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Abstract

The horizon-scale images of black holes obtained with the Event Horizon Telescope have provided new probes of
their metrics and tests of general relativity. The images are characterized by a bright, near-circular ring from the
gravitationally lensed emission from the hot plasma and a deep central depression cast by the black hole. The
metric tests rely on the fact that the bright ring closely traces the boundary of the black hole shadow with a small
displacement that has been quantified using simulations. In this paper we develop a self-consistent covariant
analytic model of the accretion flow that spans a broad range of plasma conditions and black hole properties to
explore the general validity of this result. We show that, for any physical model of the accretion flow, the ring
always encompasses the outline of the shadow and is not displaced by it by more than half the ring width. This
result is a consequence of conservation laws and basic thermodynamic considerations and does not depend on the
microphysics of the plasma or the details of the numerical simulations. We also present a quantitative measurement
of the bias between the bright ring and the shadow radius based on the analytical models.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Plasma astrophysics (1261); Supermassive

black holes (1663)

1. Introduction

Horizon-scale images of accreting black holes are generated
when the photons emitted by the surrounding plasma propagate
from the deep gravitational fields of the black holes to
observers at infinity. Because of this, the strong fields of black
holes are imprinted on the resulting images, which can be used
to probe the spacetime properties.

When observed at millimeter wavelengths, the radiatively
inefficient accretion flows that surround nearby supermassive
black holes are transparent down to the event horizon (Ozel
et al. 2000), allowing us to directly observe the photons that
originate at horizon scales. These flows give rise to images in
which the black holes cast a deep shadow on the plasma
emission (Jaroszynski & Kurpiewski 1997; Falcke et al. 2000).

The boundary of the shadow is entirely determined by the
black hole metric and, in particular, by the location of spherical
photon orbits outside its horizon (Bardeen 1973; Takahashi
2004). For a Kerr black hole, the shape of the shadow remains
nearly circular and its size nearly constant for all black hole
spins and observer inclinations, as a result of a near
cancellation of the frame-dragging and spacetime-quadrupole
effects (Johannsen & Psaltis 2010). This property allows using
black hole shadows to perform a direct test of gravity at
horizon scales that depends only on prior knowledge of the
black mass (see Psaltis 2019 for a review).

The Event Horizon Telescope (EHT) has recently obtained
images of the black hole in the center of the M87 galaxy.
These images are characterized by a narrow ring of emission
that surrounds a deep brightness depression (Event Horizon
Telescope Collaboration 2019a, 2019b). They have been
used to infer the size of the black hole shadow (Event
Horizon Telescope Collaboration 2019d) and to perform tests
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on deviations from the Kerr metric (Psaltis et al. 2020;
Kocherlakota & Rezzolla 2021).

Even though the characteristics of the shadow provide an
uncontroversial metric test, fundamentally the observational
measurements are based on the properties of the bright image
ring, which is used as a proxy for the size of the shadow.
Because the image itself is formed through a combination of the
spacetime of the black hole and the emission characteristics of
the plasma, this inference was justified through an extensive
suite of General Relativistic Magnetohydrodynamic (GRMHD)
simulations that spanned a wide range of relevant conditions
(Event Horizon Telescope Collaboration 2019c). These simula-
tions allowed for a quantitative calibration between the diameter
of the peak emission, which is measured, and that of the
shadow, which is inferred (Event Horizon Telescope Collabora-
tion 2019d).

There exists a large body of literature exploring the
sensitivity of the horizon-scale images, and hence of the metric
tests, on the particular assumptions regarding the plasma
properties and simulation algorithms employed (see, e.g.,
Dexter & Agol 2009; Moscibrodzka et al. 2009; Dexter et al.
2010; Dexter 2013; MoScibrodzka et al. 2014; Chan et al.
2015a, 2015b; Mao et al. 2017; Medeiros et al. 2017; Davelaar
et al. 2018, 2019; Medeiros et al. 2018; Ryan et al. 2018;
Narayan et al. 2019; Chatterjee et al. 2020; Dexter et al. 2020;
White et al. 2020; Yoon et al. 2020; Bronzwaer et al. 2021;
Mizuno et al. 2021), on the possible deviations from the Kerr
metric in the simulated images (see, e.g., Johannsen & Psaltis
2010; Broderick et al. 2014; Johannsen et al. 2016a, 2016b;
Mizuno et al. 2018; Olivares et al. 2020), as well we on the
astrophysical complications introduced by the finite resolution
of the EHT and the intervening material between the source and
the telescopes (see, e.g., Fish et al. 2014; Psaltis et al. 2015;
Zhu et al. 2019). These studies explored the impact on the
resulting images of different magnetic field configurations and
initial conditions, of electron heating and acceleration models,
of misaligned disk and black hole angular momenta, etc.
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However, there has not been so far a comprehensive study of
the connection between model assumptions, spacetime proper-
ties, and image characteristics, especially in the context of
metric tests.

Our goal is to devise a realistic but flexible plasma model in
order to explore the impact of the uncertainties in the
microphysics and large-scale properties of the accretion flow
without relying on the specifics of the GRMHD models. This
will also allow us to address recent claims in the literature,
made using simple arguments and ad hoc constructions, that
ring-like black hole images could be disjoint from the black
hole shadows (e.g., Gralla et al. 2019; Gralla 2021). In
particular, the uncertainties in the microphysics of plasma
heating, the presence of a putative truncation in the accretion
flow at an arbitrary radius, the resolution of the simulations,
and their initial conditions were all invoked as potential sources
of uncertainty that could lead to such images.

In this series of papers, we show that the universal
characteristics of the images on which the metric tests are
based do not depend on the detailed properties of the numerical
simulations, on the plasma model, or on the particular metrics
employed but arise naturally in the black hole spacetimes that
are characterized by spherical photon orbits and a horizon. In
this first paper, we develop a self-consistent analytic model to
explore the dependence of image properties on a broad range of
plasma characteristics. We demonstrate that, for any flow that
obeys basic conservation laws for the mass, momentum, and
energy, and that is relevant to low-luminosity black holes, the
image always closely tracks and straddles the black hole
shadow. Because the black hole shadow is contained within the
width of the ring, when the latter is thin, as is the case in the
image observed in M87, we show that the uncertainties in the
calibration are small and limited by the fractional width of the
observed ring.

We conclude that the only way to generate an image of the
inner accretion flow where the bright emission ring is displaced
from the black hole shadow is either by considering a transient
event, such as an Einstein ring (Chan et al. 2015a), or by
artificially truncating the plasma emissivity at an arbitrary
radius. Even though the former is a possibility that can be
tested by observations that are repeated over many dynamical
timescales, the latter violates basic physical considerations. We
further show that, for any of the simulated images, the finite
resolution of the EHT does not preclude a measurement of the
size of the black hole shadow; it only limits the accuracy of the
measurement. In a companion paper (Younsi et al. 2021), we
show that these conclusions do not depend on the Kerr nature
of the metric but hold for other metrics as well.

One can of course generate an image structure that is disjoint
from the black hole shadow by invoking, e.g., emission from a
jet at large distances from the horizon or from the shocks that
may be generated in tilted accretion flows (Dexter 2013).
Howeyver, to be viable, such models will need to account for the
stability of the observed images, their thin ring-like structures,
and the observed similarity between the diameter of such rings
and that of the shadow given the prior mass measurement of the
black hole.

In Section 2, we first employ simple emissivity profiles in the
accretion flow in order to disentangle the plasma effects from
those of the spacetime and identify the conditions necessary to
break the coupling between the ring in the image and the black
hole shadow. In Section 3, we develop a full analytic plasma
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model that obeys conservation laws and basic thermodynamic
considerations and in Section 4, we compare this model to
GRMHD simulations. In Section 5, we simulate a broad range
of images based on the analytic plasma model and use them to
bound the bias between the diameter of the ring and that of the
shadow.

