chain [22].
Therefore, studies investigating the post-treatment of food waste were integrated into the

https://www.webofscience.com/
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review scope. Food waste prevention was considered a management option; hence life
cycle assessment (LCA) studies on this topic were kept in the review. After the third step,
45 articles met the inclusion criteria: real-time sensor assessing food waste in the food
supply chain, original research articles written in English, and published online from 2001
to December 2021. During the review process, references of the studies were checked
to identify additional studies of potential relevance, which led to the identification of
14 additional articles of interest. Cumulatively, this search resulted in the selection of
59 articles for the quantitative analysis. Three authors cross-checked the work to ensure no
bias was introduced.

2.2. Data Synthesis

The selected relevant articles were analysed using a bibliometric networks method for
co-occurrence analysis built using VOSviewer version 1.6.18, an open-access tool which
aids in tracing the research development by producing informative maps of keywords
and textual data. Co-occurrence networks can be synthesised based on data downloaded
from the Web of Science and used to identify the relationships and interactions among
different subject areas. Network visualisation offers a multidimensional scaling and clus-
tering feature. It has been shown to be a powerful approach to analyse a large variety of
bibliometric networks, such as the relations between keywords [23]. In network visualisation,
the colour of a cluster indicates a particular property of the nodes. For instance, nodes may
represent keywords, and the size of a node may indicate the number of times a keyword has
been cited [24]. Terms that co-occur several times tend to be located close to each other in
the visualisation.

2.3. IoT Architecture

The structure of the systematic literature review of sensing technologies in Section 3.3
was divided into four sections, following the components of the standard 4-layer IoT
architecture. This architecture is described below.

The European Union Agency for cybersecurity (ENISA) defines the Internet of Things
as “a cyber-physical ecosystem of interconnected sensors and actuators, which enable intel-
ligent decision-making” [25]. Information is at the centre of IoT, feeding into a continuous
cycle of sensing, decision-making, and actions, as stated in the definition. Anything from a
smartwatch to a cruise control system with sensors might be considered a “thing” in the
Internet of Things (e.g., temperature, humidity, light, location, etc.). The communication
devices (Wi-Fi, RFID, Bluetooth, 3G/4G, etc.) are other components of the IoT ecosystem
and facilitate communication with other machines or humans and computing resources.
The IoT architecture includes several layers, as described in Figure 2.

(1) Sensing layer: encompasses all devices implemented in the environment, such as
sensors (e.g., temperature, light, motion and location, etc.), energy supply devices
(e.g., batteries, solar panels) and other devices that can manage functionalities.

(2) Communication layer: includes devices that transmit and receive data over the com-
munication system directly or via gateways (e.g., receptors and transmitters). It also
encompasses all necessary communication technologies, wired and wireless, such as
Wi-Fi, Zigbee, Bluetooth, 3G/4G, LoRaWAN, etc. It provides functionality for the
network, i.e., connectivity, mobility, authentication, authorisation, and accounting.

(3) Storage layer: includes data processing and storage, as well as dedicated functionality
for each application and service, since emerging services have diverse requirements.

(4) Application and control layer: this layer deals with the analysis of the data retrieved
from the storage layer allowing the end user to make informed decisions based on
computational intelligence methods applied to the data. Additionally, it provides
applications and services that farmers, retailers, analysts, and consumers can employ.
Consumers can look for product expiration dates, test reports, quality guarantee
periods, product photos, and customer evaluations in this layer. It refers to the typical
management and performance visualisation (i.e., software app, etc.).
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3. Results and Discussion
3.1. Analysis of Selected Papers

Food waste is recognised as a significant threat to food security, the economy, and the
environment. In this regard, Figure 3 presents the efforts from the literature to overcome the
challenges of reducing this type of waste using IoT technologies over the years. According
to Figure 3, the oldest publication selected is from 2008, and the most recent is from 2021
(which is the latest year of this review). The increase observed during the years can be due
to the intensified commercialisation of sensors, which is linked to the increasing awareness
of the population and companies about the effects of food waste generation.
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Figure 4 shows the co-occurrence network visualisation of content for the selected
publications. In this study, the keywords were grouped into three main clusters. The main
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terms covered in the blue cluster are related to IoT, the Internet of things and sensors. The
red cluster consists mainly of management, food waste, and design terms, while the yellow
cluster is more focused on temperature, traceability and cold chain.
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3.2. Supply Chain Characteristics

To respond the first research question to understand the common characteristics of the
food supply chain in which real-time monitoring technologies have been applied, relevant
elements related to the study application (food type, supply chain stage, and country) were
extracted from each identified article and defined in Table 1.

Table 1. Selected papers in the chronological order of publication and main characteristics.

Reference Food Type Supply Chain Stage Country

Zhu et al. [26] Garlic scape Transportation China
Afreen and Bajwa [27] Fruit and vegetables Storage Pakistan
Torres-Sanchez et al. [28] Lettuces Transportation and storage Spain
Siddiqui et al. [29] Rice Manufacturing Bangladesh
Aytaç and Korçak [30] Fast-food Retail Turkey
Zheng et al. [31] Water Manufacturing China
Li [32] Fruit and vegetables Transportation China
Nair et al. [33] Banana Storage India
Sharif et al. [34] Perishable products * Storage UK
Ibba et al. [35] Apple and bananas Storage and transportation Italy
Catania et al. [36] Aromatic herbs Manufacturing Italy
Lu et al. [37] Perishable products * Transportation Taiwan
Wang et al. [38] Blueberries, sweet cherries, apples Transportation China
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Table 1. Cont.

