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This article explores special Lagrangian submanifolds in CP 3, viewed as a nearly Kähler 
manifold, from two different perspectives. Intrinsically, using a moving frame set-up, and 
extrinsically, using SU(2) moment-type maps. We describe new homogeneous examples, 
from both perspectives, and classify totally geodesic special Lagrangian submanifolds. We 
show that every special Lagrangian in CP 3, or the flag manifold F1,2(C3) admitting a 
symmetry of an SU(2) subgroup of nearly Kähler automorphisms is automatically homoge-
neous.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

Nearly Kähler manifolds were first introduced in the 1970s and in the last two decades fundamental questions about the 
structure and existence of these manifolds were settled [24,7,12], making them a trending topic in differential geometry. 
In dimension 6, they form a special class of SU(3)-structures and are important for Riemannian geometry as they provide 
examples of Einstein manifolds. In addition, they are of interest in exceptional holonomy as their cones are torsion free G2

manifolds, which makes nearly Kähler manifolds crucial for understanding G2 manifolds with singularities.
One peculiarity of Lagrangian submanifolds of nearly Kähler manifolds is that they are automatically special Lagrangian. 

Because of their simple definition they are natural objects to study in nearly Kähler geometry, following the strategy to 
understand an ambient space by studying its distinguished submanifolds. Just as for J -holomorphic curves in nearly Kähler 
manifolds there are two additional lines of motivation to study Lagrangian submanifolds. The first one comes from Rieman-
nian geometry, for any special Lagrangian in a nearly Kähler manifold is minimal. The second comes from special holonomy, 
for the cone of a special Lagrangian is coassociative in the G2-cone of M .

In the last few decades, many constructions for special Lagrangian submanifolds of S6 have been found and various 
subclasses of special Lagrangians have been classified, see for example [30,20]. More recently, the ambient spaces F and 
S3 × S3 have received attention, for example in [4,28]. This article is dedicated to the ambient nearly Kähler space M =CP 3. 
The main results of this article are the classification of totally geodesic special Lagrangians in Proposition 3.18 and of special 
Lagrangians admitting a symmetry of a 3-dimensional group of nearly Kähler automorphisms in Theorem 4.11. These results 
are obtained through two different approaches to describe special Lagrangians in CP 3.

The first approach is intrinsic as it uses the structure equations describing a special Lagrangian. We derive them in the 
general nearly Kähler setting in section 2 and show in Proposition 2.1 that for a homogeneous ambient space and a simply 
connected domain there is a unique Lagrangian immersion for every solution to the structure equations.

In section 3, we adapt these equations to the twistor fibration CP 3 → S4. We introduce an angle function θ : L → [0, π4 ]
parametrising the Lagrangian at a tangent level. Generically, L intersects every twistor fibre transversally. The points where 
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θ = π
4 are those where this is not the case, and the intersection is then diffeomorphic to a circle. We identify Lagrangians 

with θ ≡ π
4 as circle bundles over superminimal surfaces in S4, a construction discovered in [27] and in [19].

Finally, we classify all Lagrangians where θ takes the boundary value 0. In fact, there are just two such examples and they 
are both homogeneous. We describe another somewhat surprising homogeneous example with θ ≡ 1
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from the irreducible representation of SU(2) on S3(C2). We also show that the standard RP 3 in CP 3 is the only totally 
geodesic Lagrangian submanifold of CP 3.

The second approach to exploring special Lagrangians in CP 3 is extrinsic. In section 4, we introduce SU(2) moment 
maps in nearly Kähler geometry. They encode the symmetry of the nearly Kähler manifold in a set of SU(2) equivariant 
functions M → R3 ⊕ R. We use these moment-type maps to show a general existence result of special Lagrangians with 
SU(2) symmetry, in Corollary 4.3 and to classify special Lagrangians admitting an action of a SU(2) group of automorphisms, 
in Theorem 4.11. We show that they are, in fact, all homogeneous and describe the examples found in section 3 extrinsically. 
We show an analogous result for the flag manifold F by studying the action of three-dimensional subgroups of SU(3) on F .

Most of the material presented in this article originates from author’s PhD thesis, [3].

1. Background

Let (M, g, J , ω) be a 6-dimensional almost Hermitian manifold. Then M is called nearly Kähler provided there is a 
complex-valued three-form ψ = Reψ + i Imψ ∈ �3,0(M) defining an SU(3)-structure satisfying

dω = 3 Re ψ

d Im ψ = −2ω ∧ ω.

Remark 1.1. Often, the Calabi-Yau case dω = 0, d Im ψ = 0 is also included in the definition of a nearly Kähler manifold. We 
choose to exclude this case, so there is no need to introduce the subclass of strictly nearly Kähler manifolds.

Every nearly Kähler manifold admits a unique connection ∇ with totally skew-symmetric torsion and holonomy con-
tained in SU(3), i.e. ∇g = ∇ J = ∇ψ = 0, cf. [14]. This connection is called the characteristic connection and related to the 
Levi-Civita connection by

g(∇ X Y , Z) = g(∇X Y , Z) + 1

2
Reψ(X, Y , J Z), (1.1)

see [23]. Examples of (compact) nearly Kähler manifolds are very scarce. In fact, there are only six known examples of 
compact simply-connected nearly Kähler manifolds.

Proposition 1.2. [7, Theorem 1] If M = G/H is a homogeneous strictly nearly Kähler manifold of dimension six, then M is one of the 
following: S6 = G2/SU(3), S3 × S3 = SU(2)3/�SU(2), CP 3 = Sp(2)/U(1) × Sp(1) or F = SU(3)/T 2 .

In each case, the identity component of the group of nearly Kähler automorphisms is equal to G , see [10]. There are 
infinitely many freely-acting finite subgroups of the automorphism group of the homogeneous nearly Kähler S3 × S3, cf. [9].

In addition, there are two known examples of compact, simply-connected nearly Kähler manifolds which are not homo-
geneous. They were constructed by Foscolo and Haskins via cohomogeneity one actions on S3 × S3 and S6 [12].

A 3-dimensional submanifold L of a nearly Kähler manifold is called Lagrangian if ω|L = 0. For the general set-up, we 
will also work with the more flexible notion of an immersed Lagrangian submanifold, i.e. we a smooth immersion ι : L → M
such that ι∗ω = 0. However, all examples we encounter are embedded submanifolds.

Because of the nearly Kähler identity dω = 3 Reψ , Lagrangian submanifolds are automatically special Lagrangian. Special 
Lagrangians in nearly Kähler geometry share some important general properties with special Lagrangians in Calabi-Yau 
manifolds. Every special Lagrangian L in M is minimal and orientable, see for example [29].

Let IIM be second fundamental form of L in M . Then the cubic form C(X, Y , Z) = ω(IIM(X, Y ), Z) is fully-symmetric, i.e. 
an element of 	(S3(T ∗L)), and traceless when contracted in any two components, see [26]. The cubic form C is also called 
the fundamental cubic of L and takes values in the intrinsic bundle 	(S3(T ∗L)). This means that in order to study special 
Lagrangians where C satisfies special properties one does not need to specify the normal bundle of L. One such special 
property would be that C , or equivalently the second fundamental form, is a parallel section. However, it turns out that this 
assumption is rather restrictive. Any such Lagrangian is automatically totally geodesic [32, Theorem 1.1].

Another special property of C is that it admits symmetries. This approach has been developed in [6] for special La-
grangian submanifolds of C3. By picking a frame in a point x ∈ L one regards C as a harmonic polynomial of degree three 
in three variables, i.e. an element of H3(R3), which is a seven-dimensional vector space. The space H3(R3) as an SO(3)

module and a generic element in H3(R3) does not have any symmetries in SO(3). The possible symmetry groups are clas-
sified in [6, Proposition 1]. The classification gives a natural ansatz for finding special Lagrangian submanifolds. Impose one 
of the pointwise symmetries above to every point in L. This ansatz has led to the construction of new special Lagrangians 
2
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in the Calabi-Yau C3 in [6] and in the nearly Kähler S6 [30,20]. For CP3 however, this ansatz is less fruitful since the 
curvature tensor is more complicated so we do not have SO(3)-freedom to change frames as we will see later. However, 
this framework gives us a way to categorise examples of special Lagrangian that are constructed in different ways.

The following result is known for Calabi-Yau manifolds and the nearly Kähler S6 but it holds for any nearly Kähler 
manifold.

Proposition 1.3. Every real analytic surface on which ω vanishes can locally be uniquely thickened to a special Lagrangian submanifold 
in M. Special Lagrangian submanifolds in a nearly Kähler manifold locally depend on two functions of two variables.

Proof. See [20], the proof is based on the fact that the Cartan test holds and thus holds for any SU(3) structure. �
Infinitesimal deformations of nearly Kähler manifolds correspond to eigensections of a rotation operator on L [17]. It 

is shown in [29], that the moduli space of smooth Lagrangian deformations of special Lagrangians is a finite dimensional 
analytic variety. All formally unobstructed infinitesimal deformations are smoothly unobstructed.

1.1. The nearly Kähler structure on CP3

The nearly Kähler structure on CP 3 can be defined through the twistor fibration CP 3 → S4. The fibres are projective 
lines and totally geodesic for the Kähler structure on CP 3. Since CP 3 is a sphere bundle inside �2−(S4) the twistor 
fibration has a natural connection TCP 3 = H⊕ V . The nearly Kähler structure on CP 3 is defined via the Kähler structure 
by squashing the metric and reversing the almost complex structure on the vertical fibres.

