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Continuously parameterised spaces of all 2-dimensional lattices
classified up to similarity, isometry, or rigid motion
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Abstract A periodic lattice in Euclidean space is the infinite set of all integer
linear combinations of basis vectors. Any lattice can be generated by infinitely
many different bases. This ambiguity was partially resolved but standard reduc-
tions remain discontinuous under perturbations modelling crystal vibrations.

This paper completes a continuous classification of 2-dimensional lattices up to
Euclidean isometry (or congruence), rigid motion (without reflections), and simi-
larity (with uniform scaling). The new homogeneous invariants allow easily com-
putable metrics on lattices considered up to the equivalences above. The metrics
up to rigid motion are especially non-trivial and settle all remaining questions on
(dis)continuity of lattice bases. These metrics lead to real-valued chiral distances
that continuously measure lattice deviations from higher-symmetry neighbours.
The geometric methods extend the past work of Delone, Conway, and Sloane.
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1 Motivations for a continuous classification of lattices and crystals

A lattice Λ ⊂ Rn consists of all integer linear combinations of basis vectors
v1, . . . , vn. This basis spans a parallelepiped called a unit cell U ⊂ Rn. A pe-
riodic point set is obtained as a union of translated copes Λ+ pi for finitely many
p1, . . . , pm ∈ U . Any periodic crystal can be modelled as a periodic set whose
points represent atomic centers. For example, graphene is a hexagonal periodic set
of carbon atoms, see Fig. 1. The book [32] reviews non-periodic quasicrystals.

Since crystal structures are determined in a rigid form, the most fundamental
equivalence of their underlying lattices is a rigid motion. Any rigid motion in R2

is a composition of translations and rotations. A more general isometry includes
mirror reflections and is sometimes called a congruence in Euclidean geometry.
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Fig. 1 Left: a 2-dimensional layer of graphene is formed by carbon atoms. Right: one
can generate a hexagonal lattice (as any other) by infinitely many bases and continuously
deform into a rectangular lattice (far right) whose bases {v1, v2} and {u1, u2} are related by
an orientation-reversing map. The yellow Voronoi domain V (Λ) of any point p in a lattice Λ
consists of all points q ∈ R2 that are non-strictly closer to p than to other points of Λ− p.

In the language of Computer Science, the classification of lattices up to isome-
try is a binary classification problem deciding if lattices Λ,Λ′ are isometric, which
can be denoted as Λ ∼= Λ′. If a descriptor takes different values on distinct repre-
sentations of isometric lattices Λ ∼= Λ′, this pair of representations is called a false
negative. Many descriptors of crystals and their lattices allow false negatives by a
simple comparison of lattice bases. Any lattice can be represented by a reduced
cell [18], see Definition 2.3 in section 2, which is unique up to isometry but this
cell still has different bases as in Fig. 1. A descriptor without false negatives takes
the same value on all isometric lattices and can be called an isometry invariant.

For example, the area of the unit cell U spanned by any basis of a lattice Λ is
an isometry invariant because a change of basis is realised by a 2× 2 matrix with
determinant ±1, which preserves the absolute value of the area. Such an invariant
I may allow false positives Λ ̸∼= Λ′ with I(Λ) = I(Λ′). All lattices in Fig. 1 have
unit cells of the same area. The area and many other invariants allow infinitely
many false positives. An invariant I without false positives is called complete and
distinguishes all non-isometric lattices so that if I(Λ) = I(Λ′) then Λ ∼= Λ′.

The traditional approach to deciding if lattices are isometric is to compare
their conventional or reduced cells. Though this comparison theoretically gives a
complete invariant, in practice all real crystal lattices are non-isometric because
of noise in measurements. All atoms vibrate above the absolute zero temperature,
hence any real lattice basis is always perturbed. The discontinuity of reduced bases
under perturbations was experimentally known since 1965 [24, p. 80], highlighted
in [16, section 1] and proved for all potential reductions in [41, Theorem 15].

A more practical goal is to find a complete invariant that is continuous under
any perturbations of (bases of) lattices. Such a continuous and complete invariant
will unambiguously parameterise the Lattice Isometry Space LIS(Rn) consisting of
infinitely many isometry classes of lattices in Rn. For example, the latitude and
longitude continuously parameterise the surface of our planet Earth.

The space LIS(Rn) of isometry classes is continuous and connected because
any two lattices can be joined by a continuous deformation of their bases as in
Fig. 1. Such deformation can be always visualised as a continuous path in the space
LIS(Rn), whose full geometry remained unknown even for 2-dimensional lattices.
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Lattices were previously represented by ambiguous or reduced bases, which
are discontinuous under perturbations. Most discrete invariants such as symmetry
groups are also discontinuous and cut the Lattice Isometry Space (LIS) into finitely
many disjoint strata. Delone [8], later Conway and Sloane [12] reduced ambiguity of
lattice representations by using obtuse superbases. Hence new continuous metrics
and parameterisations on lattice spaces in Problem 1.1 are the next natural step.

The main contribution is a full solution to the mapping problem below.

Problem 1.1 (lattice mapping) Find a bijective and continuous invariant I :
LIS(R2) → Inv mapping the Lattice Isometry Space to a simpler space of complete
invariants. In detail, an invariant I should satisfy the following conditions.

(1.1a) Invariance : if Λ ∼= Λ′ then I(Λ) = I(Λ′), so I is preserved by isometry.

(1.1b) Completeness (or injectivity) : if I(Λ) = I(Λ′), then Λ ∼= Λ′ are isometric.

(1.1c) Continuity : the invariant map I is continuous in a suitable metric d sat-
isfying all axioms: (1) d(I(Λ), I(Λ′)) = 0 if and only if Λ ∼= Λ′, (2) symmetry
d(I1, I2) = d(I2, I1), (3) triangle inequality d(I1, I2) + d(I2, I3) ≥ d(I1, I3).

(1.1d) Computability : the metric d(I(Λ), I(Λ′)) can be exactly computed in a
constant time from reduced bases of Λ,Λ′, introduced Definition 2.3 in section 2.

(1.1e) Inverse design : a basis of Λ can be explicitly reconstructed from I(Λ). ■

Condition (1.1a) means that I has no false negatives: no pairs Λ ∼= Λ′ with
I(Λ) ̸= I(Λ′). Such a non-constant invariant I is a minimally useful descriptor
because different values I(Λ) ̸= I(Λ′) guarantee that Λ ̸∼= Λ′. Condition (1.1b)
means that I has no false positives: no pairs Λ ̸∼= Λ′ with I(Λ) = I(Λ′). Combined
conditions (1.1a,b) guarantee a bijection (or a 1-1 map) I : LIS → Inv = I(LIS).
Hence any lattice Λ is uniquely represented by its complete invariant I(Λ).

The metric axioms in (1.1c) imply positivity due to 2d(I1, I2) = d(I1, I2) +
d(I2, I1) ≥ d(I1, I1) = 0. However, the identity of indiscernibles (d(I(Λ), I(Λ′)) = 0
⇔ Λ ∼= Λ′) cannot be missed, otherwise even the zero function d = 0 satisfies all
other axioms. A binary answer to the isometry problem provides only a discontin-
uous metric d(Λ,Λ′) equal to 1 or another positive number for any non-isometric
lattices Λ ̸∼= Λ′ even if Λ,Λ′ are nearly identical. The new condition in (1.1c)
makes Problem 1.1 harder than a classification, especially up to rigid motion.

Fig. 2 summarises the past obstacles and a full solution to Problem 1.1. The
space Inv is the root invariant space RIS(R2) of ordered triples with continuous
metrics. The related invariants will solve Problem 1.1 up to three other equivalence
relations: rigid motion, similarity and orientation-preserving similarity.

The inverse design in (1.1e) will raise Problem 1.1 above metric geometry to
define a richer structure of a vector space on LIS. It is easy to multiply any lattice
by a fixed scalar, but a sum of any two lattices is harder to define in a meaningful
way independent of lattice bases. We will overcome this obstacle due to a linear
structure on the root invariant space (RIS) completely solving Problem 1.1.

2 Main definitions and an overview of past work and new results

This section defines the main concepts and reviews past work on lattice compar-
isons, see the definition of an isometry and orientation in the appendix. Any point
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Fig. 2 LIS(R2) is bijectively and continuously mapped to root invariants, which are ordered
triples of square roots of scalar products of vectors of an obtuse superbase of a lattice Λ ⊂ R2.

p in Euclidean space Rn can be represented by the vector from the origin 0 ∈ Rn

to p. This vector is also denoted by p, An equal vector p can be drawn at any
initial point. The Euclidean distance between points p, q ∈ Rn is |p− q|.

