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Teardrops on My Face: Automatic Weeping
Detection from Nonverbal Behavior

Dennis Küster, Lars Steinert, Marc Baker, Nikhil Bhardwaj, and Eva G. Krumhuber

Abstract—Human emotional tears are a powerful socio-emotional signal. Yet, they have received relatively little attention in empirical
research compared to facial expressions or body posture. While humans are highly sensitive to others’ tears, to date, no automatic means
exist for detecting spontaneous weeping. This paper employed facial and postural features extracted using four pre-trained classifiers
(FACET, Affdex, OpenFace, OpenPose) to train a Support Vector Machine (SVM) to distinguish spontaneous weepers from non-weepers.
Results showed that weeping can be accurately inferred from nonverbal behavior. Importantly, this distinction can be made before the
appearance of visible tears on the face. However, features from at least two classifiers need to be combined, with the best models
blending three or four classifiers to achieve near-perfect performance (97% accuracy). We discuss how direct and indirect tear detection
methods may help to yield important new insights into the antecedents and consequences of emotional tears and how affective
computing could benefit from the ability to recognize and respond to this uniquely human signal.

Index Terms—Weeping, tears, facial expression, body posture, support vector machine (SVM).

✦

1 INTRODUCTION

EMOTIONAL tears are believed to serve uniquely human
functions such as appeasement, distress, and helpless-

ness, signaling a need for social support [1], [2]. Their
capacity to induce prosocial responses in observers is well-
known across many cultures [3]. Tears have been consistently
shown to facilitate the perception of sadness [4], [5], with
even brief exposures to tearful faces impacting emotion
perception [4], [6]. Nevertheless, contemporary research
on the functions of emotional tears is still limited by a
surprisingly narrow selection of stimuli and methods [7].
Much of the available experimental work has used digitally
manipulated (i.e., ”photo-shopped”) images [5], with only
a few studies examining spontaneously elicited tears [8].
Although there have been a few tentative efforts to improve
the quality of tear-related stimuli [4], [9], [10], emotional
tears have thus far played a less important role in affective
computing.

A major reason for such negligence is the lack of an-
notated training data. Some of the most potent elicitors
of emotional tears throughout the lifespan (e.g., funerals,
weddings, or divorces) are indeed rare and difficult to
assess [11]. Also, a person’s proneness to crying is subject
to a plethora of factors, including age, situational demands,
gender stereotypes, and socio-cultural norms [1], [12]. For
example, young adults cry less frequently than other age
groups [11], and adult men in Western societies report crying
2-4 times less frequently than women [13]. Crying may thus
appear to be less common in certain types of contexts. Despite
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their enormous variability in occurrence, crying can often be
elicited in rather mundane situations, e.g., when watching
s sad movie or during interpersonal conflicts with parents,
friends, and romantic partners [11]. This makes emotional
tears a surprisingly common phenomenon [1], [14]. Further-
more, tears can be successfully evoked in the laboratory by
showing participants personally-relevant sadness inducing
films [8], [15]. Today, adult crying is increasingly studied
across a broad range of settings, including high-stakes social
interactions [1], [16]. Tears may also be important cues during
therapy [14], [17], [18], in the courtroom [19], or in political
advertising [20]. Nevertheless, until the recent publication
of a first database on spontaneously elicited dynamic tears
[8], none of the works in this field has yielded any openly
accessible databases that could have been used for training
automatic weeping detectors for videos.

1.1 Tears as Evolved Socio-Emotional Signals

Apart from the lack of suitable training data, there are
historical reasons why adult emotional tears used to attract
less interest from empirical researchers (cf., [14], [21]). In
his seminal work on ”The expression of emotions in man
and animals” [22], Charles Darwin considered basal tears
(i.e., tears serving to nourish and protect the eye) merely to
be biologically adaptive responses, concluding that adults’
emotional tears may not serve any definite purpose [1]. By
contrast, clinicians such as Breuer and Freud [23] thought that
shedding tears would facilitate catharsis and aid recovery.
Today, we know that Darwin and Freud were most likely
both wrong about the role of emotional tears [15], [24].

Over the last two decades, Darwin’s notion has been
challenged by several researchers pointing towards the role
of human emotional tears throughout evolution [16], [24],
[25]. In this vein, tears may have evolved as a handicap
signal towards aggressive or defensive actions. The fact that
tears tend to blur vision could make them reliable signals
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for a number of states, such as the need for social support,
loss of control, distress, or appeasement. Tears may also
carry a certain cost or risk to the encoder (i.e., the weeper),
dependent on the type of context [26]. For example, tears
that are perceived as inappropriate (e.g., in stressful work
situations) may reflect negatively upon the crier, evoking
the impression that the person is weak and unprofessional
[1], [27]. Thus, advancing knowledge on the antecedents
and consequences of crying may help better understand the
functions of crying.

