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Abstract
This paper presents some novel methods to estimate a vessel’s number of shafts, course, speed and classify it using the 
underwater acoustic noise it generates. A classification framework as well as a set of reference parameters for comparison 
are put forth. Identifying marine traffic in surroundings is an important task for vessels in an open sea. Vessels in vicinity 
can be identified using their signatures. One of the typical signatures emitted by a vessel is its acoustic measurements. The 
raw sonar data consisting of the acoustic signatures is generally observed manually by sonar operators for suggesting class 
of query vessel. The valuable information that can be extracted from the recorded acoustic signature includes shaft revolu-
tions per minute (SRPM), number of blades (NOB), number of shafts, course and speed etc. Expert sonar operators use their 
empirical knowledge to estimate a vessel’s SRPM and NOB. Based on this information vessel classification is performed. 
Empirical knowledge comes with experience, and the manual process is prone to human error. To make the process system-
atic, calculation of the parameters of the received acoustic samples can be visually analyzed using Detection of Envelope 
Modulation on Noise (DEMON) spectra. Reported research mostly focuses on SRPM and NOB. Parameters such as number 
of shafts and vessel course and speed can effectively aid the vessel classification process. This paper makes three novel 
contributions in this area. Firstly, some novel DEMON spectra analysis techniques are proposed to estimate a water vessel’s 
number of shafts, speed, and relative course. Secondly, this paper presents a classification framework that uses the features 
extracted from DEMON spectra and compares them with a reference set. Thirdly, a novel set of reference parameters are 
provided that aid classification into categories of large merchant ship type 1, large merchant ship type 2, large merchant ship 
type 3, medium merchant ship, oiler, car carrier, cruise ship, fishing boat and fishing trawler. The proposed analysis and 
classification techniques were assessed through trials with 877 real acoustic signatures recorded under varying conditions 
of ship’s speed and sea state. The classification trials revealed a high accuracy of 94.7%.

Keywords  Acoustic · Classification of Ships · Detection of Envelope Modulation · DEMON · Number of Blades · Number 
of Shafts · Relative Course Estimation · Shaft Revolutions per Minute

1  Introduction

A highly desirable capability by a vessel in an open sea is 
the ability to achieve awareness about marine traffic in its 
surroundings and map ocean depth using its hydroacoustic 

instrumentation onboard. This information is vital for a wide 
range of tasks such as collision avoidance, Aid to Naviga-
tion (AToN) entries, avoiding illegal activities and seeking 
emergency assistance etc. Similarly, for border authorities 
acquiring situation awareness about the type of commer-
cial vessels transiting within the Exclusive Economic Zone 
(EEZ) of a country, is also valuable. Vessels in vicinity can 
be identified using their signatures. One of the typical signa-
tures emitted by a moving or stationary vessel is its acoustic 
measurements. These will be referred to as Acoustic Sig-
nature of a Water Vessel (ASWV) in this paper. Primary 
contributors for an ASWV are an active SONAR (Sound 
Navigation and Ranging equipment), propellers, onboard 
machinery like gas turbines, diesel generators, pumps, 
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motors, and personnel activity noises, to name a few. An 
active sonar transmits sound waves in a known direction 
and calculates the time taken by echo to return. This pro-
vides range and bearing of other vessels and underwater 
objects, aiding the navigation process. A vessel’s ASWV 
can be intercepted by another vessel’s passive sonar. Unlike 
its active counterpart, a passive sonar does not transmit and 
only listens passively for the ASWV generated by other plat-
forms. Using manual empirical analysis, an acoustic signal 
is identified as a valid acoustic signature of some vessel in 
vicinity. However, the complex part comes next. This is 
the classification stage which may be divided into coarse 
and fine classification stages. During the coarse classifica-
tion stage, a vessel may be classified into broad categories 
of large merchant ship type-1, large merchant ship type-2, 
large merchant ship type-3, medium merchant ship, oiler, car 
carrier, cruise ship, fishing boat and fishing trawler. Since 
the awareness of the utility of a vessel’s acoustic signature 
for its possible classification, an empirical technique called 
Detection of Envelope Modulation on Noise (DEMON) is 
being used to undertake this coarse classification. Through 
auditory observation, two basic parameters of the vessel’s 
acoustic signature are extracted, namely Shaft Revolutions 
per Minute (SRPM) and Number of Blades of propeller 
(NOB). Sound empirical knowledge may also allow identi-
fying the Number of Shafts (NOS). Using these parameters, 
the target vessel is classified into one of the nine categories 
mentioned above. Being able to accurately classify using 
this manual DEMON processing technique, requires quite 
a bit of training and field experience. Usually, very sound 
empirical knowledge is required to undertake this task. Yet 
still, the classification is prone to errors since it’s almost 
completely dependent upon human skill set. Various digital 
signal processing (DSP) algorithms [1] are used for solving 
engineering problems on a broad spectrum of applications 
ranging from energy and power systems to multimedia and 
optical communication etc. Some of the important research 
domains (that involve DSP) and have been recently focused 
by various authors and research groups broadly include fore-
casting, multi-criteria decision making, fuzzy modeling and 
optimization tools etc. Authors at [2] have used neural net-
work based methods to forecast electricity load and prices 
relying on feature extraction and processing with DSP. The 
work [3] has solved an optimization problem involving load 
forecasting by developing a model using General Algebraic 
Modeling System (GAMS) software. Khodaei et. al., [4]. 
present their solution to a bi-objective problem to optimize 
electricity cost as well emission using a fuzzy decision-
making method. Like [3], the authors at [4] have made use 
of the GAMS software to model and solve the problem. The 
work at [5] provides a nice overview of how DSP revolution-
ized the multimedia industry by digitizing video and audio 
and enabling digital communication of multimedia signals. 

Optical communication is another area where DSP greatly 
facilitated, the work at [6] provides a review of some DSP 
techniques used to improve the data rate and cost-effective-
ness of short-range optical communication systems. Simi-
larly, some previous works [7–22] have proposed to perform 
DEMON through digital processing of acoustic signals and 
present some graphical results which can aid to undertake 
classification. However, an evaluation of these DEMON 
processing methods revealed some research gaps. Firstly, 
the analysis is limited to finding the basic parameters of 
SRPM and NOB, and none of the previous works suggest 
any analysis technique to extract the parameters of NOS and 
vessel speed from the DEMON spectra. Secondly, a very 
limited discussion has been provided in the previous works 
on the analysis of DEMON spectra for the purpose of clas-
sification and extraction of useful navigational information 
like relative course of a vessel. Thirdly, there is no refer-
ence information available in previous works to classify 
an ASWV based upon the extracted parameters of SRPM, 
NOB, NOS, and speed. This paper makes the following 
novel contributions:

•	 Some novel DEMON spectra analysis techniques are pre-
sented to find NOS, speed, and relative course of a target 
vessel.