Definition 2.1 (a lattice Λ, a primitive unit cell U(v1, . . . , vn)) Let vectors
v1, . . . , vn form a linear basis in Rn so that any vector v ∈ Rn can be written

as v =
n∑

i=1

civi for some real ci, and if
n∑

i=1

civi = 0 then all ci = 0. A lattice

Λ in Rn consists of
n∑

i=1

civi with integer coefficients ci ∈ Z. The parallelepiped

U(v1, . . . , vn) =

{
n∑

i=1

civi : ci ∈ [0, 1)

}
is called a primitive unit cell of Λ. ■

The conditions 0 ≤ ci < 1 on the coefficients ci above guarantee that the copies
of unit cells U(v1, . . . , vn) translated by all v ∈ Λ are disjoint and cover Rn.

Definition 2.2 (orientation, isometry, rigid motion, similarity) For a ba-
sis v1, . . . , vn of Rn, the signed volume of U(v1, . . . , vn) is the determinant of the
n×n matrix with columns v1, . . . , vn. The sign of this det(v1, . . . , vn) can be called
an orientation of the basis v1, . . . , vn. An isometry is any map f : Rn → Rn

such that |f(p) − f(q)| = |p − q| for any p, q ∈ Rn. The unit cells U(v1, . . . , vn)
and U(f(v1), . . . , f(vn)) have non-zero volumes with equal absolute values. If these
volumes have equal signs, f is orientation-preserving, otherwise f is orientation-
reversing. Any orientation-preserving isometry f is a composition of translations
and rotations, and can be included into a continuous family of isometries ft (a
rigid motion), where t ∈ [0, 1], f0 is the identity map and f1 = f . A similarity is
a composition of isometry and uniform scaling v 7→ sv for a fixed scalar s > 0. ■

Any orientation-reversing isometry is a composition of a rigid motion and one
mirror reflection in a linear subspace of dimension n− 1 (a straight line in R2).

The book [17] considered actions on lattices by groups with reflections. In R3,
crystallography classifies symmetry groups into 219 classes up to affine transfor-
mations including orientation-reversing maps, more often into 230 classes when
orientation is preserved as by rigid motion of real crystals. So the classification of
lattices up to rigid motion is more practically important than up to isometry.
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Any lattice Λ can be generated by infinitely many bases or unit cells, see Fig. 1.
A standard approach to resolve this ambiguity is to consider a reduced basis below.
In R3, there are several ways to define a reduced basis [18]. The most commonly
used is Niggli’s reduced cell [29], whose 2-dimensional version is defined below.

For vectors v1 = (a1, a2) and v2 = (b1, b2) in R2, let det(v1, v2) = a1b2 − a2b1

be the determinant of the matrix

a1 b1

a2 b2

 with the columns v1, v2.

Definition 2.3 (reduced cell) For a lattice Λ ⊂ R2 up to isometry, a basis and
its unit cell U(v1, v2) are reduced (non-acute) if |v1| ≤ |v2| and −1

2v
2
1 ≤ v1 ·v2 ≤ 0.

Up to rigid motion, the conditions are weaker: |v1| ≤ |v2| and |v1 · v2| ≤ 1
2v

2
1,

det(v1, v2) > 0, and the new special condition : if |v1| = |v2| then v1 · v2 ≥ 0. ■

All bases in Fig. 1 are reduced up to rigid motion. The condition |v1 ·v2| ≤ 1
2v

2
1

in Definition 2.3 geometrically means that v1, v2 are close to being orthogonal: the
projection of v2 to v1 is between ±1

2 |v1|. The conditions |v1| ≤ |v2| and −1
2v

2
1 ≤

v1 · v2 ≤ 0 in Definition 2.3 coincide with the conventional definition from [7,
section 9.2.2] for type II (non-acute) cells in R3 if we choose v3 to be very long
and orthogonal to v1, v2. Alternative type I cells with non-obtuse angles have
0 ≤ v1 · v2 ≤ 1

2v
2
1 . Proposition 3.10(a) proves uniqueness of reduced bases.

Another well-known cell of a lattice is the Voronoi domain [37], also called
the Wigner-Seitz cell, Brillouin zone or Dirichlet cell. We use the word domain to
avoid a confusion with a unit cell in Definition 2.1. Though the Voronoi domain
can be defined for any point of a lattice, it suffices to consider only the origin 0.

Definition 2.4 (Voronoi domain V (Λ)) The Voronoi domain of a lattice Λ is
the neighbourhood V (Λ) = {p ∈ Rn : |p| ≤ |p − v| for any v ∈ Λ} of the origin
0 ∈ Λ consisting of all points p that are non-strictly closer to 0 than to other
points v ∈ Λ. A vector v ∈ Λ is called a Voronoi vector if the bisector hyperspace
H(0, v) = {p ∈ Rn : p·v = 1

2v
2} between 0 and v intersects V (Λ). If V (Λ)∩H(0, v)

is an (n− 1)-dimensional face of V (Λ), then v is called a strict Voronoi vector. ■

Fig. 3 Left: a generic lattice Λ ⊂ R2 has a hexagonal Voronoi domain with an obtuse super-
base v1, v2, v0 = −v1 − v2, which is unique up to permutations and central symmetry. Other
pictures: two pairs of obtuse superbases (related by reflection) for a rectangular lattice.

Fig. 3 shows how the Voronoi domain V (Λ) can be obtained as the intersection
of the closed half-spaces S(0, v) = {p ∈ Rn : p · v ≤ 1

2v
2} whose boundaries

H(0, v) are bisectors between 0 and all strict Voronoi vectors v ∈ Λ. A generic
lattice Λ ⊂ R2 has a hexagonal Vronoi domain V (Λ) with six Voronoi vectors.
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Any lattice is determined by its Voronoi domain by Lemma A.2 in the ap-
pendix. However, the combinatorial structure of V (Λ) is discontinuous under per-
turbations. Almost any perturbation of a rectangular basis in R2 gives a non-
rectangular basis generating a lattice whose Voronoi domain V (Λ) is hexagonal,
not rectangular. Hence any integer-valued descriptors of V (Λ) such as the num-
bers of vertices or edges are always discontinuous and unsuitable for continuous
quantification of similarities between arbitrary crystals or periodic point sets.

Optimal geometric matching of Voronoi domains with a shared centre led [27]
to two continuous metrics (up to orientation-preserving isometry and similarity) on
lattices. The minimisation over infinitely many rotations was implemented in [27]
by sampling and gave approximate algorithms for these metrics. For any periodic
point sets, the density functions [16] are generically complete in R3 and have fast
algorithms [34] in low dimensions n ≤ 3 but are incomplete even for periodic
sequences in dimension n = 1 [5, Example 10]. The complete invariant isoset [4]
in Rn has a continuous metric that can be approximated [3] with a factor O(n2).

Lemma 2.5 shows how to find all Voronoi vectors of any lattice Λ ⊂ Rn. The
doubled lattice is 2Λ = {2v : v ∈ Λ}. Vectors u, v ∈ Λ are called 2Λ-equivalent if
u−v ∈ 2Λ. Then any vector v ∈ Λ generates its 2Λ-class v+2Λ = {v+2u : u ∈ Λ},
which is 2Λ translated by v and containing −v. All classes of 2Λ-equivalent vectors
form the quotient space Λ/2Λ. Any 1-dimensional lattice Λ generated by a vector
v has the quotient Λ/2Λ consisting of only two classes Λ and v + Λ.

Lemma 2.5 (criterion for Voronoi vectors [26], [12, Theorem 2]) For any
lattice Λ ⊂ Rn, a non-zero vector v ∈ Λ is a Voronoi vector of Λ if and only if v
is a shortest vector in its 2Λ-class v+2Λ. Also, v is a strict Voronoi vector if and
only if ±v are the only shortest vectors in the 2Λ-class v + 2Λ. ▲

Appendix A includes detailed proofs of key past results such as Lemma 2.5.
Any lattice Λ ⊂ R2 generated by v1, v2 has Λ/2Λ = {v1, v2, v1 + v2} + Λ. Notice
that the vectors v1 ± v2 belong to the same 2Λ-class. Assume that v1, v2 are not
longer than v1 + v2, which holds if ∠(v1, v2) ∈ [60◦, 120◦]. If v1 + v2 is shorter
than v1 − v2 as in Fig. 3 (left), then Λ has three pairs of strict Voronoi vectors
±v1,±v2,±(v1 + v2). If v1 ± v2 have the same length, the unit cell spanned by
v1, v2 degenerates to a rectangle, Λ has four non-strict Voronoi vectors ±v1 ± v2.

The triple of vector pairs ±v1,±v2,∓(v1 + v2) in Fig. 3 motivates the concept
of a superbase with the extra vector v0 = −v1−v2, which extends to any dimension

n by setting v0 = −
n∑

i=1

vn. For dimensions 2 and 3, Theorem 2.9 will prove that

any lattice has an obtuse superbase of vectors whose pairwise scalar products
are non-positive and are called Selling parameters [31]. For any superbase in Rn,
the negated parameters pij = −vi · vj can be interpreted as conorms of lattice
characters, functions χ : Λ → {±1} satisfying χ(u + v) = χ(u)χ(v)), see [12,
Theorem 6]. So pij will be defined as conorms only for an obtuse superbase below.