2. General Characteristics of Horizon-scale Images of
Accretion Flows

Horizon-scale images of black holes have a number of
universal properties that are shaped by the black hole spacetime
and by the physical processes in the plasmas in the accretion
flows. In this section, we disentangle the signatures of the
spacetime from those of the plasma on the black hole images
using a broad range of profiles for the dynamic and
thermodynamic properties of the plasma. We focus on the
case where the mass of the black hole, the accretion rate, and
the observing wavelength are such that the accretion flow is
nearly optically thin down to the horizon of the black hole. For
the case of the two primary EHT targets, Sgr A* and M87, this
occurs at the 1.3 mm wavelength chosen for the EHT
observations (Ozel et al. 2000).

In this paper, we assume that the black hole spacetime is
described by the Kerr metric, which in Boyer-Lindquist
coordinates is given by

)
dszz—(l - 3) arr — [ 24O e
2 2

>
(2 a2+ x a0
(A) g

2, cin2
+ (ﬂ +a’+ MrTsme)sng do?. (1)
Here a is the spin of the black hole,
A=r?—2r+d? 2)
and
Y =r? 4 a’cos? 6. 3)

In this expression, G =c =M =1, where G, ¢, and M are the
gravitational constant, the speed of light, and the black hole
mass, respectively. For the remainder of this section, we will
set the spin to zero but will consider the general case in the
following sections. In the companion paper, we will consider a
variety of non-Kerr metrics.

To calculate the images, we place an observer at a large
distance and at an inclination i with respect to the spin axis of
the black hole. We set an image plane perpendicular to the
observer’s line of sight and calculate null geodesics backward
from each point on the image plane in the black hole spacetime
using the code described in Psaltis & Johannsen (2012). We
then integrate the radiative transfer equation along geodesics,
which is given by

100 = [ jw)gidr *
ray

for the case of optically thin emission, where A is the affine
parameter, j, is the emissivity and v is the frequency of the
radiation in the local comoving frame, 14 is the observed
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frequency, and

P ()
is the redshift factor (Dexter & Agol 2009). Here, K and u“
are the four-vectors of the photon momentum and plasma
velocity. Here, we have neglected, for simplicity, the effects of
self-absorption, which is appropriate for the millimeter
wavelength of EHT observations. However, the radio emission
at longer wavelengths does become self-absorbed, and this
conceals from view the signature of the black hole shadow on
the image (see, e.g., Narayan et al. 1995; Ozel et al. 2000).
For the purposes of this section, we allow a highly general
form of the emissivity that has an arbitrary power-law

dependence on the coordinate radius and an arbitrary scale
height 2/r:

2
j@r, 0) = jor"exp l%(w) l (6)

o _kaua’|oo
g —
14

(h/r)m/2

When h/r goes to infinity, this describes a spherically
symmetric emission geometry. We consider only profiles with
n > 1 because, otherwise, the integral in Equation (4) does not
converge and its value is determined entirely by the artificial
outer boundary condition. Similarly, for 1 <n <3, the total
flux does not converge, but in this case, the brightness of every
pixel is finite on the image plane. In addition, for these toy
models, we will mostly consider the flow to be at rest but will
also allow for radial infall velocities that are a fraction of the
local free-fall velocity. Finally, for the majority of this section,
we consider the emissivity to be independent of the photon
frequency. In the following section, we will construct self-
consistent and physical analytic models of the accretion flow.

Figure 1 shows the cross sections of the brightness of images
calculated for a variety of parameters of the simple emissivity
model described above. The upper left panel shows the effect
of changing the emissivity profile in the flow for a spherically
symmetric configuration while the upper right panel makes the
same comparison for a geometrically thick disk of 4/r=0.25
viewed at a 45° inclination. The bottom two panels display the
effect of changing the scale height of the disk (left) and the
inclination of the observer (right).

It is evident from these panels that there are universal
features of the images that do not depend on the details of the
emissivity model:

1. In all cases, there is a precipitous brightness depression
interior to the critical impact parameter (i.e., the black
hole shadow). This occurs at ~/27M for nonspinning
black holes (see Equation (52) for the general expression
that shows the marginal effect of the spin and observer’s
inclination).

2. The peak brightness always occurs at or very close to this
critical impact parameter, again nearly independent of the
plasma properties, flow scale height, or viewing angle.

3. Compact images, such as the EHT images of MS87,
require steep emissivity profiles.

The main impact of the emissivity profile is to determine the
extent of the image at larger impact parameters (i.e., the image
compactness). Shallow density profiles lead to extended images
that are inconsistent with the compact, narrow ring-like
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structure observed from the M87 black hole with the EHT. A
second aspect of the image that is affected by the emissivity
model is the depth of the brightness depression inside the black
hole shadow. However, in none of the cases does this affect the
presence or the location of the deep depression.

Figure 2 elucidates the effect of the emissivity model and the
spacetime characteristics on the profile of the image brightness.
The brightness seen by an observer at any given impact
parameter is determined by the combination of the path length
along the ray for which there is nonzero emissivity and the
magnitude of that emissivity. This mechanism is different than
the image formation in the case of a geometrically thin,
optically thick disk (as used in, e.g., Luminet 1979; Gralla et al.
2020; Glampedakis & Pappas 2021), which is inapplicable to
the two primary EHT targets, as thin disks are highly
inconsistent with all of their observed characteristics.

The left panel shows a visualization of the emissivity profile
on a meridional plane of the accretion flow and sample
trajectories at four impact parameters for an observer placed at
i=45°. The right panel shows the corresponding image
brightness as a function of the impact parameter as well as
the location of the four trajectories. At large impact parameters,
the decline of the image intensity is substantially flatter than the
radial dependence of the emissivity profile because of the
opposing effects of the decline in emissivity and increase in the
path length with increasing impact parameter. In other words,
trajectories A and B give rise to similar intensities because even
though the emissivity sampled along path A is smaller than that
along path B, the total path length through the densest part of
the flow is longer for path A.

The broad brightness peak around impact parameter C is the
result of strong gravitational lensing, which induces a large
enough deflection in the photon path to cause it to cross the
inner part of the accretion flow twice and, thus, to pick up a
larger emissivity contribution. The slight dip between impact
parameters C and D is a result of the decreasing disk thickness
h with decreasing radius such that, in this example, the lengths
of the trajectories, even accounting for the double crossing of
the flow, decrease faster inwards than the increase in the
emissivity. The situation changes dramatically at a very narrow
range of impact parameters around D, for which the trajectories
take multiple turns around the photon orbit and give rise to the
sharp and narrow brightness peak in the image. Note that the
individual number of crossings within the narrow range of
critical impact parameter around D will not give rise to
distinguishable individual peaks, because the contribution to
the radiative transfer integral increases in a continuous manner
(and not discretely as in the infinitesimally thin toy models that
simply count the number of equatorial crossings).

Figure 1 shows that the depth of the central brightness
depression (at impact parameters smaller than the critical one)
has a dependence on the scale height //r of the accretion flow
and the inclination of the observer. However, the actual
brightness at these small impact parameters is heavily
overpredicted in this simplistic model because the latter
neglects two unavoidable physical effects that further reduce
the brightness. First, accretion flows have a finite radial inflow
velocity, which becomes a substantial fraction of the speed of
light at the small radii intersected by these impact parameters.
As a result, the angular dependence of emission is highly
peaked toward the black hole, with only a small fraction
pointing outward toward the observer. Second, the synchrotron
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Figure 1. Intensity across a horizontal cross section of a black hole image for different analytic emissivity profiles in optically thin accretion flows. (a) Three radial
emissivity profiles for a spherical geometry (/r — 00). (b) Same as (a) but for a disk scale height 2/r = 0.25. (c) Same as (b) but varying the disk scale height. (d)

Same as (b) but varying the observer’s inclination.

emissivity that gives rise to the radio/millimeter radiation
observed from sources such as Sgr A* decreases rapidly with
increasing photon frequency. The consequence of these
redshifts is that the photons that arrive at the observer with a
wavelength of 1.3 mm have to be emitted at increasingly higher
frequencies when they originate at larger depths in the
gravitational potential. The relevant emissivity at smaller radii
will, therefore, be smaller than what is assumed in the simple
model of Figure 1.