For explicit computations it is convenient to define the nearly Kähler structure from the homogeneous space structure 
CP 3 = Sp(2)/S1 × S3. Identify H2 with C4 via H = C ⊕ jC. This identification gives an action of Sp(2) on C4 which 
descends to CP 3 and acts transitively on that space. The stabiliser of the element (1, 0, 0, 0) ∈ C4 is{(

z 0
0 q

)
| z ∈ S1 ⊂ C, q ∈ S3 ⊂ H

}
which shows CP 3 = Sp(2)/S1 × S3. Following [31], consider the Maurer-Cartan form on Sp(2) which can be written in 
components as


MC =
(

iρ1 + jω3 − ω1√
2

+ j ω2√
2

ω1√
2

+ j ω2√
2

iρ2 + jτ

)
. (1.2)

Since 
MC has values in sp(2), the one-forms ω1, ω2, ω3 and τ are complex-valued and ρ1, ρ2 are real-valued. The equation 
d
MC + [
MC , 
MC ] = 0 implies the torsion identity

d

⎛
⎝ω1

ω2
ω3

⎞
⎠ = −

⎛
⎝ i(ρ2 − ρ1) −τ 0

τ −i(ρ1 + ρ2) 0
0 0 2iρ1

⎞
⎠

︸ ︷︷ ︸
Aω :=

∧
⎛
⎝ω1

ω2
ω3

⎞
⎠ +

⎛
⎝ω2 ∧ ω3

ω3 ∧ ω1
ω1 ∧ ω2

⎞
⎠ , (1.3)

and the curvature formula

dAω = −Aω ∧ Aω +
⎛
⎝ω1 ∧ ω1 − ω3 ∧ ω3 ω1 ∧ ω2 0

ω2 ∧ ω1 ω2 ∧ ω2 − ω3 ∧ ω3 0
0 0 −ω1 ∧ ω1 − ω2 ∧ ω2 + 2ω3 ∧ ω3

⎞
⎠ .

The nearly Kähler structure on CP 3 is defined by declaring the forms s∗ω1, s∗ω2 and s∗ω3 to be unitary (1, 0) forms for 
any local section s of the bundle Sp(2) → CP 3. The resulting almost complex structure and metric do not depend on the 
choice of s. The nearly Kähler forms ω, ψ are pullbacks of

i

2

3∑
i=1

ωi ∧ ωi, and − iω1 ∧ ω2 ∧ ω3,

respectively. In general, we will treat the nearly Kähler forms as basic forms on Sp(2). However, Killing vector fields typically 
have a simple expression in local coordinates. To contract the nearly Kähler forms on CP 3 with Killing vector fields we pull 
back the local unitary (1, 0) forms ω1, ω2, ω3 on the chart A0 = {Z0 �= 0} with the local section

s : A0 → Sp(2), (1, Z1, Z2, Z3) �→
(

h1|Z |−1 −h
−1
1 h2a

h2|Z |−1 a

)
.

3
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Here,

|Z |2 = 1 + |Z1|2 + |Z2|2 + |Z3|2, h1 = 1 + j Z1, h2 = Z2 + j Z3, a = (1 + |h2|2
|h1|2 )−1/2.

This gives the following expressions for the pull-backs

s∗ω1 = √
2|Z |−2((Z3 − Z1 Z2)dZ1 + (1 + |Z1|2)dZ2)

s∗ω2 = √
2|Z |−2((−Z2 − Z1 Z3)dZ1 + (1 + |Z1|2)dZ3)

s∗ω3 = |Z |−2(dZ1 − Z3dZ2 + Z2dZ3).

(1.4)

To show these formulae, note that the pullback of the Maurer-Cartan form via s is

s∗(
MC ) =
(

h1|Z |−1 h2|Z |−1

−h2h−1
1 a a

)(
d(|Z |−1h1) d(−h

−1
1 h2a)

d(|Z |−1h2) da

)
.

Combining this with eq. (1.2) yields

(is∗ρ1 + js∗ω3) = |Z |−2(h1dh1 + h2dh2) + R

1√
2a|Z | (s∗ω1 + js∗ω2) = −h2h−1

1 dh1 + dh2,

where R is a real term. Equations (1.4) follow by splitting the quaternionic-valued differential forms on the right-hand side 
into their C and jC part.

2. Structure equations for special Lagrangians

The structure equations for a special Lagrangian manifold in Calabi-Yau C3 were established in [6] and for nearly Kähler 
S6 in [20]. We generalise the equations to the setting of a general nearly Kähler manifold. The main difference is the 
appearance of an extra curvature term. We characterise nearly Kähler manifolds by differential identities on the frame 
bundle, as done in [5]. If an index appears on the right-hand side but not on the left-hand side of an equation, summation 
over the index set {1, 2, 3} is implicit.

Let M6 be a nearly Kähler manifold and consider the SU(3)-frame bundle PSU(3) . Let (ζ1, ζ2, ζ3) ∈ 
1(PSU(3), C3) be the 
tautological one-forms on PSU(3) and let φ ∈ 
1(P , su(3)) be the nearly Kähler connection one-form on PSU(3) , giving the 
torsion relation

d

⎛
⎝ζ1

ζ2
ζ3

⎞
⎠ = −φ ∧

⎛
⎝ζ1

ζ2
ζ3

⎞
⎠ +

⎛
⎝ζ 2 ∧ ζ 3

ζ 3 ∧ ζ 1
ζ 1 ∧ ζ 2

⎞
⎠ (2.1)

and the curvature identity

dφi j = −φik ∧ φkj + Kijpqζq ∧ ζp . (2.2)

In particular, the curvature of ∇ is always of type (1, 1). In [5] it is remarked that the tensor K can be written as sum

Kijpq = K ′
i jpq + 3

4
δpiδqj − 1

4
δi jδpq

where K ′ has the following symmetries

K ′
i jpq = K ′

pjiq = K ′
iqpj = K ′

jiqp, and
∑

i

K ′
iipq = 0.

The tensor K ′ vanishes exactly when M is the round six-sphere. The nearly Kähler forms are expressed in terms of ζi by

ω = i

2

∑
i

ζi ∧ ζi, ψ = −iζ1 ∧ ζ2 ∧ ζ3. (2.3)

Note the difference from [5] in the convention for ψ in order to satisfy the standard nearly Kähler integrability equations.
The torsion-relation eq. (2.1) and curvature-relation eq. (2.2) yield differential identities for the connection one-form and 

tautological one-form on the frame bundle PSU(3) . If L is a special Lagrangian submanifold in M then one obtains more 
differential identities because the frame bundle PSU(3) admits a natural reduction to an SO(3) bundle over L. The reason for 
this is that, at the tangent level, a Lagrangian subspace looks like R3 in C3, which defines the restriction
4
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PSO(3) = {p : C3 → T M, p ∈ PSU(3)|L | p(R3) = T L}.
If dz1, dz2, dz3 are the standard complex-valued one-forms on C3 then R3 ⊂ C3 is characterised as the 3-dimensional 
subspace of C3 on which the imaginary parts of dzi vanish. Similarly, our aim is to describe the reduction PSO(3) as the 
vanishing set of one forms on PSU(3) . To that end, split the forms ζi = σi + iηi and φ = α + iβ into real and imaginary part. 
The bundle PSO(3) is now defined by imposing the condition ηi = 0.

This characterisation implies more differential identities. From the torsion-relation we get

dσi = −αi j ∧ σ j + βi j ∧ η j + σk ∧ σl − ηk ∧ ηl

dηi = −βi j ∧ σ j − αi j ∧ η j − σk ∧ ηl − ηk ∧ σl

where (i, k, l) is a cyclic permutation of (1, 2, 3). The condition ηi = 0 implies βi j ∧ σ j = 0. By Cartan’s lemma, we have 
βi j = hijkσk or β = hσ where h is a fully symmetric three-tensor. In fact, this tensor corresponds to the fundamental cubic 
up to a factor, just as in the case of special Lagrangians in C3 or in S6.

On the reduced bundle, we split K into real and imaginary part,

Kijpqζq ∧ ζp = Kijpqσq ∧ σp = (Rijpq + i Si jpq)σq ∧ σp = (−Rijpq − i Si jpq)σp ∧ σq.

This also allows us to split the curvature identity into real imaginary part

dαi j = −αik ∧ αkj + βik ∧ βkj − Rijpqσp ∧ σq

dβi j = −βik ∧ αkj − αik ∧ βkj − Sijpqσp ∧ σq.

To write these equations more invariantly, let

[σ ] =
⎛
⎝ 0 σ3 −σ2

−σ3 0 σ1
σ2 −σ1 0

⎞
⎠ .