•	 A vessel classification framework is put forth that uses 
features extracted from DEMON spectra and compares 
them with a reference set of parameters.

•	 A set of reference parameters are provided to classify 
a vessel into one of nine categories ranging from large 
ships like car carriers to smaller ones like a fishing boat.

Relative course information can prove as a life-saving 
navigation aid to collision avoidance in the event of non-
availability of other navigation equipment. The previous 
works only discussed methods to find SRPM and NOB of a 
vessel. This paper presents a novel reference table that can 
be used to classify a vessel into one of nine vessel catego-
ries based upon the values of SRPM, NOB, NOS and speed 
extracted from its DEMON spectrum. None of the previous 
works have provided such detailed reference information for 
classification of a vessel based upon parameters obtained 
from its DEMON spectrum. Course classification using the 
proposed method can significantly shorten the time taken by 
the complete classification process by narrowing down the 
relevant database for fine classification processing. A fine 
classification method like [23] identifies the particular ves-
sel, e.g., MV Atlantic Vision or Fishing trawler Arctic Voy-
ager. While the work [23] provided fairly accurate results, 
the processing times and accuracy could be improved. 
Incorporating an automated coarse classification step could 
improve the overall processing times and classifier accuracy. 
A coarse classification method could divide the database 
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into some broad categories. Hence, a new query vessel could 
be classified into one of the broad categories first, and then 
fine classified using a method like [23] or those employing 
deep learning tools [24–27]. In this way, a smaller number 
of parameter comparisons would be required during fine 
classification as the search volume would have been con-
siderably reduced. This would improve the processing time 
of the complete classification process. An overview of the 
proposed analysis techniques and the classification process 
is shown in Fig. 1. The accuracy of the proposed analysis 
and classification techniques was assessed by comparison 
with results obtained from empirical analysis and vessels’ 
true characteristics. Trials were conducted with 877 samples 
recorded with different passive sonars and under varying 
conditions of ships’ speed, noise, and sea state. The ASWV 
samples were acquired from the resources provided by San 
Francisco National Park Association (Historic Naval Sound 
and Video) [28], website (Discovery of sounds in the sea, 
2020) [29], University of Vigo (ShipsEar: an underwater 
vessel noise database) [30], National Oceanic and Atmos-
pheric Administration (A collection of sounds from the sea) 
[31], and National Park Service (Sounds recorded in glacier 
bay) [32]. The trials remained quite promising.

The rest of the paper is organized as follows. Section 2 
discusses the related works and provides a comparison of 
this paper with the state of the art methods. Section 3 pre-
sents constituent components of a typical acoustic signa-
ture and their significance for vessel classification. Section 4 
mentions the signal processing steps to generate DEMON 
spectra. Section 5 puts forth the proposed DEMON spec-
tra analysis techniques for estimating SRPM, NOB, NOS, 
speed, and relative course of a ship. Section 6 introduces 
the proposed classification method using a novel reference 
criterion. Section 7 discusses the results. Finally, Sect. 8 
concludes the paper followed by a mention of some future 
work in Sect. 9.

2 � State of the Art Methods

While significant contributions have been made on this 
subject by published works at [7–22], though due focused 
discussions, an analysis mentioning ways to extract NOS, 
speed, relative course, and classification techniques through 
DEMON parameters reference have not been previously 
published and are a novel contribution of this paper. Also, 
this paper provides a broader work flow from raw queries 
to classification outputs. An important stage in DEMON 
processing is the isolation of cavitation noise removing 
unwanted frequency components with the help of band-
pass filtering. The works at [8, 13, 14, 16, 21] proposed a 
reasoned selection of the bandpass filter range for isolating 
the cavitation noise, whereas authors at [7, 9–12, 15, 17, 

18, 20, 22] suggested an arbitrary selection. The work [19] 
used an alternate method called Empirical mode decompo-
sition in place of bandpass filtering. This paper proposes 
a more reasoned approach based upon analysis of Power 
Spectral Density (PSD) for bandpass filter range selection. 
Works at [14, 16, 21] have briefly discussed the viability of 
DEMON parameters (SRPM, NOB, NOS, and speed) for 
vessel classification. The work [19] used the raw DEMON 
spectra to train a neural network for classification. Authors 
at [20] used a convolutional neural network-based classi-
fier for only identifying the fundamental frequency of the 
DEMON spectra. The fundamental frequency could be 

Fig. 1   Flow diagram–Proposed classification process
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used to calculate the SRPM. A generalized set of reference 
DEMON parameters for classification could not be found in 
any of the reviewed literature. The reference set of DEMON 
parameters of Table 3 presented in this paper is considered 
a valuable addition to the research community in this area. 
Authors at [7, 13–17, 22] have used real acoustic samples, 
while others [8–12, 20] have used simulated ones. The work 
[18] used both actual and simulated acoustic samples.

One of the pioneer works that has discussed classifica-
tion of ships based upon their acoustic signatures was pro-
vided by Lourens [7]. The author proposed that the cavita-
tion modulated propeller component of the signature could 
be used to extract the parameters of SRPM and NOB. The 
algorithm involved bandpass filtering the simulated signals 
to possibly discard the frequencies contributed by ship’s 
machinery and focused only on those added by propeller 
cavitation. However, the details for estimating the cut-off 
range of the bandpass filter were not provided. Later the 
signal was analyzed using periodogram, spectrogram and 
DFT followed by visual analysis to estimate the parameters. 
Due to the then available signal processing tools, it seems 
difficult to easily deduce the DEMON parameters from the 
generated plots. Gearbox noise was briefly introduced in 
[7] as a possible feature for fine classification. Kummert 
[8] introduced a fuzzy algorithm for finding SRPM and 
NOB from DEMON processing. The work [8] mentioned 
the outline of a DEMON algorithm which incorporated the 
steps mentioned in [7] followed by additional signal pro-
cessing steps of normalization and averaging. After finding 
the fundamental frequency, possible candidates for the last 
harmonic were allocated confidence scores based upon fuzzy 
logic. The harmonic with the highest confidence score was 
divided by the fundamental frequency to find the number of 
propeller blades in [8].