1.2 Tears in Concert with Facial Expressions

In terms of ethical concerns, research on the functions of
tears in everyday social interaction may pose a challenge for
data collection. However, much can be learnt from decoding
studies by considering emotional tears as a cue for observers.
In a growing number of studies, tears have been shown
to specifically enhance sadness ratings [4], [28] and the
perceived intensity of emotional states such as sadness,
anger, and fear [29]. Enhanced sadness ratings, also called
the tear effect [21], were also found in the context of facial
photographs with neutral expressions, as well as computer-
rendered images [4], [25]. Thus, tears appear to be implicitly
associated with sadness and negative affect [30]. However,
tears could also have more emotion-specific effects, as shown
by attenuated perceptions of disgust and surprise in the
presence of tears [4]. While most prior decoding studies have
been limited to static images and digitally manipulated tears
[5], [7], the tear effect has recently also been demonstrated
for videos [8]. In this work, sadness perceptions interacted
with the progression of the videos over time, with the
largest differences in perceived sadness between weepers
and non-weepers being found when the weepers started to
cry. Notably, this effect occurred despite the non-weepers
self-reporting very high levels of sadness that were not
significantly lower than those of weepers. This raises the
question which visual cues or features may have driven
the tear effect [8]. Here, machine learning methods may be
able to predict the occurrence of tears on the basis of facial
actions and other concomitant behaviors (i.e., postural cues).
Furthermore, they could help reveal which visual features
may be most important for this task.

Automatic weeping detection may perform best when
the observable behavioral differences between tearful vs.
non-tearful sad encoders are most evident, i.e., when the
first teardrops appear. However, it may also be possible to
distinguish weepers and non-weepers already during the
buildup phase. Compared to other emotional expressions,
sadness and tearing tend to require substantially more time
to emerge and subside [1]. For example, video-based crying-
inductions typically require several minutes to fully take
effect [15], followed by a slow recovery period [31]. This slow
nature might make weeping predictable well in advance of
any visible signs of teardrops on the face. However, it may
also be possible to distinguish weepers and non-weepers
already during the buildup face. If this is the case, then
such a weeping detector might (1) provide a new tool for
studying the psychological antecedents and consequences
of tears (see [1]). Conversely, (2) such an early detection
might provide substantial benefits for developing intelligent

cognitive systems, e.g., in the context of computer-assisted
therapy (e.g., [32]).

1.3 Affective Computing

With the rise of publicly available datasets, computational
power, and improvements in (mobile) sensors and algo-
rithms, the field of affective computing has made rapid
advances in recent years. Affective computing comprises
a machine’s ability to recognize, express, respond to and
influence its users’ emotions [33], making Human-Computer
Interaction (HCI) more natural and engaging. Accordingly,
numerous studies have employed affect recognition systems
to infer emotions from facial expressions [34], body posture
and gestures [35], and eye gaze.

As human behavior is multimodal by nature, there has
been a growing consensus that ”ideal” systems for automatic
affect analysis should be multimodal [36]. Consequently, the
combination of different modalities has been the focus of
multiple studies [37], [38], [39], public datasets [40], [41], [42],
and affect recognition challenges [43], [44]. However, the face
arguably remains the most important nonverbal source of
affective information [45]. Facial expressions can be recorded
non-intrusively and at low cost using ordinary video cameras,
and analyzed through various user-friendly commercial
classifiers (e.g., FACET, Affdex, [46]). Many of these systems
additionally provide basic information about head pose
and eye gaze [47], which open-source software tools (e.g.,
OpenFace, OpenPose) can further enrich to extract features
related to body posture and gestures [48]. The latter two may
be particularly informative about the individual’s emotional
state [35], [49]. For instance, Gunes and Picardi [50], [51]
demonstrated that the combination of facial expressions
and upper-body gestures outperforms unimodal approaches.
Not surprisingly, additional modalities such as speech are
increasingly leveraged for multimodal affective computing.
For example, Kessous et al. [52] combined facial expressions,
body gestures, and speech features to automatically classify
eight discrete emotional states. Classifiers trained on body
gestures were even found to outperform (67.1 %) those that
relied on facial expressions (48.3 %) and speech (57.1 %) only.
The best recognition results were obtained when fusing
speech and gesture features (75 %) at a feature level. Hence,
non-verbal behavior conveyed by body posture and gestures
can be an important channel for emotion communication.
Supportive evidence comes from clinical research suggesting
that tears may be associated with other nonverbal behaviors,
such as sudden movements, wiping, touching, or hiding the
face [1], [53].

1.4 Towards Automatic Tear Detection

Concordance between different components of the human
emotion system is typically limited [54], and emotional tears
are unlikely to be an exception to this rule. While the lack
of training data remains a challenge, there are now a few
publicly available data-sets featuring tears in still images [5]
and videos [8]. To this end, a machine learning approach
could be taken to detect when someone is or will be crying.
If successful, this offers a powerful new research tool for the
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study of sadness1 and depression, helping to enhance affect
sensing across a broad range of applications.

Given that open-access data on tears are still rather
limited [5], [8], we decided against more data-hungry
deep-learning approaches [55]. Hence, the present work
examines facial and postural features extracted by several
well-established machine classifiers for emotion recognition,
which were then submitted to more traditional Support
Vector Machines (SVMs). The major questions we aimed to
address are the following: (1) Is it possible to infer weeping
based on non-verbal facial and postural behaviors? If yes,
which features are most important for automatic weeping
detection? (2) Which classifiers, or combinations thereof,
are most suitable for indirectly detecting (non-)weepers? (3)
Can weeping be predicted before the moment the first tear
becomes visible?