We can summarise the equations on the reduced bundle over L in tensor notation

β ∧ σ = 0 (2.4)

dσ = −α ∧ σ − 1

2
[σ ] ∧ σ (2.5)

dα = −α ∧ α + β ∧ β − Rσ ∧ σ (2.6)

dβ = −β ∧ α − α ∧ β − Sσ ∧ σ (2.7)

where (σ ∧ σ)pq = σp ∧ σq . The matrix of one forms β is completely defined by the symmetric tensor h. The advantage to 
work with h is that its components are not one-forms but functions, allowing us to rewrite eq. (2.4), eq. (2.6) and eq. (2.7)

β = hσ dα = −α ∧ α + hσ ∧ hσ + 3

4
σ ∧ σ − Rσ ∧ σ , 0 = (dh + ((hα + 1

2
h[σ ])) + Sσ) ∧ σ .

The Levi-Civita connection one-form of the induced metric on L is α + 1
2 [σ ]. Note that the forms σ differ by a factor 2 from 

the orthonormal one forms considered in [20].
If M = G/H is one of the homogeneous nearly Kähler manifolds then a special Lagrangian submanifold can locally be 

recovered from a solution to eq. (2.4)-eq. (2.6), which we will make precise now. There is a splitting g = h ⊕ m such that 
AdH (m) ⊂ m. The nearly Kähler structure then yields an Ad(H) invariant special unitary basis ω1, ω2, ω3 on m ∼=C3. Up to 
a cover, G embeds into the SU(3)-frame bundle PSU(3) via the adjoint action H → SU(m). Under this identification

ψ + (ζ1, ζ2, ζ3) ∈ h⊕C3 ∼= h⊕m

is the Maurer-Cartan form ωG on G . In other words, the nearly Kähler connection is equal to the canonical homogeneous 
connection on G → M , see [7]. The following proposition guarantees that for the homogeneous nearly Kähler manifolds we 
can locally recover the special Lagrangian from a solution of the structure equations. Since α and β determine the first and 
second fundamental form, this can be viewed a Bonnet-type theorem.

Proposition 2.1. Let M = G/H be a homogeneous nearly Kähler manifold, L3 be a simply-connected three manifold and σ ∈

1(L, R3), defining a linearly independent co-frame at each point, α ∈ 
1(L, so(3)) and β ∈ 
1(L, S2(R3)) satisfying the equa-
tions (2.4)-(2.7). Then there is a special Lagrangian immersion L → M, unique up to isometries, with α, β determining the metric and 
second fundamental form of L in M.
5
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Proof. Define the form γ = α + iβ + (σ1, σ2, σ3) ∈ h ⊕m ∼= g. Since σ , α, β satisfy the equations (2.4)-(2.7) we have dγ +
[γ , γ ] = 0. The statement now follows from Cartan’s theorem, just as the classical Bonnet theorem for surfaces in R3 . �
Remark 2.2. Note that the tautological one form (ζ1, ζ2, ζ3) can also be regarded as an element in 	(P , End(C3)). With this 
identification, a local section s of L ⊃ U → PSO(3) gives a section 	(U , (T ∨M)|L ⊗C3) ∼= 
1(U , C3). Then s∗ηi vanishes on 
T L while s∗σ vanishes on the normal bundle.

3. An angle function for special Lagrangians

Since twistor fibres are J -holomorphic they can never be contained in a special Lagrangian submanifold. Generically, a 
special Lagrangian intersects every twistor fibre transversally. However, there is a special class of special Lagrangians which 
are circle bundles over superminimal surfaces in S4. We review this construction and define an angle function L → [0, π4 ]
which has value π

4 if L intersects a twistor fibre non-transversally. We use a gauge transformation, which depends on θ , to 
use the moving frame setup from the previous section for special Lagrangians in CP 3. We identify special solutions to the 
resulting structure equations, all of which turn out to be homogeneous.

3.1. The linear model

We start with the study of Lagrangian subspaces in a twistor space on the tangent level. The space of special Lagrangian 
subspaces of Cn is identified with the homogeneous space SU(n)/SO(n). Twistor nearly Kähler spaces have the property 
that the holonomy of the nearly Kähler connection reduces to U(2) ∼= S(U(2) × U(1)). The two-form splits into a horizontal 
and vertical part ω = ωH + ωV . So, in order to understand how frames can be adapted further to a special Lagrangian of a 
twistor space, we study the linear problem first.

Let (b1, b2, b3) denote the standard basis of C3 with dual basis (ω1, ω2, ω3) and let ωH = i
2 (ω1 ∧ ω̄1 + ω2 ∧ ω̄2) as 

well as ωV = i
2 (ω3 ∧ ω̄3). Let H ∼= S(U(2) × U(1)) be the stabiliser of ωV inside SU(3). Let also ψ = Reψ + i Imψ be the 

complex-valued three form −iω1 ∧ ω2 ∧ ω3 on C3. We have abused notation slightly here, since ω, ψ are forms on the 
nearly Kähler manifold but also denote their linear models on C3.

For a complex subspace W ⊂C3 denote by SLag(W ) the set of all special Lagrangian subspaces of W . By C2 ⊂C3 we 
refer to the subspace spanned by b2 and b3. Note that SLag(C2) ∼= S2 and that U(1) ⊂ SU(2) acts from the left on this space. 
The quotient is an interval and the following lemma gives a description of each representative.

Lemma 3.1. Under the action of U(1) ∼= {diag(eiϕ, e−iϕ)} ⊂ SU(2) any element in SLag(C2) has a unique representative of the form 
V θ = span(−ie−iθ b2 − e−iθb3, eiθb2 + ieiθb3), for 0 ≤ θ ≤ π/2.

Proof. Special Lagrangian planes in C2 are parametrised by SU(2)/SO(2). Thus, we have to find a unique representative of 
the action (A, B)X = A X B−1 of K = U(1) × SO(2) on SU(2), which is the action of a maximal torus in SO(4) acting on S3. 
The standard torus U(1) × U(1) ⊂ U(2) ⊂ SO(4) acting on S3 admits unique representatives of the form (cos(θ), 0, sin(θ), 0)

for 0 ≤ θ ≤ π/2. The statement follows by conjugating the action of K to the standard torus action. �
For any subspace W ⊂C3 denote by KW the kernel of the projection onto span(b3) and by nW its dimension. Let

Tθ =

⎛
⎜⎜⎝

1 0 0

0 − ie−iθ√
2

eiθ√
2

0 − e−iθ√
2

ieiθ√
2

⎞
⎟⎟⎠ (3.1)

and Wθ be the image of Tθ when applied to the standard R3 in C3, i.e. Wθ = span(b1, −ie−iθ b2 − e−iθb3, eiθb2 + ieiθb3).

Proposition 3.2. Any special Lagrangian subspace W ⊂C3 admits a unique representative Wθ for 0 ≤ θ ≤ π/4, under the action of 
H. Furthermore, nW = 2 if and only if θ = π/4.

Proof. Since W is Lagrangian, nW ≥ 1. If nW = 2 then W is represented by the standard R3 in C3 and nWθ = 2 if and only 
if θ = π/4. So from now on we assume that nW = 1. Consider the map l : Gr2(C2) → Gr3(C3), V �→ span(b1, V ). Note that 
Wθ = l(V θ ) and that l descends to a map l̂ : Lag(C2)/U(1) → Lag(C3)/H . To show surjectivity observe that for W ∈ Lag(C3)

we have KW ⊂ span(b1, b2). So by acting with H we can achieve that KW is spanned by b1. Furthermore, observe that⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ Tθ

⎛
⎝−1 0 0

0 0 1
0 1 0

⎞
⎠ = Tπ/2−θ
6
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which means that Wθ = Wθ ′ for θ + θ ′ = π/2. We have shown that any element in Lag(C3) is represented by a Wθ for 
0 ≤ θ ≤ π/4. The uniqueness follows from the observation that ωV has norm 1

2 |cos(2θ)| when restricted to the vector space 
Wθ . �

If w1, w2, w3 is a basis of W such that w1 ∈ KW and w2, w2 ∈ K ⊥
W then θ can be computed by the formula

1

2‖w1‖ |cos(2θ)|ψ−(w1, w2, w3) = ωV (w2, w3). (3.2)

Proposition 3.2 gives a geometric interpretation of the boundary value π/4. In Proposition 3.11 we relate the case θ = 0
to CR-manifolds in the Kähler CP 3, so we study this case on the linear level first. Motivated by the existence of the two 
almost complex structures J1 and J2 on the twistor space, consider the almost complex structure

J ′ : (b1,b2,b3) �→ (ib1, ib2,−ib3) (3.3)

on C3. Any special Lagrangian subspace W in C3 splits as KW ⊕ K ⊥
W .

Lemma 3.3. If θ �= π
4 then J (KW ) is orthogonal to W . The subspace K ⊥

W is invariant under J ′ if and only if θ = 0.

Proof. The endomorphism J ′ commutes with the action of H on C3, so it suffices to prove the statement for Wθ . If θ = π
4

then K ⊥
W is one-dimensional so it cannot be invariant under J ′ . Otherwise, KW is spanned by b1 and K ⊥

W equals V θ . 
Clearly Jb1 = ib1 is orthogonal to W . The statement follows by observing that V θ is invariant under the endomorphism 
(b2, b3) �→ (ib2, −ib3) if and only if θ = 0. �

The following lemma can be proven by standard computations in SU(3) and is important for adapting frames on special 
Lagrangians in twistor spaces.