Nielsen [9] primarily discussed the possible utility of 
Cramer Rao lower bounds for cavitation signal power, modu-
lation power, frequency, and phase from a mathematical and 
theoretical perspective. Amindavar and Moghaddam [10] 
proposed exploiting the cyclostationary property of acoustic 
signals for estimating SRPM and NOB with simulated test 
samples. Sichun and Desen [11] suggested analyzing the 
3D/2D DEMON spectrum instead of 2D spectrum. The pro-
posed algorithm extracted 3-D features i.e. time, frequency 
and normalized power which were further processed to 
eventually arrive at 2D data to generate DEMON spectrum. 
Badri and Amindavar [12] proposed to utilize Nevallina Pick 
interpolation algorithm for extraction of SRPM and NOB, 
suggesting that the proposed method performed better than 
the conventional DEMON processing techniques. Hanson, 
Antoni, Brown, and Emslie [13] nicely explained the basics 
of DEMON processing and suggested generating the cyclic 
modulation spectrum for extraction of parameters. Chung, 
Sutin, Sedunov, and Bruno [14] described a cross-correlation 

based method for estimating DEMON parameters and briefly 
mentioned the viability of DEMON spectra for classifica-
tion of water vessels into 4 classes. Antoni and Hanson 
[15] explored the cyclostationarity of acoustic signals for 
extraction of SRPM and NOB. Pollara, Sutin, and Salloum 
[16] provided some analysis tips for extracting parameters 
from DEMON spectra. Kemper, Ponce, Telles, & del Carpio 
[17] suggested some additional pre-processing on the sonar 
signals including signal segmentation and wavelet packets 
decomposition etc. before generating DEMON spectra. The 
authors at [17] showed how the SRPM could be calculated 
once the fundamental frequency was identified using some 
actual as well as simulated samples. Chen, Ma, Wu, & Meng 
[18] proposed a method to estimate the range of a sonar 
contact through some signal processing on DEMON spectra. 
The range information could be used to aid navigation, how-
ever, it required extensive signal processing. On the other 
hand, this paper suggests a much simpler method for rela-
tive course estimation of other platforms through analysis of 
the DEMON spectra of just few consecutive samples of the 
same platform. Knowing the relative course of other plat-
forms can greatly aid in collision avoidance. Liu, Lü, Yang, 
Jiang, Huang, & Du [19] suggested the use of empirical 
mode decomposition in place of bandpass filtering before 
demodulation to generate DEMON spectra. The authors [19] 
have reported that DEMON spectra thus generated could 
be classified using a neural network. For signals recorded 
in noisy conditions with poor Signal to Noise Ratio (SNR), 
Lu, Song, Hu, & Li [20] have argued that it might be difficult 
to detect the correct fundamental frequency. The authors 
at [20] proposed to denoise and filter the DEMON spectra 
before inputting them to a neural network that identified the 
fundamental frequency through classification. Stinco, Tesei, 
Dreo, & Micheli [21] reported the details of some experi-
ments the authors conducted wherein an Acoustic Vector 
Sensor (AVS) was used to acquire noise samples. An AVS 
could capture sound pressure as well as particle velocity 
vector. Demodulation using DEMON technique enabled 
detection of multiple modulating frequencies. Also, use of 
a direction AVS provided Direction of Arrival (DOA) infor-
mation as well. Liu, Yang, & Yang [22] generated DEMON 
and three other kinds of spectra of a passenger ship acoustic 
sample and provided some interesting analysis including 
detection of fundamental frequency and number of propel-
ler blades.

A comparison of the proposed method for DEMON 
spectra generation and analysis with those reported by 
previous works is placed at Table 1. Table 1 lists the 
basis adopted by different works for bandpass filter range 
selection and whether any analysis techniques have been 
suggested to extract parameters of SRPM, NOB, NOS, 
and speed from DEMON spectra. Table 2 provides some 
further comparison of this paper with previous works in 
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terms of ASWV classification and relative course estima-
tion techniques.

3 � Acoustic Signature of a Water Vessel

The hydrophones of most passive sonars sample acoustic 
noises at a sampling rate of 22,050 Hz. Therefore, sonars 
can capture an acoustic sample containing frequencies from 
DC to 11,025 Hz in accordance with [33, 34]. Tucholski [35] 
explains that most of the characteristic frequency compo-
nents of a typical ASWV range only up to 4 or 5 kHz. The 
components of a typical ASWV are discussed below:

3.1 � Propeller Cavitation Noise

Every ship almost necessarily has a single or multiple 
shafts with propeller(s) as part of its propulsion system. 
As the propeller blades rotate through water, regions of 
high and low pressure are created. This pressure gradi-
ent vaporizes water near the propeller blades’ edges and 

surface. The result is formation of small bubbles on the 
edges and surface of blades. These bubbles are unstable 
and start collapsing. The process repeats itself with new 
bubbles created and collapsing quickly. The collapsing 
creates acoustic noise. This noise may be considered as a 
high frequency carrier noise. The cavitation noise is quite 
broad band and usually ranges from 50 Hz to 3 kHz, but in 
some instances may even range from 10 Hz up to 10 kHz. 
Under some fixed sea conditions, the frequency contents 
of this broadband noise remain the same. As the propel-
ler blades rotate, their depth varies. This causes changes 
in the amplitude of cavitation noise as heard by a passive 
sonar. The variation in amplitude is proportional to the 
rotational speed of the shaft. In this way, the shaft rota-
tion amplitude modulates the cavitation noise. The result 
is an amplitude modulated broadband noise with the high 
frequency carrier and low frequency modulating compo-
nents contributed by cavitating bubbles and shaft rota-
tion, respectively. DEMON processing is used to extract 
the hidden periodicity in acoustic noise and use it to find 

Table 1   A comparison of the proposed method with previous works–Basis of bandpass filter range selection and analysis techniques for extract-
ing parameters SRPM, NOB, NOS, and speed from DEMON spectra

Y, Yes; N, No; NM, Not Mentioned; PSD, Power Spectral Density; SNR, Signal to Noise Ratio

Work reference Basis of bandpass filter range selection Provides analysis method to find