2 METHODOLOGY

2.1 Data Collection

The video data used in the present study comprised 24
participants from the Portsmouth Dynamic Spontaneous
Tears Database (PDSTD) [8] and 10 participants from the
same subject pool [56] but whose data were not included
in the PDSTD2 [56]. As detailed in [8] and [56], female
students (hereafter referred to as encoders) were invited
to the laboratory to watch a self-selected sad movie3 (10-15
min) and a neutral film clip about owls (approximately 5
min). They identified the scene of the sad film they found
most emotionally arousing (i.e., saddest). Dynamic facial
behavior was recorded with a frame rate of 30 fps using
a Logitech C920 Pro HD webcam and a video resolution
of 1920 x 1080 pixels [8]. Weeping was detected manually
via infrared thermal imaging (FLIR A655sc). The resulting
dataset consisted of 30 s episodes extracted from the end of
the neutral films, the 30 s immediately prior to the saddest
moment, and the 30 s from 10 s before to 20 s after the saddest
moment (non-weepers) or the first tear (weepers) (see also
[8]).

2.2 Data set

We analyzed the videos of thirty-four encoders (MAge: 22.18,
SD= 4.67), who were either weeping (n=16, MAge= 23.94,
SD= 5.90) or not weeping (n= 18, MAge= 20.61, SD= 6.13)
in response to sad movies. We expected the time around
the moment of the first tear to be the most informative
for distinguishing between weepers and non-weepers. We
therefore selected the 30 s of highest emotional intensity as

1. Tears are also known to occasionally occur in the context of other
emotions, such as very intense experiences of happiness [1]. However,
they have most consistently been shown to be relevant in contexts
involving sadness and a need for social support [3].

2. These additional participants were not included in the PDSTD
because they did not provide the extended informed consent required
to publish their non-anonymous raw video data. For the purpose of
the present study, the original data could be processed locally, without
revealing the participants’ identity.

3. The original study involved only female participants due to the
greater success of video-based weeping-elicitation in female encoders
[15], [31].

indicated by the onset of the first tear4 (weepers) or the
self-identified saddest moment (non-weepers).

2.3 Feature Sets

We focused on individual facial muscles (so-called Action
Units, AUs) as defined by the Facial Action Coding System
(FACS; [57]). We processed the videos using four (commercial
Affdex [58], FACET [59]) and non-commercial (OpenFace
2.0 [60], and OpenPose [61]) classifiers to extract features
based on facial activity and body posture. While several
established off-the-shelf classifiers provide estimates of AUs,
cross-system evaluation studies to date have focused mainly
on basic emotions [62]. Thus, little is known about the com-
parative reliability of single AUs. However, prior work has
demonstrated significant differences in classifier performance
between posed and spontaneous expressions [47], [63], as
well as between classifiers [62], suggesting that recognition
accuracy may differ substantially between systems, emotions,
and individual AUs. We therefore extracted AU-features from
three different facial expression recognition systems (Affdex,
FACET, OpenFace 2.0). Although all of them output similar
numbers of AUs, it is likely that one system performs vastly
better for some AUs than another and vice-versa. Hence, each
classifier might contribute substantial unique information
to our model. Besides facial information, we also assessed
postural features using OpenPose [61], as suggested by earlier
works on objective coding of crying behavior [53]. Table 1
provides an overview of the different machine classifiers, the
included channels, and the features considered in this study.

TABLE 1
Overview of the machine classifiers, channels, and feature sets.

Classifier Channel1 Features
FACET (FA) FE Intensity of AU1,2,4-7,9,10,12,

14,15,17,18,20,23-26,28,43
Affdex (AF) FE Intensity of AU1,2,4-7,9,10,12(L/R),

14,15,17,18,20,24-26,28,43
OpenPose (OP) BP D:E2E, D:E2S, D:Ea2Ea,

D:S2S, D:Ha2N, N Mov2

OpenFace (OF) FE Intensity and presence of AU1,2,
4-7,9,10,12,14,15,17,20,23-26,45 and

presence of AU28
EG EG X, EG Y3

HP H X-Lo, H Y-Lo H Z-Lo,
H X-Ro, H Y-Ro, H Z-Ro4

1 FE=Facial Expressions, BP=Body Pose, EG=Eye Gaze, HP=Head
Pose. 2 Euclidean distance (D:) between the X, Y coordinates for
eyes (E), ears (Ea), hands (Ha), shoulders (S), hands to the nose (N),
and movement (Mov) of the nose compared to the previous frame.
3 Eye gaze direction in radians in world coordinates averaged for
both eyes for the x-axis and y-axis. 4 Location (Lo) and Rotation
(R) of the head in radians around X, Y, Z.