Reference Food Type Supply Chain Stage Country

Feng et al. [39] Shellfish Storage China
Zhang et al. [40] Sweet cherry Transportation China
Torres-Sánchez et al. [41] Lettuces Transportation and storage Spain
Urbano et al. [42] Pumpkin and oranges Transportation and retail Spain and Ireland
Feng et al. [43] Salmon Storage China
Markovic et al. [44] Meat Transportation UK
Ramírez-Faz et al. [45] Dairy products, charcuterie, meat, and frozen products Storage and retail Spain
Seman et al. [46] Perishable products * Storage Malaysia
Alfian et al. [47] Kimchi Storage South Korea
Banga et al. [48] Chickpea Storage India
Feng et al. [49] Shellfish Transportation and storage China
Jara et al. [50] Perishable products * Transportation Ecuador
Baire et al. [51] Bread Manufacturing Italy
Jilani et al. [52] Meat Storage Pakistan
Mondal et al. [53] Perishable products * Manufacturing, transportation, storage and retail USA
Lazaro et al. [54] Apple and banana Retail Spain
Tsang et al. [55] Meat and fruit Storage China
Popa et al. [56] Onion Storage Romania
Tsang et al. [57] Meat and seafood Storage China
Tsang et al. [58] Apple, Grapefruit, Mango, Melons, Tomatoes Transportation Hong Kong
Wen et al. [59] Food waste Retail China
Wang et al. [60] Holly Transportation China
Wang et al. [61] Peach Manufacturing, storage, transportation, retail China
de Venuto and Mezzina [62] Perishable products * Storage Italy
Morillo et al. [63] Hot and cold meals Transportation Spain
Chaudhari [64] Perishable products * Storage India
Tervonen [65] Seed potatoes Storage Finland
Jedermann et al. [66] Banana Transportation Germany
Xiao et al. [67] Grapes Transportation China
Tsang et al. [68] Meat, seafood, vegetables, fruits, wine and dairy products Storage China
Alfian et al. [69] Kimchi Transportation and storage South Korea
Musa and Vidyasankar [70] Blackberry Transportation and storage Mexico and USA
Seo et al. [71] Seafood Retail South Korea
Xiao et al. [72] Seafood (tilapia) Transportation and storage China
Shih et al. [73] Braised pork rice Production, storage, transportation, and retail Taiwan
Thakur and Forås [74] Chilled lamb products Transportation Norway
Badia-Melis et al. [75] Citric fruits and different varieties of nuts Storage Spain
Chen et al. [76] Perishable products * Transportation Taiwan
Aung and Chang [77] Banana Transportation South Korea
Eom et al. [78] Pork meat Transportation and storage South Korea
Smiljkovikj et al. [79] Grapes Production Macedonia
Hafliðason et al. [80] Seafood (cod) Transportation Iceland
Bustamante et al. [81] Poultry Production Spain
Faccio et al. [82] Food waste Waste collection Italy
Wang et al. [83] Perishable products * Transportation Hong Kong
Ruiz-Garcia et al. [84] Fruit Transportation and storage Spain

* Perishable products include food products in general that were not specified by the authors.

3.2.1. Product Type

Given that products are what defines a business, categorising the research by the food
type monitored is a core analysis to perform when examining the business landscape of
deployed IoT systems. To investigate trends, food type was checked for each identified
research paper based on the produce being monitored during the real-world testing of
the IoT system. Table 1 shows that there are 81 food types or applications monitored over
the 59 studies, of which 45 are unique. These 45 unique monitoring applications can be
reduced into the following 9 categories: Fruit (general fruits, banana, apple, sweet cherry,
blueberry, blackberry, grapes, pumpkin, orange, peach, citric fruit, grapefruit, mango),
Vegetable (general vegetables, garlic scape, lettuce, kimchi, potato, onion, aromatic herbs,
tomatoes, melon), Meat (meat, pork, poultry, lamb, charcuterie), Seafood (general seafood,
cod, salmon, shellfish, tilapia), Cereals & Legumes (chickpea, bread, rice, nuts), Prepared
food (fast-food, hot and cold meals, braised pork rice), Food Waste, Drinks (Water, Wine)
and Other (general perishables, frozen food, dairy products, holly).
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Figure 5 presents the synthesis of the findings. The most commonly monitored
application is Fruit, accounting for 32.1% of the total research. Further, by combining the
Fruit and Vegetable categories from the analysis performed, this figure increases to almost
half (48.15%) of the total screened food monitoring applications, which can be explained
due to a variety of circumstances. Environmental elements, including temperature and
relative humidity, influence and contribute to the deterioration of these food products.
Compared to the other food categories, fruits and vegetables have the highest wastage
rates, around 40–50% of the total product [85], as a result of their high perishability and
short shelf lives. Therefore, maintaining the microbiological integrity of fresh fruits and
vegetables throughout the production and distribution processes can be challenging.
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The analysis found the second most popular application to be that of Seafood and
Meat, representing 22.23% of the total products monitored. The popularity of monitoring
these food types is consistent with other research which suggests that microbial spoilage
is also responsible for a significant amount of food waste in the meat and seafood sector.
Meat spoilage is primarily caused by three primary mechanisms: microbial growth, lipid
oxidation and enzymatic reactions [86]. Since they offer a nutrient-rich environment with
high water activity and a pH that is close to neutral and ideal for numerous bacterial species
growth [87], these foods of animal origin are vulnerable to natural contamination.

The Other category also accounts for a significant proportion of food types monitored
(16.05%), and consists of general perishables, frozen food and dairy products. Of these
categories, the majority of the research is focused on general perishables (69% of the
category; 11.1% overall), which includes food products in general that were not specified
by the authors. In many of these studies, the methodology proposed by the authors is a
proof of concept and is not tested in the real world; thus, it could be applied to different
food categories. Given that the most popular categories of monitoring are Fruit, Vegetable,
Meat, and Seafood, accounting for 70.38% of all research, it is fair to assume that some of
the authors of the general perishable studies intended the use of their proposed technology
for one of these monitoring applications, which would increase their overall contribution.

The categories of Cereals & Legumes, Prepared food, Food waste, and Drinks, account
for the remaining 13.57% of the studies. This is good evidence of the diverse nature of Food



Sustainability 2023, 15, 614 9 of 27

Loss and Waste Monitoring technologies and the innovative ways in which this technology
can be applied.

3.2.2. Supply Chain Stage

The supply chain logistics of food products can involve many stages, such as produc-
tion (crop and animal), transportation, manufacturing, storage, retail, and waste collection.
The stages of the food chain most frequently examined for IoT implementation by the
literature under analysis are shown in Figure 6.
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Storage is the stage that has received more attention throughout the studies shown
in Table 1 (38% of all studies), followed by transportation (37%) and retail (12%). Most
food products are highly perishable and keeping them in good condition during long
transportation distances and extended storage times is a sensitive problem. To reduce food
loss and waste in distribution activities along the food system, it is imperative to use and
monitor appropriate storage and transport conditions in real-time.

Good practices that control light, temperature, humidity, oxygen level and hygiene
can significantly help to reduce losses of perishable products during storage [88]. During
the transportation stage, the physical characteristics between the upper and lower levels
in trucks, ships and airplanes must also be controlled and maintained, especially those
moving fruits and vegetables between distant countries.

Temperature control during land transportation can be problematic, particularly at the
beginning and end of the operation when loading or unloading cargo. During these activi-
ties, the ambient temperature can temporarily rise by more than 10 ◦C in the refrigeration
units, which can also increase the food’s bacterial activity [89]. Even in developed countries,
with good temperature management, the number of food products perishing during the
transportation stage is high (approximately 15% of total food produced) [90]. However, as
the research under investigation indicated, if alternatives to monitor and control the food
quality over time were used, including the installation of IoT technology, the vast majority
of food loss throughout these stages might be minimised.

