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Teardrops on My Face: Automatic Weeping
Detection from Nonverbal Behavior

Dennis Kister, Lars Steinert, Marc Baker, Nikhil Bhardwaj, and Eva G. Krumhuber

Abstract—Human emotional tears are a powerful socio-emotional signal. Yet, they have received relatively little attention in empirical
research compared to facial expressions or body posture. While humans are highly sensitive to others’ tears, to date, no automatic means
exist for detecting spontaneous weeping. This paper employed facial and postural features extracted using four pre-trained classifiers
(FACET, Affdex, OpenFace, OpenPose) to train a Support Vector Machine (SVM) to distinguish spontaneous weepers from non-weepers.
Results showed that weeping can be accurately inferred from nonverbal behavior. Importantly, this distinction can be made before the
appearance of visible tears on the face. However, features from at least two classifiers need to be combined, with the best models
blending three or four classifiers to achieve near-perfect performance (97% accuracy). We discuss how direct and indirect tear detection
methods may help to yield important new insights into the antecedents and consequences of emotional tears and how affective
computing could benefit from the ability to recognize and respond to this uniquely human signal.

Index Terms—Weeping, tears, facial expression, body posture, support vector machine (SVM).

1 INTRODUCTION

MOTIONAL tears are believed to serve uniquely human

functions such as appeasement, distress, and helpless-
ness, signaling a need for social support [1], [2]. Their
capacity to induce prosocial responses in observers is well-
known across many cultures [3]. Tears have been consistently
shown to facilitate the perception of sadness [4], [5], with
even brief exposures to tearful faces impacting emotion
perception [4], [6]. Nevertheless, contemporary research
on the functions of emotional tears is still limited by a
surprisingly narrow selection of stimuli and methods [7].
Much of the available experimental work has used digitally
manipulated (i.e., “photo-shopped”) images [5], with only
a few studies examining spontaneously elicited tears [8].
Although there have been a few tentative efforts to improve
the quality of tear-related stimuli [4], [9], [10], emotional
tears have thus far played a less important role in affective
computing.

A major reason for such negligence is the lack of an-
notated training data. Some of the most potent elicitors
of emotional tears throughout the lifespan (e.g., funerals,
weddings, or divorces) are indeed rare and difficult to
assess [11]. Also, a person’s proneness to crying is subject
to a plethora of factors, including age, situational demands,
gender stereotypes, and socio-cultural norms [1], [12]. For
example, young adults cry less frequently than other age
groups [11], and adult men in Western societies report crying
2-4 times less frequently than women [13]. Crying may thus
appear to be less common in certain types of contexts. Despite
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their enormous variability in occurrence, crying can often be
elicited in rather mundane situations, e.g., when watching
s sad movie or during interpersonal conflicts with parents,
friends, and romantic partners [11]. This makes emotional
tears a surprisingly common phenomenon [1], [14]. Further-
more, tears can be successfully evoked in the laboratory by
showing participants personally-relevant sadness inducing
films [8], [15]. Today, adult crying is increasingly studied
across a broad range of settings, including high-stakes social
interactions [1], [16]. Tears may also be important cues during
therapy [14], [17], [18], in the courtroom [19], or in political
advertising [20]. Nevertheless, until the recent publication
of a first database on spontaneously elicited dynamic tears
[8], none of the works in this field has yielded any openly
accessible databases that could have been used for training
automatic weeping detectors for videos.

1.1

Apart from the lack of suitable training data, there are
historical reasons why adult emotional tears used to attract
less interest from empirical researchers (cf., [14], [21]). In
his seminal work on “The expression of emotions in man
and animals” [22], Charles Darwin considered basal tears
(i.e., tears serving to nourish and protect the eye) merely to
be biologically adaptive responses, concluding that adults’
emotional tears may not serve any definite purpose [1]. By
contrast, clinicians such as Breuer and Freud [23] thought that
shedding tears would facilitate catharsis and aid recovery.
Today, we know that Darwin and Freud were most likely
both wrong about the role of emotional tears [15], [24].
Over the last two decades, Darwin’s notion has been
challenged by several researchers pointing towards the role
of human emotional tears throughout evolution [16], [24],
[25]. In this vein, tears may have evolved as a handicap
signal towards aggressive or defensive actions. The fact that
tears tend to blur vision could make them reliable signals

Tears as Evolved Socio-Emotional Signals
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for a number of states, such as the need for social support,
loss of control, distress, or appeasement. Tears may also
carry a certain cost or risk to the encoder (i.e., the weeper),
dependent on the type of context [26]. For example, tears
that are perceived as inappropriate (e.g., in stressful work
situations) may reflect negatively upon the crier, evoking
the impression that the person is weak and unprofessional
[1], [27]. Thus, advancing knowledge on the antecedents
and consequences of crying may help better understand the
functions of crying.