Definition 2.6 (obtuse superbase, conorms pij) For any basis v1, . . . , vn in

Rn, the superbase v0, v1, . . . , vn includes the vector v0 = −
n∑

i=1

vi. The conorms

pij = −vi · vj are the negative scalar products of the vectors above. The superbase
is obtuse if all conorms pij ≥ 0, so all angles between vectors vi, vj are non-acute
for distinct indices i, j ∈ {0, 1, . . . , n}. The superbase is strict if all pij > 0. ■
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Formula (1) in [12] has a typo initially defining pij as exact Selling parameters,
but later Theorems 3, 7, 8 use the non-negative conorms pij = −vi · vj ≥ 0.

The indices of a conorm pij are distinct and unordered. We set pij = pji for all
i, j. For n = 1, the 1-dimensional lattice generated by a vector v1 has the obtuse
superbase consisting of the two vectors v0 = −v1 and v1, so the only conorm

p01 = −v0 ·v1 = v21 is the squared length of v1. Any superbase of Rn has
n(n+ 1)

2
conorms pij , for example, three conorms p01, p02, p12 in dimension 2.

Definition 2.7 (partial sums vS, vonorms v2S) Let a lattice Λ ⊂ Rn have a
superbase B = {v0, v1, . . . , vn}. For any proper subset S ⊂ {0, 1, . . . , n} of indices,
consider its complement S̄ = {0, 1, . . . , n} \ S and the partial sum vS =

∑
i∈S

vi

whose squared lengths v2S are called the vonorms of B and can be expressed as
v2S = (

∑
i∈S

vi)(−
∑
j∈S̄

vj) = −
∑

i∈S,j∈S̄

vj · vj =
∑

i∈S,j∈S̄

pij. For n = 2, we get

(2.7a) v20 = p01 + p02, v21 = p01 + p12, v22 = p02 + p12.

The above formulae allow us to express the conorms via vonorms as follows

(2.7b) p12 =
1

2
(v21 + v22 − v20), p01 =

1

2
(v20 + v21 − v22), p02 =

1

2
(v20 + v22 − v21).

So pij =
1

2
(v2i + v2j − v2k) for distinct i, j ∈ {0, 1, 2} and k = {0, 1, 2} − {i, j}. ■

Lemma 2.8 will later help to prove that a lattice is uniquely determined up to
isometry by an obtuse superbase, hence by its vonorms or, equivalently, conorms.

Lemma 2.8 (Voronoi vectors vS [12, Theorem 3]) For any obtuse superbase
v0, v1, . . . , vn of a lattice, all partial sums vS from Definition 2.7 split into 2n − 1
symmetric pairs vS = −vS̄, which are Voronoi vectors representing distinct 2Λ-
classes in Λ/2Λ. All Voronoi vectors vS are strict if and only if all pij > 0. ▲

By Conway and Sloane [12, section 2], any lattice Λ ⊂ Rn that has an obtuse
superbase is called a lattice of Voronoi’s first kind. Any lattice in dimensions 2
and 3 is of Voronoi’s first kind, which was known to Voronoi [37, p. 277] for n = 2
and certainly proved by Delone [8, Section III.4.3] for n = 3.

Theorem 2.9 (reduction to an obtuse superbase) Any lattice Λ in dimen-

sions 2 and 3 has an obtuse superbase {v0, v1, . . . , vn} so that v0 = −
n∑

i=1

vi and

all conorms pij = −vi · vj ≥ 0 for all distinct indices i, j ∈ {0, 1, . . . , n}. ▲

Conway and Sloane in [12, section 7] attempted to prove Theorem 2.9 for n = 3
by example, which is corrected in [21]. Appendix A proves Theorem 2.9 for n = 2.
Finding an obtuse superbase is related to solving the shortest vector problem in a
lattice. The latter problem is NP-hard [2] in Rn, see the great review in [28].

The following result implies that the space of all lattices and general periodic
point sets in any Rn is continuous, path-connected in the language of topology.
Due to Proposition 2.10, if we call any periodic structures equivalent (or similar)
when they differ up to any small perturbation of points, then any two point sets
become equivalent by the transitivity axiom: if A1 ∼ A2 ∼ · · · ∼ Ak then A1 ∼ Ak.
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Proposition 2.10 Any periodic point sets Λ+M = {v+p | v ∈ Λ, p ∈ M}, where
Λ ⊂ Rn is a lattice, M is a finite set (motif) of points in a unit cell of Λ, can be
deformed into each other so that coordinates of all points change continuously. ■

Proof Starting from any basis v1, . . . , vn, continuously rotate v2, . . . , vn to make
all basis vectors pairwise orthogonal. If given periodic sets have different numbers
m1 ̸= m2 of points in their unit cells, we can enlarge their cells in the direction
of v1 by factors m2,m1 so that both sets have the same number of m = m1m2

points in their cells. If the coordinates of points p ∈ M remain constant in the
moving basis v1, . . . , vn, they change continuously in a fixed basis of Rn. Then we
can continuously elongate v1, . . . , vn to a get a sufficiently large unit cubic cell.
After two periodic point sets are put in this ‘gas state’ in a common large cube,
continuously move all points from one motif into any other configuration without
collisions. A composition of the above movements connects any periodic sets. □

Fig. 4 shows how both reduced basis and obtuse superbase discontinuously
change up to rigid motion. The invariants of the underlying lattices change con-
tinuously in Example 7.6. If we compare bases coordinate-wise, [41, Theorem 15]
proved any reduced basis is discontinuous. Theorems 7.5, 7.7 and Corollary 7.9
will settle all (dis)continuity challenges up to isometry and rigid motion in R2.

Fig. 4 Discontinuity of obtuse superbases up to rigid motion. The superbase v1 = (1, 0),
v2(t) = (−t, 2), v0(t) = (t − 1,−2) deforms for t ∈ [0, 1]. The initial and final superbases at
t = 0 and t = 1 generate the same rectangular lattice but are not related by rigid motion.

Any lattice Λ ⊂ R2 with a basis v1, v2 defines the positive quadratic form

Q(x, y) = (xv1 + yv2)
2 = q11x

2 + 2q12xy + q22y
2 ≥ 0 for all x, y ∈ R,

where q11 = v21 , q22 = v22 , q12 = v1 · v2. Changing the basis v1, v2 (possibly
by reflection) is equivalent to replacing x, y by the linear combinations of the
coordinates of xv1 + yv2 in a new basis. Conversely, any positive quadratic form
Q(x, y) can be written as a sum (a1x + b1y)

2 + (a2x + b2y)
2, see [14, Theorem 2

on p. 116], and defines the lattice with the basis v1 = (a1, a2), v2 = (b1, b2).
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In 1773 Lagrange [13] proved that any positive quadratic form can be rewritten
so that 0 < q11 ≤ q22 and −q11 ≤ 2q12 ≤ 0. The resulting non-acute reduced basis
v1, v2 satisfies 0 < v21 ≤ v22 and −v21 ≤ 2v1 · v2 ≤ 0 without the new special
conditions in Definition 2.3. Alternatively, 0 ≤ 2q12 ≤ q11 and 0 ≤ 2v1 · v2 ≤ v21
define a non-obtuse reduced basis. The mirror images Λ± of Λ(14 ) in Fig. 4 (top)

generated by the obtuse reduced bases v1 = (1, 0), v±2 = (−1
4 ,±2) have the same

reduced form Q(x, y) = x2− 1
2xy+4y2 not distinguishing Λ± up to rigid motion.

If v1, v2 form a unique reduced basis, Lemma 4.3 shows that ±{v1, v2, v1+ v2}
are three shortest Voronoi vectors. Then the metric tensor (v21 , v1 ·v2, v22) is a com-
plete isometry invariant but doesn’t distinguish mirror images (enantiomorphs).
Instead of one scalar product and two squared lengths, Delone used the homoge-
neous parameters [15, section 29] equal to the conorms pij from Definition 2.6:

p01 = q11 + q12 = v21 + v1 · v2 = v1 · (v1 + v2) = −v0 · v1,

p02 = q22 + q12 = v22 + v1 · v2 = v2 · (v1 + v2) = −v0 · v2,

p12 = −q12 = −v1 · v2.
The quadratic form becomes a sum of squares: QΛ = p01x

2 + p22y
2 + p12(x− y)2.

The inequalities for qij are equivalent to the simple ordering 0 ≤ p12 ≤ p01 ≤ p02,
which Definition 3.1 will use to introduce a more convenient root invariant.