3.2.3. Countries of System Deployment

Another aspect to consider within the scope of the business landscape of IoT mon-
itoring systems for FLW is exploring the regions in which these technologies have been
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deployed. Therefore, this section of the analysis presents the distribution of such de-
ployed/tested systems and contains a discussion of potential reasons for their popularity
within particular territories. Presented in Table 1, the papers under analysis were classed by
country of origin based on the location where the IoT system was deployed for real-world
testing. In the case of studies which did not include a real-world testing element, country
was extracted based on the location of the corresponding author. The 59 studies were
conducted over 22 different countries in total. Figure 7 presents a visualisation of the
distribution of research papers by country.
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Analysing the region of studies published on real-time technology applications in the
food sector, an intriguing finding is the large dominance of Chinese articles (26% of the
total), followed by Spain (15%), Italy (8%), and South Korea (8%). China’s high contribution
to the development of technologies to monitor the condition and quality of food throughout
the food chain may be due to numerous reasons, for example, China is the world’s most
populous country and leads the global production of various food products. China’s fruit
and vegetable production accounts for 38% of global output [91]. China is also responsible
for one-third of the world’s reported fish production as well as two-thirds of the world’s
reported aquaculture production [92]. The perishable nature of these products and the high
amount of waste produced may have influenced the pursuit of solutions for its mitigation.

However, the scale of both the population and production is unlikely to be the sole
contributor to the popularity of such IoT monitoring systems within China. For example,
India is the world’s second most populous country and is also the world’s second largest
producer of fruit and vegetable, accounting for 12% of the global output [91], yet India is
only accountable for 5% of the total research articles analysed.

The disparity lies within the Gross Domestic Product (GDP) of each of the countries,
which is often inextricably linked to a country’s technology adoption. China has the world’s
second largest economy with USD17.7 trillion GDP, compared to India which has a GDP
of USD2.6 trillion. It is no coincidence, therefore, that China is the world’s largest IoT
market with 64% of the 1.5 billion global cellular connections [93]. By 2021, the country
had also installed over 1.15 million 5G base stations, which represents around 70% of the
global total [94]. According to a report issued by the Internet Society of China [95], China’s
IoT industry exceeded 1.7 trillion yuan (EUR 241 billion) in 2021 and is expected to reach
2 trillion yuan this year. In comparison, India’s IoT market was valued at USD4.98 billion
in 2020. This point can be exacerbated further by looking at the example of Brazil. Brazil
is noted to feed 10% of the global population and is the 4th largest producer of fruit and
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vegetable [91], yet from the research papers selected in this study none originate from this
country. Here, their GDP is valued at USD1.1 trillion, and the IoT revenue was valued at
USD2.28 billion in 2020. As observed, China is helping shape the world’s transition to the
IoT, which is being driven by the incentives of private industry, and by the Chinese state’s
sustained policies to boost the role of Chinese actors in IoT development.

A third explanation for China’s dominance in the research field is due to the intro-
duction of the Anti-food Waste Law of the People’s Republic of China in April 2021 [96].
This law has been implemented in order to guarantee grain security, conserve resources,
and protect the environment. Approaching the food waste problem by creating a law
with sanctions may have encouraged some businesses to take proactive measures such as
deploying IoT monitoring technology to aid in the reduction of potential food waste.

Another aspect to consider in this analysis is the geoclimatic nature of the countries and
if businesses located in particular regions with specific climate systems are more inclined
to deploy IoT systems for the monitoring and reduction of food waste. The Köppen climate
classification is one of the most widely used climate classification systems (Figure 8). The
system divides climates into five main climate groups, with each group being divided
based on seasonal precipitation and temperature patterns. The five main groups are A
(tropical), B (dry), C (temperate), D (continental), and E (polar).
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Examining Figure 8, it was observed that the regions of East Asia and Southern Europe
both fall under the temperate climate classification. Southern Europe is largely dominated
by Csa classification which is “Warm summer temperate climate” and East Asia is largely
dominated by Cwa which is “Warm temperate climate”. 70% of the papers selected in
this review were based in regions which displayed these climatic properties (China, South
Korea, Taiwan, Hong Kong, Spain, Italy, Romania, North Macedonia, Turkey). One reason
for this could be that agricultural production in temperate regions is highly productive due
to a generally higher nutrient level in the soil [98,99]. A significant proportion of global
agricultural output originates from these temperate (i.e., non-tropical) countries. Yet, while
these regions offer favourable conditions for agricultural production, the decomposition of
foods is also accelerated by the warmer climates associated with these climate systems. For
example, the Spanish agri-food industry is the country’s main manufacturing activity [100],
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yet temperatures on the Iberian Peninsula, a region dominated by the Csa climate system,
display a mean of 23 ◦C in summer months and are noted to exceed 45 ◦C on occasion.
Given these warm temperatures, in an attempt to avoid the perishment of goods, researchers
have been keen to deploy IoT monitoring systems in this region, observed by the 15% share
of the total research articles under analysis.

3.3. Real-Time Sensors in Food Supply Chains

This section will use the results from the systematic literature review to answer the
last research question on “How have real-time monitoring technologies been employed in
the food supply chain and its main aspects?”.

As previously discussed, FLW is a major concern for food producers not only for
economic reasons but also due to increasing pressure for industries to adopt higher envi-
ronmentally and socially responsible manufacturing practices. In recent decades, devel-
opments in sensor and information technology, as well as a general trend in the reduction
of electronic devices’ cost and size over time, are making it increasingly more accessible
and affordable for industries in the food supply chain to modernise and digitalise their
processes and operations [69]. In food processing, for example, the adoption of real-time
sensors allows transitioning from an inferential monitoring and control approach to a
continuous measurement of key quality parameters in real-time [40].

The following sections analyse and summarise the designs and technologies found
throughout the literature, and provide an overview of the current state of real-time sensor
applications to mitigate FLW in the different stages of the food supply chain, i.e., produc-
tion, manufacturing, storage, transportation, and retail, worldwide. While doing so, the
sequence shown in Figure 1 on IoT architecture will be followed.

3.3.1. Sensing Technologies—The Sensing Layer

At its basic level, a sensor is a detection device that can measure physical or chemical
information related to the sample and transform this information into an electrical signal
output that can be read and interpreted by another device such as a computer [101]. Table 2
presents the different technologies employed across the various layers of IoT, from sensors
to data transmission technologies to databases and software applications. It can be seen
that a wide range of sensing technologies was investigated by the studies at different stages
of the food chain. In addition, most of the sensor setups deployed are bespoke to the study,
thus finding commonalities between them can be challenging.

Table 2. Communication technologies used in food safety IoT applications.