1.2 Tears in Concert with Facial Expressions

In terms of ethical concerns, research on the functions of
tears in everyday social interaction may pose a challenge for
data collection. However, much can be learnt from decoding
studies by considering emotional tears as a cue for observers.
In a growing number of studies, tears have been shown
to specifically enhance sadness ratings [4], [28] and the
perceived intensity of emotional states such as sadness,
anger, and fear [29]. Enhanced sadness ratings, also called
the tear effect [21], were also found in the context of facial
photographs with neutral expressions, as well as computer-
rendered images [4], [25]. Thus, tears appear to be implicitly
associated with sadness and negative affect [30]. However,
tears could also have more emotion-specific effects, as shown
by attenuated perceptions of disgust and surprise in the
presence of tears [4]. While most prior decoding studies have
been limited to static images and digitally manipulated tears
[5], [7], the tear effect has recently also been demonstrated
for videos [8]. In this work, sadness perceptions interacted
with the progression of the videos over time, with the
largest differences in perceived sadness between weepers
and non-weepers being found when the weepers started to
cry. Notably, this effect occurred despite the non-weepers
self-reporting very high levels of sadness that were not
significantly lower than those of weepers. This raises the
question which visual cues or features may have driven
the tear effect [8]. Here, machine learning methods may be
able to predict the occurrence of tears on the basis of facial
actions and other concomitant behaviors (i.e., postural cues).
Furthermore, they could help reveal which visual features
may be most important for this task.

Automatic weeping detection may perform best when
the observable behavioral differences between tearful vs.
non-tearful sad encoders are most evident, i.e., when the
first teardrops appear. However, it may also be possible to
distinguish weepers and non-weepers already during the
buildup phase. Compared to other emotional expressions,
sadness and tearing tend to require substantially more time
to emerge and subside [1]. For example, video-based crying-
inductions typically require several minutes to fully take
effect [15], followed by a slow recovery period [31]. This slow
nature might make weeping predictable well in advance of
any visible signs of teardrops on the face. However, it may
also be possible to distinguish weepers and non-weepers
already during the buildup face. If this is the case, then
such a weeping detector might (1) provide a new tool for
studying the psychological antecedents and consequences
of tears (see [1]). Conversely, (2) such an early detection
might provide substantial benefits for developing intelligent
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cognitive systems, e.g., in the context of computer-assisted
therapy (e.g., [32]).

1.3 Affective Computing

With the rise of publicly available datasets, computational
power, and improvements in (mobile) sensors and algo-
rithms, the field of affective computing has made rapid
advances in recent years. Affective computing comprises
a machine’s ability to recognize, express, respond to and
influence its users” emotions [33], making Human-Computer
Interaction (HCI) more natural and engaging. Accordingly,
numerous studies have employed affect recognition systems
to infer emotions from facial expressions [34], body posture
and gestures [35], and eye gaze.

As human behavior is multimodal by nature, there has
been a growing consensus that “ideal” systems for automatic
affect analysis should be multimodal [36]. Consequently, the
combination of different modalities has been the focus of
multiple studies [37], [38], [39], public datasets [40], [41], [42],
and affect recognition challenges [43], [44]. However, the face
arguably remains the most important nonverbal source of
affective information [45]. Facial expressions can be recorded
non-intrusively and at low cost using ordinary video cameras,
and analyzed through various user-friendly commercial
classifiers (e.g., FACET, Affdex, [46]). Many of these systems
additionally provide basic information about head pose
and eye gaze [47], which open-source software tools (e.g.,
OpenFace, OpenPose) can further enrich to extract features
related to body posture and gestures [48]. The latter two may
be particularly informative about the individual’s emotional
state [35], [49]. For instance, Gunes and Picardi [50], [51]
demonstrated that the combination of facial expressions
and upper-body gestures outperforms unimodal approaches.
Not surprisingly, additional modalities such as speech are
increasingly leveraged for multimodal affective computing.
For example, Kessous et al. [52] combined facial expressions,
body gestures, and speech features to automatically classify
eight discrete emotional states. Classifiers trained on body
gestures were even found to outperform (67.1 %) those that
relied on facial expressions (48.3 %) and speech (57.1 %) only.
The best recognition results were obtained when fusing
speech and gesture features (75 %) at a feature level. Hence,
non-verbal behavior conveyed by body posture and gestures
can be an important channel for emotion communication.
Supportive evidence comes from clinical research suggesting
that tears may be associated with other nonverbal behaviors,
such as sudden movements, wiping, touching, or hiding the
face [1], [53].