Lemma 3.4. Let Hθ = T −1
θ H Tθ ∩ SO(3) be the stabiliser group of Wθ in H with Lie algebra hθ . Then

hθ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
R ·

⎛
⎜⎝ 0 1 −1

−1 0 0

1 0 0

⎞
⎟⎠ θ = π/4

{0} ⊕ so(2) θ = 0

{0} otherwise

Tθhθ T −1
θ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
R ·

⎛
⎜⎝ 0 −1 + i 0

1 + i 0 0

0 0 0

⎞
⎟⎠ θ = π/4

{0} ⊕ s(u(1) ⊕ u(1)) θ = 0

{0} otherwise

Then Hθ is generated by exp(hθ ) and the element diag(1, −1, −1). In particular, Hθ is isomorphic to O(2) if θ = π/4, to SO(2) if 
θ = 0 and to Z2 otherwise.

The action of H on Lag(C3) is a smooth cohomogeneity one action. The orbit at Wθ is diffeomorphic to H/(Tθ Hθ T −1
θ )

and is singular for θ = 0, π/4 and of principal type otherwise. The principal orbits are diffeomorphic to H/〈diag(1, −1,

−1)〉 ∼= U(2)/〈diag(1,−1)〉. The orbit of W0 is diffeomorphic to H/({1} × S(U(1) × U(1))) ∼= U(2)/({1} × U(1)) ∼= S3. Observe 
that Tπ/4 Hπ/4T −1

π/4 is conjugated to the O(2) subgroup generated by

S(U(1) × U(1)) and

(
0 −1

−1 0

)
.

This subgroup is equal to the preimage of [([1, 0], 1) of the map

U(2) → (CP 1 × S1)/Z2, A �→ [[A(1,0)T ],det(A)].
Here Z2 acts as the antipodal map on both CP 1 ∼= S2 and on S1. Hence, the orbit of Wπ/4 is diffeomorphic to (S2 × S1)/Z2.

The following lemma summarises these observations.

Lemma 3.5. The action of H on Lag(C3) is of cohomogeneity one. The principal orbit is diffeomorphic to U(2)/Z2, two singular orbits 
occur at θ = 0 and θ = π . The orbit W0 is diffeomorphic to S3 and that of Wπ/4 to (S2 × S1)/Z2 .
4
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3.2. Adapting frames

We now assume that M is a nearly Kähler twistor space over a Riemannian four manifold N . In other words, M is either 
CP 3 or the flag manifold F . Lagrangian submanifolds of the latter have been studied in [28] so our interest is in CP3

in this chapter. Before using the explicit description of CP 3 we give a few general statements that could be useful for 
generalisations to other spaces, such as non-nearly Kähler twistor spaces.

Given a special Lagrangian submanifold L ⊂ M , we clearly have Tx L ∈ Lag(TxM) for x ∈ L. Since the frame bundle reduces 
to H there is a map Lag(T M|L) → Lag(C3)/H . Hence, θ can be understood as a map from L to the interval [0, π4 ] and Tθ

from L to SU(3). We now apply our knowledge of the action of H on Lag(C3) to obtain a further frame reduction for special 
Lagrangian submanifolds in nearly Kähler twistor spaces. In that case, the holonomy of the nearly Kähler connection on M
reduces to H , so PSU(3) reduces to an H-bundle and we can assume φ13 = φ23 = φ31 = φ32 = 0. This means that there are 
two different reductions of P |L : The first is to an H-bundle P H = {p : C3 → T M, p ∈ PSU(3)|L | p(b3) ∈ V}, simply because 
PSU(3) itself reduces to an H bundle. The second reduction is to an SO(3)-bundle PSO(3) = {p : C3 → T M, p ∈ PSU(3)|L |
p(R3) = T L} or equivalently by imposing ηi = 0 as in section 2.

If T L ∩ V is a rank one bundle, or equivalently θ ≡ π
4 , then the intersection PSO(3) ∩ P H is a H ∩ SO(3) bundle. We will 

derive its structure equations in section 3.3. If θ avoids the value π
4 then the intersection T L ∩V is trivial and PSO(3)∩ P H = ∅

which precludes the existence of a distinguished frame. However, by Lemma 3.4 we can apply a gauge transformation to 
guarantee a non-empty intersection.

For x ∈ L there is a frame in P H which maps Wθ to T L. Such a frame is unique up to the action of the stabiliser of Wθ

in H , which is computed in Lemma 3.4. This means that

Q = P H Tθ ∩ PSO(3) �= ∅. (3.4)

This is a principal bundle over L with structure group given as in Lemma 3.4 if θ is either equal to 0 or π
4 everywhere or if 

θ avoids these values altogether. In the latter case, the structure group is discrete. We first describe all special Lagrangians 
where θ is constant and equal to one of the boundary values everywhere. If θ ≡ π

4 then L intersects every twistor fibre in 
a circle and maps to a surface in N .

3.3. Lagrangians with θ ≡ π
4

There is a general construction for Lagrangian submanifolds in the twistor space Z of an arbitrary Riemannian four-
manifold N due to Storm [27] and Konstantinov [19]. To make sense of how a Lagrangian submanifold in Z is defined, 
recall that Z carries two almost complex structures J1, J2 and metrics gλ for λ ∈ R≥0. For a surface X ⊂ N define the 
circle bundle L X ⊂ Z(N) with fibre over x ∈ X equal to { J ∈ Zx(N) | J (Tx X) = νx}. Geometrically, the fibre of L X at x ∈ X is 
the equator in each twistor fibre, which is diffeomorphic to S2, relative to the twistor lift of X at x. It turns out that this 
construction gives a lot of examples of Lagrangians in twistor spaces.

Proposition 3.6. [27] The submanifold L X is Lagrangian in Z for both J1 and J2 and every gλ if X is superminimal. Conversely, if L X

is Lagrangian for any Ja and gλ , then X is superminimal.

Assume L is Lagrangian with θ ≡ π
4 so T L ∩H and T L ∩V are a rank two and a rank one bundle and T L = T L ∩H⊕ T L ∩

V . So L is also Lagrangian for J1 and L arises via the construction above. In this case the intersection PO(2) = P H ∩ PSO(3) is 
an S(O(2) × O (1)) bundle which is defined by imposing ηi = 0 for i = 1, . . . , 3 on P H . Since β32 = β23 = β31 = β13 = 0 the 
equation β ∧ σ = 0 implies that β33 lies in the span of σ3 and β11, β22 lie in the span of σ1 and σ2. Since Tr(φ) = 0 this 
implies that β33 = 0 = β11 + β22, i.e. φ takes values in su(2) when restricted to PO(2) .

We can view (σ1, σ2, σ3, η1, η2, η3) locally as an orthonormal co-frame on T M|L , see Remark 2.2. The forms σi vanish 
on the normal bundle while ηi vanish on T L. The form σ3 is dual to the unit vector field tangent along the fibres of L → X . 
Since β33 = 0 this means that the fibres of L → X are in fact geodesics. Since twistor fibres are totally geodesic CP 1 ⊂ M
these geodesics are great circles in the twistor fibres.

Since β3i = 0 for i = 1, 2, 3 this implies h3i j = 0 so the fundamental cubic is of the form

a(x3
1 − 3x1x2

2) + b(x3
2 − 3x2x2

1).

We have therefore shown.

Proposition 3.7. The fundamental cubic of L X in a nearly Kähler twistor space either vanishes or has stabiliser S3.

We can also recover the result that X is superminimal by showing that the second fundamental form X in N is complex-
linear and using [22, Proposition 1c].
8
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Remark 3.8. Bryant considers special Lagrangians of the form C1 ×�2 ⊂C⊕C2 =C3. The cubic form of such submanifolds 
is always stabilised by S3. These examples are somewhat analogous to horizontal Lagrangians whose fundamental cubic also 
admits an S3 symmetry.

From now on, we will work specifically with M = CP 3. We have seen that L X is either totally geodesic or its funda-
mental cubic has stabiliser S3. If L X is homogeneous then X is a homogeneous superminimal surface in S4. Such a surface 
is equal to a totally geodesic S2 ⊂ S4 or the Veronese curve in S4. Hence, there are only two different examples of homo-
geneous special Lagrangian submanifolds with θ ≡ π

4 . Both of them are known as Lagrangians for the Kähler structure on 
CP 3.

Example 3.9 (The standard RP3). The standard RP 3 ⊂ CP 3 is a totally geodesic special Lagrangian submanifold. It fibres 

over a totally geodesic S2 in S4 under the twistor fibration. It is the orbit of 
{(

a −b̄
b ā

)
| a,b ∈R⊕ jR, |a|2 + |b|2 = 1

}
∼=

SU(2) on [1, 0, 0, 0].

The second example was discovered in [8] and is described in [19] in terms of the twistor fibration.

Example 3.10 (Chiang Lagrangian). The SU(2) subgroup of Sp(2) which comes from the irreducible representation of SU(2)

on C4 = S3(C2) has a special Lagrangian orbit at [1, 0, 0, 1] ∈ CP 3. This example is known as the Chiang Lagrangian and 
fibres over the Veronese surface in S4. The SU(2) subgroup acts with stabiliser S3 on [1, 0, 0, 1]. The stabiliser subgroup 
induces the full symmetry group of the fundamental cubic since the Chiang Lagrangian is not totally geodesic.

Since superminimal curves in S4 have an explicit Weierstraß parametrisation one can produce many (explicit) examples 
of special Lagrangians in CP 3. However, our focus is on exploring special Lagrangians which do not arise from superminimal 
surfaces.