The isometry classification in (1.1ab) can be interpreted via group actions, see
[17] and [42]. Let Bn be the space of all linear bases in Rn. Up to a change of basis,
all lattices in Rn form the n2-dimensional orbit space Ln = Bn/GL(Rn), see [17,
formula (1.37), p. 34]. Up to orthogonal maps from the group O(Rn), the orbit
space of lattices can be identified with the cone C+(Qn) = Bn/O(Rn) of positive
quadratic forms, where Qn denotes the space of real symmetric n × n matrices,
see [17, formula (1.67), p. 41]. The Lattice Isometry Space LIS(Rn) was called the
space of intrinsic lattices Lo

n = C+(Qn)/GL(Zn) in [17, formula (1.70), p. 42].

Fig. 5 Major logical connections between new definitions, auxiliary lemmas and main results.
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The past approach to uniquely identify an intrinsic lattice (isometry class), say
for n = 2, was to choose a fundamental domain of the action of GL(Z2) on the
cone C+(Q2). This choice is equivalent to a choice of a reduced basis, which can
be discontinuous. Mirror reflections of any lattice Λ correspond to quadratic forms
q11x

2 ± 2q12xy + q22y
2 that differ by a sign of q12. To distinguish mirror images

of lattices, Definition 3.4 will introduce sign(Λ). Then continuous deformations of
lattices become continuous paths in a space of invariants, see Remark 4.8.

Proposition 3.10 establishes a 1-1 correspondence between obtuse superbases
and reduced bases. The latter bases are common in crystallography and imple-
mented by many fast algorithms [6]. So our lattice input will be any obtuse super-
base. Fig. 5 shows logical flows from key concepts to new contributions.

The main results are complete classifications in Theorem 4.2, Corollary 4.6,
and metrics on lattice invariants in Definitions 5.1, 5.4. Continuity of invariants in
Theorems 7.5, 7.7 convert the Lattice Isometry Space LIS(R2) into a continuously
parameterised map solving Problem 1.1. Definition 6.1 extends the binary chirality
to a real-valued deviation of a lattice from a higher-symmetry neighbour.

Petitjean [30] comprehensively described past approaches to quantify chirality
of bounded objects such as rigid molecules. The most rigorous approach is to use a
metric between these rigid objects. However, even for the simplest case of a finite
set of points, the Hausdorff-like distances between finite sets require approximate
minimisations over infinitely many rotations. Definition 6.1 will introduce chiral
distances for 2D lattices, which are easily computable by Propositions 6.5, 6.6.

3 Isometry invariants of an obtuse superbase of a 2-dimensional lattice

Definition 3.1 introduces voforms VF and coforms CF, which are triangular cycles
whose three nodes are marked by vonorms and conorms, respectively. We start
from any obtuse superbase B of a lattice Λ ⊂ R2 to define VF, CF, and a root
invariant RI. Lemma 3.8(a) will justify that RI depends only on Λ, not on B.

Fig. 6 1st picture: a voform VF(B) of a 2D lattice with an obtuse superbase B = {v0, v1, v2}.
2nd picture: nodes of a coform CF(B) are marked by conorms pij . 3rd and 4th pictures:
VF and CF of the hexagonal and square lattice with a minimum inter-point distance a.

Definition 3.1 (voform VF, coform CF, ordered root invariant RI) For any
ordered obtuse superbase B in R2, the voform VF(B) is the cycle on three nodes
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marked by the vonorms v20 , v
2
1 , v

2
2, see Fig. 6. The coform CF(B) is the cycle on

three nodes marked by the conorms p12, p02, p01. Since all conorms pij ≥ 0, we
can define the root products rij =

√
pij. The root invariant RI(B) is obtained by

writing the three root products r12, r01, r02 in the increasing order. ■

The ordering r12 ≤ r01 ≤ r02 is equivalent to v21 ≤ v22 ≤ v20 by formulae (2.7a).
Root products have the same units as original coordinates of basis vectors, for
example, Angstroms: 1Å = 10−10m. The ordered root invariant RI(B) is more
convenient than VF(B) and CF(B), which depend on an order of vectors of B.

Example 3.2 (a) A lattice Λ with a rectangular cell of sides a ≤ b has an obtuse
superbase B with v1 = (a, 0), v2 = (0, b), v0 = (−a,−b), and RI(B) = (0, a, b).

(b) For any lattice Λ ⊂ R2 whose Voronoi domain V (Λ) is a mirror-symmetric
hexagon, assume that the x-axis is its line of symmetry. Since V (Λ) is centrally
symmetric with respect to the origin 0, the y-axis is also its line of symmetry,
see Fig. 7. Then Λ has the centred rectangular (non-primitive) cell with sides
2a ≤ 2b. The obtuse superbase B with v1 = (2a, 0), v2 = (−a, b), v0 = (−a,−b)
has RI(B) = (a

√
2, a

√
2,
√
b2 − a2) for b ≥ a

√
3. For a ≤ b < a

√
3, we should

swap r02 =
√
b2 − a2 with r12 = a

√
2 to get an ordered root invariant RI(B). ■

Fig. 7 Left: Λ has a rectangular cell and obtuse superbase B with v1 = (a, 0), v2 = (0, b),
v0 = (−a,−b), see Example 3.2 and Lemma 3.3. Other lattices Λ have a rectangular cell 2a×2b
and an obtuse superbase B with v1 = (2a, 0), v2 = (−a, b), v0 = (−a,−b). Middle: RI(B) =

(
√
b2 − a2, a

√
2, a

√
2), a ≤ b ≤ a

√
3. Right: RI(B) = (a

√
2, a

√
2,

√
b2 − a2), a

√
3 ≤ b.

A lattice Λ ⊂ Rn that can be mapped to itself by a mirror reflection with
respect to a (n − 1)-dimensional hyperspace can be called mirror-symmetric or
achiral. Since a mirror reflection of any lattice Λ ⊂ R2 with respect to a line
L ⊂ R2 can be realised by a rotation in R3 around L through 180◦, the term
achiral sometimes applies to all 2D lattices and becomes non-trivial only for 3D
lattices. This paper for 2D lattices uses the clearer adjective mirror-symmetric.

Lemma 3.3 (root invariants of mirror-symmetric lattices Λ ⊂ R2) An ob-
tuse superbase B generates a mirror-symmetric lattice Λ(B) if and only if

(3.3a) the root invariant RI(B) contains a zero value and Λ(B) is rectangular, or

(3.3b) RI(B) has equal root products and the Voronoi domain of Λ(B) is a square
or a hexagon whose symmetry group has two orthogonal axes of symmetry. ▲

Proof The part if ⇐. Let RI(B) include a zero, which should be the first root
product, say 0 = r12 =

√
−v1 · v2. The vectors v1, v2 of the superbase B are
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orthogonal and generate a rectangular lattice, which is mirror-symmetric. If RI(B)
has two equal root products, say r01 = r02, the conorms are also equal: p01 = p02.
Formulae (2.7a) imply that v21 = p01 + p12 = p02 + p12 = v22 . The vectors v1, v2
have equal lengths and can be swapped (v1 ↔ v2) by the reflection in the bisector
L between v1, v2, which preserves v0 = −v1 − v2, so Λ(B) is mirror-symmetric.

The part only if ⇒. If Λ(B) is mirror-symmetric, then so is its Voronoi domain
V (Λ). If V (Λ) is a rectangle or a mirror-symmetric hexagon as in Fig. 7, RI(B)
computed in Example 3.2 contains either a zero or two equal root products. □

Definition 3.4 (sign(B), the oriented root invariant RIo(B)) If an obtuse su-
perbase B generates a mirror-symmetric lattice, set sign(B) = 0. Else all vectors
of B have different lengths and angles not equal to 90◦ by Lemma 3.3. Let v1, v2
be the shortest vectors of B so that |v1| < |v2|. Then sign(B) = ±1 is the sign
of the determinant det(v1, v2) of the matrix with the columns v1, v2. The oriented
root invariant RIo(B) is obtained by adding sign(B) as a superscript to RI(B). ■

Fig. 8 The lattices Λ,Λ′ are mirror reflections of each other and have oriented root invariants
RIo = (

√
3,

√
6,

√
7)± with opposite signs introduced in Definition 3.4, see Example 3.5.

If sign(B) = 0, this zero superscript in RIo(B) can be skipped for simplicity, so
RIo(B) = RI(B) in this case. Theorem 3.7 will show that sign(B) can be considered
as an invariant of a lattice Λ up to orientation-preserving similarity.

In Definition 3.4 the determinant det(v1, v2) is the signed area of the unit
cell U(v1, v2) equal to |v1| · |v2| sin∠(v1, v2), where the angle is measured from
v1 to v2 in the anticlockwise direction around the origin 0 ∈ R2. For a strict
obtuse superbase B, all angles between its basis vectors are strictly obtuse. Then
sign(B) = +1 if ∠(v1, v2) is in the positive range (90◦, 180◦), else sign(B) = −1.