Ref. Sensing Technologies Data Communication Data Storage and Control Applications and Software

[26] AM2322, CO2 ATI, O2 ATI and ethylene ATI WSN, 4G DTU Database server ** Keil5 and language of C
[27] DHT-22, MQ-135 and LDR ESP-WROOM-32 Firebase database RTIMNS android app

[28] LDR NSL06S53 and DHT-22 Wi-Fi Database server ** and
gateway (MicroSD)

Programmed in MicroPython based on
Pycom libraries

[29] ADC, RTC, LCD, temp and humidity sensors LoRa, GPRS, 3G Cloud server Mobile app based on rESTful API
[30] - Zigbee, Wi-Fi Cloud server Naïve Bayes, ID3 algorithm, k-means

[31] High-precision microbial sensor Zigbee, Wi-Fi,
Serial communication * Local HDD NUC120 and CC2530 softwares

[32] - 5G - Xilinx software
[33] MQ2 Wi-Fi Arduino Uno Blynk application
[34] RFID reader RFID - XGBoost algorithm
[35] EIS using AD5933 microcontroller Serial communication * Local HDD LabVIEW; Matlab; Matlab Zfit
[36] 7MH5102-1PD00 load cells, DHT-22 temp/RH Wi-Fi ThingSpeak (IoT cloud) ThingSpeak online platform

[37] Temp/RH sensor MQTT MS SQL DB Mobile phone app, bespoke computer
program (developed in VB)

[38] ADC ethylene sensor; STC12C5A60S2 control
chip 4G Cloud server Keil UVision4 (C language); web

application and android app

[39] Temperature, relative humidity, O2, CO2
sensor node using Zigbee CC2530 Zigbee, GPRS MS SQL DB PC and Mobile Phone user application

[40] - Serial communication * Local HDD Keil UVision4 (C language); Matlab

[41] LMT86 Wi-Fi, GPRS Cloud server Multiple Linear Regression/
Nonlinear Regression
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Table 2. Cont.

Ref. Sensing Technologies Data Communication Data Storage and Control Applications and Software

[42] SHT1x sensor RFID, 3G, 4G, Wi-Fi, LoRa, NB-IoT Cloud server Orbis Traceability System

[43] MQ136, MQ 137, MQ 138, TGS2612, TGS822,
and TGS2600 Zigbee, Serial communication * Local HDD CNN-SVM algorithm

[44] TGU-4017 and DS18B20 Bluetooth Ledger PROoFD-IT app
[45] DS18B20 Wi-Fi - ThingSpeak/ThingChart (app)
[46] DHT-11 Wi-Fi - Blynk platform based on NodeMCU
[47] Sense-HAT RFID, Wi-Fi MongoDB Android app developed using Python
[48] CZN-15E Condenser, DHT-22 Serial communication * - Audacity; Praat; Linear predictive coding
[49] - WSN WSN Database -
[50] DS18B20 WSN Arduino Uno -
[51] DS18B20, SHT10, MQ-7 and MHZ19 Wi-Fi Elasticsearch Kibana tool
[52] Microwave sensor Bluetooth, Wi-Fi Local HDD Application developed in LabView
[53] Thermistor-based temperature sensor RFID Local HDD Spyder IDE
[54] TCS34725 NFC Cloud server An android application was developed
[55] CC2650 Bluetooth, Wi-Fi IBM cloud server Food traceability system (BIFTS)
[56] BME680, DHT-22 and MQ5gas ZigBee Excel spreadsheet LabVIEW interface
[57] CC2650 Bluetooth, Wi-Fi, 3G, 4G Cloud server IoTRMS
[58] SensorTag CC3200 GPRS (3G, 4G, LTE) My SQL Web application, IBM IoT Watson
[59] - GPRS (4G) - -
[60] AM2322, CO2 ATI, ethylene ATI GPRS (4G) T-LINK database Keil5, T-link
[61] - GPRS (4G) Cloud server -

[62] L/H/T sensors ZigBee System’s central control
unit (Raspberry Pi 2 B+) Python 2.7

[63] ADC 2KSPS, Carel NTC015HP0 and
SensorTag CC2650 WSN, Bluetooth, 3G, 4G IBM cloud server Foodmote, IBM IoT Watson

[64] Simulation of sensor nodes - IBM cloud server IBM IoT Watson and Apache Spark

[65] - Serial communication *, Wi-Fi Remote server located in
the company Java-based application

[66] Sensor node TelosB 2.4 GHz GSM Cloud server -
[67] SHT11 GPRS, WSN -
[68] CC2650 Bluetooth, Wi-Fi Cloud server Matlab

[69] FTC-001 Wi-Fi MongoDB, NoSQL and
SQL DBs Express—Node.js based on Socket.IO

[70] Intelleflex XC3 RFID, Wi-Fi Cloud servers -

[71] EOC biosensor Wi-Fi FIFO and flash EEPROM
memory Flask Station mobile app

[72] DS18B20 ZigBee MS SQL DB C# in Microsoft Visual Studio 2008
[73] - ZigBee ERP server -

[74] EPCglobal UHF Class 1 GSM, GPRS EPCIS based system EPCIS system available through web
interface.

[75] Sensor MTS400 and MS5534B ZigBee, IEEE Local HDD Matlab
[76] - RFID Database server ** Mobile app
[77] MSP430 ZigBee, IEEE Terminal PC’s API TinyOS platform
[78] MSP430, MM1001, MICS-5914 RFID Local HDD Smart Monitoring System
[79] Waspmote sensor XBee 868 radio Cloud servers SmartWine
[80] iButton DS1922L and CMS sensor WSN, RFID WSN -
[81] Platinum resistance temperature detector (RTD) Serial communication * Local HDD LabVIEW 8.2
[82] Volumetric sensor RFID, GPRS, GPS Database server ** Operations center traceability software
[83] - RFID, GPRS Backend system -
[84] MTS420 board—Sensirion SHT ZigBee Local HDD -

* Serial communication includes USB and RS232. ** Database servers can include physical (HDD) or virtual (cloud)
databases.

While there is not a de-facto choice for these sensors, popular gas composition and
concentration sensors include the MQ-series, for instance, MQ-2, MQ-5, MQ-7, MQ-135,
MQ-136, MQ-137, and MQ-138; which were cited 7 times in the total. These sensors are
suitable to detect, measure, and monitor a wide range of gases present in air like methane,
ammonia, benzene, carbon dioxide, etc. Due to its high sensitivity and fast response time,
it is appropriate for different applications [102]. Another gas monitoring device extensively
applied in the studies under analysis was the ATI sensor. These sensors are normally
applied to detect oxygen, carbon dioxide and ethylene levels and are designed to detect
gases up to 20 ppm [102].