3.4. Changing the gauge

If one expresses the nearly Kähler structure on CP 3 in terms of local coordinates one can work out a system of PDE’s 
which, at least locally, describes special Lagrangian submanifolds. However, this approach is not very likely to succeed since 
local coordinates on CP 3 are not an elegant way to define its nearly Kähler structure. Of more geometric importance 
are the first and second fundamental form and Proposition 2.1 shows that locally they contain all information about the 
submanifold. We use a gauge transformation, which depends on the function θ to describe the structure equations for a 
special Lagrangian in CP 3.

The bundle Sp(2) embeds into the frame bundle of CP 3 via the adjoint action of S1 × S3 on m which factors through 
the double cover S1 × S3 → U(2). So, on the level of structure equations we identify P H with Sp(2). We apply the gauge 
transformation Tθ to Sp(2), which defines the bundle Q as in eq. (3.4). This bundle has a reduced structure group, depend-
ing on the behaviour of the function θ , which is made precise in Lemma 3.4. For example, if θ avoids the values 0 and π

4
then the structure group of Q is Z2.

Recall from section 1.1 that Sp(2) is an S1 × S3 principal bundle over CP 3. A local unitary frame for the nearly Kähler 
structure on CP 3 is obtained by pulling back the forms (ω1, ω2, ω3), which are components of the Maurer-Cartan form on 
Sp(2). We can realise the bundle Q by setting T −1

θ (ω1, ω2, ω3) = (ζ1, ζ2, ζ3), where Tθ is defined in eq. (3.1), and imposing 
the equations

η1 = 0, η2 = 0, η3 = 0. (3.5)

Our aim is to compute the differentials of the one forms ζi and also of ρi and τ on the reduced bundle Q . We will achieve 
this by first computing the connection and curvature form in the transformed frame and then applying eq. (2.4)-eq. (2.7). 
We begin by applying the transformation formula for a connection-one form under the gauge transformation Tθ

φ = T −1
θ AωTθ + T −1

θ dTθ . (3.6)

Here Aω is the connection form defined on Sp(2), see eq. (1.3). Since Tθ lies in SU(3) the torsion transforms trivially and 
we have dζ = −φ ∧ ζ − [ζ ] ∧ ζ by eq. (2.1). So in order to compute the differentials of ζ we compute the transformed 
connection one-form φ from eq. (3.6). We split φ into real and imaginary part φ = α + iβ to get

α =

⎛
⎜⎜⎝

0 1√
2

Re(i exp(iθ)τ̄ ) −1√
2

Re(exp(−iθ)τ̄ )

1√
2

Re(i exp(iθ)τ ) 0 1
2 (3ρ1 + ρ2) cos(2θ)

1√
2

Re(exp(−iθ)τ ) − 1
2 (3ρ1 + ρ2) cos(2θ) 0

⎞
⎟⎟⎠ (3.7)
9
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and

β =

⎛
⎜⎜⎝

−ρ1 + ρ2
1√
2

Im(i exp(iθ)τ̄ ) −1√
2

Im(exp(−iθ)τ̄ )

1√
2

Im(i exp(iθ)τ ) 1
2 (ρ1 − ρ2 − 2dθ) 1

2 (3ρ1 + ρ2) sin(2θ)

1√
2

Im(exp(−iθ)τ ) 1
2 (3ρ1 + ρ2) sin(2θ) 1

2 (ρ1 − ρ2 + 2dθ)

⎞
⎟⎟⎠ . (3.8)

To obtain expressions for the differentials of ρi and τ we use the curvature equation (2.7). The curvature tensor (R + i S)σ ∧
σ transforms tensorially under gauge transformations yielding the explicit expressions

Sσ ∧ σ =
⎛
⎜⎝

− cos(2θ)σ2 ∧ σ3 − 1
2 cos(2θ)σ1 ∧ σ3

1
2 cos(2θ)σ1 ∧ σ2

− 1
2 cos(2θ)σ1 ∧ σ3

1
2 cos(2θ)σ2 ∧ σ3

5
4 sin(4θ)σ2 ∧ σ3

1
2 cos(2θ)σ1 ∧ σ2

5
4 sin(4θ)σ2 ∧ σ3

1
2 cos(2θ)σ2 ∧ σ3

⎞
⎟⎠ (3.9)

Rσ ∧ σ = 1

2

⎛
⎜⎝

0 σ1 ∧ (σ2 − sin(2θ)σ3) σ1 ∧ (σ3 − sin(2θ)σ2)

σ1 ∧ (sin(2θ)σ3 − σ2) 0 5 cos2(2θ)σ2 ∧ σ3

σ1 ∧ (sin(2θ)σ2 − σ3) −5 cos2(2θ)σ2 ∧ σ3 0

⎞
⎟⎠ . (3.10)

Finally, combining the explicit expressions of φ, R, S with eq. (2.4)-(2.7) results in the following differential identities

dρ1 = 3

2
cos(2θ)σ2 ∧ σ3, dρ2 = 1

2
cos(2θ)σ2 ∧ σ3 + iτ ∧ τ̄

dτ = −2iτ ∧ ρ2 + 1√
2
σ1 ∧ (iσ2 exp(−iθ) − σ3 exp(iθ))

dσ1 = (ε1 ∧ σ2 + ε2 ∧ σ3) + σ2 ∧ σ3

dσ2 = −1

2
cos(2θ)(3ρ1 + ρ2) ∧ σ3 − ε1 ∧ σ1 − σ1 ∧ σ3

dσ3 = 1

2
cos(2θ)(3ρ1 + ρ2) ∧ σ2 − ε2 ∧ σ1 + σ1 ∧ σ2

(3.11)

with ε1 = i
2
√

2
(exp(iθ)τ − exp(−iθ)τ̄ ) and ε2 = 1

2
√

2
(exp(−iθ)τ + exp(iθ)τ̄ ). Recall, that the equation β ∧ σ implies more 

algebraic identities.
These differential identities are satisfied on any special Lagrangian in CP 3. Conversely, a special Lagrangian submanifold 

can locally be reconstructed from such a solution. There is little hope of working out all solutions of eq. (3.11). Instead, one 
typically imposes additional conditions and then tries to classify all special Lagrangians satisfying the extra condition. For 
example, one can already see that for θ = 0 the equations simplify considerably.

If θ �= π/4 everywhere there is a splitting T L = E ⊕ E⊥ where E⊥ is the kernel of the projection T L → V . Recall that the 
standard complex structure J1 on CP 3 agrees with the nearly Kähler structure J2 on H and differs by a sign on V .

Proposition 3.11. The distribution E is invariant under the standard complex structure J1 on CP 3 if and only if θ ≡ 0. In that case, L
is a CR submanifold for the Kähler structure on CP3 with E being the J1-invariant distribution on L.

Proof. In each point x ∈ L we can pick a frame p : TxM → C3 such that T L is identified with Wθ(x) , V with span(b3) and 
J1 with J ′ from eq. (3.3). The statement follows from 3.3. If θ = 0 then E is invariant under J1 and J1(E⊥) is orthogonal 
to T L, as required. �

CR immersion from S3 to the Kähler CPn has been studied in [16]. The splitting T L = E ⊕ E⊥ gives an ansatz for 
Lagrangians arising as a product X2 × S1 such that T X = E . Indeed, we will give such an example for θ ≡ 0 later. However, 
we first show that this ansatz fails when θ �= 0 and X is compact. Note that

ωV = i

2
(ω3 ∧ ω̄3) = 1

2
cos(2θ)σ2 ∧ σ3

and that dωV is a multiple of Re ψ , which vanishes on L. This implies the following.

Lemma 3.12. If θ �= π/4 is constant then 2
cos(2θ)

ωV defines a calibration on L. The fibres of E are the calibrated subspaces of 2
cos(2θ)

ωV .

Since ωV is closed on L it defines a cohomology class in H2(L, R). We have that when pulled back to Sp(2), this 
class vanishes since dρ1 = 2ωV − ωH = 3ωV . If θ takes values in (0, π4 ) the structure group of Q is just Z2, generated 
by diag(1, −1, −1) in H which corresponds to diag(i, i) ∈ S1 × S3 ⊂ Sp(2). This element leaves ρ1 and ρ2 invariant so in 
particular ρ1 reduces to a form on L and we have shown.
10
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Proposition 3.13. If θ takes values in (0, π/4) then [ωV ] = 0. In particular, in this case L does not have any compact two-dimensional 
submanifold which is tangent to E.

3.5. Lagrangians with θ ≡ 0

The structure equations simplify significantly under the assumption θ ≡ 0. Indeed, plugging θ = 0 into eq. (3.11) yields 
β32 = 0 and dθ = 0 implies β22 = β33. Since we have β ∧ σ = 0 Cartan’s lemma implies that there is a single function 
f : L →R such that

β22 = β33 = −1/2β11 = 1/2 f σ1, β21 = 1/2 f σ2, β31 = 1/2σ3.

The fundamental cubic is equal to f (−x3
1 + 3/2x2

2x1 + 3/2x2
3x1) which has stabiliser SO(2). Let γ = ρ1 + ρ2, then

α21 = −1

2
f σ3, α31 = 1

2
f σ2, α32 = −γ − 1

2
f σ1.