SRPM and NOB NOS 
and 
speed

This paper PSD Y Y
Lourens, 1988 [7] NM Y N
Kummert, 1993 [8] Fuzzy logic Y N
Nielsen, 1999 [9] NM Y N
Amindavar, & Moghaddam, 2000 [10] – ‘’– Y N
Sichun, & Desen, 2007 [11] – ‘’– SRPM only N
Badri, & Amindavar, 2007 [12] – ‘’– Y N
Hanson, Antoni, Brown, & Emslie, 2008 [13] Empirical knowledge or fuzzy logic Y N
Chung, Sutin, Sedunov, & Bruno, 2011 [14] Iterative method to find which range provides best 

envelope SNR
Y N

Antoni, & Hanson, 2012 [15] NM Y N
Pollara, Sutin, & Salloum, 2016 [16] Iterative method to find which range provides best 

envelope SNR
Y Y

Kemper, Ponce, Telles, & del Carpio, 2019 [17] NM SRPM only N
Chen, Ma, Wu, & Meng, 2017 [18] NM N N
Liu, Lü, Yang, Jiang, Huang, & Du, 2018 [19] Empirical mode decomposition has been used as an 

alternative
N N

Lu, Song, Hu, & Li, 2020 [20] NM Fundamental frequency only, 
which can be translated into 
SRPM

N

Stinco, Tesei, Dreo, & Micheli, 2021 [21] Range selected using prior information of known 
noise sources

Y N

Liu, Yang, & Yang, 2019 [22] NM Y N
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identifying parameters of a water vessel. While previously 
DEMON processing could extract only SRPM and NOB, 
this paper puts forth methods to additionally extract NOS, 
speed, and relative course; the details obtained are then 
used to classify the acoustic sample.

3.2 � Machinery Noise

The sources of machinery noise include all the mechani-
cal, electrical, and electro-mechanical equipment installed 
onboard. The list may include gas turbines, diesel gen-
erators, gear boxes, hydraulic pumps, air conditioners, 

Table 2   A comparison of the proposed method with previous works–ASWV classification and estimation of relative course

Y, Yes; N, No; NM, Not Mentioned; NA, Not Applicable; PSD, Power Spectral Density; DOA, Direction of Arrival

Work reference Availability of generalized reference 
parameters/No of classes supported

Classifier accuracy, Origin and No. of 
test samples

Provides relative 
course estimation 
techniques

This paper Y/ 9 (Table 3 provides reference 
parameters for 9 classes of vessels)

94.8%, Actual vessel samples recorded 
using a passive SONAR and Sono-
buoy, 877

Y

Lourens, 1988 [7] N/Nil NA (No classification method men-
tioned), NM, NM

N

Kummert, 1993 [8] N/ Nil – ‘’– N
Nielsen, 1999 [9] N/ Nil – ‘’– N
Amindavar, & Moghaddam, 2000 [10] N/ Nil NA (No classification method men-

tioned), Simulated, 01
N

Sichun, & Desen, 2007 [11] N/ Nil NA (No classification method men-
tioned), Simulated, NM

N

Badri, & Amindavar, 2007 [12] N/ Nil NA (No classification method men-
tioned), Simulated, 01

N

Hanson, Antoni, Brown, & Emslie, 
2008 [13]

N/ Nil NA (No classification method men-
tioned), Actual samples of a single 
vessel/ NM

N

Chung, Sutin, Sedunov, & Bruno, 
2011 [14]

N/ 4 (Briefly mentions viability of 
DEMON for classification into 4 
classes of surface ships, divers, 
swimmer and un-manned underwater 
vehicles)

– ‘’– N

Antoni, & Hanson, 2012 [15] N/ Nil NA (No classification method men-
tioned), Actual vessel samples, NM

N

Pollara, Sutin, & Salloum, 2016 [16] N/ 6 (Only operating conditions of 
6 vessels used for recordings are 
provided. Six types of small boats 
include jet-ski, Panga, e-boat, 
3-engine sport boat, 2-engine sport 
boat, RHIB)

– ‘’– N

Kemper, Ponce, Telles, & del Carpio 
2019 [17]

N/ Nil – ‘’– N

Chen, Ma, Wu, & Meng, 2017 [18] N/ Nil NA (No classification method men-
tioned), Simulated and actual vessel 
samples, NM

Range estimation only

Liu, Lü, Yang, Jiang, Huang, & Du, 
2018 [19]

N/5 90.8%, NM, NM N

Lu, Song, Hu, & Li, 2020 [20] N/Nil 92% (A classifier is used for estimat-
ing the fundamental frequency only), 
Simulated, 1836

N

Stinco, Tesei, Dreo, & Micheli, 2021 
[21]

N/Nil NA (No classification method men-
tioned), NM, NM

DOA estimation only

Liu, Yang, & Yang, 2019 [22] N/Nil NA (No classification method men-
tioned), Actual vessel sample, One

N
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refrigerators, AC and DC motors, winches, etc., to name 
a few. The frequency content of machinery noise usually 
ranges from DC to 4–5 kHz. The noises generated can be 
broadly classified into harmonic and non-harmonic noises. 
Harmonic noise is generated by an equipment consisting 
of rotating parts like a diesel generator or a motor and its 
frequency spectrum consists of a fundamental frequency 
and few harmonics. Non-harmonic noise is generated by an 
equipment that usually does not consist of rotating parts like 
a transformer, switch box etc. The characteristic machinery 
noise of a platform is usually due to the harmonic noises. 
Most machinery generates a distinct harmonic noise that 
may be utilized for the vessel identification. For eg., the 
gearbox noise consists of some characteristic low frequency 
components that are detectable from far ranges due to the 
ability of low frequency sound waves to travel far distances 
with negligible attenuation.

After coarse classification through DEMON, a fine classi-
fication method called Low Frequency Analysis and Record-
ing (LOFAR) may be used. LOFAR relies on harmonic 
machinery noise. Usually, an interactive display enables the 
sonar operator to make frequency range selection for analy-
sis. During this analysis, harmonic noises are searched for. 
The observed data is manually compared with the acous-
tic database. Based upon the estimated range of vessels, 
LOFAR analysis may be divided into Long Range (LR) for 
DC to 1289 Hz and Medium Range (MR) for 200–9600 Hz 
signals. Some further discussion on LOFAR can be found 
at [36–38].

3.3 � Flow Noise and Activity Noise

Flow noise is generated because of the contact between a 
vessel’s hull and water. Its amplitude and frequency contents 
depend upon the vessel’s hull structure and relative speed, 
sea state etc. Activity noises are contributed by activities 
onboard a vessel, for eg. fuel replenishment at sea, hydro-
graphic survey activities, drilling and lifting etc. These 
noises vary from one vessel to another and affected by the 
type of platform under query.

4 � DEMON Processing

DEMON refers to a signal processing method to detect hid-
den periodicity in an ASWV. Once a DEMON spectrum is 
generated, it is analyzed to extract useful parameters from an 
ASWV’s constituent component that has been contributed 
by the ship’s propeller cavitation noise. Section 3 provided 
some useful insight on the construction of propeller cavita-
tion noise. In objective terms, DEMON processing extracts 
the modulating frequency of propeller that amplitude modu-
lates the cavitation noise. The fundamental frequency and 

the harmonics are analyzed to find the parameters of SRPM, 
NOB, and NOS. A flow diagram containing the DEMON 
processing steps is shown in Fig. 2.