The cross sections of the image in the presence of these two
effects are shown in Figure 3. The left panel considers a radial
inflow velocity that is a fraction of the local free-fall velocity
(ug = \/2_/r), while the right panel introduces a modest
power-law dependence of the synchrotron emissivity (note that
at high frequencies, the frequency dependence of the
synchrotron emissivity is in fact exponential). As expected,
in both cases, the addition of these necessary physical effects
substantially reduces the brightness inside the black hole
shadow and further enhances the sharp drop at the critical
impact parameter.

These simple models demonstrate that, for any continuous
plasma distribution in the accretion flow, compact images of
black holes are always characterized by a large brightness
depression at the critical impact parameter independent of any
details of the plasma or its emission. This brightness depression

is a unique signature of the spacetime that cannot be
overwhelmed by plasma effects for the conditions of the
primary EHT targets. Further, its diameter is determined
entirely by the size of the photon orbit and the strength of
gravitational lensing.

Given the generality of the conclusions above, one is left to
ask what conditions would be required to generate a compact
ring that is disjoint from the location of the shadow. The only
remaining mechanism for decoupling the brightness depression
from the critical impact parameter is the introduction of an
ad hoc truncation of the emissivity profile at some arbitrary
radius. We explore the consequences and the feasibility of such
truncations in the remainder of this section and in Section 5.

2.1. The Effect of an Arbitrary Truncation of Disk Emissivity

We turn to the images associated with an accretion flow
where the emissivity profile is truncated at an arbitrary inner
boundary that is separate from the horizon of the black hole.
Previous studies (e.g., Luminet 1979; Straub et al. 2012;
Vincent et al. 2015) have invoked such ad hoc conditions by
setting the matter density to zero at, e.g., the innermost stable
circular orbit (ISCO), motivated by the fact that matter loses
centrifugal support for a cold, thin disk at that radius. In
principle, such a configuration can also be produced by setting
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Figure 2. (Left) Different path lengths that contribute to the observed image brightness at four impact parameters through an accretion flow. (Right) Contribution of

different impact parameters to the various features in the image cross section.

the electron temperature or the magnetic field strength suddenly
to negligible values at a chosen radius.

Figure 4 shows the image cross sections obtained from the
simple analytic model truncated at a variety of inner disk radii
rin and for different values of the disk thickness. In all cases,
the emissivity profile is given by j~r >, the observer’s
inclination is set to 15°, and the radial velocity is v, = 0.5vy.
The left panel shows that, if the truncation is close to the radius
of the photon orbit (r;, <5 M), then its radius has minimal
effects on the shadow characteristics; the sharp drop in the
image brightness still occurs at the critical impact parameter.
The only way to generate a disjoint peak of emission at a
substantially different impact parameter is by truncating the
emissivity at a much larger radius. Note that, if such a
truncation is associated with the ISCO, it will be significantly
displaced from the photon ring only for slowly spinning black
holes, as the coordinate radius of the ISCO and that of the
photon orbit converge to the same value as the spin increases to
its maximum value.

The right panel of Figure 4 shows a case with r;,, = 6M for
three different values of the disk thickness. In this case,
multiple disjoint peaks are produced. The first peak still
appears near the critical impact parameter, while the outer peak
associated with the truncation of the disk has a location that
depends on the disk thickness 4/r.’ Even with this large
truncation radius, the depth between the individual peaks of
emission is also a function of the disk thickness (and to a lesser
extent, of the observer’s inclination and the radial dependence
of the emissivity, not shown in the figure).

In the next section, we develop a self-consistent, semi-
analytic, covariant model of the accretion flow in order to
explore the physicality of such truncated emissivity profiles.

3. The Properties of the Plasma in the Accretion Flow

A realistic analytic model for the plasma that is needed to
calculate horizon-scale images of the accretion flow requires
the specification of the fluid density p, the four-velocity u”,
magnetic field strength B, and the electron temperature 7.
These, in turn, are obtained from the more general basic

3 The claim in Gralla & Lupsasca (2020) that this peak appears at ry, + 1 is
correct only in the highly specialized case of face-on observers and purely
equatorial emission.

conservation equations for the stress-energy tensor 7", which
are

T) =0 (7
for the conservation of the energy—momentum and
(PM“);V =0 (8)

for the conservation of the particle number or, equivalently, the
rest-mass density. These conservation laws are satisfied
independent of whether the plasma is in the kinetic or the
fluid regime, of the validity of the MHD approximation, or of
the particular dissipation mechanisms involved.

By construction, our analytic model is axisymmetric so that
there is no dependence of any quantity on the azimuthal angle
¢. Furthermore, in this section, we use vertically averaged
quantities for the accretion flow such that the conservation
equation for the mass density becomes

4w(ﬁ)¢——gpur — ©
r

where M is the constant mass accretion rate throughout the
flow and the scale height is defined as

ey = o 490y 402~ Olo =g
—(r) = .

r S ao [0 p=g

In Equation (9), the factor related to the determinant of the
metric, g = |detg, |, is understood to be evaluated at the

(10)

equatorial plane. For the Kerr metric, /—g = r> on the
equatorial plane and, therefore, the above equation becomes

47r(ﬁ)r2pu’ = —M. (11)
r
The electron density as a function of radius is then simply
nen =20 - ___M__ (12)
m, 4rr2(h/ryu"m,

where my, is the mass of the proton (assuming a fully ionized
hydrogen plasma) and u” is the rcomponent of the plasma
velocity. It is evident from this equation that the density profile
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Figure 3. Effect of (left) a radial infall velocity and (right) of a frequency-dependent emissivity on the image cross section in the simple analytic model. Both effects
cause a reduction in the image brightness at small impact parameters, increasing the contrast between the bright emission ring and the black hole shadow.

only depends on the radial component of the four-velocity,
which we will specify below.

In a radiatively inefficient flow, energy conservation implies
that the energy content of the fluid is determined by viscous
and compressional heating. Following Gammie & Popham
(1998), we write the stress-energy tensor of matter as

T = Pgh" 4+ (p + € + P)u'u” + t", (13)

where € and P are the internal energy and pressure of the
plasma, respectively, and " is the stress-energy tensor
associated with the dissipation mechanism.

We consider three contributions to the pressure and internal
energy: the ions, the electrons, and the stress-energy tensor of
the electromagnetic field present in an MHD flow. We write the
total pressure P as the sum of gas and magnetic pressures

P = P, + Pg = nikT, + nkT; + Pp, (14)

where n; and n. are the ion and electron number densities,
respectively, and 7; and T, are their temperatures. By adopting
this form of the pressure, we make the assumption that the
velocity distribution of the particles in the comoving frame is
predominantly Maxwellian. Defining the ratio of the ion-to-
electron temperature as R and the plasma-g as 5= P,/Pg, we
write the total pressure as

p—papRE10+1 15)
R B

For the internal energy, we adopt the following form

1 pkgTi R+ 1

16
-1 my R (16)

€ =

For a purely ionized hydrogen plasma, this equation describes
the internal energy, when 4 = 5/3. When we incorporate the
contribution due to the magnetic field, we keep the same
expression but allow for 4 to be the effective adiabatic index of
the magnetized plasma.

The equation for energy conservation can be obtained by
projecting Equation (7) onto the four-velocity of the plasma

W'TL = 0. (17)

For the form of the stress-energy tensor introduced above, this
reduces to
e et Pdp

O — A, (18)
dr p dr

For a radiatively inefficient flow, A is negligible by
definition. This assumption has been verified in a number of
GRMHD simulations in which the effects of radiative cooling
have been explicitly considered (see, e.g., Ryan et al. 2018). In
simulations with even the relatively high mass accretion rates
inferred for the M87 black hole, the effect of radiative cooling
leads to a reduction in the ion temperature near the event
horizon by only 10% and a reduction in the scale height of the
flow by about 5%. These small changes are within the
uncertainties of our semi-analytic model and do not qualita-
tively affect our results. However, electron cooling naturally
affects the electron temperature and sets the ion-to-electron
temperature R.