The structure equations are then equivalent to

−1 + f + 2 f 2 = 0, dγ1 = 1

2
(5 − f )σ2 ∧ σ3. (3.12)

Hence, there are two examples of special Lagrangian submanifolds L f with θ = 0, both of which are homogeneous and in 
particular compact. Neither of them is totally geodesic. Note that, as a subset of Sp(2), the adapted frame bundle is defined 
by the equations

f σ1 = ρ1 − ρ2, τ = f
σ2 + iσ3√

2
. (3.13)

They are both orbits of a Lie group with Lie algebra equal to the span of

m1 =
(

i 0
0 i

)
, m2 =

(
i f /

√
2 −1

1 −i f /
√

2

)
m3 =

( − j − j i√
2

− j i√
2

j f

)
, m4 =

( − ji j 1√
2

j 1√
2

ji f

)
.

Eq. (3.12) shows that f is in fact constant and must be equal to either −1 or 1
2 . So, there are two distinct examples of 

special Lagrangians with θ = 0. We describe the geometry of each of them.

Example 3.14. There is a unique special Lagrangian with θ = 0 and f = −1. The reduced frame bundle over this submanifold 
is described by

dσ1 = 0, dσ2 = −γ ∧ σ3, dσ3 = γ ∧ σ2, dγ = 3σ2 ∧ σ3.

These are the structure equations of S1 × S2 where S2 carries a metric of constant curvature 3.

Example 3.15. There is a unique special Lagrangian with θ = 0 and f = 1
2 . The reduced frame bundle over this submanifold 

is described by

dσ1 = 3

2
σ2 ∧ σ3, dσ2 = −(γ + 3

2
σ1) ∧ σ3, dσ3 = (γ + 3

2
σ1) ∧ σ2, dγ = 9

4
σ2 ∧ σ3,

which are the structure equations of a Berger sphere.

3.6. Lagrangians avoiding boundary values

From now on we assume that θ is not identically zero or π/4 and denote by L∗ the open set where θ avoids these 
values. On L∗ the frame bundle reduces to a discrete bundle. For J -holomorphic curves in CP 3 the second fundamental 
form is determined by two angle functions [2]. In contrast, θ alone does not determine the second fundamental form of L∗ . 
We let dθ = t1σ1 + t2σ2 + t3σ3 and x = h221, y = h222, z = h322, w = h321 such that β is entirely determined by θ and these 
quantities. Clearly all of these functions are constant on orbits of Lie subgroups of Sp(2), the converse is also true.

Proposition 3.16. Any solution with x, y, z, w and θ ∈ (0, π/4) constant is an orbit of a Lie group.

Proof. Let L be the special Lagrangian corresponding to this solution with adapted frame bundle L̂ . Then L̂ is an integral 
submanifold of the EDS generated by ηi, β −hσ . By assumption, h has constant coefficients which means that the equations 
ηi = 0, β = hσ describe a linear subspace of sp(2) and hence L̂ is a Lie group and L̂ → L is a double cover of Lie groups. �
11
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In principle, we could derive a set of PDE’s for θ, x, y, z and ti from the structure equations but this is not practical in 
full generality. However, there is a somewhat surprising homogeneous example.

Example 3.17. Setting

x = −√
2/5, y = 0, z = 0, w = −3

5

√
3/2, θ = 1

2
arccos(

7
√

2

5
√

5
)

is a solution to eq. (3.11) and hence corresponds to a unique special Lagrangian in CP 3. The fundamental cubic of 
this example is given by 

√
2
5 (2x3

1 − 3x1x2
2 − 3x1x2

3) − 9
5

√
6x1x2x3, whose orientation preserving symmetry group is Z2

coming from (x2, x3) �→ (−x2, −x3). The Ricci curvature is diagonal in the (dual) frame σ1, σ2 + σ3, σ2 − σ3 in which 
Ric = diag(−99/50, −27/50(−2 + √

15), 27/50(2 + √
15)).

By Proposition 3.16, this example is homogeneous. We have found new examples by imposing conditions on θ . In each 
case, the fundamental cubic has non-trivial symmetries. The structure equations (3.11) only hold in a fixed gauge. This 
makes it difficult to classify special Lagrangians where the fundamental cubic has a symmetry everywhere. We do not have 
the gauge freedom to bring them into the standard form as in [6, Proposition 1]. However, this poses no problem for the 
totally geodesic case.

Proposition 3.18. Up to isometries, the standard RP3 is the unique totally geodesic special Lagrangian in CP3 .

Proof. There is no totally geodesic Lagrangian which lies in θ ∈ [0, π4 ). This is because in that case β = 0 forces ρ1 = 0 but 
this is a contradiction to the first equation of (3.11).

If L is a totally geodesic Lagrangian with θ ≡ π
4 then the adapted frame bundle Q is a four-dimensional submanifold of 

Sp(2) on which ηi and β vanish. If θ ≡ π
4 then S vanishes on the adapted bundle Q and by eq. (2.7) the ideal generated 

by ηi and βi j is closed under differentials. By Frobenius’ theorem, there is a unique maximal submanifold on which these 
forms vanish that passes through the identity e ∈ Sp(2). Hence, up to isometries, there is a unique totally geodesic special 
Lagrangian in CP 3 with θ = π

4 . We have already found this example, it is the standard RP 3 ⊂CP 3. �
4. Classifying SU(2) invariant special Lagrangians

Instead of imposing symmetries on the fundamental cubic, we shall now impose them on the special Lagrangian itself. 
We have already encountered examples of homogeneous special Lagrangians.

There are examples of special Lagrangians admitting a cohomogeneity one action of SU(2) in both S6 and C3. In S6, 
there is a unique example of this type, the squashed three-sphere [20, Example 6.4]. In C3, the Harvey-Lawson examples 
[6,15]

Lc = {(s + it)u | u ∈ S2 ⊂ R3, t3 − 3s2t = c3}
admit a cohomogeneity one action of SO(3) for c �= 0.

The situation in CP 3 is different. We show in this section that all special Lagrangians that admit an action of an SU(2)

group of automorphism are in fact homogeneous and have already been described in the previous section. We introduce 
SU(2) moment-type maps to prove this classification.

4.1. SU(2) moment maps

Assume that SU(2) acts effectively on M with three-dimensional principal orbits and by nearly Kähler automorphisms. 
Let {ξ1, ξ2, ξ3} be a basis of su(2) such that [ξi, ξ j] = −εi jkξk . Denote the corresponding fundamental vector fields by K ξi . 
The map ξ → K ξ is an anti Lie algebra homomorphism. Hence, the vector fields K ξi obey the standard Pauli commutator 
relationships [K ξi , K ξ j ] = εi jk K ξk . Consider the map

μ = (μ1,μ2,μ3) = (ω(K ξ2 , K ξ3),ω(K ξ3 , K ξ1),ω(K ξ1 , K ξ2)).

Then μ : M → R3 is an SU(2) equivariant map with respect to the action of SU(2) on R3 coming from the double cover 
SU(2) → SO(3). In addition, define the invariant scalar function

ν = Im ψ(K ξ1 , K ξ2 , K ξ3).

The map μ is not a multi-moment-type map in the sense of [21, Definition 3.5]. The Lie-kernel of �2su(2) → su(2)

is trivial, so there is no non-trivial multi-moment map for the three form Re ψ . On the other hand, the map �3su(2) →
12
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�2su(2) is trivial and ν is a multi-moment map with values in R ∼= �3su(2) for − 1
2 ω ∧ ω. We will refer to μ and ν as 

multi-moment-type maps.
The general strategy to obtain moment-type maps is to contract Killing vector fields with the nearly Kähler forms. Using 

a standard argument, the following lemma shows that all such combinations are exhausted by μ and ν .

Lemma 4.1. The form Reψ vanishes on SU (2) orbits, i.e. Reψ(K ξ1 , K ξ2 , K ξ3 ) = 0.

Proof. Let O be a three-dimensional orbit of SU (2). Since SU (2) acts by isometries on M we have that volO is a SU (2)

invariant form on O. The same holds for Re ψ |O . So there is λ ∈R such that Re ψ |O = λvolO . Since Reψ is exact λvol(O) =∫
O Reψ = 0 i.e. λ = 0. �

Since ψ = Reψ + i Imψ is non-degenerate this means that ν vanishes if and only if K ξ1 , K ξ2 , K ξ3 are linearly dependent 
over C. By Cartan’s formula and the nearly Kähler structure equations we get

dν = 2
∑

l

μlω(K ξl , ·), and dμk = −ω(K ξk , ·) + 3 Re ψ(K ξi , K ξ j , ·) (4.1)

where (i, j, k) is a cyclic permutation of (1, 2, 3). The following proposition is somewhat similar to the toric situation [11]
as we can identify SU(2) invariant special Lagrangians orbits by the values of the maps μ and ν .

Proposition 4.2. The orbit of a point x ∈ M is special Lagrangian if and only if ν(x) �= 0 and μ(x) = 0. The set ν−1(0) ∩ μ−1(0) is a 
union of fixed points of the SU (2) action and two-spheres on which ω vanishes. If M has non-vanishing Euler characteristic then 0 lies 
in the image of ν . The function ν is not constant and the set of points in which dν = 0 and ν �= 0 consists of special Lagrangian orbits.