The process starts with acquisition of a digitally sampled 
acoustic signal from some passive sonar hydrophones. The 
sampling rate during acquisition defines the upper limit of 
the frequency range that the signal can possibly contain. 
It is important that the cavitation frequencies are properly 
captured to allow subsequent envelope detection. Usually, 
the hydrophones sample at a rate of 22,050 Hz allowing fre-
quencies till 11 kHz to be captured. During literature review, 
the authors could not find any work that could provide a 
clear guideline on the most probable frequency or frequency 
range of cavitation noise, to advise on the sampling rate 
of the hydrophone audio capturing device. Resultantly, the 
authors analyzed the acquired dataset comprising some 877 
ASWV samples mostly sampled at 22,050 Hz. The results 
revealed that envelope detection was possible on most 

Fig. 2   Proposed DEMON based coarse classification process flow
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signals sampled at 22,050 Hz. Therefore, 22,050 Hz which 
is the existing sampling rate standard for hydrophone signals 
is probably an appropriate choice.

An ASWV originally contains frequency components 
from machinery noise, flow noise and activity noise sources 
in addition to the propeller cavitation noise. Convention-
ally, a bandpass filter is used to remove the unwanted fre-
quency components. With the help of empirical knowledge, 
the bandpass filter can be manually tuned to isolate the 
cavitation noise. Limited discussion has been found in the 
reviewed literature regarding appropriate cut-off ranges of 
this filter. Empirical knowledge comes with experience and 
does not have sufficient ground-truth information. This paper 
proposes to generate and analyze the PSD of an ASWV to 
gain insight into the signal components. Propeller cavitation 
noise usually has the highest density unless the vessel is sta-
tionary with a stationary propeller but running machinery. 
In that case, no method can extract the DEMON parameters 
because there is no cavitation noise. In other cases, the PSD 
pattern should be analyzed to see if it has some considerable 
high-density area. Figure 3 shows the PSDs of two actual 
ASWVs. In Fig. 3a, the high-density region ranges from 

tens of Hz to around 2 kHz. DEMON processing with a 
bandpass filter low and high cut-off frequencies set to 50 Hz 
and 2 kHz respectively revealed satisfactory results and the 
envelope was finely detected. On the other hand, PSDs that 
have a relatively flat pattern with no steep gradients either do 
not contain the cavitation noise at all (due to stationary pro-
peller) or the cavitation noise is very broadband. Figure 3b 
shows the PSD of an ASWV with a relatively flat pattern. 
For such signals, setting a large pass range of the bandpass 
filter seems a viable option. Best DEMON processing results 
with the signal in Fig. 3b were achieved with bandpass filter 
cut-off frequencies set to 10 Hz and 4 kHz respectively. A 
digital bandpass FIR filter of order five has been used in 
the implementation. However, for sharper cut-off gradients, 
higher order filters are required which may make the algo-
rithm time inefficient and are therefore not recommended. 
Another factor to consider is that harmonic machinery noises 
can also contribute to DEMON spectra leading to inaccurate 
analysis. For example, two frequencies f1 and f2 in the direct 
spectrum can generate a difference frequency f1–f2 in the 
DEMON spectrum after squaring. The authors observed this 

Fig. 3   Power Spectral Density (PSD). The X and Y axes represent 
the frequencies and PSDs in units of Hz and dB re 1µPa respectively.  
a PSD of sample shows highest concentration in the range between 

DC and 2 kHz; b PSD of sample shows highest spectral concentration 
in the range between DC and 4 kHz
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phenomenon with very few of the samples. However, this 
can be avoided by careful selection of the bandpass filter.

Envelope detection through squaring [39] is a popular 
technique which usually involves steps of squaring, scal-
ing by a factor of 2, down sampling, applying a low pass 
filter and finally taking square root to obtain the envelope. 
Another method of envelope detection involves using the 
Hilbert transform [40], however, detection through squaring 
has been used in this paper due to its ease of implementation. 
Finally, FFT of the signal is taken to generate the DEMON 
spectrum.

5 � Proposed Analysis Techniques 
for Estimating SRPM, NOB, NOS, 
and Relative Course from DEMON Spectra

Following are the proposed analysis techniques for estimat-
ing SRPM, NOB, NOS, and relative course from DEMON 
spectra:

5.1 � Shaft Revolutions per Minute

While ignoring any DC component that might be present, 
the first highest peak in the DEMON spectrum is located. 
This peak represents the fundamental frequency of the pro-
peller modulating signal. If this peak exists at fm Hz, the 
SRPM can be calculated through (1):

5.2 � Number of Propeller Blades

The next step is to find the harmonic frequencies of the fun-
damental frequency fm. The harmonics are caused by the 
blades. The harmonic peaks are usually located equidistant 
from each other on the spectrum. Suppose 3 harmonic peaks 
are found, then the number of blades will be 4. Similarly, 
if 4 harmonic peaks are found, then the number of blades 
will be 5. One of the blades usually cavitates more than 
the others resulting in one harmonic peak relatively higher 
than the others. This is due to one blade usually facing more 
wear and tear than the others. Suppose after the fundamental 
frequency at fm Hz, the first harmonic appears at 2 fm Hz, the 
second harmonic at 3 fm Hz, no peak at 4 fm Hz but another 
harmonic is found at 5 fm Hz. In this case, the number of 
blades will be estimated as 5. For this scenario, empirical 
knowledge suggests that a blade corresponding to the third 
harmonic exists, but its corresponding peak is not found due 
to the blade cavitating relatively less. Some tolerance, for 
eg. ± 0.1–0.3 Hz should be allowed in the inter harmonic 
distance.