Example 3.5 (signs of lattices) The lattice Λ+ in the first picture of Fig. 3
has the obtuse superbase B with v1 = (3, 0), v2 = (−1, 3), v0 = (−2,−3) of lengths
3,
√
10,

√
13, respectively, so Λ+ is not mirror-symmetric. Since v1, v2 are the two

shortest vectors of B+ and det(v1, v2) = det

 3 −1

0 3

 > 0, we get sign(B+) = +1.

The anticlockwise angle is ∠(v1, v2) = 180◦ − arcsin 3√
10

≈ 108◦.

The lattice Λ− in the last picture of Fig. 3 is obtained from Λ+ by a mirror
reflection and has the obtuse superbase B− with u1 = v1, u2 = (−2, 3), u0 =
(−1,−3) of lengths 3,

√
13,

√
10, respectively, so Λ− is not mirror-symmetric. Since
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u1, u0 are the shortest vectors, det(u1, u0) = det

 3 −1

0 −3

 < 0, we get sign(B−) =

−1. The anticlockwise angle is ∠(u1, u0) = arcsin 3√
10

− 180◦ ≈ −108◦. ■

Lemma 3.6 (RI invariance) For an unordered obtuse superbase B in R2, any
isometry preserves RI(B). Any rigid motion preserves sign(B) and RIo(B). ▲

Proof Any isometry of an ordered obtuse superbase B preserves the lengths and
scalar products of the ordered vectors, so RI(B) is unchanged. Any re-ordering of
vectors of B permutes conorms. RI(B) is unique due to ordered root products.

If a lattice is mirror-symmetric, then so is its image under any rigid motion in
R2, hence sign(B) = 0 is preserved. If B generates a non-mirror symmetric lattice,
B has unique shortest vectors v1, v2. A rigid motion acts on v1, v2 as a special
orthogonal matrix with determinant 1, hence preserving det(v1, v2), sign(B). □

Theorem 3.7 below is crucial for a complete classification of 2D lattices in
Theorem 4.2 and Corollary 4.6. Theorem 3.7 highlights that mirror-symmetric
lattices have more options for obtuse superbases up to rigid motion. The same
rectangular lattice can have two obtuse bases with v1 = (1, 0), v2 = (0,±2), which
are related by reflection in the x-axis, not by rigid motion. This symmetry-related
ambiguity is much harder to resolve for 3D lattices even up to isometry, see [21].

Theorem 3.7 (isometric obtuse superbases) Any lattices Λ,Λ′ ⊂ R2 are iso-
metric if and only if any obtuse superbases of Λ,Λ′ are isometric. If Λ,Λ′ are not
rectangular, the same conclusion holds for rigid motion instead of isometry. Any
rectangular (non-square) lattice has two obtuse superbases related by reflection. ▲

Proof Part if (⇐): any isometry between obtuse superbases of Λ,Λ′ linearly ex-
tends to an isometry Λ → Λ′. Part only if (⇒) means that any obtuse superbase
of Λ is unique up to isometry. By Lemma 2.8 for n = 2, if a lattice Λ has a strict
obtuse superbase B = {v0, v1, v2}, the Voronoi vectors of Λ are the pairs of oppo-
site partial sums ±v0,±v1,±v2, see Fig. 3 (left). Hence B is uniquely determined
by the strict Voronoi vectors up to a sign. So B is one of only two obtuse super-
bases ±{v0, v1, v2} related by central symmetry or rotation through 180◦ around
0. Hence Λ has a unique obtuse superbase up to rigid motion.

If a superbase of Λ is non-strict, one conorm vanishes, say p12 = 0. Then
v1, v2 span a rectangular unit cell and Λ has four non-strict Voronoi vectors ±v1±
v2 with all possible combinations of signs. Hence Λ has four obtuse superbases
{v1, v2,−v1 − v2}, {−v1,−v2, v1 + v2}, {−v1, v2, v1 − v2}, {v1,−v2, v2 − v1}, see
Fig. 3. The first two (and the last two) superbases are obtained from each other by
rotation through 180◦ around the origin. Unless the lattice is square, the resulting
two classes of superbases are related by reflection, not by rigid motion. □

Lemma 3.8 (lattice invariants) (a) For any obtuse superbase B of a lattice
Λ ⊂ R2, the root invariant RI(B) is an isometry invariant of Λ and can be denoted
by RI(Λ). Similarly, RIo(Λ) and sign(Λ) are invariants of a lattice Λ up to rigid
motion and orientation-preserving similarity, respectively.

(b) A lattice Λ ⊂ R2 is mirror-symmetric if and only if sign(Λ) = 0. ▲



14 Vitaliy Kurlin

Proof (a) An obtuse superbase B of any lattice Λ is unique up to isometry by
Theorem 3.7. Lemma 3.6 implies that the root invariant RI is an isometry invariant
of Λ, independent of any obtuse superbase B, hence can be denoted by RI(Λ).

Since an obtuse superbase B of any non-mirror-symmetric lattice Λ is unique
up to rigid motion by part (a), Lemma 3.6 implies that sign(B) and RIo(B)
are invariant up to rigid motion, hence can be denoted by sign(Λ) and RIo(Λ),
respectively. If Λ is mirror-symmetric, then any rigid motion preserves sign(Λ) = 0
as well as RI(Λ). So RIo(Λ) is invariant up to rigid motion for all Λ ⊂ R2.

Any orientation-preserving similarity is a composition of a rigid motion and a
uniform scaling (or a dilation) of all vectors by a factor s > 0. This similarity pre-
serves any symmetries of the lattice Λ and multiplies the determinant det(v1, v2)
from Definition 3.4 by s2 > 0, hence preserving sign(Λ).

(b) By Definition 3.4 any mirror-symmetric lattice has sign(Λ) = 0. Any basis
v1, v2 of a non-mirror symmetric lattice Λ has det(v1, v2) ̸= 0, so sign(Λ) ̸= 0. □

For any lattices Λ± related by reflection, their unoriented root invariants
RI(Λ±) are identical, while RIo(Λ±) differ by sign. Lemma 3.9 computes sign(Λ)
from any obtuse superbase whose first vector can be assumed to be v1 = (1, 0).

Lemma 3.9 (geometry of signs) (a) Up to orientation-preserving similarity,
any lattice Λ ⊂ R2 has an obtuse superbase with v1 = (1, 0) and v2 = (x, y), where
(x, y) belongs to the region Obt = {−1 ≤ x ≤ 0 < y, x2 + x + y2 ≥ 0}. Then
sign(Λ) from Definition 3.4 is determined by (x, y) in Fig. 9, see also Table 1.

Fig. 9 The yellow region Obt is the fundamental domain of SL(R2) and is split into six
subregions by the vertical line x = − 1

2
and the circles C(0; 1) = {(x, y) ∈ R2 | x2 + y2 = 1}

and C(−1; 1) = {(x, y) ∈ R2 | x2 + 2x+ y2 = 0}, see Lemma 3.9(a) and Table 1.

(b) Up to similarity, any lattice Λ ⊂ R2 with an obtuse superbase v0, v1, v2 can be
represented by up to six points (x, y) in the subregions of Obt. Swapping v0 ↔ v2 is
realised by the reflection in the line x = −1

2 , so v2 = (x, y) 7→ (−1−x, y). Swapping
and re-scaling the vectors v1 ↔ v2 is realised by the inversion with respect to the

circle x2 + y2 = 1 so that v2 7→ v1 7→ v2
x2 + y2

, see Fig. 10 (right). ▲
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Fig. 10 Left: if Λ has an obtuse superbase with v1 = (1, 0), v2 = (x, y), then sign(Λ) is
determined by (x, y) ∈ Obt above the circle C(− 1

2
; 1
2
) = {(x, y) ∈ R2 | x2 + x + y2 = 0}.

Right: re-ordering and re-scaling vectors of an obtuse superbase {v0, v1, v2} is realised by the
symmetries acting on v2 = (x, y) within the yellow region Obt, see Lemma 3.9(b).