Inserting the expressions for the pressure and internal energy
and performing some algebraic manipulations, we cast this
Equation (18) in the form

. mpR(§ — 1) @

d _(B+DHG-1
—I[TGip~
dr ks(R+1) up

_BHDG-D)
8

) 19)

where kg is the Boltzmann constant. Using the continuity
Equation (9) to write the product pu” in terms of the mass
accretion rate and integrating it from infinity down to radius r,
we obtain for the ion temperature

m,R(3 — 1)

I=—+——V, (20)
kg(R+ 1)

where we have defined the quantity

V= P(MLWI)I gpfwﬂ)ﬁi”(ﬁ)Mr\/__gdr. 1)
o] r

M
This quantity is a volume integral throughout the accretion flow
of the dissipation rate per particle, weighted by a power-law
function of the density. If this weighting function was equal to
unity, the integral would simply be comparable to the potential
energy of a test particle at radius r.
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Figure 4. Brightness cross sections of images around a nonspinning black hole with the simple emissivity model but for profiles arbitrarily truncated at various radii
rin- (a) Images where ry, = 3M and r;,, = 4M show extremely little difference from those with the horizon boundary condition, even for small values of the disk
thickness and observer’s inclination, and a sharp drop in the image brightness still occurs at the critical impact parameter. (b) Images with r;, = 6M exhibit a disjoint
feature associated with the truncation radius, in addition to the peak at the photon radius, but the intensity drops to zero between peaks only for extremely small values

of the disk thickness.

In Appendix A, we calculate the volume integral in
Equation (21) for specific models of energy dissipation in the
accretion flow by viscous stresses. As we show there, the radial
profile of the density, the black hole spin, and other parameters
introduce only subdominant effects. Indeed, given that all the
quantities in the integral have practically power-law depen-
dences on radius, the effect of the weighting function is to
introduce a multiplicative factor that is nearly constant and of
order unity. As a result, we can write the ion temperature for
the Kerr metric in the form

2 s
I — myc* R(y — 1) (G_M)’ 22)
kg (R+1) rc?

where ( is an order-unity factor. Following our definitions
above, we write the electron temperature as

_me G- (G_M)
% kg (R+1)C ret ) @3)

We also obtain the magnitude of the magnetic field from the
definition of plasma-( as

172
|8 _»  RELsl . (24)
B & - l)mp R

which becomes

1/2
B= [%Q(fc—ﬂf)pcz] . (25)

Using the density, temperature, and magnetic field strength
calculated above, we can now evaluate the synchrotron
emissivity from a thermal and isotropic distribution of
relativistic electrons. We use the analytic fitting formula for
the angle-averaged emissivity derived by Mahadevan et al.
(1996), which is accurate to within 2.6% for all temperatures
and frequencies of interest:

Nee?

T M), 26
Gk (20

Jv

with M(x;,) given by

4.0505 a 040b  0.5316¢
M (xpr) = 76 (1 I IE )
M M M
x exp(—1.8896 x}/°). 27)
Here, v, = eB/2mm,c is the cyclotron frequency,
2v
= ——, (28)
M 3Vb6§

t9csze/mec2 is the dimensionless electron temperature, and
K5(x) is the modified Bessel function of the second kind. The
best-fit values of coefficients a, b, and c¢ for different
temperatures are given in Mahadevan et al. (1996).

Finally, we calculate the disk scale height. Under the
assumption of hydrostatic equilibrium in the vertical direction,
Abramowicz et al. (1996) and Gammie & Popham (1998)
derive

() - ortm
r (p + €—|—P)}’2V§’

where v, is an effective frequency of vertical oscillations. For a
relativistic thin disk in a Kerr spacetime, this reduces to

(ﬁ)2 B Pr 1 —3r 4 2ar 32
(p+e+P)| 1 —4dar 3?4 3a*?2

(29)

]. (30)
-

The last term describes the relativistic corrections, which
become significant only near the location of the photon orbit,
where the assumption of hydrostatic equilibrium clearly breaks
down. On the other hand, away from the photon orbit and
under the assumptions of our model, we can write

172
B _ Lo(f) = JG-DC. 31)
ro ru®\p

As we showed in the previous section, the scale height affects
only the details of the image structure and not the presence or
the location of the brightness depression. For this reason, we
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proceed with this last expression that depends only on
constants, unless we specify otherwise.

3.1. Plasma Velocities

The use of the conservation laws in the previous section
demonstrated that the radial profiles of the various plasma
quantities are determined almost entirely by the radial velocity
profile in the radiatively inefficient accretion flows. Simulations
and numerous analytic arguments have shown that outside the
radius of the innermost stable circular orbit rgco, the plasma
orbits with velocities comparable to the test particle angular
velocities and drifts inward because of the outward transport of
angular momentum. Inside the ISCO, circular orbits are
unstable and the plasma plunges toward the horizon. We now
describe our model for the velocity profiles that accounts for
this qualitative behavior.

Throughout the flow, we set the § component of the velocity
equal to zero, i.e., we assume that the plasma has orbital and
radial drift velocities only. In addition, because of the assumed
axisymmetry, the velocity vector will depend only on the
spherical coordinates (r, 6).

First, we calculate the velocity profile in the equatorial plane,
ie., at (r, 0 =7/2).

Outside the ISCO radius.—We assume that the azimuthal
velocity of plasma is equal to the local Keplerian orbital
velocity. To calculate the latter, for a general axisymmetric
metric written in Boyer—Lindquist-like coordinates, we first
write the general expression for the angular velocity of a test
particle, as measured by an observer at infinity (Ryan 1995)

—8ip,r + (g r)2 = 8it,r86¢.r
Q(r) _ t(f), \/ t(f), 1t, oloN , (32)

8oo,r

and use this to calculate the equatorial azimuthal velocity
outside the ISCO as

Q

, (33)
\/_gzz - (25’1@ + g(gq‘)Q)Q

ugf] (r) =

where commas denote ordinary differentiation, as usual.

The radial component of the plasma velocity depends on the
Reynolds and Maxwell stresses, which control the rate of
outward angular momentum transport, as well as on the plasma
pressure and magnetic stresses that may provide support
against plunging toward the black hole. To allow for a general
form of the radial velocity profile that does not depend on the
specifics of angular momentum transport, we write

) B} (34)

where 7 and n, are free parameters. Note that when n,=1/2,
the radial velocity becomes a fraction 7 of the azimuthal
velocity at large radii (i.e., the Newtonian profile).

Finally, we compute the fcomponent of the velocity by
imposing the requirement

risco

uerq(r) = _77(

u-u=g, W+ g, WP+ gaa‘(”@)z + th¢“t“¢ =-L
(35)

At the ISCO radius.—We calculate the energy and angular
momentum of the plasma (and not of the test particles) at the

Ozel, Psaltis, & Younsi

ISCO, i.e., accounting for the radial velocity, using

Eisco = — 8ty (r1sco) — &t (risco) (36)
and

Lisco = 8sltq (r1sco) + &ooltéy (P1sco), (37)

where the right-hand sides of these equations have been
calculated at the equatorial plane.

Inside the ISCO radius.—Inside the ISCO, the plasma loses
centrifugal support and plunges toward the horizon. In the
absence of any material or magnetic stresses, the plunging
occurs along the geodesics of the spacetime and is simply
described by the velocities of the free-falling test particles, with
the energy and the angular momentum of the plasma evaluated
at the ISCO radius. On the equatorial plane, this gives for the
azimuthal component of the velocity

8uLisco + 8 E 1sco
2
8it8sp — 815

u(r) = (38)

and

8wlisco + &y Eisco
o 2
gttgcbcb - grq‘;

uly(r) = (39)

for the fcomponent. Finally, we calculate u(r) from the
condition u - u = —1, as before.

3.2. Can Plunging Inside the ISCO Truncate the Emissivity?

In Figure 5, we show the radial profiles of the radial velocity
u’, the density p, and the resulting 230 GHz synchrotron
emissivity j for the covariant analytic models described above,
for two values of the black hole spin parameter a. In each
panel, radial profiles are shown for the flow outside the ISCO
for three values of the parameter n, in Equation (34) and
plunging solutions are shown interior to rigco for different
normalization of the radial velocity at the ISCO. Even though
the magnitude of the radial velocity increases rapidly inside the
ISCO because the plasma loses centrifugal support (left
panels), conservation of mass in the converging flow prevents
the density from decreasing significantly (or at all) in the
plunging region (middle panels). Furthermore, the conservation
of energy and magnetic flux causes the electron temperature
and the magnetic field strength to increase rapidly inside the
ISCO such that, in all cases, the 230 GHz emissivity continues
to increase inward. We also note that this characteristic rapid
inward rise of the synchrotron emissivity in inner accretion
flows, in conjunction with the rapidly increasing photon path
lengths toward the photon ring, plays an important role in the
formation of the thin rings in the horizon-scale images of black
holes, as discussed in Section 2.