(1)SRPM = fm(in Hz) x 60

Another method is to use only the fundamental frequency 
fm and the last harmonic, say fh, to find the number of blades. 
In this case NOB can be found by (2). Usually, it is sufficient 
to analyze the modulating frequencies in the range from DC 
to 55 Hz. However, in most cases, the analysis completes 
up to 20 Hz:

5.3 � Number of Shafts

To determine if the target vessel has a single or twin shafts, 
presence of twin peaks or peaks closely located to the funda-
mental and harmonic frequencies are observed. If all the peaks 
of interest i.e., fundamental and its harmonics are clear and 
alone, the target vessel can be confidently declared as having 
a single shaft. On the other hand, if all peaks of interest are 
accompanied by another peak located nearby, for eg. within 
a separation of ± 0.1 ~ 0.5 Hz, the vessel can be confidently 
declared as having twin shafts. Empirical knowledge suggests 
that declaring a vessel as twin shaft from the observation of 
at least two twin peaks is correct for majority of times. How-
ever, if a twin peak exits with only one of the peaks of inter-
est, it is insufficient evidence to declare the vessel as having 
twin shafts. For example, consider the DEMON spectrum of 
a 4-blade single propeller vessel showing a fundamental fre-
quency peak followed by 3 × harmonic peaks. In this case, a 
twin peak might be observed with the fundamental peak only, 
and the other 3 × harmonics will probably be standing alone.

5.4 � Speed (in Knots)

Based upon the SRPM, NOB and NOS, it is possible in most 
cases to be able to classify the target vessel into one of the 
categories mentioned in Table 3. However, in other cases, 
some doubt may persist. To clarify this doubt, the estimated 
speed of the vessel is calculated assuming it to be falling 
in one of the possible categories based upon the values of 
SRPM, NOB and NOS. The estimated speed is then checked 
to be within the usual speed limits of the vessel type. A 
true answer offers further confidence in safely classifying 
the vessel. However, if the answer is false, another possible 
vessel type may be assumed. The process is repeated until a 
match with the reference values is reached.

5.5 � Relative Course Information from DEMON 
Spectrum Analysis

This paper puts forth a method that can be used to find the 
relative course followed by a target vessel through analysis 
of DEMON spectra of few successive hydrophone samples. 
To conduct the analysis, two or more successive samples of a 

(2)NOB = fh∕fm
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vessel are acquired, and their DEMON spectra are generated. 
Few of the more common scenarios are depicted in Fig. 4. 
If the amplitudes of fundamental frequency and its harmon-
ics’ peaks, referred to as peaks of interest here remain fairly 
constant in tandem spectra while it is known that the vessel 
is underway from her speed, then the vessel is most probably 
following a parallel course with a speed close to that steered by 
the listening vessel. In the second scenario, there may be a rise 
in the amplitudes of peaks of interest noted from successive 
samples. This suggests that the target vessel is approaching 
or closing in. A small increase may suggest that the vessel is 
following a perpendicular course and approaching. Whereas a 
large increase suggests that the vessel is approaching through 
a reciprocal course. There can also be a third scenario in which 
the amplitudes of peaks of interest reduce either slowly or 
abruptly in successive samples. A slow reduction suggests that 
the vessel is following a course perpendicular to the listening 
vessel’s bows and is moving away. Whereas an abrupt reduc-
tion suggests that the vessel is moving away along the recipro-
cal course. While this discussion does not exhaustively cover 
all possible scenarios, it provides some general guidelines on 
how DEMON spectra of tandem hydrophone signals can be 
used to gauge the relative course followed by a target vessel.

6 � Proposed Classification Method

Water vessels can be broadly classified into nine categories 
listed in the first column of Table 3. It is pertinent to mention 
that the probable values of NOB and NOS for each vessel 
category could not be found in the usual research literature 
(books, journals, magazines, and conference articles). The 
authors thus had to consult a wide range of datasheets and 
performance characteristics of different vessels in conjunc-
tion with empirical knowledge to generate Table 3. Every 
vessel type has some usual speed limits; the mean and stand-
ard deviation values for speed can be found in columns 2 and 
3. Turns per knot (TPK) indicates the number of shaft revo-
lutions per minute required for a vessel to achieve a speed 
of 1 knot. Each vessel type has a different TPK constant, 
mentioned in column 4 of Table 3. Knowing the SRPM and 
TPK, the speed can be found by (3):

The mean and standard deviation values of SRPM for 
each vessel category are provided in columns 5 and 6 respec-
tively. Columns 7 and 8 contain information about the usual 
number of shafts and blades for each of the nine vessel types, 
respectively. It is re-iterated that this information has been 
deduced based on empirical knowledge and a vast list of 
hard and soft literature acquired from a variety of resources.

The proposed classification method using reference Table 3 
is illustrated graphically via the flow chart in Fig. 5. It starts 

(3)Speed(in knots) = SRPM∕TPK
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with extracting parameters of SRPM, NOS and NOB from 
the respective DEMON spectrum. Referring to Table 3, this 
information may indicate the vessel falling in one or more 
categories. To gain further accuracy, assuming the vessel to 
belong to one of the categories predicted during last step, the 
estimated speed is calculated using SRPM and TPK. If the esti-
mated speed falls within the prescribed limits for that category, 
accurate classification is done. On the contrary, if the calcu-
lated speed does not fall within the prescribed speed limits for 
a particular category as mentioned in Table 3, the process is 
repeated assuming the ASWV belonging to one of the other 
categories predicted initially from parameters of SRPM, NOS 
and NOB. The vessel type for which this speed check holds 
true is selected as the true category. This completes the pro-
posed coarse classification process using DEMON spectra.

7 � Results and Discussion

7.1 � Experiment Environment

MATLAB® release R2016a on a mid-spec PC (6th gen-
eration Intel Core i5 processor @2.3 GHz, 8 GB of DDR3 
memory @1600 MHz, NVIDIA 960 M GPU with 4 GB of 
DDR5 memory, Windows 10 Home edition) has been used 
to generate the DEMON spectra.

7.2 �  Test Samples

To test the algorithm, 877 real acoustic signatures of some 
vessels have been acquired from the resources provided by 
San Francisco National Park Association (Historic Naval 

Sound and Video) [28], website (Discovery of sounds in 
the sea) [29], University of Vigo (ShipsEar: an underwater 
vessel noise database) [30], National Oceanic and Atmos-
pheric Administration (A collection of sounds from the sea) 
[31], and National Park Service (Sounds recorded in glacier 
bay) [32]. The samples were generated in different condi-
tions of sea state, ships’ speed and using different sonars. 
The samples are therefore assessed suitable to evaluate 
the robustness of the novel analysis techniques presented 
in this paper. Classification of samples was done using the 
proposed DEMON spectra analysis techniques as well as 
empirical analysis to provide a baseline reference.

7.3 � Testing Criteria

Since sonar was invented and till today, empirical analysis 
through listening is relied upon for acoustic signature clas-
sification. The empirical knowledge is gained over decades 
through the analysis of hundreds or even thousands of acous-
tic signatures. Expert empirical analysis can allow accurate 
extraction of DEMON parameters, though the completely 
manual process is quite time inefficient and prone to human 
errors for naive sonar operators. First, some expert sonar 
operators undertook empirical analysis for parameter extrac-
tion and classification of the test samples. Second, DEMON 
spectra of the same samples were generated and analyzed 
using the proposed techniques for parameter extraction and 
classification. Third, results from the two methods were 
compared with each other as well as with the ground truth 
information to assess performance of the proposed method.