Table 1 The sign of a lattice Λ ⊂ R2 can be found from an obtuse superbase with v1 = (1, 0),
v2 = (x, y), see Lemma 3.9(a), Fig. 9. If any inequality becomes equality, then sign(Λ) = 0.

k sign(Λ) conditions on v2 = (x, y) in the k-th subregion in Fig. 9 pij inequalities

1 + − 1
2
< x < 0, x2 + y2 > 1 p12 < p01 < p02

2 − −1 < x < − 1
2
, x2 + 2x+ y2 > 0 p01 < p12 < p02

3 + −1 < x < − 1
2
, x2 + y2 > 1, x2 + 2x+ y2 < 0 p01 < p02 < p12

4 − −1 < x < − 1
2
, x2 + y2 < 1, x2 + x+ y2 > 0 p02 < p01 < p12

5 + − 1
2
< x < 0, x2 + x+ y2 > 0, x2 + 2x+ y2 < 0 p02 < p12 < p01

6 − − 1
2
< x < 0, x2 + y2 < 1, x2 + 2x+ y2 > 0 p12 < p02 < p01

Proof (a) Let B = {v0, v1, v2} be an obtuse superbase of Λ. Any point p ∈ Λ can
be translated to the origin. Then a suitable rotation puts the basis vector v1 along
the positive x-axis so that v1 = (s, 0) for s > 0. The uniform scaling by the factor
s, maps v1 to (1, 0). Since both vectors v0, v2 have non-acute angles with v1, they
should have non-positive x-coordinates. Since the vectors v0, v2 have a non-acute
angle, one of them should be in the second quadrant {x ≤ 0 < y}. Since we can
swap v0, v2 without affecting Λ, we can assume that v2 = (x, y) for x ≤ 0 < y.
Then v0 = (−1− x,−y). The ordered superbase B = {v0, v1, v2} has the conorms

p12 = −v1 · v2 = −x ≥ 0, p01 = −v0 · v1 = 1+ x, p02 = −v0 · v2 = x2 + x+ y2.

Since all conorms should be non-negative, we need that 0 ≤ p01 = 1 + x, x ≥ −1.
Also 0 ≤ p02 = x2+x+y2 = (x+ 1

2 )
2− 1

4 +y2, so (x+ 1
2 )

2+y2 ≥ 1
4 . The endpoint

(x, y) of v2 should be in the vertical strip {−1 ≤ x ≤ 0} non-strictly above the
green circle C(−1

2 ;
1
2 ) with the centre (−1

2 , 0) and radius 1
2 in Fig. 9. The yellow
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Table 2 Inequalities between conorms are interpreted in terms of endpoints (x, y) of a vector
v2 complementing v1 = (1, 0) in an obtuse superbase {v0, v1, v2}, see Lemma 3.9.

pij inequality condition on (x, y) subregion within the yellow region Obt in Fig. 9

p02 ≥ 0 x2 + x+ y2 ≥ 0 the region Obt is non-strictly above C(− 1
2
; 1
2
)

p12 < p01 − 1
2
< x < 0 the right hand side vertical strip of the region Obt

p01 < p02 x2 + y2 > 1 the subregion in Obt above the circle C(0; 1)

p12 < p02 x+ 2x+ y2 > 0 the subregion in Obt above the circle C(−1; 1)

region Obt of allowed endpoints (x, y) of v2 in Fig. 9 is bounded by the vertical
lines x = 0, x = −1 and the green circle C(−1

2 ;
1
2 ). All boundary points represent

all rectangular lattices. For example, the points (x, y) = (0, 1) and (x, y) = (−1, 1)
in the vertical boundaries represent the same square lattice. For (x, y) = (−1

2 ,
1
2 )

in the green circle C(−1
2 ;

1
2 ), the vectors v0 = (−1

2 ,−
1
2 ) and v2 = (−1

2 ,
1
2 ) span

a square unit cell with edge-length 1√
2
. Now we split the yellow region into three

pairs of symmetric subregions according to inequalities between three conorms.

The inequality p12 < p01 is equivalent to −x < 1 + x, x > −1
2 , see Table 2.

The inequality p01 < p02 is equivalent to 1 + x < x2 + x+ y2, x2 + y2 > 1, so the
point (x, y) is above the circle C(0; 1) with the centre (0, 0) and radius 1 in Fig. 9.
The inequality p12 < p02 is equivalent to −x < x2 + x+ y2, (x+ 1)2 + y2 > 1, so
the point (x, y) is above the circle C(−1; 1) with the centre (−1, 0) and radius 1.

The inequalities on pij from Table 2 justify that the region Obt splits into
six subregions split by the vertical line x = −1

2 and two circles C(−1; 0) and
C(0; 1). Each subregion is defined by one of six possible orderings of the conorms
p12, p01, p02, see the last column of Table 1. To check the signs in the second column
of Table 1, notice that if pij is a minimal conorm, the formula pij = 1

2 (v
2
i +v2j −v2k)

from (2.7b) implies that vi, vj are the shortest of three vectors v0, v1, v2.

For example, Table 1 says that v1 = (1, 0) and v2 are the two shortest vectors
in the cases of the first and last rows. In the first row, v2 = (x, y) has the length
|v2| =

√
x2 + y2 > 1 = |v1|, hence by Definition 3.4 sign(Λ) equals the sign of

det(v1, v2) = y > 0. In the last row, v2 = (x, y) has the length |v2| =
√
x2 + y2 <

1 = |v1|, hence by Definition 3.4 sign(Λ) equals the sign of det(v2, v1) = −y < 0.
The signs in the remaining four rows of Table 1 are similarly checked.

If any of the strict inequalities above becomes equality, we get a point either
on the boundary of Obt (representing all rectangular lattices in |R2) or in one of
the lines x = −1

2 or the circles C(0; 1) and C(−1; 1). These internal curves con-
tain points (x, y) representing centred rectangular lattices. For instance, the triple

intersection of the internal curves at (x, y) = (−1
2 ,

√
3

2 ) represents all hexagonal
lattices. All these lattices are mirror-symmetric and have sign(Λ) = 0.

(b) Any two vectors of an obtuse superbase B = {v0, v1, v2} can be mapped by
similarity to (1, 0) and (x, y). Each of the resulting six pairs (x, y) belongs to one
of the six subregions marked by k = 1, 2, 3, 4, 5, 6 in the middle picture of Fig. 9.
It suffices to understand the action of two transpositions v0 ↔ v2 and v1 ↔ v2.
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When we swap v2 = (x, y) and v0 = (−1 − x,−y), while keeping v1 = (x, y)
fixed, we reflect the lattice Λ(B) generated by B in the x-axis so that v1 = (x, y)
has an obtuse angle to the image (−1 − x, y) of v0. This new vector (−1 − x, y)
plays the role of v2 in the reflected lattice and is symmetric to v2 = (x, y) in the
vertical line x = −1

2 within the yellow region Obt in Fig. 10 (right).

When we swap v1 = (1, 0) and v2 = (x, y), the second vector is divided by its
length |v2| =

√
x2 + y2. Hence the first vector v1 maps to the vector that is parallel

to v2 = (x, y) and has the length 1/
√
x2 + y2. This new vector v′2 = v2/(x

2 + y2)
plays the role of v2 and is obtained from v2 = (x, y) by the inversion with respect
to the circle x2 + y2 = 1. The inversion keeps all points on x2 + y2 = 1 fixed,
maps the y-axis x = 0 to itself, swaps the half-line {x = 0, y > 0} with the upper
half-circle {x2 + x + y2 = 0, y > 0}. Compositions of the symmetry in x = −1

2
and this inversion generate up to six images of (x, y) in the six subregions of Obt,

though the point (x, y) = (−1
2 ,

√
3
2 ) representing all hexagonal lattices is fixed. □

Proposition 3.10 (reduced bases) (a) Up to isometry in R2, all reduced bases
v1, v2 from Definition 2.3 are in a 1-1 correspondence with all obtuse superbases
B = {v0, v1, v2} such that |v1| ≤ |v2| ≤ |v0|. Up to isometry, any lattice Λ ⊂ R2

has a unique reduced basis specified by the conditions of Definition 2.3.

(b) Up to rigid motion, any lattice has a unique reduced basis in Definition 2.3. ▲

Fig. 11 Left: any reduced basis in Definition 2.3 up to orientation-preserving similarity maps
to v1 = (1, 0) and v2 = (x, y) ∈ Red from Proposition 3.10. Right: for each of the lattices
Λ,Λ′, Λ′′ represented by small blue, green, red circles/disks on the right, the conditions of
Definition 2.3 choose one reduced basis among two bases that differ up to rigid motion.

Proof (a) Up to similarity by Lemma 3.9(b), any lattice Λ has an obtuse superbase
B = {v0, v1, v2} with v1 = (1, 0) and v2 = (x, y), where the point (x, y) belongs
to the yellow region Obt in Fig. 9. By Lemma 3.9(b) the six permutations of
v0, v1, v2 are realised by internal symmetries of Obt, so we may assume that |v1| ≤
|v2| ≤ |v0|. The equivalent inequalities in conorms p12 ≤ p01 ≤ p02 define the
1st subregion of Obt in Fig. 9, which coincides with the closure of the region
Red+ = {(x, y) ∈ R2 | x2 + y2 ≥ 1,−1

2 ≤ x ≤ 0 < y} in Fig. 11.

Due to uniqueness of B up to isometry by Theorem 3.7, the position of v2 =
(x, y) ∈ Red+ is unique for Λ. Up to uniform scaling and reflection y ↔ −y, the

closure Red+ is defined by the same conditions v21 ≤ v22 = x2 + y2 and −1

2
≤

v1 · v2
v21

= x ≤ 0 as a reduced basis whose uniqueness up to isometry follows now.
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(b) If orientation should be preserved, Theorem 3.7 proves the uniqueness of the
obtuse superbase B = {v0, v1, v2} from part (a) up to rigid motion for any non-
rectangular lattice Λ. Cyclic permutations of v0, v1, v2 allow us to assume that v1
is the shortest vector. The equivalent condition on conorms says that p02 is the
largest, hence v2 = (x, y) belongs to the first two subregions of Obt in Fig. 9.