1.4 Towards Automatic Tear Detection

Concordance between different components of the human
emotion system is typically limited [54], and emotional tears
are unlikely to be an exception to this rule. While the lack
of training data remains a challenge, there are now a few
publicly available data-sets featuring tears in still images [5]
and videos [8]. To this end, a machine learning approach
could be taken to detect when someone is or will be crying.
If successful, this offers a powerful new research tool for the
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study of sadness' and depression, helping to enhance affect
sensing across a broad range of applications.

Given that open-access data on tears are still rather
limited [5], [8], we decided against more data-hungry
deep-learning approaches [55]. Hence, the present work
examines facial and postural features extracted by several
well-established machine classifiers for emotion recognition,
which were then submitted to more traditional Support
Vector Machines (SVMs). The major questions we aimed to
address are the following: (1) Is it possible to infer weeping
based on non-verbal facial and postural behaviors? If yes,
which features are most important for automatic weeping
detection? (2) Which classifiers, or combinations thereof,
are most suitable for indirectly detecting (non-)weepers? (3)
Can weeping be predicted before the moment the first tear
becomes visible?

2 METHODOLOGY

2.1 Data Collection

The video data used in the present study comprised 24
participants from the Portsmouth Dynamic Spontaneous
Tears Database (PDSTD) [8] and 10 participants from the
same subject pool [56] but whose data were not included
in the PDSTD? [56]. As detailed in [8] and [56], female
students (hereafter referred to as encoders) were invited
to the laboratory to watch a self-selected sad movie® (10-15
min) and a neutral film clip about owls (approximately 5
min). They identified the scene of the sad film they found
most emotionally arousing (i.e., saddest). Dynamic facial
behavior was recorded with a frame rate of 30 fps using
a Logitech C920 Pro HD webcam and a video resolution
of 1920 x 1080 pixels [8]. Weeping was detected manually
via infrared thermal imaging (FLIR A655sc). The resulting
dataset consisted of 30 s episodes extracted from the end of
the neutral films, the 30 s immediately prior to the saddest
moment, and the 30 s from 10 s before to 20 s after the saddest
moment (non-weepers) or the first tear (weepers) (see also

(8]).

2.2 Data set

We analyzed the videos of thirty-four encoders (Mag.: 22.18,
SD= 4.67), who were either weeping (1=16, Mag.= 23.94,
SD= 5.90) or not weeping (n= 18, Mag= 20.61, SD= 6.13)
in response to sad movies. We expected the time around
the moment of the first tear to be the most informative
for distinguishing between weepers and non-weepers. We
therefore selected the 30s of highest emotional intensity as

1. Tears are also known to occasionally occur in the context of other
emotions, such as very intense experiences of happiness [1]. However,
they have most consistently been shown to be relevant in contexts
involving sadness and a need for social support [3].

2. These additional participants were not included in the PDSTD
because they did not provide the extended informed consent required
to publish their non-anonymous raw video data. For the purpose of
the present study, the original data could be processed locally, without
revealing the participants’ identity.

3. The original study involved only female participants due to the
greater success of video-based weeping-elicitation in female encoders
[15], [31].

indicated by the onset of the first tear* (weepers) or the
self-identified saddest moment (non-weepers).

2.3 Feature Sets

We focused on individual facial muscles (so-called Action
Units, AUs) as defined by the Facial Action Coding System
(FACS; [57]). We processed the videos using four (commercial
Affdex [58], FACET [59]) and non-commercial (OpenFace
2.0 [60], and OpenPose [61]) classifiers to extract features
based on facial activity and body posture. While several
established off-the-shelf classifiers provide estimates of AUs,
cross-system evaluation studies to date have focused mainly
on basic emotions [62]. Thus, little is known about the com-
parative reliability of single AUs. However, prior work has
demonstrated significant differences in classifier performance
between posed and spontaneous expressions [47], [63], as
well as between classifiers [62], suggesting that recognition
accuracy may differ substantially between systems, emotions,
and individual AUs. We therefore extracted AU-features from
three different facial expression recognition systems (Affdex,
FACET, OpenFace 2.0). Although all of them output similar
numbers of AUs, it is likely that one system performs vastly
better for some AUs than another and vice-versa. Hence, each
classifier might contribute substantial unique information
to our model. Besides facial information, we also assessed
postural features using OpenPose [61], as suggested by earlier
works on objective coding of crying behavior [53]. Table 1
provides an overview of the different machine classifiers, the
included channels, and the features considered in this study.