In the previous section, we showed that a sudden truncation
of the emissivity is required to generate a brightness depression
in the image that is disjoint from the black hole shadow. We
conclude here that, in self-consistent analytic models that obey
conservation laws, the loss of centrifugal support and the rapid
plunging of the plasma inside the ISCO do not produce such a
truncation in the emissivity.
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Figure 5. (Left) Equatorial radial velocity, (middle) density, and (right) comoving 230 GHz synchrotron emissivity profiles of accretion flows around Kerr black holes
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to R = 10 and the magnetic field strength at the ISCO to Bisco = 10 G. The density and emissivity have been normalized to their respective values at the ISCO. Even
though the magnitude of the radial velocity increases rapidly inside the ISCO, conservation of mass and energy throughout the flow causes the 230 GHz emissivity to
always increase inwards. There is no evidence of a sharp reduction in emissivity with decreasing radius inside the ISCO or anywhere else in the flow.

3.3. Can Plasma Cooling Truncate the Emissivity?

We finally explore one last possibility related to plasma
thermodynamics to assess its impact on the emissivity profile in
the flow. From energy conservation in Equation (18), it is
evident that the ion (and electron) temperatures are set by the
balance between the rate of viscous and compressional heating
and synchrotron cooling in the fluid. In the Appendix, we
considered the case where the viscous heating rate may drop
rapidly at the ISCO as the shear stresses vanish and the ions
and electrons are subject only to compressional heating,
neglecting synchrotron cooling. If instead we neglect all
sources of heating interior to the ISCO, the -electron
temperature will then only depend on the synchrotron cooling.
We now calculate this cooling timescale and evaluate whether
it can have a substantial effect on the electron temperature
within the free-fall time from the ISCO.

The frequency integrated synchrotron emissivity is given by

. _ 9\/§CO—TneBZQ§
Jom = S Seriky(1/6,)

with M(x,,) defined in Equation (27) and o7 is the Thomson
cross section. The last integral asymptotes to ~26 for the
temperature and frequency regime relevant for millimeter-
wavelength images of radiatively inefficient accretion flows.

For a fluid element of relativistic particles at a given
temperature radiating at a characteristic magnetic field strength
in the inner accretion flow, the cooling timescale can be
estimated by

j; " M (o) xpdu, (40)

3nekBT
teool ~ —/—-

; 4D
Jsyn

Taking the high-temperature limit of synchrotron emissivity
and evaluating it at conditions that are typical for the flows
under consideration, we find

25673¢3m? ( 00 -1
togo] = —————5— f M (xp)xprdx )
: 3\/§BzUTkBT 0 MMM

-2 —1
~3 x 106( B ) ( T ) s. 42)
10G 5 x 100K

We compare this to the free-fall time from the ISCO, which is
given by

32 e 2 VP2
fy = —1SCO__ 33 [ T1sco
QGM)/? 6GM
o (43)
6.5 x 10°M,,

The ratio of the free-fall time to the cooling becomes

It g M risco )2
ool \ 6.5 x 10°M, )\ 6GM

B \ T
8 (10G) (5 X 10‘01{)' 49

This implies that, even if electron heating ceases completely at
or near the ISCO radius, the particles will fall in faster than they
can radiate away their energy. As a result, even in this extreme
scenario, the temperature is not expected to change signifi-
cantly interior to the ISCO. Therefore, a precipitous drop in the
emissivity is inconsistent with any fluid model that obeys
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Figure 6. Comparison of the radial profiles of various flow properties in the analytic model to an example GRMHD simulation with a black hole spin a = 0.7. Top left
shows the azimuthal velocity, top right the equatorial density, bottom left the ion temperature, and bottom right the magnetic field strength. GRMHD simulation results
have been averaged over the azimuthal direction and over multiple snapshots. Analytic models derived from conservation laws show good agreement with the detailed

GRMHD models, as expected.

conservation laws and cannot cause a suppression in the image
brightness that is disjoint from the black hole shadow.

4. Comparison to GRMHD Simulations

The analytic model presented in the previous sections allow
us to calculate the macroscopic properties of the gas in the
accretion flow based only on conservation laws and some basic
assumptions. This model also shows that the microscopic
physics in the plasma does not have a significant influence on
these large-scale properties and the corresponding brightness
profiles from the inner accretion flows for configurations that
produce compact ring-like images.

Addressing more detailed questions about accretion flows,
such as jet/wind launching, variability properties, and the fine
structure of images, on the other hand, requires the use of
numerical simulations, which allow for the incorporation of
physics of the plasma at different spatial scales. GRMHD
simulations provide an avenue for exploring some of this
microphysics more broadly, under different sets of assump-
tions, but at their core are still based on basic conservation laws
for fluids. This leads to the expectation that the analytic model
should capture the average macroscopic properties of GRMHD

10

simulations. In this section, we use an example GRMHD
simulation to demonstrate this point.

To this end, we utilize the average physical quantities from a
GRMHD simulation with a standard and normal evolution
(SANE) initial magnetic field configuration and a black hole
spin parameter a =0.7 that was first introduced in Narayan
(2012) and Sadowski et al. (2013). The accretion flow is
evolved using the HARM3D code (Gammie et al. 2003) from an
initial torus located between 10 and 1000 M. The simulation
was run for a time span of = 200,000 GM/c’ to ensure that
steady state is reached in the inner disk. The gas has an
adiabatic index 4 = 5/3. Several subsequent studies explored
the images (Chan et al. 2015b), variability (Chan et al. 2015a),
interferometric observables (Medeiros et al. 2017, 2018), and
flaring properties (Ball et al. 2016) of these GRMHD
simulations.

In Figure 6, we show the radial profiles of the azimuthal
velocity, density, ion temperature, and magnetic field strength
from the GRMHD simulation and compare them with the
analytic models with different parameters we introduced
earlier. The pink band for the GRMHD outputs represents the
range we obtained by averaging over the azimuthal direction
and sampling multiple snapshots from the long simulation
that are far apart in time to ensure that the profiles are
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representative. In order to capture the physical quantities only
near the equator, we also average over polar angles within +7/
8 from the equator. In all cases, analytic models correctly
capture the broad characteristics of the GRMHD profiles,
demonstrating that these profiles are determined primarily by
the general physical considerations and conservation laws that
govern the flows rather than by the details of the plasma
processes.

The azimuthal velocity profile follows the radial dependence
of the Keplerian velocity at all radii but is sub-Keplerian
everywhere, as is expected for radiatively inefficient flows that
have significant pressure support. In the remaining three panels,
the density, temperature, and magnetic field strength mono-
tonically rise inward in the simulations, supporting the
conclusions from continuity arguments that accretion flows
do not have characteristics that can cause a sudden drop in
emissivity outside the event horizon.

5. Images

Having developed a covariant analytical model for the
height-averaged flow quantities, we turn to calculating black
hole images at 230 GHz. Calculating these images requires
specifying the density, temperature, magnetic field, and flow
velocities at all locations in the spacetime, instead of only at the
equatorial plane, as we have done so far. We calculate these
quantities off the equatorial plane based on their equatorial
values and the following simple physical arguments.

Because we assumed axisymmetry, a given point in the
spacetime is specified by its radius and polar angle, i.e., by (r, 0).
A spherical surface that goes through this point has a constant
spherical radius r. A cylindrical surface that goes through the
same point has a constant cylindrical radius ©o = r sin 6.