Proof. By the definition of μ, the two-form ω vanishes on the SU(2) orbit of x if and only if μ(x) = 0. If ν(x) �= 0 then K ξi

are linearly independent at x and the orbit at x is 3-dimensional, which implies the first statement. If ν(x) = 0 then the 
orbit has dimension less than three and the second statement follows from the fact that lower-dimensional SU(2) orbits 
must be points or two-spheres.

Eq. (4.1) implies that if ν is constant then (K ξ1 , K ξ2 , K ξ3 ) are linearly dependent everywhere which contradicts the 
principal orbit type being three-dimensional. If χ(M) �= 0 then any vector field K ξi must have a zero, which forces ν to 
vanish. Finally, consider a point x in which dν = 0 and ν �= 0. We want to show that μ(x) = (0, 0, 0). Using the action of 
SU (2) we can assume that μ2(x), μ3(x) = 0. Then 0 = J K ξ1ν = −2‖K ξ1‖2μ1. But ν �= 0 and hence μ1(x) = 0. �

Since either the maximum or minimum of ν is not zero this implies an existence result for special Lagrangians.

Corollary 4.3. If M is compact then the SU (2) action has a special Lagrangian orbit.

If L is a special Lagrangian submanifold on which a SU(2) subgroup acts then L will lie in the vanishing set of μ. So 
we can classify all SU(2) invariant special Lagrangian submanifolds of CP 3 by computing the vanishing set of μ for every 
SU(2) subgroup of Sp(2).

Definition 4.4. Define the three SU(2) subgroups of Sp(2) as K1 = {1} × Sp(1), K2 = SU(2), arising from the inclusion C2 ⊂
H2, and K3 which comes from the irreducible representation of SU(2) on S3(C2) ∼=C4.

Any three-dimensional subgroup of Sp(2) is conjugate to one of K1, K2, K3.

Remark 4.5. Note that SO(4) contains two SU(2) subgroups that do not stabilise a vector in R4. They are not conjugated to 
each other and, on the Lie algebra level, correspond to the splitting of �2(R4) into self-dual and anti-self-dual two forms. 
However, in SO(5), these two Lie algebras are conjugated to each other, for example via the element (x4, x5) �→ (−x4, −x5). 
Since Sp(2) = Spin(5) the same holds true for the corresponding SU(2) subgroups in Sp(2).

The groups Ki naturally act on S4 through the double cover Sp(2) → SO(5). The group K1 acts via SU(2) ⊂ SO(4), 
the group K2 via the double cover SU(2) → SO(3) leaving a plane in R5 invariant and K3 acts irreducibly on R5

and factors through SO(3). To relate the group invariant examples to those found in the previous section we com-
pute the function θ for group orbits, for which we use eq. (3.2). To this end, it makes sense to define μV =
(ωV (K ξ2 , K ξ3 ), ωV (K ξ3 , K ξ1 ), ωV (K ξ1 , K ξ2)). The Killing vector fields corresponding to the subgroups Ki admit quite sim-
ple expressions in local coordinates. So, to express ν for Ki in homogeneous coordinates we need to do so for the nearly 
Kähler form ω = i

2

∑
i ωi ∧ ω̄i . This is the essence of eq. (1.4), where the forms ωi are pulled back to a chart in CP 3 by a 

local section.
13
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It will be challenging to compute ν for K2 and K3, so we first establish representation theoretic results to simplify the 
computations. In [13], it is shown that given an irreducible finite-dimensional continuous real representation of a compact 
Lie group G , the intersection of any hyperplane and any group orbit is non-empty. The authors of [13] pose the question 
whether the same statement holds for complex representations, in particular irreducible representations of SU(2). There is a 
general framework to relate this question to the existence of nowhere vanishing sections in bundles over the flag manifold 
G/T [1]. The following result follows a similar strategy and gives a direct proof for G = SU(2).

Lemma 4.6. Let (V , ρ) be a finite dimensional unitary representation of G = SU(2) with all weights non-zero and H be a hyperplane 
which is invariant under the maximal torus U(1) ⊂ SU(2). Then H intersects every G orbit.

Proof. Since H is U(1) invariant there is a linear U(1) equivariant map f : V →C such that ker( f ) = H . Assume that there 
is an x ∈ V such that G.x ∩ H = ∅. Then s : g �→ f (gx) is a non-vanishing U(1) equivariant map SU(2) →C. Restricting this 
map to U(1) ⊂ SU(2) gives a representation τ of U(1) on C of weight k ∈Z.

Note that the principal bundle SU(2) → SU(2)/U(1) = S2 is the Hopf fibration and that s gives rise to a nowhere van-
ishing section of the associated bundle E = SU(2) ×τ C over S2. Since the Hopf fibration has non-trivial Chern class, the 
complex line bundle E is trivial which forces k = 0. This is a contradiction because f restricts to an equivariant isomorphism 
from H⊥ to C, so H⊥ is a zero-weight subspace. �

Note that, in the situation above, H is invariant under U(1) and the action of U(1) on H splits into one-dimensional 
components. Then every G orbit also intersects the set H ′ ⊂ H where one of the C components is restricted to the set 
R≥0.

All the actions of Ki on CP 3 factor through an action of SU(4) on C4. The irreducible action ρk of SU(2) on Sk(C2)

has weights (k, k − 2, . . . , −k + 2, −k). The action of K2 on CP 3 factors through ρ1 ⊕ ρ1 on C4 and K3 through ρ3 on C4. 
In particular neither has a zero weight, so Lemma 4.6 applies to these cases.

4.1.1. K1

Recall K1 = {1} × Sp(1), we compute the Killing vector fields on the chart A0 = {Z0 �= 0}

K ξ1 = − Im(Z2
∂

∂ Z2
− Z3

∂

∂ Z3
), K ξ2 = Re(Z3

∂

∂ Z2
− Z2

∂

∂ Z3
), K ξ3 = Im(Z3

∂

∂ Z2
+ Z2

∂

∂ Z3
).

We contract these vector fields with the nearly Kähler forms ω and ψ in homogeneous coordinates from eq. (1.4), which 
gives

ν = −|Z |−6 1

2
(|Z0|2 + |Z1|2)(|Z2|2 + |Z3|2)2, μ1 = |Z |−2(|Z3|2 − |Z2|2) f

μ2 + iμ3 = 2i|Z |−2 Z2 Z3 f , f = 1

4
|Z |−2(−2(|Z0|2 + |Z1|2) + (|Z2|2 + |Z3|2)).

Hence, ν vanishes on the line of fixed points {Z2 = Z3 = 0} or when f = 0. Note that Sp(1) × Sp(1) is the centraliser 
of K1 in Sp(2), acts with cohomogeneity one on CP 3 and the orbits of that action are the level sets of f . In particular 
Sp(1) × Sp(1) acts transitively on f = 0 which means that up to isometries there is a unique special Lagrangian on which 
K1 acts. Hence, for simplification we consider the orbit O11 at the point P11 = [1, 0, 

√
2, 0]. At this point, K ξ1 annihilates 

ωV which means that evaluating eq. (3.2) at P11 yields

1

2
| cos(2θ)| = ‖K ξ1‖|ωV (K ξ2 , K ξ3)

ν
| = 1

2
.

Hence θ = 0 and O11 is diffeomorphic to S3. It is also the orbit of the larger group S1 × Sp(1).

Lemma 4.7. The unique special Lagrangian invariant under K1 is O11 which is identified with Example 3.15.

Remark 4.8. The multi-moment map for T 2 torus symmetry is an eigenfunction of the Laplace operator on M , cf. [25, 
Lemma 3.1]. However, this is not the case for the SU(2) multi-moment map ν , as it is non-positive everywhere, so ∫

M νvolM < 0, this integral vanishes for eigenfunctions of Laplace operator.

4.1.2. K2

The group K2 lies inside U(2) ⊂ Sp(2). Let ξ0 = diag(i, i) ∈ sp(2), which commutes with all elements in the Lie algebra 
of K2. Again, we compute
14
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K ξ0 = 2 Re(i Z1
∂

∂ Z1
) K ξ1 = 2 Re(−2i(Z1

∂

∂ Z1
+ Z2

∂

∂ Z2
)),

K ξ2 + iK ξ3 = 2(Z3 − Z1 Z2
∂

∂ Z1
− (1 + Z 2

2)
∂

∂ Z2
− (Z1 + Z2 Z3)

∂

∂ Z3
).

For K2, the map ν is equal to

−8
|Z0 Z1 + Z2 Z3|2

|Z |2
by eq. (1.4). We apply Lemma 4.6 and compute μ on the set Z2 = 0 and Z1 = r ≥ 0, and w.l.o.g. we assume Z0 = 1. Then 
we have

μ1 = −2|Z |−4(−1 + r4 + 4|Z3|2 − |Z3|4), μ2 − iμ3 = −4i|Z |−4r Z3(−2 + r2 + |Z3|2).
The set ν = 0 is a J1-holomorphic quadric and hence diffeomorphic to S2 × S2. The action of U(2) on this quadric is of 
cohomogeneity one. The principal orbit is S2 × S1 and the singular orbit S2.