2.3.1 FACET (FA)
FACET (SDK v6.3; iMotions, 2016) is a commercial software
for automatic facial expression recognition that was originally
developed based on the Computer Expression Recognition
Toolbox algorithm CERT [59]. FACET classifies frame-based
facial expressions both in terms of FACS AUs as well as the
six basic emotions [64].

4. The presence of tears was determined via infrared thermal imaging
using a FLIR A655sc [56].
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Fig. 1. Example of an annotated video frame from our data-set using
FACET (top left), Affdex (top right), OpenPose (bottom left), and Open-
Face (bottom right).

2.3.2 Affdex (AF)
Affdex (v7.0, iMotions) was developed by Affectiva, a spin-
off company of the MIT Media Lab [62]. It uses SVM clas-
sifiers and Histogram of Oriented Gradient (HOG) features
[58] to recognize basic emotions as well as 19 different AUs5.

2.3.3 OpenPose (OP)
OpenPose is an open-source system for the detection of
human body, hand, facial and foot key-points in real-time
[61]. For all sessions, the position of 25 body landmarks6 and
20 hand landmarks per hand7 were extracted for all frames.

2.3.4 OpenFace (OF)
OpenFace 2.0 is an open-source facial behavior analysis
toolkit [60] which allows for facial landmark detection, head
pose and eye-gaze and estimation, and AU recognition. For
all videos, we extracted facial features, the location and
rotation of the head (head pose), and the direction of eye-
gaze based in individual frames.

2.4 Pre-Processing and Classification
We sliced all (facial and postural) feature streams into
5 s segments with 50 % overlap and assigned the label of
the corresponding encoder (crier, non-crier) to it. Next,
we aggregated these segments by calculating statistical
functionals for each feature, namely the mean, median, max,
skewness and kurtosis. We followed Kessous et al. [52] by
combining the feature sets in an early fusion approach. We
applied L2 normalization on each feature vector to have
a unit norm. We used a Support Vector Machine (SVM)
with an RBF kernel for classification and optimized the
γ (γ ∈ {.0001, .001, .01, .1, 1.0}) and C (C ∈ {.001, .1, 10,

5. Due to copyright reasons, Affdex AUs are not officially labeled as
such.

6. Nose, shoulders, elbows, wrists, middle Hip, left hip, right hip,
ankles, knees, eyes, ears, heels, big toes, small toes

7. Wrist, and each of the three joints and the beginning of the finger
for thumb, index, middle, ring and pinky finger

25, 50, 100, 1000}) parameters in a 3-fold Cross Validation
(CV) using the training data. We evaluated this approach by
using a user-independent8 5-fold CV with the final prediction
for each encoder (crier, non-crier) being obtained through
majority voting across all samples of that individual. To
test for statistical significance, we conducted non-parametric
McNemar-Tests on the global prediction level for each feature
set against the baseline (chance level). The baseline accuracy
is .558 for all feature sets which results from the slightly
imbalanced class distribution (55,8 % of the participants
belong to the class crier). We used Accuracy (Acc.), Precision,
Recall and F1-Score (F1) as evaluation metrics.

3 RESULTS

3.1 Performance per Classifier

Tab. 2 and Fig. 2 show the user-independent classification
results based on individual feature sets (per system) and
their combination.

TABLE 2
Classification results based on a user-independent 5-fold CV. The

baseline accuracy is .558 for all machine classifiers which results from
the class distribution (55,8 % of the participants belong to the class crier).
The level of significance is indicated by: * (p<0.05) and *** (p<0.001).

Classifier Acc. Precision Recall F1
OF .588 .609 .737 .667
FA .618 .636 .737 .683
OP .618 .667 .632 .649
AF .765 .824 .737 .778
AF FA .647 .667 .737 .700
OP FA .676 .700 .737 .718
OF FA .676 .700 .737 .718
OF OP .706 .765 .684 .722
OF AF .765 .762 .842 .800
AF OP* .853 .889 .842 .865
OF OP FA .735 .812 .684 .743
AF OP FA* .853 .889 .842 .865
OF AF FA* .853 .889 .842 .865
OF AF OP*** .971 .950 1.00 .974
OF AF OP FA*** .971 .950 1.00 .974

When investigating the performance of FACET (.618),
OpenPose (.618), and OpenFace (.588) separately, tear classifi-
cation was close to the baseline, thereby failing to reach
significance (all ps>.05). Classification performance was
somewhat higher for Affdex (.765), but did not reach signifi-
cance either (p=.210). Interestingly, the combination of Affdex
and OpenPose significantly (χ2 = 3, p=.002) exceeded the
baseline accuracy (.853). The combined classifications from
both systems were thus similarly accurate as three of the four
three-system combinations. Furthermore, the combination of
Affdex and OpenPose outperformed other two-system com-
binations, such as OpenFace and OpenPose. This suggests
that Affdex may have performed better than other classifiers
at detecting some of the most relevant AU-features features
in this context. Best classification results were achieved when

8. A user-independent Cross Validation considers each subject sepa-
rately to estimate performance for users based on the data of the other
users.
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combining OpenFace, Affdex and OpenPose (.971) which
significantly exceeded the baseline (χ2 = 0, p<.001) and were
similarly accurate as the combination of all four systems (.971,
χ2 = 0, p<.001). These results suggest that the respective
classifiers capture complementary sources of information,
which can be exploited by the combined models.