Plasma Properties off the Equatorial Plane.—We specify
the electron density using the definition of the finite disk scale
height i/r. In particular, we multiply the equatorial density
profile n.q with an exponential in the polar angle 0, i.e.,

ne(r, 9>=ne,eq<w)exp{—§[%] } (45)

where the index m determines the slope of the vertical density
profile. In the Newtonian limit and for an ion temperature that
is constant with height, m = 2; we will use this value hereafter,
unless we specify otherwise. Following Equation (12), we set
the equatorial electron density profile to

M

_— 46
A (h/ryu"m, (40)

Neeq (w) =

In order to be consistent with the above expression for the
density profile, we set the electron temperature 7. to its
equatorial value at the corresponding spherical radius. Using
Equation (23), we write

myc* (4 — 1) (GM)
T(r,0) = 2————¢[ =
. 6) ks (R + I)C rc?

Finally, we specify the magnetic field everywhere such that
the plasma-3 parameter is constant throughout the flow, i.e.,
such that

(47)

B(r, 0) < [n.(r, T (r, O/2. (48)
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In this expression, the overall scale of the magnetic field in the
accretion flow depends on the accretion rate. However, because
we do not consider explicitly the effects of synchrotron self-
absorption in the present calculation, the overall normalization
of the accretion rate does not enter the calculation explicitly.
For this reason, we simply specify the strength of the magnetic
field at a fiducial equatorial location and scale it according to
Equation (48). In other words, we write

172

ne(r, O)T(r 6) )

n.(6M, 7/2)T:(6M, 7/2)

B(r, 9) = Bo[

such that By is the strength of the magnetic field at » = 6M on
the equatorial plane.

Velocities off the Equatorial Plane.—To specify the radial
and azimuthal components of the velocity off of the equatorial
plane, we turn to the results of semi-analytical models (e.g.,
Narayan & Yi 1995) and of GRMHD simulations (e.g.,
Sadowski et al. 2013) of geometrically thick flows. These self-
similar analytic solutions as well as numerical simulations
suggest that (i) the azimuthal component u? of the velocities
are approximately constant on spherical surfaces and (ii) the
radial component u” of the velocities are approximately
constant on cylindrical surfaces.

We show an example of this behavior from a GRMHD
simulation in Figure 7, where we plot as a function of the polar
angle 6 the radial and azimuthal components of the velocity in
the same SANE simulation that was introduced in Section 4.
Indeed, the top right panel shows that the radial velocity varies
weakly with 6 at constant cylindrical radius w, while the lower
left panel shows that the azimuthal velocity depends weakly on
0 at constant spherical radii. This behavior is typical in other
simulations as well.

Based on these considerations, we write

u(r, ) = u(r) (50)

and
u'(r, 0) = ueq(rsin0) 51
and calculate u’ from the requirement - u = —1. We note that

this model breaks down when 7 sin 6 < ry., Where ry,, is the
equatorial horizon radius of the black hole. We, therefore,
excise this cylinder of radius r,, from the simulation.
Moreover, this model introduces some pathologies to the
velocity profile for near maximum negative black hole spins
(a £ —0.9) because of the large mismatch between the vertical
dependence of the angular velocity of the plasma and of the
rate of frame dragging, which occurs in the opposite sense.
Figure 8 shows six examples of images calculated at
230 GHz by integrating the radiative transfer equation along
geodesics from an image plane at infinity at an inclination i
from the spin axis of the black hole. In each panel, we vary
various spacetime and plasma characteristics. As found in all
earlier numerical investigations of black hole images that are
dominated by the accretion flows, the structure of the image is
dictated primarily by gravitational lensing and, in particular, by
the presence of the deep brightness depression that we identify
with the black hole shadow. This shadow is surrounded by a
bright, narrow ring of emission. The boundary of the shadow is
always contained within the bright ring. In other words, the
bright ring in the image closely traces the boundary of the
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shadow. Therefore, the diameter of this ring can be used as a
proxy for the diameter of the shadow, when an appropriate
calibration factor between the two is applied.

5.1. Characterizing Black Hole Images

We now turn to identifying the location of the peak
brightness of a black hole image and quantify its relation to
the size of the black hole shadow. In principle, as shown in all
previous examples, the peak brightness always occurs at the
critical impact parameter because, be definition, the optical path
along the critical null geodesics is infinite. However, the finite
resolution of the EHT does not allow us to resolve this photon
ring on the black hole image, which appears blended with the
nearby emission (see, e.g., Figure 8). For this reason, we have
developed an image-domain characterization algorithm that
allows us to quantify the size of the bright ring in a black hole
image in a manner that accommodates the finite resolution of
the EHT but, at the same time, does not alter the interferometric
observables on which the measurement is based.

The image-domain characterization algorithm comprises the
following steps (see Figure 9 for a visual representation of the
algorithm):

1. We first filter the original image at the nominal resolution
of the EHT. Following Psaltis et al. (2021), we employ a
Butterworth filter with n =2 and a characteristic scale of
15 G)\. Unlike a Gaussian filter, the Butterworth filter
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minimizes any alteration of the image at scales that are
accessible to the EHT observations, while suppressing
any small-scale structures that are not.

. We calculate analytically the center of the black hole

shadow. This is displaced from the coordinate center of
the image because of the effects of differential frame
dragging. For the Kerr metric we employ here, this
displacement depends only on black hole spin and
inclination.

. Starting from the center of the black hole shadow, we use

a rectangular bivariate spline interpolation to obtain radial
cross sections of the filtered image brightness at 128
equidistant azimuthal orientations. We define the frac-
tional coverage of a ring-like shape F as the fraction of
these radial cross sections for which the image brightness
is at least 10% of the maximum of the entire image. We
chose this value to reflect the dynamical range of ~10 of
the 2017 EHT images.

. We measure, in each radial cross section, the distance of

the location of peak brightness from the center of the
black hole shadow. We identify the diameter of the bright
emission ring as twice the median value of this distance.

. For each radial cross section, we generate an equivalent

asymmetric Gaussian representation of the brightness by
setting the location and peak brightness of the Gaussian
equal to those of the filtered cross section and the widths
of the asymmetric Gaussian toward larger and small
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Figure 8. Images of black holes at 1.3mm calculated using the analytic plasma model described in Section 3, for different black hole spins, observer inclinations, and
parameters of the radial velocity profile. In all panels, we have set R = 5 and B, = 20 G. The outline of the black hole shadow on each image is shown as a dashed red
line. The bright ring of emission closely traces the boundary of the shadow for a wide range of assumptions regarding the spacetime, the plasma properties, or the
observer.

radial distances such that the corresponding integrated Employing this algorithm, we measure the diameter d;,, and
brightness of the cross section of the filtered image is FWHM of the bright emission ring in each simulation image
equal to that of the Gaussian. We measure the FWHM of and compare them to the average diameter dg, of the Kerr black
the asymmetric equivalent Gaussian representation for hol§ shadow. For the latter, we use the analytic approximation
each cross section and identify their median with the derived in Chan et al. (2013)

FWHM of the bright ring. dgy = 2Ro + 2Ry cos(2.14i — 22°9), (52)
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Figure 9. Demonstration of the image characterization algorithm employed in Section 5. (Upper left) Sample 1.3 mm black hole image for a spin of a = 0.6, an
observer inclination of 30°, and the analytic plasma model described in Section 3. (Upper right) Same image after a 15 G\, n = 2 Butterworth filter has been applied to
mimic the finite resolution of the EHT. The solid green curve identifies the location of maximum brightness along each radial cross section of the image. The dashed
green curves identify the FWHM of the brightness distribution of the equivalent Gaussian representation of the image along each radial cross section. (Lower left)
Horizontal cross section of the image. The green curve shows the brightness of the original image, the blue curve shows the brightness of the filtered image, and the
red curve shows the equivalent Gaussian representation of the cross section. (Lower right) Two cross sections of the visibility amplitudes of the original and filtered
images. The Butterworth filter only marginally affects the visibility amplitudes and not at the locations of the deep minima, on which the observational measurement of

the image size is based.

where the inclination i is expressed in degrees and

Ry = (5.2 — 0.209a + 0.445a*> — 0.5673a*)M
33
(@ — 0.9017)> + 0.059

R = [().24 — ] x 1073M.  (53)

In particular, we define the ratio oy between the two diameters
as
dim

dsh

and the fractional width of the ring as FWHM/dgr. We will
refer to the difference «; — 1 as the fractional diameter
difference. If the diameter of the image is equal to the diameter
of the shadow, then oy — 1 = 0. Note that calibrating the image
diameter inferred from observations to the shadow diameter has

o) =

(54)
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a second component (o) that quantifies potential biases
introduced by the imaging and model-fitting algorithms. To
distinguish the purely theoretical displacement explored here
from the observational component, we refer to the former as «;.