TABLE 1
Overview of the machine classifiers, channels, and feature sets.
Classifier Channel” Features
FACET (FA) FE Intensity of AU1,2,4-7,9,10,12,
14,15,17,18,20,23-26,28,43
Affdex (AF) FE Intensity of AU1,2,4-7,9,10,12(L/R),

14,15,17,18,20,24-26,28,43
D:E2E, D:E2S, D:Ea2Ea,

D:S2S, D:Ha2N, N Mov?
Intensity and presence of AU1L,2,
4-79,10,12,14,15,17,20,23-26,45 and
presence of AU28

EG X, EG Y?
H X-Lo, H Y-Lo H Z-Lo,

H X-Ro, H Y-Ro, H Z-Ro*

! FE=Facial Expressions, BP=Body Pose, EG=Eye Gaze, HP=Head
Pose. 2 Euclidean distance (D:) between the X, Y coordinates for
eyes (E), ears (Ea), hands (Ha), shoulders (S), hands to the nose (N),
and movement (Mov) of the nose compared to the previous frame.
3 Eye gaze direction in radians in world coordinates averaged for
both eyes for the x-axis and y-axis. *Location (Lo) and Rotation
(R) of the head in radians around X, Y, Z.

OpenPose (OP)  BP

OpenFace (OF) FE

EG
HP

2.3.1 FACET (FA)

FACET (SDK v6.3; iMotions, 2016) is a commercial software
for automatic facial expression recognition that was originally
developed based on the Computer Expression Recognition
Toolbox algorithm CERT [59]. FACET classifies frame-based
facial expressions both in terms of FACS AUs as well as the
six basic emotions [64].

4. The presence of tears was determined via infrared thermal imaging
using a FLIR A655sc [56].
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Fig. 1. Example of an annotated video frame from our data-set using
FACET (top left), Affdex (top right), OpenPose (bottom left), and Open-
Face (bottom right).

2.3.2 Affdex (AF)

Affdex (v7.0, iMotions) was developed by Affectiva, a spin-
off company of the MIT Media Lab [62]. It uses SVM clas-
sifiers and Histogram of Oriented Gradient (HOG) features
[58] to recognize basic emotions as well as 19 different AUs’.

2.3.3 OpenPose (OP)

OpenPose is an open-source system for the detection of
human body, hand, facial and foot key-points in real-time
[61]. For all sessions, the position of 25 body landmarks® and
20 hand landmarks per hand” were extracted for all frames.

2.3.4 OpenfFace (OF)

OpenFace 2.0 is an open-source facial behavior analysis
toolkit [60] which allows for facial landmark detection, head
pose and eye-gaze and estimation, and AU recognition. For
all videos, we extracted facial features, the location and
rotation of the head (head pose), and the direction of eye-
gaze based in individual frames.

2.4 Pre-Processing and Classification

We sliced all (facial and postural) feature streams into
5s segments with 50 % overlap and assigned the label of
the corresponding encoder (crier, non-crier) to it. Next,
we aggregated these segments by calculating statistical
functionals for each feature, namely the mean, median, max,
skewness and kurtosis. We followed Kessous et al. [52] by
combining the feature sets in an early fusion approach. We
applied L2 normalization on each feature vector to have
a unit norm. We used a Support Vector Machine (SVM)
with an RBF kernel for classification and optimized the
v (v € {.0001,.001,.01,.1,1.0}) and C (C' € {.001, .1, 10,

5. Due to copyright reasons, Affdex AUs are not officially labeled as
such.

6. Nose, shoulders, elbows, wrists, middle Hip, left hip, right hip,
ankles, knees, eyes, ears, heels, big toes, small toes

7. Wrist, and each of the three joints and the beginning of the finger
for thumb, index, middle, ring and pinky finger
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25, 50, 100, 1000}) parameters in a 3-fold Cross Validation
(CV) using the training data. We evaluated this approach by
using a user-independent® 5-fold CV with the final prediction
for each encoder (crier, non-crier) being obtained through
majority voting across all samples of that individual. To
test for statistical significance, we conducted non-parametric
McNemar-Tests on the global prediction level for each feature
set against the baseline (chance level). The baseline accuracy
is .558 for all feature sets which results from the slightly
imbalanced class distribution (55,8 % of the participants
belong to the class crier). We used Accuracy (Acc.), Precision,
Recall and F1-Score (F1) as evaluation metrics.