Fig. 2. Classification accuracy of the four classifiers and their combina-
tions. The red line indicates the baseline (.558). The level of significance
is indicated by: * (p<0.05) and *** (p<0.001).

3.2 Performance per Encoder

While the combined models generally outperformed models
based on individual systems, a more fine-grained analysis
may help reveal (1) which systems contributed good (vs.
poor) or unique (vs. redundant) information, (2) which
individual videos might show easily recognizable ”typical”
(non-) weeping, and (3) which videos could be regarded
as borderline cases. We thus explored the classification
accuracies of individual and combined systems at the level of
individual encoders, separated by weepers and non-weepers.

As illustrated by Fig. 3, four of the nineteen non-weepers
(21%) were always classified correctly, and an additional five
non-weepers (26%) were misclassified only once or twice.
In comparison, none of the weepers were always correctly
classified by the individual- and combined systems. Overall,
this exploratory analysis suggests no substantial difference
in classification accuracies for weepers and non-weepers9.
Nevertheless, a small number of encoders appeared to be
particularly challenging to classify as either weepers or non-
weepers. In particular, encoder numbers 18, 20, 23, and 24
can be regarded as borderline cases.

As further shown by Fig. 3, the three-system combinations
generally matched and improved the performance patterns
of the best-performing two-system combinations. I.e., gains
were largely achieved without introducing any new mistakes.
For example, the best-performing three-system combination
of OpenFace, Affdex, and OpenPose (OF AF OP) eliminated
nearly all of the misclassified cases of the best two-system
combination of Affdex and OpenPose (AF OP). Likewise, the

9. We refrained from any statistical comparisons between weepers and
non-weepers due to the large amount of feature-overlap between these
models. Furthermore, the two best-performing system-combinations
already achieved a near-perfect performance.

Fig. 3. Classification performance for individual encoders based on the
four classifiers and their possible combinations. The grey cells indicate
correct classifications. White cells show incorrect classifications.

combination of OpenFace, Affdex, and FACET (OF AF FA)
contributed a few additional correct classifications on top
of the two-system combination of OpenFace and Affdex
(OF AF). The combined system of Affdex, OpenPose, and
FACET (AF OP FA), perfectly duplicated the per-subject
level performance of Affdex and OpenPose (AF OP). Finally,
OpenFace, OpenPose and FACET (OF OP FA) appeared to
slightly improve performance of the two-system combination
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Fig. 4. Classifier performance across time for the first 30 s of the neutral
owl video (left panel), and 90 s before and 60 s after the sad/tear
moment (right panel), as indicated by the vertical line at t=0. The red line
represents the baseline performance.

of OpenFace and OpenPose (OF OP). In comparison, perfor-
mance patterns based on individual systems appeared to be
more variable. Individually, OpenFace (FA) and OpenPose
(OP) showed markedly different patterns of mistakes across
individual weepers and non-weepers. Together, these results
suggest that most of the systems contributed relevant fea-
tures to the combined models, despite their relatively poor
individual performance.

3.3 Weeping Prediction and Feature Importance
Our classification results suggest that the presence of tears
may be accurately predicted by combining features from
extant classifiers for posture- and expression recognition. For
example, the combined features from Affdex and OpenPose
were sufficient for a correct classification of weepers and non-
weepers in about 85 % of all cases. However, the classifiers
employed in this study are likely to provide at least partially
redundant information because they aim to extract many of
the same AUs. While a standard cross-validation approach
was applied to prevent potential overfitting [65], the question
still arises to what extent the final model captures meaningful
differences between weepers and non-weepers. Here, a
time-based model analysis may provide further insights
into the validity of our approach, particularly given the
slow trajectory of sadness and tears. Furthermore, the
performance gains achieved by combinations of different
classifiers suggest that sadness-prototypical combinations
of AUs alone may not be sufficient to explain the models’
success. We thus performed a permutation-based analysis of
feature importance to examine which features contributed the
most towards the classification of weepers and non-weepers.

3.3.1 Time-Based Analysis
If the machine learning model was driven by meaningful
crying-related behaviors, then its ability to correctly distin-
guish between weepers and non-weepers should exhibit
properties that are comparable to the trajectory of sadness
and tears observed in the laboratory [11], [15]. Conversely,
if the model has mostly learned from spurious correlations
[66], then it might exhibit a wildly different behavior when
exposed to emotionally neutral samples of the same data.
We therefore decided to analyze the evolution of our model
performance over time. We expected that model-performance

should generally mirror the known temporal evolution of the
sadness- and tear-response in this data set. The model should
thus fail to distinguish weepers from non-weepers during
the baseline-period. Furthermore, weeping predictions may
significantly exceed baseline accuracies already before the
sad/tear moment.