For the first open subregion with sign(B) = +1, the conditions v21 < v22 =

x2 + y2, −1
2 < x =

v1 · v2
v21

< 0 < y = det(v1, v2) of Definition 2.3 specify the

interior Red+, so the basis {v1, v2} is reduced. For the second open subregion with
sign(B) = −1, another basis {v1, v1 + v2} is reduced by Definition 2.3 because the
shifted point v1 + v2 = (x+1, y) belongs to the interior of the right-half region in
Fig. 11 (left): Red− = {(x, y) ∈ R2 | x2 + y2 ≥ 1, 0 < x < 1

2 , 0 < y}.

It remains to consider singular cases. We include the common boundary line

x =
v1 · v2
v21

= −1

2
and the boundary round arcs of both subregions represent

mirror-symmetric lattices with a unique (up to rigid motion) obtuse superbase.
We exclude these boundaries from the first region, include them into the second
region and shift by x 7→ x+1 so that the unique reduced basis v1, v1 + v2 satisfies

the conditions
v1 · v2
v21

=
1

2
and v1 · v2 ≥ 0 for |v1| = |v2| in Definition 2.3.

The above boundaries in Fig. 11 (left) include the blue and red points repre-
senting the basis vectors v2 = (x, y) of the lattices Λ,Λ′′, respectively.

The final boundary lines x = −1 and x = 0 represent rectangular lattices with
a unit cell a × b for 0 < a < b and two obtuse superbases related by reflection,
not by rigid motion, for example v1 = (a, 0), v2 = (0,±b). In this case there is no
1-1 correspondence between obtuse superbases and reduced bases. Definition 2.3
selects a unique reduced basis v1 = (a, 0), v2 = (0, b) due to det(v1, v2) > 0. □

The dotted arc A in Fig. 11 (left) should be indeed excluded from [17, Fig. 1.3
on p. 85], otherwise the lattice Λ′′ in the last picture of Fig. 11 has two potential

reduced bases v1 = (1, 0), v2 = (13 ,
2
√
2

3 ) and u1 = (13 ,
2
√
2

3 ) and u2 = (−1, 0).
Indeed, all basis vectors have length 1 and the second basis can be rotated to

u′
1 = (1, 0), u′

2 = (−1
3 ,

2
√
2

3 ) ∈ A. The second basis (u1, u2) of the same lattice Λ′′

is related to (v1, v2) by a reflection, but not by rigid motion. So the region Red
with the excluded left boundary for x < 0 contains a unique vector v2 = (x, y)
of a reduced basis up to orientation-preserving similarity. Forgetting about the
uniform scaling, we get uniqueness of a reduced basis up to rigid motion.

The region Red in Fig. 11 (left) is a fundamental domain of all bases by the
action of SO(R2)×R+ and GL(Z2) in the sense that any lattice up to orientation-
preserving similarity can be represented by a unique point (x, y) ∈ Red. Red or any
other half-open fundamental domain of a group action suffers from discontinuity
on boundary when close lattices are represented by distant bases. For each of the
lattices Λ,Λ′′ in Fig. 11, a slight perturbation of the non-reduced basis makes
it reduced but distant from the initial reduced basis up to rigid motion. The
discontinuity above can be resolved by identifying boundary points of of Red by
the reflection x ↔ −x. Section 4 will describe a simpler way to continuously
parameterise lattices up to orientation-preserving similarity in Corollary 4.6.
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4 Complete classifications of 2D lattices up to isometry and similarity

Lemma 3.8 showed that RI(Λ),RIo(Λ) are invariants of lattices up to isometry and
rigid motion, respectively. To prove completeness of the invariants in Theorem 4.2,
Lemma 4.1 reconstructs an obtuse superbase of Λ. Corollary 4.6 will classify lat-
tices up to similarity by projected invariants introduced in Definition 4.5.

Lemma 4.1 (superbase reconstruction) An obtuse superbase B = {v0, v1, v2}
of a lattice Λ ⊂ R2 can be uniquely reconstructed up to isometry and up to rigid
motion from its root invariant RI(Λ) and its oriented root invariant RIo(Λ), re-
spectively. If RI(Λ) = (r12, r01, r02), the basis vectors v1, v2 are determined by

|v1| =
√

r212 + r201, |v2| =
√
r212 + r202, cos∠(v1, v2) =

−r212√
r212 + r201

√
r212 + r202

,

and span a primitive unit cell of the area A(Λ) =
√

r212r
2
01 + r212r

2
02 + r201r

2
02. ▲

Proof Assuming that a root invariant RI(Λ) is ordered as r12 ≤ r01 ≤ r02, we will
build an obtuse superbase {v0, v1, v2} such that rij =

√−vi · vj for any distinct

i, j ∈ {0, 1, 2}. Find the lengths from (2.7a): |vi| =
√
p12 + p0i =

√
r212 + r20i

for i = 1, 2. Using v1 · v2 = −r212, the anticlockwise angle has cos∠(v1, v2) =
v1 · v2

|v1| · |v2|
=

−r212√
r212 + r201

√
r212 + r202

. The unit cell U(v1, v2) has the area

A(Λ) = |v1| · |v2| sinα = |v1| · |v2|
√
1− cos2 α =

√
|v1|2|v2|2 − (v1 · v2)2 =

=
√
(r212 + r201)(r

2
12 + r202)− r212 =

√
r212r

2
01 + r212r

2
02 + r201r

2
02.

Up to rigid motion, the length |v1| is enough to fix the vector v1 along the positive
x-axis. The length |v2| and cos∠(v1, v2) determine the position of v2 relative to
the fixed vector v1 up to reflection in the x-axis. Up to isometry or if sign(Λ) = 0
(when Λ is mirror-symmetric), the above options for v2 are not important. If
sign(Λ) = +1, then we choose v2 in the upper half-plane above the x-axis so that
∠(v1, v2) ∈ (90◦, 180◦), otherwise we put v2 into the lower half-plane.

Finally, v0 = −v1 − v2 and the reconstructed ordered obtuse superbase B =
{v0, v1, v2} is unique up to isometry and up to rigid motion by Theorem 3.7. □

Theorem 4.2 (isometric 2D lattices ↔ root invariants) Any lattices Λ,Λ′ ⊂
R2 are isometric if and only if their root invariants coincide: RI(Λ) = RI(Λ′). Any
lattices Λ,Λ′ are related by rigid motion if and only if RIo(Λ) = RIo(Λ′). ▲

Proof The part only if (⇒) follows from Lemma 3.8(a) saying that RI(Λ),RIo(Λ)
are invariant under isometry and rigid motion, respectively. The part if (⇐) follows
from Lemma 4.1 reconstructing a superbase from RI(Λ) or RIo(Λ). □

The above classification helps prove that some other isometry invariants of
lattices are also complete and continuous. By (2.7ab) the voform VF = (v20 , v

2
1 , v

2
2)

and coform CF = (p12, p01, p02) are both complete if considered up to 3! permuta-
tions. The root invariant RI is a uniquely ordered version of CF and deserves its
own name. The square roots rij =

√
pij have original units of vector coordinates.
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The oriented part of Theorem 4.2 didn’t appear in the past to the best of our
knowledge. Conway and Sloane studied 2D lattices in [12, section 6] only up to
general isometry including reflections. Here is the closest formal claim from [12].

Lemma 4.3 ([12, Theorem 7]) For any obtuse superbase (v0, v1, v2) of a lattice
Λ ⊂ R2, the vonorms v20 , v

2
1 , v

2
2 are squared lengths of shortest Voronoi vectors. ▲

Theorem 4.2 and Lemma 4.3 imply that, after taking square roots of vonorms,
the ordered lengths, say |v1| ≤ |v2| ≤ |v0|, form a complete invariant that should
satisfy the triangle inequality |v1|+ |v2| ≥ |v0|. This inequality is the only disad-
vantage of the complete invariant |v1| ≤ |v2| ≤ |v0| in comparison with ordered
root products r12 ≤ r01 ≤ r02, which are easier to visualise in Fig. 12, 13.

Classification Theorem 4.2 says that all isometry classes of lattices Λ ⊂ R2

are in a 1-1 correspondence with all ordered triples 0 ≤ r12 ≤ r01 ≤ r02 of root
products in RI(Λ). Only the smallest root product r12 can be zero, two others
r01 ≤ r02 should be positive, otherwise v21 = r212 + r201 = 0 by formulae (2.7a).

We explicitly describe the set of all possible root invariants, which will be later
converted into metric spaces with continuous metrics in Definitions 5.1 and 5.4.