Using this method, we can quantify the expected fractional
diameter difference between the diameter of the bright image ring
and that of the shadow for a very broad range of model, black
hole, and observer parameters. Figure 10 shows the fractional
diameter difference a; — 1 and the fractional FWHM measured
from images that use the semi-analytic plasma model described in
Section 3. We employed a grid of model images in which the
black hole spin was varied as a = —0.65, —0.32, 0.0, 0.29, 0.56,
0.78, 0.94, corresponding to equidistant spacing in ISCO radii.
The observer inclination was varied as i = 15°, 30°, 45°, 60°, 75°.
We set the scale of the magnetic field to By=35 G, 20G, and
50 G, based on theoretical expectations (Satapathy et al. 2022)
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the dashed red line corresponds to the fractional diameter difference being equal to the fractional HWHM of the bright ring. If configurations existed in the red-filled
area, their black hole shadows would have been disjoint from the bright rings. All the images fall near the vertical dashed line at a; — 1 = 0, demonstrating that, in all
cases, the diameter of the black hole shadow is very close to that of peak brightness. The fact that all images fall within the white area demonstrates that the bright

rings always encompass the critical impact parameters.

and limits arising from the observed polarization signatures in the
M87 image (Event Horizon Telescope Collaboration 2021). We
set the ion-to-electron temperature ratio to R =35 and 10. We do
not consider the case R=1, which is inconsistent with the
assumption of a radiatively inefficient flow (see Section 6) or
larger values of R for which the emission from the accretion flow,
which we model here, is eliminated. Finally, we take the
following two sets of parameters for the radial velocity profile:
1n=0.05, 0.1, 0.2 for n,=1.5 and n,=0.5, 1.0, 1.5 for n=0.1.
We then characterized all 3780 images using the algorithm
described above and consider in this figure all images for which
F > 0.5, such that a radius can be defined.

The blue shaded region in the figure corresponds to the
FWHM that an infinitesimal ring would have been broadened
to by our 15 G filter. In order to apply this filter, we have
assumed that the angular size of one gravitational radius for a
black hole located at distance D is 6, = GM/ (c*D) = 3.6pas,
i.e., similar to that of the M87 black hole.

In each of the simulated images, the diameter of the ring that
the EHT would observe is comparable to and, in general, only
marginally larger than the diameter of the black hole shadow.
This is expected from the preceding discussion, which
presented the physical reasons why the image diameter is not
identically equal to that of the shadow, i.e., in general, |
ay — 1| = 0. Furthermore, the exact value of the fractional
diameter difference does depend on the plasma model, but it is
always a small correction. As this figure shows, the fractional
diameter difference is |a; — 1| < 0.1 for the positive spins and |
a; — 1/ £0.3 for negative spins. The higher values of this
displacement always correlate with the larger values of the ring
widths. In both cases, the peak of the distribution is in good
agreement with the value of ~9% inferred for a series of 100
GRMHD snapshots in Event Horizon Telescope Collaboration
(2019d), albeit the latter also incorporates biases introduced by
the model-fitting process to the EHT data.

Perhaps more importantly, the bright rings in the images
always encompass the boundaries of the black hole shadows.
This is demonstrated by the fact that no images in Figure 10 are
within the red-shaded area, the boundary of which is
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determined by the condition that the fractional diameter
difference is equal to the fractional FWHM of the image. In
other words, all black hole images calculated here obey

FWHM

(55)
dgr

log — 1] <

Given the definition of the diameter bias, this implies that

dor — FWHM < dip < dgr + FWHM. (56)

In other words, the above inequality describes the fact that, in
all images calculated here, the boundary of the black hole
shadow is never disjoint from the bright emission ring that the
EHT observes and the expected offset between the two is
contained within the measured width of the ring image.

6. Discussion

We developed an analytic model based on conservation
equations and simple thermodynamic arguments in order to
disentangle the effects of the black hole spacetime imprinted on
black hole images, through the gravitationally lensed optical
paths, redshift, and plasma velocities, from those of the
emissivity and thermodynamic properties of the plasma. We
showed that there is a tight relationship between the location of
the bright ring that is observable near the horizon of a black
hole and that of its shadow. We further quantified the ratio
between the diameter of peak brightness of the image rings and
the shadow diameter in order to facilitate the use of millimeter
image characteristics observed with the EHT as tests of the
black hole metric.

Our analytic model naturally involves a number of
simplifications related to electron physics, such as the use of
a constant temperature ratio R between the electrons and ions.
However, improving on these simplifications will not change
our main qualitative conclusion that the ring-like images
always encompass the outline of the shadow. The reason lies
on the fact that the photons that create the millimeter images of
the EHT targets originate in a very narrow range of distances
from the black hole, typically within a few gravitational radii
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Figure 11. Sample snapshots from a SANE GRMHD simulation of accretion around a black hole with spin a = 0.9, showing two transient events that generate ring-
like structures that are disjoint from the black hole shadow (after Chan et al. 2015a). In both cases, the boundary of the shadow is displayed with a red curve. The left
panel shows an Einstein ring generated when a very localized structure in the accretion flow crosses a caustic behind the black hole. The right panel shows a structure
generated by an azimuthally stretched flux tube that has been lensed above and below the equatorial plane. Both structures, albeit plausible, are very short-lived and
inconsistent with the inferred stability of the black hole image at the center of the M87 galaxy.

from the horizon. As a result, even though the temperature ratio
between the electrons and ions might evolve significantly
throughout the flow, only its limited range of values very close
to the horizon will affect the image.

The question remains as to whether the models considered
here are general enough to definitively support these conclu-
sions. For example, some recent work (Gralla et al. 2019, 2020)
made use of geometrically thin (h/r — 0) configurations to
argue about the characteristics of image formation and the
relationship between the diameter of peak brightness and that
of the black hole shadow. Similar calculations were performed
earlier for the case of geometrically thin, optically thick
accretion disks (Luminet 1979) as well as more recently
(Glampedakis & Pappas 2021). Albeit instructive as exercises,
it is important to acknowledge that such constructions are not
applicable to the EHT targets and are not useful in under-
standing their image properties. Indeed, it is well established
that the observed spectral properties and the low inferred
radiative efficiencies of these sources require that the accretion
flow is optically thin at all but the longest wavelengths. This
can be achieved only if the accretion flow consists of a two-
temperature plasma in which the ions heat up to the local virial
temperature but the electrons cannot couple efficiently to the
ions on relevant timescales in order to cool them and radiate
away the accretion luminosity (see Narayan & Yi 1994, 1995;
Narayan et al. 1995). The large temperature of the ions is what
provides the pressure support that makes the accretion flow
geometrically thick, rarefied, and optically thin (see Equation
(31)). In such a configuration, the formation of the black hole
image cannot be understood in terms of the lensed images of
the accretion disk surface but rather in terms of the optical
paths traversed by the photon trajectories that reach the
distance observer, as we have done here.

Perhaps more revealing is the fact that the alternative of a
geometrically thin accretion disk (as modeled, e.g., in Luminet
1979 and Gralla et al. 2020) would not only have been
inconsistent with the overall observations of M87, but horizon-
scale imaging would not have been possible at all at the
millimeter wavelengths used for the EHT observations. A
geometrically thin accretion flow (such a Novikov—Thorne
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disk) would be optically thick and emit nearly blackbody
radiation at horizon scales at a much smaller temperature.
Obtaining an image similar to that observed by the EHT would
have required observations at UV wavelengths.*

A more plausible situation in which a bright emission ring
may be observed that is disjoint from the black hole shadow is
related to transient events, as discussed in Chan et al. (2015a).
Figure 11 shows two example snapshots of such events from a
SANE GRMHD simulation of a black hole with spin a =0.9
(Model B in Chan et al. 2015b). In the left panel, an Einstein
ring that is clearly displaced from the boundary of the black
hole shadow is formed by lensing when a localized hot flux
tube crosses a caustic behind the black hole. In the right panel,
a hot flux tube becomes azimuthally sheared by the differential
rotation of the flow and appears gravitationally lensed above
and below that black hole shadow. At the resolution of the
EHT, this snapshot would also appear as a bright emission ring,
but one that is disjoint from the black hole shadow.