3 RESULTS
3.1

Tab. 2 and Fig. 2 show the user-independent classification
results based on individual feature sets (per system) and
their combination.

Performance per Classifier

TABLE 2
Classification results based on a user-independent 5-fold CV. The
baseline accuracy is .558 for all machine classifiers which results from
the class distribution (55,8 % of the participants belong to the class crier).
The level of significance is indicated by: * (p<0.05) and *** (p<0.001).

Classifier Acc.  Precision Recall  F1
OF .588 .609 737 667
FA .618 .636 737 683
OP 618 .667 632 .649
AF .765 .824 737 778
AF_FA .647 .667 737 .700
OP_FA 676 .700 737 718
OF_FA .676 .700 737 718
OF_OP .706 .765 684 722
OF_AF .765 .762 842 .800
AF_OP* .853 .889 842 .865
OF_OP_FA 735 812 .684 743
AF_OP_FA* .853 .889 842 .865
OF_AF_FA* .853 .889 842 .865
OF_AF_OpP*** 971 .950 1.00 974
OF_AF_OP_FA** 971 .950 1.00 974

When investigating the performance of FACET (.618),
OpenPose (.618), and OpenFace (.588) separately, tear classifi-
cation was close to the baseline, thereby failing to reach
significance (all ps>.05). Classification performance was
somewhat higher for Affdex (.765), but did not reach signifi-
cance either (p=.210). Interestingly, the combination of Affdex
and OpenPose significantly (x*> = 3, p=.002) exceeded the
baseline accuracy (.853). The combined classifications from
both systems were thus similarly accurate as three of the four
three-system combinations. Furthermore, the combination of
Affdex and OpenPose outperformed other two-system com-
binations, such as OpenFace and OpenPose. This suggests
that Affdex may have performed better than other classifiers
at detecting some of the most relevant AU-features features
in this context. Best classification results were achieved when

8. A user-independent Cross Validation considers each subject sepa-
rately to estimate performance for users based on the data of the other
users.
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combining OpenFace, Affdex and OpenPose (.971) which
significantly exceeded the baseline (x? = 0, p<.001) and were
similarly accurate as the combination of all four systems (.971,
x2 = 0, p<.001). These results suggest that the respective
classifiers capture complementary sources of information,
which can be exploited by the combined models.
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Fig. 2. Classification accuracy of the four classifiers and their combina-
tions. The red line indicates the baseline (.558). The level of significance
is indicated by: * (p<0.05) and *** (p<0.001).

3.2 Performance per Encoder

While the combined models generally outperformed models
based on individual systems, a more fine-grained analysis
may help reveal (1) which systems contributed good (vs.
poor) or unique (vs. redundant) information, (2) which
individual videos might show easily recognizable "typical”
(non-) weeping, and (3) which videos could be regarded
as borderline cases. We thus explored the classification
accuracies of individual and combined systems at the level of
individual encoders, separated by weepers and non-weepers.

As illustrated by Fig. 3, four of the nineteen non-weepers
(21%) were always classified correctly, and an additional five
non-weepers (26%) were misclassified only once or twice.
In comparison, none of the weepers were always correctly
classified by the individual- and combined systems. Overall,
this exploratory analysis suggests no substantial difference
in classification accuracies for weepers and non-weepers’.
Nevertheless, a small number of encoders appeared to be
particularly challenging to classify as either weepers or non-
weepers. In particular, encoder numbers 18, 20, 23, and 24
can be regarded as borderline cases.