If ν = 0 then ν vanishes if r = 0 and |Z3| =
√

2 + √
3. Denote this point by P21, the U(2) orbit O21 is special Lagrangian 

and K ξ0 is horizontal on ν−1(0). We compute via eq. (3.2)

1

2
| cos(2θ)| = ‖K ξ0‖ |ωV (K ξ2 , K ξ3)|

| Im ψ(K ξ0 , K ξ2 , K ξ3)| = 1

2
,

i.e. θ = 0.
If ν �= 0 then r �= 0 and ν = 0 only occurs for Z3 = 0 and r = 1. Denote this point by P22 and note νV vanishes on P22. 

Hence, θ = π/4 and the orbit O22 is diffeomorphic to RP 3.

Lemma 4.9. All special Lagrangians that admit a K2 action are O21, O22 which corresponds to Example 3.14 and Example 3.9 respec-
tively.

4.1.3. K3

To compute the Killing vector fields for K3 we need the explicit description of K3 ⊂ SU(4)

K3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

a3 −√
3a2b

√
3ab

2 −b
3

√
3a2b a(|a|2 − 2|b|2) −b(2|a|2 − |b|2) √

3ab
2

√
3ab2 b(2|a|2 − |b|2) a(|a|2 − 2|b|2) −√

3a2b
b3

√
3ab2

√
3a2b a3

⎞
⎟⎟⎟⎠ | (a,b) ∈ S3 ⊂ C2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

see for example [18]. Now we can compute the Killing vector fields for K3 on A0

K ξ1 =2 Im(3Z1
∂

∂ Z1
+ 2Z2

∂

∂ Z2
+ Z3

∂

∂ Z3
)

K ξ2 =Re(−√
3(Z1 Z3 + Z2)

∂

∂ Z1
+ (

√
3Z1 − (2 + √

3Z2)Z3)
∂

∂ Z2

+ (2Z2 − √
3(1 + Z 2

3))
∂

∂ Z3
)

K ξ3 = Im(
√

3(−Z1 Z3 + Z2)
∂

∂ Z1
+ (

√
3Z1 + (2 − √

3Z2)Z3)
∂

∂ Z2

+ (2Z2 − √
3(−1 + Z 2

3))
∂

∂ Z3
).

Again, we apply Lemma 4.6 and restrict ourselves to compute ν and ν for Z0 = 1, Z2 = r > 0 and Z3 = 0. Let furthermore 
Z1 = exp(iφ)s, then by eq. (1.4)

μ1 = 2|Z |−4
(

5r4 − 4r2s2 − 16r2 − 3s4 + 3
)

μ2 = |Z |−44rs sin(φ)
(

r(
√

3r − 9) + √
3
(

s2 − 8
))

μ3 = |Z |−44rs cos(φ)
(

r(−√
3r − 9) − √

3
(

s2 − 8
))

ν = |Z |−38
(

4r4
(

s2 − 5
)

− 12
√

3r3s2 cos(2φ) + 3r2
(

s2 + 4
)

− 9
(

s4 + s2
))

.
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Hence, the only solutions of μ = (0, 0, 0) are (r, s) ∈ {(0, 1), (
√

3, 0), (1/
√

5, 0)}. The solutions with r = 0 are in the U(1)

orbit of the point P31 = [1, 0, 1, 0]. The point [1, 
√

3, 0, 0] is also in the same K3 orbit as P31. So, it suffices to consider the 
points P31 and P32 = [1, 1/

√
5, 0, 0].

Note that ν(P31) = −18 and ν(P32) = 200/27 which must hence be the minimum and maximum of ν respectively. The 
map μV vanishes at P31 and hence the orbit O31 satisfies θ = 0 and is in fact the Chiang Lagrangian.

Furthermore, μV (P32) = (− 14
9 , 0, 0) which means that K ξ1 is horizontal at P32. By eq. (3.2) we have

1

2
| cos(2θ)| = ‖K ξ1‖ |νV |

|ν| = 7

5
√

10
, θ = 1

2
arccos(

7
√

2

5
√

5
) ≈ 0.24

on O32.

Lemma 4.10. All K3 invariant special Lagrangians are given by the orbits O31 and O32 , which correspond to Example 3.10 and Exam-
ple 3.17 respectively.

As remarked after Proposition 1.2, the identity component of nearly Kähler automorphisms of CP 3 is Sp(2). So, com-
bining all results of this section results in the following theorem.

Theorem 4.11. Every Special Lagrangian in CP3 that admits a non-trivial action of a three-dimensional group of nearly Kähler 
automorphisms is homogeneous and one of the following orbits.

Example Properties θ Group orbit Stabiliser group of C

3.15 Berger Sphere 0 K1 SO(2)

3.14 S1 × S2 0 U(2) ⊃ K2 SO(2)

3.9 standard RP 3 π/4 K2 SO(3) (tot. geodesic)
3.10 Chiang Lagrangian π/4 K3 S3

3.17 distinct Ric e’values ≈ 0.24 K3 Z2

For the definition of the SU(2) subgroups Ki see Definition 4.4.

4.2. The flag manifold

Theorem 4.11 classifies homogeneous special Lagrangians and also rules out the existence of special Lagrangians admit-
ting a cohomogeneity one action of a three-dimensional group of nearly Kähler automorphisms. The aim of this section is 
to prove the analogous statement for the nearly Kähler flag manifold F = SU(3)/T 2. The homogeneous special Lagrangians 
in the flag manifold are classified in [28], so we restrict ourselves to the cohomogeneity-one case.

We could achieve this by computing the moment-type maps and determine the zero sets, as we did for CP 3. However, 
the statement can also be shown by analysing the group actions of 3-dimensional subgroups of SU(3), which is the identity 
component of nearly Kähler automorphisms as remarked after Proposition 1.2. We will show the set of elements with 
one-dimensional stabilisers are two-dimensional, so they cannot be special Lagrangian. To understand the action of three-
dimensional subgroups of SU(3) on the flag manifold we exploit the fact that the flag manifold is an adjoint orbit for 
SU(3).

Up to conjugation there are two three-dimensional subgroups of SU(3) the standard SO(3) ⊂ SU(3) and the SU(2) sub-
group fixing the element (0, 0, 1). Consider the adjoint action of SU(3) on its lie algebra su(3). Every element A ∈ su(3) is 
then conjugate to a diagonal matrix, the SU(3) orbits are distinguished by the set of purely imaginary eigenvalues.

Hence, the SU(3) orbits are the level sets of the functions

ρ1(A) = Tr(A2) ρ2(A) = Tr(A3).

There are three orbit types. The principal stabiliser type is a maximal torus in SU(3). Every element with distinct eigenvalues 
is of principal type. If A has a repeated eigenvalue the stabiliser type is SU(2) × U(1), unless all eigenvalues are zero.

So we fix an element A ∈ su(3) with distinct eigenvalues and identify the flag manifold SU(3)/T 2 with the adjoint orbit 
of A. Our aim is to determine the set of elements in F with one-dimensional stabiliser under the action of SO(3) ⊂ SU(3)

and SU(2).

Proposition 4.12. Every element in su(3) with non-principal stabiliser for either the action of SO(3) or SU(2) has a representative in 
the set

S =
⎧⎨
⎩

⎛
⎝ iμ −λ 0

λ iμ 0
0 0 −2iμ

⎞
⎠ | λ,μ ∈R

⎫⎬
⎭ .
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Proof. With respect to SO(3) the adjoint action on su(3) splits as �2(R3) ⊕ i S2
0(R

3). It is known that the action of SO(3)

on S2
0(R

3) is irreducible and has trivial stabiliser unless the element in S2
0(R3) has repeated eigenvalues, in which case 

the stabiliser is O(2). Every such element is conjugate to diag(μ, μ, −2μ). Let A ∈ �2(R3), the stabiliser of A in SO(3)

intersects the stabiliser of diag(μ, μ, −2μ) in a one-dimensional set if and only if A is of the form

Aλ =
⎛
⎝ 0 −λ 0

λ 0 0
0 0 0

⎞
⎠ ,

which implies the statement for SO(3).
With respect to the subgroup SU(2), the representation splits as su(2) ⊕C2 ⊕R where the action on the first summand 

is the adjoint action, is irreducible on the second summand and trivial on the third summand. For the stabiliser to be non-
trivial the component in C2 has to vanish. The trivial component is spanned by the element diag(μ, μ, −2μ). Finally, every 
element in su(2) is conjugate to Aλ under the SU(2) action. �
Theorem 4.13. There are no special Lagrangians in F which admits a cohomogeneity one action of nearly Kähler automorphisms.

Proof. We show that for a three-dimensional group acting by nearly Kähler automorphisms on the flag manifold, the set of 
elements in F with one-dimensional stabiliser is two-dimensional.

The identity component of nearly Kähler automorphisms of the flag manifold is SU(3). Since SU(2) and SO(3) are the only 
three-dimensional subgroups of SU(3) it suffices to show that the intersection F ∩ S is finite. Since S is two-dimensional it 
only remains to check that the function ρ = (ρ1, ρ2) has full rank on S . A direct computation shows that the determinant 
of the Jacobian is

det( Jρ) = 24iλ3 − 216iλμ2

which vanishes if and only if λ ∈ {0, 3μ, −3μ}. In each case, the resulting element in S has repeated eigenvalues, so it does 
not lie in F since A has distinct eigenvalues. �
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