The most applied sensors in this literature review to determine the temperature along
the food supply chain consisted of a range of DHT (for instance DHT-11 and DHT-22) and
DS (for instance DS18B20 and DS1922L) sensors. The DHT sensors are made of two parts,
a capacitive humidity sensor and a thermistor [103]. Commercially available IoT sensors
commonly incorporate both parameters. A DHT sensor was employed by Catania et al. [36]
to measure the surrounding air and transmit it to a microcontroller that spits out a digital
signal with the temperature and humidity. These sensors are low cost, very basic and slow,
but are good for users who want to do basic data logging [104]. The two versions look
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similar and have the same pinout, but the DHT-22 is of higher accuracy (±0.5 ◦C, 2–5%
RH) and good over a slightly larger range of temperature (−40 to 125 ◦C) and humidity
(0–100%) compared to the DHT-11 (±2 ◦C, 5% RH; 0–50 ◦C, 20–80% RH) [105].

The DS18B20 sensor was also widely used in the studies. It is a device that can measure
temperature with a minimal amount of hardware and wiring. These sensors use a digital
protocol called 1-wire to send the data readings directly to the development board without
the need of an analog to digital converter or other extra hardware. Its accuracy ranges from
−10 to 85 ◦C [106]. The DS1922L on the other hand, is a self-sufficient system that measures
temperature and records the result in a protected memory section and the temperature
range is −40 to 85 ◦C [107]. Xiao et al. [72] used a DS18B20 to evaluate the temperature of
seafood products (cod) during transportation, while Hafliðason et al. [80] applied a DS1922L
to study the temperature of tilapia during transportation and storage. Both sensors were
found to be efficient for the determination of temperature during the transportation of
refrigerated products, but the second offers a broader range of temperatures.

As shown above, there are many different components available on the market and
the sensing parameters and their corresponding ranges of detection will define what actual
sensors are the most recommended for each type of application.

3.3.2. Sensing Parameters

Table 3 shows the parameters that were monitored in each selected paper for food
quality preservation. The parameters presented in the column “others” include backscatter
power, ripeness, sound, tissue moisture, color, acceleration and radiation. Parameters are
shown left to right by order of importance in count numbers.

As can be seen in Table 3, the most frequently measured parameter in the reviewed
articles was the temperature (n = 48), which appeared in 81% of the selected papers.
This can be explained by its crucial importance in food perishability and freshness, being
paramount for microbiological growth and activity. For instance, concerning fruit and
vegetables, the temperature is the most important factor to monitor and maintain within
recommended ranges after harvest [28]). In fact, post-harvest losses have been estimated to
account for approximately 25% of food production worldwide [77], and hence the need to
monitor temperature effectively along the fruit and vegetables’ supply chain. As known,
temperature is also a very important factor for cold chain storage and transportation of
meat products to prevent spoilage. Several IoT systems were deployed for meat related
applications in the selected articles (n = 9), and nearly all of them, with the exception of one,
included temperature as a monitoring parameter. Similarly, fish and shellfish storage and
transportation applications also incorporated temperature (n = 7) as a sensing parameter.
In general, temperature is a crucial factor for the average life of all food types as indicated
by the Hazard Analysis and Critical Control Points (HACCP) guidelines [62].

Table 3. Sensing parameters present in each article.

Reference Temperature Relative
Humidity

Gas
Composition Location Light

Intensity Pressure Weight Microbial
Concentration Vibration Air

Velocity Other

[26] X X X X
[27] X X X X
[28] X X X
[29] X X X X
[30] X X X
[31] X
[32] X X
[33] X
[34] X
[35] X
[36] X X X
[37] X X
[38] X
[39] X X X
[40] X X X
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Table 3. Cont.

Reference Temperature Relative
Humidity

Gas
Composition Location Light

Intensity Pressure Weight Microbial
Concentration Vibration Air

Velocity Other

[41] X
[42] X X
[43] X X X
[44] X
[45] X
[46] X X
[47] X X
[48] X X X
[49]
[50] X
[51] X X X
[52] X
[53] X
[54] X
[55] X X
[56] X X X X
[57] X X X
[58] X X
[59] X X
[60] X X X
[61] X X X
[62] X X X
[63] X
[64] X
[65] X X
[66] X X X
[67] X X X
[68] X X X X
[69] X X X
[70] X X X X
[71] X
[72] X
[73] X
[74] X X X
[75] X X X X
[76] X
[77] X X X
[78] X X X
[79] X X X X X
[80] X
[81] X X X
[82] X
[83] X X X X
[84] X X

With regard to the transport of refrigerated food, commonly, refrigerated trucks and
facilities are set at a fixed temperature, which may not be optimal for all types of products
to best preserve their safety and quality [57,74]. Tsang et al. [57] observed, however, that it
can be challenging for logistic companies to remain cost-effective when shipping multiple
refrigerated foods with each type kept at their recommended storage temperature, and
thus often a fixed temperature is used for all. The authors proposed an intelligent model
for ensuring food quality when managing multi-temperature food distribution centres. The
proposed system aided in reducing food spoilage by allowing key traceability and product
information, collected and processed by IoT sensors, to be accessed by staff and customers
in real-time. Thakur and Forås [74] evaluated an Electronic Product Code Information
Services (EPCIS) system for real-time monitoring temperature and traceability of chilled
lamb products during transportation. The authors concluded that such an EPCIS system
proved effective for managing temperature data in cold supply chains, yet further hardware
development efforts were needed to withstand the food production environment in an
industry setting.

Following temperature, relative humidity (RH), understood as the ratio of the current
absolute humidity relative to the maximum humidity at a given temperature, was found to
be the second most recurring parameter in the reviewed articles. Humidity also plays a
huge role in microbiological growth and development, and therefore a factor of the utmost
importance in food perishability, freshness and safety [108]. In the systems presented in the
selected articles, RH was always measured in conjunction with temperature.
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Environmental gas composition and concentration, e.g., oxygen (O2), carbon dioxide
(CO2), ethane (C2H6) and volatile organic compounds (VOCs) constitute an important
parameter to monitor and rapidly address accordingly for many foods such as fruits and
vegetables. According to Afreen and Bajwa [27], however, little attention has been paid to
factors other than temperature and relative humidity in monitoring the quality of fruits
and vegetables in cold storage. Hence, the authors presented a real-time IoT system to help
overcome the loss of perishable foods also including parameters other than temperature
and RH such as concentration of CO2 and light intensity. Likewise, Torres-Sanchez et al. [28]
presented a wireless platform system for real-time monitoring of multiple environmental
variables, including gas concentration during the movement of foods and perishable goods
along the supply chain. Wang et al. [38] proposed a multi-strategy control and dynamic
monitoring system for environmental ethylene quantification during fruit storage. Ethylene
is a phytohormone related to quality and storage life as it induces several chemical and
physical changes during the ripening of the fruit, hence the importance of monitoring and
control [38]. The authors employed a microcontroller as their main control unit, connected
to a transmission module communicating via the 4G wireless network.