Fig. 4   Proposed relative course 
prediction techniques through 
analysis of tandem DEMON 
spectra
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7.4 � Test Results

The proposed analysis and classification method demon-
strates promising results. 831 out of 877 samples were 
classified into the correct category (one out of nine pos-
sible categories), achieving an accuracy of 94.7%. A 

confusion matrix is placed at Table  4. Time required 
in generating a DEMON spectrum of 20 s long ASWV 
remained less than 100 ms. Detailed results of few sam-
ples, mentioned in Table 5, are discussed below:

Fig. 5   Proposed classification 
method using reference Table 3
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7.4.1 � Sample 1

The PSD of sample 1 shown in Fig. 3b reveals maximum 
spectral concentration in the range from DC to 4 kHz. 
Accordingly, the bandpass filter cut-off frequencies have 
been set to 10 Hz and 4 kHz. The DEMON spectrum of 
sample 1 in Fig. 6a reveals the fundamental frequency fm 
at 1.96 Hz. Therefore, SRPM = 117.6. The first harmonic 
appears unambiguously at 3.93 Hz which is exactly twice 
the fm. The second harmonic, though visible, has relatively 
smaller amplitude. The second harmonic appears exactly 
at 3 fm i.e. 5.89 Hz. The third harmonic is clearly visible 
at 4 fm i.e. 7.86 Hz with a large amplitude. No peaks are 
detected at 5 fm i.e. 9.82 Hz, 6 fm i.e. 11.79 Hz or at higher 
frequencies. Therefore, we may stop looking if we can-
not find two consecutive harmonics. Resultantly, NOB =  
4 fm / fm = 4. To determine NOS, we look for twin peaks. A 
small peak appears before fm at 1.28 Hz, however, no twin 
peak appears near the other two clearly visible harmon-
ics, i.e. the first and third. The second harmonic may not 

be considered for NOS here since it is hardly visible itself. 
Since we could not find at least two twin peaks, therefore, 
NOS = 1. Consulting Table 3 for NOS = 1 and NOB = 4, 
Fishing trawler is a clear choice.

Also, if we calculate the speed with a TPK of 18, it comes 
out to be 6.55 knots which is within the usual speed limit 
of Fishing trawler. In this way, classification of sample 1 is 
complete. Classification results using the proposed method 
and empirical analysis are mentioned in Table 5. The results 
closely match. The true category of the vessel is Fishing 
trawler.

7.4.2 � Sample 2

The PSD of sample 2 in Fig. 6b shows that the range from 
DC to 2 kHz contains maximum spectral contents. With 
bandpass filter set to retain only the aforesaid frequency 
range, DEMON spectrum shown in Fig. 7 was generated. 
The spectrum shows very clear peaks. The fundamental fre-
quency fm appears at 5.64 Hz. Therefore, SRPM = 338.7. 

Table 4   Classification results 
using the proposed classification 
criterion

Assigned 
class

True class

LM-1 LM-2 LM-3 MM OL CC CS FB FT

LM-1 80 5 1
LM-2 104
LM-3 75 2 1
MM 94 8
OL 8 3 110 2
CC 5 20
CS 3 1 71
FB 2 3 189
FT 4 88

Table 5   Detailed test results of 
five samples using the proposed 
analysis and classification 
techniques

Analysis Results. First row (in Italicized text) against each sample shows empirical analysis results and the 
second row (in bold text) shows the proposed method’s results

Sample Name SRPM NOS NOB Speed (in knots) Classification Bandpass Filter 
Range (Hz)

True 
cat-
egory

Sample1 120 1 4 6.7 FT 10–4000 FT
117.6 1 4 6.55 FT

Sample2 332 1 6 19.5 LM-2 10–2000 LM-2
338.7 1 6 19.9 LM-2

Sample3 520 2 5 19.2 LM-3 10 – 10,000 LM-3
532.7 2 5 19.7 LM-3

Sample4 104 2 4 10.4 MM 50 – 6000 MM
108.84 2 4 10.9 MM

Sample5 220 1 2 8.8 FB 50 – 4000 FB
228.42 1 2 9.14 FB
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After fm,, five clear equidistant peaks can be seen. The ampli-
tudes of the five harmonics are quite large and clear. The 
five harmonics appear at 11.49 Hz, 17.14 Hz, 22.88 Hz, 
28.53 Hz, and 34.37 Hz. The first peak near DC is rejected 
since it is due to noise and DC removal is carried out in 
most methods [7–11] of DEMON spectra generation. The 
first harmonic at 11.49 Hz is 0.196 Hz away from 2  fm 
(11.294 Hz). Since 0.1–0.3 Hz tolerance is usually allowed 
in the appearance of harmonics, it is an easy decision to 
consider this harmonic. The second, third, fourth and fifth 
harmonics appear near 3 fm, 4 fm, 5 fm, and 6 fm within allow-
able tolerances. Therefore, number of harmonics plus one 
gives us 6 which is the NOB. Also, the last harmonic appears 
at 34.37 Hz and 34.37/5.64 = 6.08 ~ 6. Now we check for any 
twin peaks. The fundamental and the first, fourth and fifth 
harmonics’ peaks stand clear and alone. The second and 

third harmonics have some smaller amplitude asymmetrical 
twin peaks, with one twin peak appearing before and the 
other one after the respective harmonics. Due to relatively 
negligible amplitudes of these twin peaks and absence of 
symmetry, they are rejected. Therefore, NOS = 1. Referring 
to Table 3, NOB = 6 and NOS = 1 refers to only one class 
i.e., Large merchant ship type-2. This type of propeller has 
been developed during recent years to provide more pow-
erful propulsion for large cargo ships. Finding her speed 
with TPK of 17 reveals a speed of 338.7/17 = 19.9 knots. 
The calculated speed falls well within the usual speed lim-
its of a Large merchant ship type-2 being upto 23 knots. 
When referring to Table 3, the candidate that is more likely 
to have the parameters found should be selected. However, 
in this example, there is no doubt. The same sample was 
also subjected to empirical analysis. Classification results 
through proposed method and empirical analysis are shown 
in Table 5.