Even though such transient events appear in simulations and
are expected to happen in nature, albeit very rarely because of
the alignment required, their distinctive characteristic is
temporariness. Their appearance will change dramatically and
they will even disappear at timescales comparable to the
dynamical timescale in the inner accretion flow. For the black
hole at the center of the M87 galaxy, this timescale is ~4-34
days, depending on the unknown black hole spin. Nevertheless,
there is only evidence for marginal change in the black hole
image across the 7 days of the 2017 EHT observations, which
would be inconsistent with such a transient event(Event
Horizon Telescope Collaboration 2019a; Satapathy et al. 2022).
More importantly, reanalysis of 1.3 mm data obtained between
2009 and 2017 demonstrate that the images are consistent with
a persistent asymmetric ring of ~40 p as diameter that only
shows position-angle wandering over a period of a decade
(Wielgus 2020). Further EHT observations separated by ~year
timescales can help rule out the possibility of the bright ring

4 Such models might be useful if, in the future, new interferometers are

developed operating at the UV to X-ray wavelengths necessary to observe
horizon-scale images from high-luminosity sources such as quasars (see, e.g.,
Ozel & Di Matteo 2001).
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image being associated with transient events even more
definitively.
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Appendix
Plasma Heating

In this Appendix, we numerically calculate the integral in
Equation (19) using one explicit form of the dissipation
function in the accretion flow around a Kerr black hole. We
then generalize this calculation and discuss the motivation for
the analytic form we use in the paper.

The dissipation function, calculated at the local comoving
frame with the plasma, is equal to

® = —1 P04y = =210y 00)0) (AD

where we used the fact that the metric in the comoving frame is
locally Minkowski and the only nonnegligible component of
the stress is r¢. The #(,, component of the stress tensor in the
comoving frame is related to the mixed component in the
coordinate frame 7; by (Gammie et al. 2003)

15 = (AD) 2144, (A2)
where v~ 1 is the local Lorentz factor,
A=1+a%/r*+24%/r3 (A3)
and
D=1-2/r+a%*/r% (A4)

We obtain the stress-energy tensor from the conservation
of angular momentum. Using the azimuthal Killing vector
& =1(0,0,0, 1), we write this as

which, after appropriate averaging and vertical integration,

gives
i[MLZ —~ 4w(ﬁ)r2z¢';] =0,
dr r

or equivalently

(A5)

(A6)

ML, — 4w(ﬁ)r2r; = Mj, (A7)

r
where j is an eigenvalue of the problem. Under the assumption
that the viscous torques vanish at the ISCO, the eigenvalue is
equal to the angular momentum at rsco. However, both

numerical and analytic models show that there are nonzero
stresses at the ISCO (Krolik et al. 2005; Shafee et al. 2008). To
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account for both possibilities, we write in general

J = AL (risco)- (A8)
Combining these equations, we obtain
4W(ﬁ)r22 = 20— p (A9)
r/ M r(AD)/?

For a geometrically thin flow, where the radial pressure
gradients are negligible, we can write (Novikov & Thorne
1973)

1,de

ooy = LrABE 3D
() () 3 dr

4C

r3/2, (A10)

where

C=1-3/r+2a/r¥2 (Al1)

The pressure gradients are, in general, not negligible in
radiatively inefficient flows, leading to both sub-Keplerian
orbital velocities as well as smaller shear. To account for this,

we write
h 172
() =5 () @

where the parameter € accounts for the non-Keplerian profiles.

Using this as well as the radial velocity profile in Equation (34)

and the corresponding density from mass continuity, we can

now evaluate the density-weighted integral of Equation (21).
In the Newtonian limit, this becomes

kT, _%( R ) 3e(5 — 1)
myc?>  rc? |[\R+1)6+2n%—-1) —4%

It is important to note that the values of the various parameters
in the square bracket cannot all be chosen independently
because the radial velocity profile, the deviation from a
Keplerian azimuthal velocity profile, and the adiabatic index
that determines the pressure profile are all coupled to one
another through, e.g., the Bernoulli equation. However,
regardless of the specific values, the thermal energy in the
flow at a given radius is proportional to the gravitational
potential energy dissipated down to that radius, as expected.

Figure 12 shows the ion temperature calculated from
Equation (20) and the complete expression (A12) for a Kerr
black hole, for two values of the black hole spin parameter. In
this figure, the temperature has been normalized by the factor in
the square brackets in Equation (A13) in order to highlight the
effects of relativity and the inner boundary conditions. The
power-law index of the radial velocity profile, 7,, determines
the radial dependence of the density, via Equation (11).
Independent of the density profile, the black hole spin, or the
adiabatic index, the 7~ ' temperature profile is sustained down
to small radii, with small differences that arise primarily from
the particular choice of the angular momentum eigenvalue .
The temperature continues to rise inward in all cases, again as
expected from energy conservation.

Inside the ISCO, if there is no additional viscous dissipation,
the temperature can either remain constant or increase due to
compressional heating. However, extensive numerical and
analytic work again shows that the MHD turbulence does not
abruptly decay inside the ISCO, and therefore, in realistic set
ups, the temperature continues to rise (see Figure 6).

22 _ 36( b (A12)
M

]. (A13)
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Figure 12. Radial profile of the ion temperature for radiatively inefficient accretion flows around Kerr black holes, for different values of the model parameters. Here
n, is the power-law index of the radial velocity profile and ) is the angular momentum eigenvalue of the solution. The ion temperature has been normalized by the
factor in the square brackets in Equation (A13) in order to highlight the effects of relativity and the inner boundary conditions. The temperature in a radiatively
inefficient flow increases inward because of the combined effects of “viscous” and compressional heating.

All the above suggest that the radial velocity structure and
corresponding density profile of the accretion flow, as well as
the spin of the black hole introduce complexities that are
subdominant. This happens because, in a radiatively inefficient
flow, the ion temperature at a given radius is determined by the
total amount of heat dissipated outwards of that radius, which
itself is dictated by the available gravitational potential energy.

We can now use this understanding to write a general
expression that captures the basic properties of ion heating in a
general spacetime. We first neglect the subdominant effects of
black hole spin and understand all the equations below to be
evaluated on the equatorial plane. The transformation in
Equation (A2) involves a Lorentz boost (for which we assume
that 4 ~ 1) and a transformation between the coordinates in
which the metric is expressed and those of the local comoving
frame. For the latter, we write (see also Bardeen et al. 1972)

, 8o¢
o = Jﬂf(r)w» (Al4)
8
Similarly, we approximate Equation (A10) by
1 dQ)
O >~ — —_— Al5
@ = 5 NI o (A15)

and assume that the eigenvalue in the problem is negligi-
ble (A =0).

Following the above set of steps, we can then write for the
dissipation integral

A

To leading order, in the Schwarzschild metric, L, =~ g4,f) and

_gtt,r
8po.r

)

h rdQ
—\Z4r/=gdr ~ — L,— [g_dr. Al6
M(r)ﬁ sar foo gy & (A10)

Q

(A17)
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(see Equation (32)). Inserting these expressions into Equation
(A16) and performing the integral gives

"o (h 3GM
—| — |47r /—gdr ~ + O@F2). Al8
j;o M ( r ) 8 2rc? ) (AL8)
Similarly, assuming a power-law density profile and

evaluating the integral in Equation (21) gives the same radial
dependence but with a different constant coefficient, as was the
case in the Newtonian limit (cf Equation (A13)). Combining all
these constant coefficients into one, which we denote by ¢, and
inserting the value of the integral into Equation (20) allows us
to write

2 A
- ™ RG -1 (GM), (A19)

ks R+ D o\

rc?

Note that, near the radius of the photon orbit, the integral in
Equation (A16) formally diverges; this is an artifact of the
simplifications employed here and is not supported by the
temperature profiles found in simulations. For this reason, we
will only consider the leading terms in our analytic model for
the heating of ions in the accretion flow, as we have done in the
above expression.
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