To examine this hypothesis, we re-applied our model iter-
atively across shifting time windows. We stacked 50 frames
(representing 5 s), calculating maxima, mean, median, kurto-
sis and skew, into one window and used a shift of 25 frames
(2.5 s), i.e. each window containing 2.5 s of the previous
window. We combined 11 continuous windows into one
group representing 30 s of video, resulting in 61 continuous
groups10 for the sad video and 13 groups for the neutral
video. Each group thus contained one new window (2.5 s new
data) that differed from the previous group. Starting with the
first neutral group, we trained the same SVM with an RBF
kernel to classify each window and perform majority voting
over the output to classify the group. We then conducted a
5-fold CV at each time interval.

As illustrated by Fig. 4, the time-based analysis of
tear-prediction accuracy appeared to be generally in line
with the expected pattern of differences between weepers
and non-weepers reported by human observers in [8]. We
observed the best model performance, i.e. 97 % accuracy, for
the window starting at the sad tear moment. In contrast,
classification accuracy during the neutral video hovered
about the baseline, with a maximum accuracy score of 62.5 %.
Somewhat unexpectedly, the second highest peak, with
94 % accuracy, emerged about only 50 s after the sad/tear
moment. However, overall, performance during the build-up
-and recovery phases appeared to be well in-between that
of the neutral video and the sad/tear moment. Together,
these results suggest that our model has likely learned to
distinguish between weepers and non-weepers based on
observable crying-related behaviors.

3.3.2 Permutation-based Feature Importance

Explainable algorithms have gained growing attention in
the field of machine learning as the increase in model
complexity often implies a decrease in their interpretability
[67]. However, understanding the mechanisms of a model’s
decisions can increase trust in affective computing and
provide important insights into the mechanisms underlying
human behavior [67]. Ideally, analyses of explainable algo-
rithms should aim to bridge algorithm-generated explana-
tions and established theories [68]. We apply a permutation-
based feature importance (PB-FI) to assess which individual
features are important for the classification of weepers ver-
sus non-weepers. PB-FI describes the model’s performance
decrease when a single feature is randomly shuffled [69]. The
underlying assumption is that the permutation of important
features will substantially weaken the model’s performance,
whereas the permutation of unimportant ones will only have
a minuscule effect.

10. Encoders differed considerably from one another with respect to
when they started to cry, and how close this time point was to the end of
the sad video. We therefore limited the temporal analysis from 90 s prior
to tearing up until 90 s after the first tear. Since each group contains 30 s
of video information, the resulting performance plot ends 60 s after the
sad/tear moment.
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The four classifiers (FACET, Affdex, OpenFace, OpenPose)
were trained using all feature sets for each time window as
described in Sec. 3.3.1. Applying a user-independent 5-Fold
CV, we randomly shuffled each individual feature of the test
set 50 times. We then observed the average change in the
model’s accuracy over each feature and each fold for each
time window.

Fig. 5. The average permutation-based feature importance across
participants over time measured as the change in accuracy (%) per
feature type. Red-shaded cells indicate important features while blue
cells indicate unimportant features. The color scale is limited to 0.1 to
improve visibility in the mid-range of values. EG X: eye gaze x-axis; EG
Y: eye gaze x-axis; H X-Lo: head x-axis location; H X-Ro: head X-axis
rotation; H Y-Lo: head y-axis location; H Y-Ro: head Y-axis rotation; H
Z-Lo: head y-axis location; H Z-Ro: head Y-axis rotation; D:E2E: distance
between both eyes; D:E2S distance between eyes to shoulder; D:Ea2EA:
distance between both ears; D:S2S: distance between both shoulders;
D:Ha2N: distance between hands and nose; N Mov: movement of the
nose compared to the previous frame.

The majority of the features used by our model were facial
AUs, including multiple instances of AUs that are considered
to be prototypical for sadness by basic emotion theory (AU1,
AU4, AU15, AU17; [57], [70]). However, AUs were generally

much less important in the PB-FI analysis compared to spe-
cific head- and body postures11 (see Fig. 5). Overall, postural
features such as the distance of the head to the camera (H
Z-Lo), the distance between both eyes (D:Ea2Ea), and the
visual distance between both shoulders (D:S2S) appeared
to be the most important features during, before, and after
the sad/tear moment. Among the facial AUs, only AU43
(eyes closed) and AU24 (lip pressor) showed visibly elevated
feature importances during the sad/tear moment, with AU25
(lips part) indicating slightly elevated importances before
and after this event. Furthermore, the heatmap suggests
little importance of single AUs as detected by either FACET
or OpenFace. For example, when considering the sad/tear
moment, the recognition accuracy would drop by 19.0 %
when the feature H Z-Lo would not be accessible to the
classifier, followed by D:Ee2Ea (6.9 %), AU43 (4.2 %), D:S2S
3.7 %, and AU24 3.4 %. Permuting AU25 leads to a decrease
of 1.1 %.

Together, these results suggest that our model was partic-
ularly sensitive to changes in the distance of participants to
the screen, as reflected by the three most important postural
features, eye blinking, and the lips either pressing together
or parting. In comparison, most individual AUs were not as
important for the performance of our model.