Recording reliable location information is the basis for traceability and visibility in
the supply chain. Although the location was not among the most frequent parameters
in the selected articles (n = 5), it must be noted that a large number of articles concerned
the production or storage stages rather than transportation. Sensing of light intensity was
found in 7 of the selected articles. For instance, light exposure intensity has been evaluated
for agricultural product quality decay, along with temperature and RH by Venuto and
Mezzina [62]. The authors developed a Wireless Sensor Networks (WSN) based system
and reported an increment of about 1.2 days or 15% of the maximum product useful
life of the expected expiration date with their automated, real-time system. Other, less
frequently measured parameters, included pressure and weight, with four occurrences
each (n = 4); and microbiological concentration, vibration, and air velocity, being reported
two times each (n = 2). As previously mentioned, the column others referred to backscatter
power, ripeness, sound, tissue moisture, color, acceleration and radiation. These sensing
parameters were assessed only once and not repeated across the selected articles.

Future work could encompass other parameters not widely exploited to date to cover
broader classes of sensors and additional forms of food quality assessment.

3.3.3. Data Communication—The Communication Layer

In the context of IoT, sensor devices are connected in real-time to other electronic
devices, forming an interconnected network to facilitate fast decision-making. Thus, sensors
in IoT need to integrate communication technologies that allow continuous, rapid data
transfer, as opposed to “non-IoT” enabled systems relying on data logging for later retrieval.
Figure 9 presents the communication options most frequently investigated for sensor
implementation by the literature under analysis.

Real-time data transfer is commonly achieved through the use of different wireless
communication technologies such as Wi-Fi, Radio Frequency Identification (RFID), among
others [109]. In general, wireless communication has been the preferred option opposed to
wired transmission in recent times since it provides a higher degree of flexibility and not
necessarily at a higher cost [45].
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Among the wireless communication technologies found throughout the literature
specific to IoT applications in the food supply chain, as seen in Figure 9, the most frequently
used systems were those based on cellular communication technologies. By combining
GPRS, 3G/4G/5G and GSM into a single category, it was observed that 25.8% of the studies
used these technologies. The Global System for Mobile (GSM) describes the protocols for
second-generation (2G) digital cellular networks. It was used by Jedermann et al. [66]
to determine the quality of bananas during transportation. The General Packet Radio
Services (GPRS) is a packet-switching protocol still commonly used for wireless and cellular
communication services on the 2G and 3G network’s global systems. However, over the
last years, GSM and GPRS have mainly been superseded by 4G and 5G mobile data
technologies [110]. Tsang et al. [58] used GPRS to evaluate fruits during the transportation
stage, while Wang et al. [61] used it to evaluate the quality of peaches during all stages of
the supply chain. The mobile networks (3G, 4G and 5G) comprise mobile data connections
that use a network of phone towers to pass signals, ensuring a stable and relatively fast
connection over long distances [110]. Each generation differs from the others based on its
capacities, e.g., speed (lower latency), network volume (higher bandwidth) and accessibility
(longer range of service).

Wi-Fi communication was also popular amongst researchers, noted by the 21.5% share
of the screened studies. As stated by Torres-Sanchez et al. [28], the main advantage of using
Wi-Fi networks is the widespread and easy to install infrastructure. In fact, the authors
developed a flexible multi-parameter system able to exploit this extensive availability of
Wi-Fi networks along the postharvest chain; that is, a system capable of communicating
and sending data via Wi-Fi at multiple locations. However, the authors also indicated its
disadvantages in terms of energy consumption compared to other wireless technologies,
e.g., SigFox, LoRa or ZigBee. To overcome this challenge, the authors introduced a system
that incorporated synchronisation algorithms to reduce the total amount of time Wi-Fi
transceivers were online, receiving and sending information [28].

ZigBee was also found in 11.8% of the studies under analysis. This communication
technology is a wireless IoT network-based system that was designed as an open worldwide
standard based on IEEE 802.15.4 protocol. Its current use is widely spread in smart home,
agriculture and medicine, among other industries. While other wireless communication
technologies were designed for achieving higher distances or speed, ZigBee is committed to
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achieving low-speed, short-distance wireless network transmission, but offering low-power
and low-cost applications in battery-powered devices.

Another of the most frequent systems was those based on RFID (10.7% of the total
studies). RFID technology is a flow control technology widely used in food logistics as
it enables traceability throughout the production chain from source to consumer [111].
Oftentimes, installing appropriate IoT systems is off-limits to small agribusiness given
their high initial investment costs [42]. For this reason, Urbano et al. [42] presented the
design and implementation of a cost-effective traceability system based on RFID for cold
chain monitoring applications. As the authors mentioned, they chose RFID because of its
affordability, maturity and wide adoption in the industry, and their efforts revolved around
presenting an economical system. However, a drawback that the authors reported was low
memory associated with the RFID chips.

Bluetooth is a short-range wireless technology standard used for transmitting data
over small distances between stationary and mobile devices [112] and was cited in 7%
of studies. It was used by Markovic et al. [44] to monitor the quality of meat during
transportation. Additionally, it was combined with Wi-Fi in three other studies [52,55,68].
Wireless Sensor Networks (WSN) was also found in a number of studies (6.5%). It is
formed by arrays of sensors interconnected by a wireless communication network. More
specifically, WSNs are made up of sensor “nodes” where each of them shares sensor data
and consists of one or more sensing units, an embedded processor, and low-power radios.
The nodes can act as information sources but also as “information sinks”, receiving dynamic
configuration information from other nodes or external entities [113]. Advantages include
ease of deployment, low device complication and low consumption of energy [114]. Table 4
presents the characteristics of the main communication technologies available on the market
in terms of frequency, data rate, range, energy consumption, etc.

Table 4. Communication technologies’ main characteristics. Adapted from Kazeem et al. [115] and
Singh et al. [116].