As further shown by Fig. 3, the three-system combinations
generally matched and improved the performance patterns
of the best-performing two-system combinations. Le., gains
were largely achieved without introducing any new mistakes.
For example, the best-performing three-system combination
of OpenFace, Affdex, and OpenPose (OF_AF_OP) eliminated
nearly all of the misclassified cases of the best two-system
combination of Affdex and OpenPose (AF_OP). Likewise, the

9. We refrained from any statistical comparisons between weepers and
non-weepers due to the large amount of feature-overlap between these
models. Furthermore, the two best-performing system-combinations
already achieved a near-perfect performance.
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Fig. 3. Classification performance for individual encoders based on the
four classifiers and their possible combinations. The grey cells indicate
correct classifications. White cells show incorrect classifications.

combination of OpenFace, Affdex, and FACET (OF_AF_FA)
contributed a few additional correct classifications on top
of the two-system combination of OpenFace and Affdex
(OF_AF). The combined system of Affdex, OpenPose, and
FACET (AF_OP_FA), perfectly duplicated the per-subject
level performance of Affdex and OpenPose (AF_OP). Finally,
OpenFace, OpenPose and FACET (OF_OP_FA) appeared to
slightly improve performance of the two-system combination
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Fig. 4. Classifier performance across time for the first 30 s of the neutral
owl! video (left panel), and 90 s before and 60 s after the sad/tear
moment (right panel), as indicated by the vertical line at t=0. The red line
represents the baseline performance.

of OpenFace and OpenPose (OF_OP). In comparison, perfor-
mance patterns based on individual systems appeared to be
more variable. Individually, OpenFace (FA) and OpenPose
(OP) showed markedly different patterns of mistakes across
individual weepers and non-weepers. Together, these results
suggest that most of the systems contributed relevant fea-
tures to the combined models, despite their relatively poor
individual performance.

3.3 Weeping Prediction and Feature Importance

Our classification results suggest that the presence of tears
may be accurately predicted by combining features from
extant classifiers for posture- and expression recognition. For
example, the combined features from Affdex and OpenPose
were sufficient for a correct classification of weepers and non-
weepers in about 85 % of all cases. However, the classifiers
employed in this study are likely to provide at least partially
redundant information because they aim to extract many of
the same AUs. While a standard cross-validation approach
was applied to prevent potential overfitting [65], the question
still arises to what extent the final model captures meaningful
differences between weepers and non-weepers. Here, a
time-based model analysis may provide further insights
into the validity of our approach, particularly given the
slow trajectory of sadness and tears. Furthermore, the
performance gains achieved by combinations of different
classifiers suggest that sadness-prototypical combinations
of AUs alone may not be sufficient to explain the models’
success. We thus performed a permutation-based analysis of
feature importance to examine which features contributed the
most towards the classification of weepers and non-weepers.

3.3.1 Time-Based Analysis

If the machine learning model was driven by meaningful
crying-related behaviors, then its ability to correctly distin-
guish between weepers and non-weepers should exhibit
properties that are comparable to the trajectory of sadness
and tears observed in the laboratory [11], [15]. Conversely,
if the model has mostly learned from spurious correlations
[66], then it might exhibit a wildly different behavior when
exposed to emotionally neutral samples of the same data.
We therefore decided to analyze the evolution of our model
performance over time. We expected that model-performance
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should generally mirror the known temporal evolution of the
sadness- and tear-response in this data set. The model should
thus fail to distinguish weepers from non-weepers during
the baseline-period. Furthermore, weeping predictions may
significantly exceed baseline accuracies already before the
sad/tear moment.

To examine this hypothesis, we re-applied our model iter-
atively across shifting time windows. We stacked 50 frames
(representing 5s), calculating maxima, mean, median, kurto-
sis and skew, into one window and used a shift of 25 frames
(2.5s), i.e. each window containing 2.5s of the previous
window. We combined 11 continuous windows into one
group representing 30s of video, resulting in 61 continuous
groups!? for the sad video and 13 groups for the neutral
video. Each group thus contained one new window (2.5 s new
data) that differed from the previous group. Starting with the
first neutral group, we trained the same SVM with an RBF
kernel to classify each window and perform majority voting
over the output to classify the group. We then conducted a
5-fold CV at each time interval.

As illustrated by Fig. 4, the time-based analysis of
tear-prediction accuracy appeared to be generally in line
with the expected pattern of differences between weepers
and non-weepers reported by human observers in [8]. We
observed the best model performance, i.e. 97 % accuracy, for
the window starting at the sad tear moment. In contrast,
classification accuracy during the neutral video hovered
about the baseline, with a maximum accuracy score of 62.5 %.
Somewhat unexpectedly, the second highest peak, with
94 % accuracy, emerged about only 50s after the sad/tear
moment. However, overall, performance during the build-up
-and recovery phases appeared to be well in-between that
of the neutral video and the sad/tear moment. Together,
these results suggest that our model has likely learned to
distinguish between weepers and non-weepers based on
observable crying-related behaviors.

3.3.2 Permutation-based Feature Importance
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