4 DISCUSSION

Due to a lack of reliable training data and a historical neglect
of tears as a socio-emotional signal, weeping and emotional
tears have previously played only a minor role in affective
computing research. The present work took a first step
towards remedying this situation by proposing an indirect
approach for automatic tear detection. We leveraged four
well-established classifiers for facial expression- and posture
recognition to extract potential weeping-related features from
a new data set of spontaneous dynamic sadness expressions
and tears [8]. We then submitted the resulting feature sets
to SVMs. Our results show that this approach succeeded
in almost perfectly separating weepers from non-weepers
during the sad/tear moment. Thus, we could detect whether
encoders were merely sad or weeping when watching self-
selected sad films.

Our results suggest that successful weeping detection
may require a combination of features comprising various
AUs as well as postural cues12, extracted by means of two
or more off-the-shelf classifiers. While the results of most
single classifiers were at chance level, Affdex achieved nearly
77 % accuracy. While this result still fell short of reaching
statistical significance, it is possible that larger data sets
may allow for better performance by Affdex in the future.
Nevertheless, combining Affdex-features with those from
an additional open-access classifier (OpenPose) significantly
outperformed the baseline at a level of about 85 % accuracy.
In line with previous efforts pointing towards the importance
of objective coding approaches of crying behaviors [53],
this result suggests that postural cues may play a crucial
role in distinguishing weeping from sadness. Furthermore,

11. Exact values and all raw data can be obtained from the first author
upon request.

12. Apart from body posture per se, this includes also head pose and
eye gaze.
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our classifier comparisons suggest that Affdex may be able
to contribute somewhat more weeping-related information
than FACET. This may appear surprising given that FACET
has previously been shown to outperform Affdex with
respect to the classification of basic emotion expressions
[46]. Nonetheless, Affdex could still be more reliable when it
comes to capturing weeping-related facial AUs.

Our exploratory analysis of performance patterns per
encoder suggests that each of the four classifiers contributed
a certain amount of unique information. This result is most
evident for the combination of OpenFace and OpenPose.
Individually, the feature sets from both classifiers performed
insufficiently in order to detect weeping. However, their
patterns of (in-)correctly classified encoders were rather
complementary, and both systems performed very well
when combined with Affdex. Affdex was part of the best
two-system and three-system combinations, suggesting a
strong contribution of Affdex to the overall success of
the classification task. Finally, the model constructed from
FACET’s features correctly classified two ”edge cases” that
were missed by all other single-system models. However,
it contributed somewhat less to the success of the more
aggregated models. Nevertheless, our approach appeared to
benefit greatly from including different information sources.

The time-based performance analyses support the validity
of our approach for automatic detection of weeping and tears.
As expected, the best model performance was at chance level
when encoders were watching a control video about owls [8],
[56]. Notably, this video still elicited some (non-sadness) self-
reported emotional responses from the encoders, including
a certain amount of amusement and interest. Thus, while
the emotion-inducing materials were neutral with respect to
sadness, they still depicted some variance with in terms of
the extracted features.

Finally, our analysis of feature importances suggests that
AUs that were previously defined as prototypical for sadness
by basic emotion theory (e.g., [70]) only play a subordinate
role for automatic weeping detection and prediction. Sur-
prisingly, changes in the distance to the camera and other
postural features were substantially more important than any
individual facial AUs. Among the AUs that did appear to
matter more, self-regulatory behaviors such as eye-blinking
and lip-pressing (and its opposite) seemed more relevant.
Here, eye-blinking could be interpreted as directly associated
with (attempts to control) the appearance of tears in the eyes
[25]. Likewise, lip-pressing may point towards an effort to
suppress the weeping- or sadness response. Similarly, our per-
classifier performance results suggest that facial expressions
alone may not be sufficient for accurate weeping prediction in
this setting. Together, these findings appear to be in line with
recent criticisms of the explanatory value of basic emotion
theory (e.g., [71], [72], [73], [74]).

While the present work focused on classifying weepers
and non-weepers during the sad/tear moment, additional
analyses suggest that this distinction may be possible already
a minute before (or after13) the onset of the tears. Future
work could use a similar approach to predict weeping in

13. We did not extend beyond this period because some encoders
wept near to the end of the sadness-inducing film.

other (mixed) emotional contexts before the occurrence of
teardrops on the face.

4.1 Limitations

Although the present work was successful in detecting (non-
)weeping based on facial AUs and postural features, some
limitations remain. First, our model did not directly detect
visible signs of tears; hence, it is likely not sufficiently tear-
specific to reliably pinpoint the presence of tears in an
image. In fact, our model should fail to detect artificially
evoked ”onion tears” [1], or digitally added tears [5], [7].
Instead, the model appears to detect a broader set of weeping-
related behaviors that culminate in tears. This makes the
current approach suitable for predicting when someone is
going to cry - before the presence of any tears on the face.
Furthermore, the results cannot be explained by spurious
correlations. Specifically, it failed to separate weepers from
non-weepers during the baseline period, and peak model
performance coincided with the sad/tear moment. Our
model performance therefore appears to be highly consistent
with predictions from the crying literature (e.g., [1], [15],
[31]).