Technical Features Wi-Fi RFID Zigbee GPRS/GSM Bluetooth

Standard IEEE 802.11 Several IEEE 802.15.4 - IEEE 802.15.1
Frequency 2.4 GHz 13.56 MHz 868/915 MHz, 2.4 GHz 850–1900 MHz 2.4 GHz
Data rate 2–54 Mbps 423 kbps 20–250 kbps 20–85 kbps 1–24 Mbps

Transmission range 20–100 m 1 m 10–20 m 10 m 8–10 m
Energy consumption High Low Low Low Medium

Bluetooth, ZigBee and Wi-Fi protocols have spread spectrum techniques in the 2.4 GHz
band, which is unlicensed in most countries and known as the industrial, scientific, and
medical (ISM) band. Bluetooth uses frequency hopping (FHSS) with 79 channels, while
ZigBee and Wi-Fi use a direct sequence spread spectrum (DSSS) with 16 and 14 channels,
respectively [117]. Based on the bit rate, GPRS and ZigBee are suitable for low data rate
applications (such as mobile devices and battery-operated sensor networks). On the other
hand, for high data rate implementations (such as audio/video surveillance systems), Wi-Fi
and Bluetooth would be better solutions.

As for range, it can be distinguished between short-range networks such as Bluetooth,
ZigBee, RFID, or long-range such as Wi-Fi. In general, Bluetooth and ZigBee are intended
for WPAN communication (about 10 m), while Wi-Fi is oriented to WLAN (about 100 m).
However, ZigBee can also reach 100 m in some applications [118]. ZigBee and RFID are
designed for portable devices with short ranges and low battery power. It therefore has a
very low power consumption and, in some situations, has no measurable impact on battery
life. Wi-Fi and Bluetooth, on the other hand, are made to support devices with a strong
power supply and longer connections.

Therefore, it is not possible to determine which communication technology is superior
because the suitability of network protocols is greatly influenced by real-world applications
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and many other factors need to be taken into account, such as, network reliability, roaming
capability, price and installation costs.

3.3.4. Data Storage—The Storage Layer

As previously mentioned, sensors in an IoT network are continuously collecting and
sending information to be processed and modelled through appropriate algorithms, which
results in massive amounts of data over time; hence, in the context of IoT, the term “big
data” is often employed [119]. To allow for storage and subsequent analysis of big data, IoT
architectures contain a dedicated storage layer which often employs database management
tools with data being stored either locally or remotely.

In general, it can be seen in Table 2 that authors chose to store data either locally, using
physical servers such as hard disk drives, single-board computers, and databases residing
on local drives or local area networks; or remotely, using cloud-based platforms or remote
database servers. The use of PC-based or local hard disk drives (HDD) options was seen
across 10 (17%) of the selected papers. An example of single-board computers was found
in the warehouse management system proposed by De Venuto and Mezzina [62]. The
authors employed a Raspberry Pi 2 B+ as the central control unit where a set of Python
2.7 scripts were implemented for the computing of product shelf-life modelling, first-to-
expire first-out management and automatisation of pallet transporters for displacement of
perishable products.

Although a wide diversity of data management solutions was found, among the range
of possibilities reported in Table 2, one of the preferred options was relational database
systems (n = 5) such as Microsoft Structured Query Language database (MS SQL DB)
and MySQL server. Relational databases, often referred simply as SQL databases after
the query language they are based on, are regarded as highly efficient for storage and
management of structured data, i.e., predefined and formatted into precise table fields,
delivering data consistency and complex query execution while facilitating the subsequent
application of algorithms or Machine Learning (ML) techniques at the same time [120]. SQL
database softwares retrieve and store data from other software applications, which may
run either on the same computer or on another computer across a network. As an example
of a SQL database implementation, Lu et al. [37] used Microsoft SQL server management
studio for storing and querying data in their proposed real-time temperature and humidity
monitoring system of a smart refrigerator.

In contrast, a larger number of publications employed cloud server platforms (n = 27)
such as IBM cloud, Firebase, ThingSpeak, etc. In this regard, a higher degree of flexibility
may be required when working with large sensor generated datasets consisting of not
necessarily structured data. NoSQL databases, which were used in several of the selected
research articles in Table 2, allow management of unstructured data, or data of low struc-
turedness level. To do so, it prioritises data availability at the expense of consistency, yet
achieving stable, fast read and write operations when dealing with copious amounts of
data data [69,120]. Specifically, Alfian et al. [69] employed MongoDB which is a flexible
open-source NoSQL database that stores data based on collections and documents rather
than the two-dimensional row and column approach of relational databases [121]. This
way, allowing storage of the large volumes of unstructured sensor data continuously col-
lected from multiple sensors in their proposed real-time monitoring system of perishable
products [69]. Likewise, the Firebase Database, which is a NoSQL cloud database, was
implemented by Afreen and Bajwa [27]. Elasticsearch was also used once in the literature, in
the study by Baire et al. [51]. Although more commonly regarded as a search and analytics
engine, Elasticsearch constitutes an open-source tool, built using Java, that supports storage
of data in an unstructured NoSQL format [122].

As it was observed, the large majority of the studies under analysis have selected
cloud databases instead of traditional databases to store and manage their information.
The first observed pro of using a cloud is that the data stored in the cloud can be accessed
from wherever there is an internet connection [123]. It is also extremely scalable and elastic,
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giving the opportunity to start small and expand the database if more space is required,
mitigating the risk and uncertainties of investing in IT equipment [124]. A final pro is that
data is also stored remotely and never stored on the computer, meaning that it will be safe
in the cloud if there are technical issues [124]. On the other hand, one disadvantage of
using cloud databases is the reliance on an internet connection. If the connection is not
strong, some difficulties in accessing the data can be observed. However, some software
already allows offline access and synchronises the edits later.

On the other hand, the first advantage of using a traditional database is the speed
you can up/download data to the server [125]. Having a local server on-site can also
increase security because only the organisation can access it physically and digitally [125].
In addition, the companies have total control over the system setup, to make sure it fits
their exact needs. The main con of having a local database is needing to install it and then
maintain it, as the hardware can be costly and if problems arise there is no cloud provider to
handle maintenance requests. Although there is a wide range of equipment options in the
market, prices can significantly vary depending on the supplier and specifications of such
equipment depending on the needs of the desired local physical server and storage capacity.
Thus, cloud databases present one of the best solutions for small food companies who
are creating new goods but lack the financial capacity to invest in uncertain projects. The
prices of the cloud servers can be lower, varying from free trials with limited data capacity
(e.g., MongoDB and IBM) to various plans depending on an extensive range of features
related to apps, cloud, connection, device management, etc. ThingSpeak, for example, has
an academic license of 250 $/year, while the standard version can be more expensive [126].
In other databases, such as Firebase and Ledger, the users pay only for what they use and
there are no minimum fees or mandatory service usage, the prices in those cases are $5 and
$0.09 for each GB/month, respectively [127,128].

3.3.5. Applications and Software—The Application and Control Layer

The software and mobile applications column found in Table 2 refer to all of the tools
that researchers used for extracting, analysing, modelling, and visualising the data to
ultimately deliver the application layer of their IoT architectures. In general, it was found
that the authors used an extensive variety of options.