7.4.3 � Sample 3

Based upon the PSD of Sample 3 in Fig. 8a, the passband is 
set from 10 Hz to 10 kHz. The DEMON spectrum is shown 
in Fig. 8b. The fundamental frequency fm appears at 8.87 Hz 
giving an SRPM of 532.68. There are three visible harmon-
ics at 17.76 Hz (2 fm), 26.73 Hz (3 fm), and 43.99 Hz (5 fm). 
The fourth harmonic expected near 35.5 Hz (4 fm) is absent, 
however, the fifth harmonic appears almost exactly at 5 fm. 
Empirical experience reveals that it is common to encoun-
ter absence of a harmonic. The absent harmonic is usually 
assumed present if the next harmonic appears at the cor-
rect location, which in this case is 5 fm. Therefore, NOB = 5. 
Looking for twin peaks, one can easily spot the twin peaks 
near the fundamental as well as the visible harmonics, 
though the twin peaks near first and fourth harmonics are 
more obvious than others. Referring to Table 3, for NOB = 6 
and NOS = 2 there are two candidates i.e. Large merchant 
ship type-3 (LM-3) and Cruise ship (CS). With TPK = 27 
for LM-3, speed comes out to be 19.7 knots which is within 
the usual limits of LM-3. On the other hand, with TPK = 15 
for CS, the speed comes out to be 35.5 knots which is not 

Fig. 6   Samples 1 and 2. a Sample 1 – DEMON spectrum with x 
and y axes representing frequency in Hz and amplitude respectively;  
b Sample 2—PSD with x and y axes representing carrier frequencies 
(in Hz) and spectral density (in dB re 1µPa) respectively

Fig. 7   Sample 2–DEMON 
spectrum with x and y axes 
representing frequency in Hz 
and amplitude respectively
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within the usual limits for CS. Therefore, CS is rejected, and 
LM-3 is selected as the correct class of the vessel. Empirical 
analysis revealed similar results.

7.4.4 � Sample 4

The PSD of sample 4 in Fig. 9a suggests selecting a pass-
band up to 6 kHz. Therefore, the bandpass filter cut-off 
frequencies were set to 50 Hz and 6 kHz. The DEMON 
spectrum of sample 4 is shown in Fig. 9b. The fundamental 
frequency appears at 1.81 Hz giving an SRPM of 108.84. 
Three harmonics appear at 3.58 Hz, 5.40 Hz and 7.21 Hz. 
This gives us NOB = 4. An interesting observation is the 
appearance of twin peaks. A twin peak with the fundamen-
tal frequency appears at 1.262 Hz, twin peak with the first 
harmonic appears at 3.036 Hz, the one with the second har-
monic appears at 4.968 Hz and none appears with the third 
harmonic. The amplitude of the twin peak with the funda-
mental frequency is relatively high than those with the first 
and second harmonics. However, the three twin peaks appear 
at same separation of around 0.5 Hz. Therefore, NOS = 2. 
Referring to Table 3, the favorite candidate is a medium mer-
chant ship. With a TPK of 10, the speed comes out to be 10.9 
knots which is within the usual speed limits of the vessel 
type. The vessel is a cargo ship that falls in the category of 
a medium merchant ship. Empirical analysis also classified 
the vessel as a medium merchant ship.

7.4.5 � Sample 5

As per the PSD of sample 5 shown in Fig. 10a, the bandpass 
filter was set to retain frequencies from 50 Hz to 4 kHz. 
The DEMON spectrum in Fig. 10b reveals the fundamental 
frequency at 3.80 Hz and only one harmonic at 7.72 Hz. 
The SRPM = 228.42, while the NOB = 2. While a small twin 
peak appears near the fundamental frequency at 3.02 Hz, no 
twin peak appears near the harmonic. The small peak that 
appears at 6.83 Hz has almost the same amplitude as the 
noise floor. Therefore, NOS = 1. Referring to Table 3, the 
only candidate is a fishing boat. With a TPK of 25, the speed 
comes out to be 9.14 knots which is within the usual speed 
limits of a fishing boat. Empirical analysis also revealed sim-
ilar results. The true category of the vessel is fishing boat. 

8 � Conclusion

Empirical knowledge based manual vessel classification 
using acoustic signatures is a widely used approach for iden-
tifying vessels in an open sea. The process being manual 
demands experience and is prone to human error. Detec-
tion of Envelope Modulation on Noise (DEMON) spectra 
is a systematic approach used to detect hidden periodicity 
in an Acoustic Signature of Water Vessel (ASWV). Very 
limited literature is available on the subject. Each of the 

Fig. 8   Sample 3. a PSD with x and y axes representing carrier frequencies (in Hz) and spectral density (in dB re 1µPa) respectively; b DEMON 
spectrum with x and y axes representing frequency in Hz and amplitude respectively

Fig. 9   Sample 4. a PSD with x and y axes representing carrier frequencies (in Hz) and spectral density (in dB re 1µPa) respectively; b DEMON 
spectrum with x and y axes representing frequency in Hz and amplitude respectively
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article reviewed during this research covered only one or 
two aspects of the overall process. With this paper, an effort 
has been made to present the complete DEMON based 
classification process emphasizing on some novel contribu-
tions. Previous works could only suggest ways to approxi-
mate a ship’s shaft revolutions per minute and number of 
blades. This paper presents and experimentally validates 
some analysis techniques to estimate the number of shafts, 
speed, and relative course using DEMON spectra. Knowl-
edge about a ship’s number of shafts and speed can hugely 
facilitate its classification. Relative course information is 
perhaps very desirable for navigation purposes. Moreover, 
reported research focused on the viability of DEMON spec-
tra-based classification though effective vessel classification 
still remained an open area of research. To the best of our 
knowledge, this is the first time that a comprehensive clas-
sification criteria and method is put forth that solely relies on 
the parameters extracted from DEMON spectra. This paper 
presents a novel criterion to classify a vessel into one of the 
nine possible vessel categories. The selected categories can 
help distinguish between different types of large and medium 
merchant ships, purpose made ships like an oiler, car car-
rier, or a cruise ship, and small fishing boats and trawlers. 
An experimental accuracy of 94.7% validates the proposed 
classification procedure.

9 � Future Work

Work is in progress on automating the complete DEMON 
based classification process starting from generating 
DEMON spectra, analysis for extracting parameters SRPM, 
NOB, NOS, speed, relative course, and classification using 
the proposed criterion and method. This automation is 
expected to remove human-in-the-loop (HIL). Incorporating 
an automated DEMON based classifier for coarse classifica-
tion followed by fine classification using deep learning tools 

are expected to reveal promising results especially in terms 
of accuracy and time efficiency.
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