The present work has been limited by the small size of
available data sets featuring spontaneous emotional tears [5],
[8]. Furthermore, all participants in the present data set were
female and White [8]. Therefore, the stimulus set was not
diverse with respect to gender and race. This would likely
result in biases if the present algorithms were to be applied
to future non-white and/or non-female data sets, without
additional training. Due to the limited size of the present
data set, large absolute gains in accuracy were required to
demonstrate any statistically significant effects, which in turn
depended on a relatively small number of subjects. Given
these constraints, we decided to employ traditional SVMs
rather than more data-hungry deep learning approaches
(e.g., Convolutional Neural Networks). SVMs are a well-
established method for small data sets [75], and we obtained
excellent results for the required binary classification. Never-
theless, once larger data sets become available, deep learning
approaches may achieve better results for the purposes of
direct tear detection. At present, a shallow SVM-approach [76]
appeared to provide a more robust and explainable starting
point.

While the feature-importance analysis highlights postural
and ”self-regulatory” behaviors over more ”prototypical”
facial features of sadness, it is possible that the high degree
of redundancy between facial AUs in our model impacted
on the results. Most of the facial AUs were measured by
three different systems (Affdex, FACET, OpenFace), whereas
only a limited number of postural features was considered.
Nonetheless, the most important postural features (H Z-Lo,
D:Ee2Ea, D:S2S) may be similarly redundant since they were
directly affected by changes in the distance to the screen,
e.g., when participants were leaning forward or slumping
backward into their seat. Furthermore, the AUs that did
appear to be important for weeping classification were
likewise measured more than once, with results from the
feature-importance analysis being largely consistent with
those from the classifier-level analyses. Hence, it is unlikely
that additional analyses of feature importances at higher
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levels of aggregation would reveal a fundamentally different
picture of results. Overall, while the distance-related features
appeared to be particularly important, neither OpenFace,
OpenPose, nor the combination of both were sufficient to
achieve a recognition performance that was significantly
above the baseline. In particular, the combination of dis-
tance features and AUs provided by OF only achieved
a baseline-level classification performance. Together, these
results suggest that using distance features alone would not
be sufficient to predict weeping in this data set. However,
the relative prominence of distance-related features might
be specific to the emotion induction method employed in
this particular dataset (watching sad films). Once new tear
datasets become available, future work should therefore aim
to compare classifier performance across different types of
tear elicitation conditions.

Finally, we used a single, not multiple, data set to test our
approach, showing that features from at least two classifiers
are needed to achieve good results. Combining the two open-
source classifiers (OpenFace, OpenPose) still fell short of
significantly outperforming the baseline. It falls to future
research to test how well the present findings generalize
to other data sets or even real-time applications. The cross-
validation results suggest that person-independent weeping
recognition will likely be feasible in other use cases featuring
spontaneously elicited emotional tears. In combination with
open-source classifiers, a single commercial classifier (Affdex)
may be sufficient for obtaining near-perfect results.

4.2 Future Directions

The current results point to several avenues for future
research. For example, understanding the antecedents and
consequences of tears has been identified as a major challenge
in psychological crying research [1], [11]. The ability of our
model to distinguish between weepers and non-weepers
shortly before and after the onset of emotional tears suggests
that further analyses of fine-grained nonverbal behaviors
(e.g., via feature importance) could provide new insights
into the mechanisms of crying processes. From a more
applied perspective, the ability to predict weeping and tears
could enhance a broad range of human-computer interaction
scenarios, such as the capacity of intelligent agents in therapy
to act empathically (e.g., [32], [77], [78]) or to respond to
feelings of loss of control or disengagement (e.g., [79], [80],
[81]).

In this work, there were a small number of edge cases
as well as a somewhat larger number of (non-)weepers that
appeared to be easier to classify. The results may prove useful
for researchers who want to select suitable items from the
PDSTD [8]. In the future, in-depth case studies may help
reveal relevant information with respect to (1) the types of
pre-weeping behaviors that are perceived as most typical by
human observers, (2) the time point at which it is possible for
humans to accurately detect crying, and (3) the usefulness of
machine data in making those guesses.

We hope that the current indirect approach to infer weep-
ing from nonverbal behavior may soon be complemented by
more direct means for automatically detecting the presence of
tears. The current results, based on shallow machine learning,
suggest that the task of automatically detecting emotional

tears might not be as daunting as previously believed.
Apart from larger data-sets and deep learning approaches,
automatic tear detection could be aided by thermal imaging
to help pinpoint the moment when tears first begin to become
visible on the face. Future work may combine direct and
indirect detection methods for automatically predicting and
verifying the presence of emotional tears. In the long term,
such advances could help pave the way towards more natural
and affect-sensitive systems [82].

5 CONCLUSION

Our research demonstrates that spontaneous weeping can be
successfully inferred from fine-grained nonverbal behaviors.
Towards this end, more attention should be paid to postural
cues and non-prototypical AUs. We also show that it is
possible to predict emotional tears prior to any visible signs
on the face. Together these findings open up the possibility of
future studies that combine direct and indirect tear-detection
methods. The present study is a first step towards addressing
this gap in the growing toolbox of research on affective
computing.
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