As data keeps being collected and stored into appropriate databases, for executing
continuous monitoring and control of parameters, algorithms or ML techniques can be
applied to extract insights, identify patterns or make predictions, among others. Among
the ML techniques used in Table 2, the authors chose supervised learning classification
and regression algorithms including Naïve Bayes, ID3, XGBoost, multiple linear regression,
non-linear regression, CNN-SVM and others to gain further understanding about the
collected data. For example, Torres-Sánchez et al. [41] developed a multiple non-linear
regression model from temperature sensor data to predict the reduction in shelf life of
perishables when temperature conditions varied from the theoretical set-point during
transportation along the food supply chain. In other words, the authors used this model to
find a correlation between temperature and loss of shelf life. Another algorithm application
can be found in the study by Feng et al. [43], which used the combination or hybrid ML
algorithm: CNN-SVM (convolutional neural network and support vector machine). The
CNN-SVM hybrid is often used to exploit the main advantages of each algorithm, that is,
CNN as a powerful tool for feature selection and SVM as an effective classifier. The authors
used this technique to evaluate the freshness of salmon during (IoT-enabled) cold storage
and classify each salmon sample according to levels of freshness. Aytaç and Korçak [30]
tested the accuracy of both Naïve Bayes and decision trees for predicting restaurant demand.
In this work, the models were trained on waste bin weight data, incremental sales data,
and external events data scraped from the internet and social media which could influence
demand. The training data were manually labelled with a service-level indicator. Once
training was completed, the model was able to predict the production service level required
without any human intervention, meaning arriving customers did not need to wait for food
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to be produced while minimising the amount of food waste generated due to the product’s
short lifetime. In addition, the study also successfully utilised an unsupervised learning
approach to perform outlier detection based on k-means clustering analysis.

It was also observed that researchers in the selected studies preferred to employ either
Matlab or Python programming language for data analysis. As for the usage preference
among these, it was equally split between Matlab (n = 4) and Python (n = 4), the latter
including Spyder, MicroPython and Python 2.7. One unique approach is noted by Banga
et al. [45] who identifies insect infestation during the storage of legumes using acoustic
detection methods. For this approach, the authors use Audacity for signal processing,
followed by the Pratt tool for spectrogram signal analysis based on Linear predictive coding.

Additionally, visualisation tools can be utilised to facilitate the interpretation of data,
not only by the scientists or IoT engineers that developed the system, but also as part of a
user-friendly software or mobile applications, which could also be employed by potential
users in the food supply chain such as farmers, producers or distributors, to allow real-time
access to the environmental or product conditions. The authors utilised or developed
a mixture of real-time visualisation applications on mobile and desktop using various
technologies. Of note, the authors mention node.js and Flask for the development of
Web-based applications and Java and C# for the development of bespoke offline Windows
applications. Off the shelf products like Labview and Matlab’s Simulink have also been
utilised for visualisation on the application layer, as noted by Ibba et al. [35], Jilani et al. [52],
and Bustamante et al. [81]. Android Studio is mentioned to be used for the development of
mobile applications.

It is also worth mentioning the service provided by IBM, the IBM Watson IoT Platform
(n = 3), which allows users to connect devices via API calls to see live and historical data
and create applications within IBM or other clouds. For instance, Morillo et al. [63] used the
IBM Watson IoT Platform to collect, process, and visualise the smartphone readings sent to
the IBM cloud via 3G or 4G networks of a meal distribution trolley monitoring system in
hospital settings [63].

In summary, it was seen that a wide array of ML algorithms, programming languages,
visualisation tools and applications were deployed by researchers. While common tools like
Python, Matlab, and Labview are recurringly utilised in the articles, each application tends
to be unique, perhaps explained by the distinct nature and diversity of the use cases under
review. With many different types of produce, supply chain stages, sensing parameters,
hardware, communication technologies, etc. being the focus of the research, there is no
standard approach to delivering the application layer in a food supply chain IoT system as
to date, with a high degree of novelty and experimentation still under development.

4. Conclusions and an Agenda for Future Studies

This study presented an overview of the current status of IoT applications in the
food supply chain in order to minimise food waste production. It has identified a number
of new themes and research opportunities that can be pursued by future researchers in
this field. As previously seen, IoT implementation in food supply chains focuses on high
perishability products, i.e., fruits (32.1%), vegetables (16.05%), meat (12.35%) and seafood
(9.88%). Although it can be difficult to maintain the microbiological integrity of fresh
products, IoT technologies have demonstrated its helpfulness and practical approach to
preventing FLW from different food categories. Future studies could expand their research
to encompass other food products in order to determine the effects of using real-time
monitoring technologies on food waste reduction. In addition, different food supply chain
stages can be analysed in future scenarios, as most of the studies concentrated their efforts
on the storage (38%) and transportation (37%) stages.

The research has also shown that current sensing technologies seem to be predom-
inantly focused on temperature (81%) and humidity (60%), followed by gas composi-
tion/concentration (31%) and light intensity (12%). However, other sensing parameters are
also important, and hence future studies can focus on further development of these sensing



Sustainability 2023, 15, 614 22 of 27

parameters. In addition, opportunities arising from the integration of spectroscopic and
imaging techniques in IoT networks can be exploited. Several of these techniques have been
broadly researched for real-time food monitoring applications. Examples include Raman,
Near-infrared (NIR), Fourier transform infrared (FTIR), 3D fluorescence and Laser-induced
breakdown spectroscopy (LIBS), among others.

Regarding communication transfer, different wireless communication technologies
were used, but the most frequently were cellular technologies (25.8%), WiFi (21.5%), Zigbee
(11.8%) and RFID (10.7%). It was observed that the suitability of network protocols is
greatly influenced by real-world applications and many factors need to be further studied
to determine the most appropriate, such as, network reliability, roaming capability, price
and installation costs. Regarding data storage and control, a great part of the studies relied
on cloud servers and remote databases to store and manage their information. This is
mainly due to its advantages in terms of flexibility, scalability and costs, which is highly
recommended for small food companies who are creating new goods but lack the financial
capacity to invest in new projects.

Overall, the findings demonstrated this technology’s enormous promise and successful
applications. IoT solutions are expected to influence not only the way food is produced,
managed, transported and stored, but also social, environmental, and economic impacts.
As a result, IoT systems applied to the food industry are becoming increasingly common
in the existing literature. However, similar systematic literature reviews will need to be
undertaken focusing on other aspects related to the applications of IoT sensors for reducing
FLW in order to gain a complete picture of the domain. These include a review of cloud
storage technologies, artificial intelligence (AI) technologies and data analytics technologies.
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