Definition 4.4 (triangular cone TC) All root invariants RI(Λ) = (r12, r01, r02)
of lattices Λ ⊂ R2 live in the triangular cone TC = {0 ≤ r12 ≤ r01 ≤ r02} within
the octant Oct = [0,+∞)3 excluding the axes in the coordinates r12, r01, r02, see
Fig. 12 (left). The boundary ∂(TC) of the cone TC consists of root invariants of
all mirror-symmetric lattices from Lemma 3.3: the bisector planes {r01 = r02}
and {r12 = r01} within TC. The orange line {0 < r12 = r01 = r02} ⊂ ∂(TC)
in Fig. 12 (left) consists of root invariants of hexagonal lattices with a minimum
inter-point distance r12

√
2. The blue line {r12 = 0 < r01 = r02} ⊂ ∂(TC) consists

of root invariants of square lattices with a minimum inter-point distance r01. ■

Fig. 12 Left: the triangular cone TC = {(r12, r01, r02) ∈ R3 | 0 ≤ r12 ≤ r01 ≤ r02 ̸= 0}
represents the space RIS of all root invariants of 2D lattices, see Definition 4.4. Middle: TC
projects to the quotient triangle QT = TC ∩ {r12 + r01 + r02 = 1} representing the space
LSS of 2D lattices up to similarity, see Corollary 4.6. Right: the quotient triangle QT can be
parameterised by x = r̄02 − r̄01 ∈ [0, 1) and y = 3r̄12 ∈ [0, 1], see QT also in Fig. 13.

To classify lattices up to similarity, it is convenient to scale them by the size
σ(Λ) = r12 + r01 + r02. This sum is a simpler uniform measure of size than (say)
the unit cell area A(Λ) from Lemma 4.1, which can be small even for long cells.
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Definition 4.5 (projected invariants PI(Λ) and PIo(Λ)) The triangular pro-
jection TP : TC → {r12 + r01 + r02 = 1} divides each coordinate by the size

σ(Λ) = r12 + r01 + r02 and gives RI(Λ) = (r̄12, r̄01, r̄02) =
(r12, r01, r02)

r12 + r01 + r02
in

TC∩{r12 + r01 + r02 = 1}. Then we map (r̄12, r̄01, r̄02) to the projected invariant
PI(Λ) = (x, y) with x = r̄02 − r̄01 ∈ [0, 1) and y = 3r̄12 ∈ [0, 1] in the quotient
triangle QT = {(x, y) ∈ R2 | 0 ≤ x < 1, 0 ≤ y ≤ 1, x+ y ≤ 1}, see Fig. 13.

All oriented root invariants RIo(Λ) live in the doubled cone DC that is the
union of two triangular cones TC±, where we identify any two boundary points
representing the same root invariant RI(Λ) with sign(Λ) = 0. The oriented pro-
jected invariant PIo(Λ) = (x, y)± is PI(Λ) with the superscript from sign(Λ). ■

Fig. 13 Left: all projected invariants PI(Λ) of lattices Λ ⊂ R2 live in the quotient triangle
QT from Fig. 12, which is parameterised by x = r̄02 − r̄01 ∈ [0, 1) and y = 3r̄12 ∈ [0, 1].
Right: mirror reflections Λ± of any non-mirror-symmetric lattice can be represented by a pair
of points in the quotient square QS = QT+ ∪QT− symmetric in the diagonal x+ y = 1.

The inequality 1 ≥ x+y = (r̄02−r̄01)+3r̄12 follows after multiplying both sides
by the size σ(Λ), because r12 + r01 + r02 ≥ (r02 − r01) + 3r12 becomes r01 ≥ r12.

The set of oriented projected invariants PIo is visualised in Fig. 13 (right) as the
quotient square QS obtained by gluing the quotient triangle QT+ with its mirror
image QT−. The boundaries of both triangles excluding the vertex (x, y) = (1, 0)
are glued by the diagonal reflection (x, y) ↔ (1 − y, 1 − x). Any pair of points
(x, y) ∈ QT+ and (1− y, 1− x) ∈ QT− in Fig. 13 (right) represent mirror images
of a lattice up to similarity, see Corollary 4.6. So QS is a topological sphere without
a single point and will be parameterised by geographic-style coordinates in [10].

Following Fig. 6, any square lattice has a root invariant RI = (0, a, a), so its
projected invariant PI = (0, 0) is at the bottom left vertex of QT in Fig. 13 (left),
identified with top right vertex of QS in Fig. 13 (right). Any hexagonal lattice has
a root invariant RI = (a, a, a), so its projected invariant PI = (0, 1) is at the top
left vertex of QT in Fig. 13 (left), identified with bottom right vertex of QS.
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By Example 3.2(a) any rectangular lattice has RI = (0, a, b) for a < b, hence
its projected invariant PI = ( b−a

a+b , 0) belongs to the bottom edge of QT identified
with the top edge of QS. By Example 3.2(b) any lattice with a mirror-symmetric
Voronoi domain has RI with 0 or two equal root products. Such lattices have a
rhombic unit cell and form the centred rectangular Bravais class. Their projected
invariants belong to the vertical edges and diagonal of QS in Fig. 13 (right). The
companion paper [10] discusses Bravais classes of 2-dimensional lattices in detail.

In the theory of complex functions, any lattice Λ ⊂ R2 can be considered
as a subgroup of the complex plane C whose quotient C/Λ is a torus. By the
Riemann mapping theorem any compact Riemann surface of genus 1 is conformally
equivalent (holomorphically homeomorphic) to the quotient C/Λ for some lattice
Λ, see [20, Section 5.3]. Such tori C/Λ and C/Λ′ are conformally equivalent if
and only if Λ,Λ′ are similar, see [19, Theorem 6.1.4]. The spaces LSS(R2) and
LSSo(R2) of all lattices Λ ⊂ C = R2 up to similarity and orientation-preserving
similarity are the quotient triangle QT and square QS, respectively, see Fig. 13.

Corollary 4.6 (similar lattices ↔ projected invariants PI) Lattices Λ,Λ′ ⊂
R2 are similar (related by an isometry composed with a uniform scaling) if and
only if their projected invariants are equal: PI(Λ) = PI(Λ′). The lattices Λ,Λ′ are
related by an orientation-preserving similarity if and only if PIo(Λ) = PIo(Λ′). ▲

Proof follows from Theorem 4.2 because a uniform scaling of all basis vectors
vi 7→ svi by a factor s > 0 multiplies all root products rij =

√−vi · vj by s, which
is neutralised by the triangular projection TP from Definition 4.4. □

Lemma 4.7 (criteria of mirror-symmetric lattices in R2) A lattice Λ in R2

is mirror-symmetric if and only if one of the following equivalent conditions holds:
sign(Λ) = 0 or RI(Λ) ∈ ∂TC or PI(Λ) ∈ ∂QT. So the boundaries of the triangu-
lar cone TC and the quotient triangle QT consist of root invariants and projected
invariants, respectively, of all mirror-symmetric lattices Λ ⊂ R2. ▲

Proof By Lemma 3.8 a lattice Λ is mirror-symmetric if and only if sign(Λ) = 0. By
Lemma 3.3 any mirror-symmetric lattice Λ has RI(Λ) with 0 (rectangular lattice)
or with two equal root products (centred rectangular lattices). The last conditions
on RI define the boundary ∂TC of the triangular cone in Fig. 12 or, equivalently,
the projected invariant PI(Λ) belongs to the boundary of QT in Fig. 13 (left). □

Remark 4.8 (lattices via group actions) Another parameterisation of the Lat-
tice Similarity Space LSS(R2) can be obtained from a fundamental domain of the
action of GL(Z2)×R×

+ on the cone C+(Q2) of positive quadratic forms. Recall that

any lattice Λ ⊂ R2 with a basis v1, v2 defines the positive quadratic form

QΛ(x, y) = (xv1 + yv2)
2 = v21x

2 + 2v1v2xy + v22y
2 = q11x

2 + 2q12xy + q22y
2 ≥ 0

whose positivity for all (x, y) ∈ R2 − 0 means that q212 < q11q22. The cone C+(Q2)
of all positive quadratic forms projects to the unit disk ξ2 + η2 < 1 parameterised

by ξ =
q22 − q11
q11 + q22

and η =
−2q12

q11 + q22
. Indeed, the positivity condition q212 < q11q22

for the form QΛ(x, y) is equivalent to ξ2 + η2 < 1 in the coordinates above.

QΛ has a reduced (non-acute) form if 0 ≤ −2q12 ≤ q11 ≤ q22 and q11 > 0,
see [17, formula (1.130) on p. 75]. The above conditions define the fundamental
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domain T = {0 ≤ ξ < 1, 0 ≤ η ≤ 1
2 , ξ + 2η ≤ 1}, see [42, Fig. 8.1]. This non-

isosceles triangle is one of the infinitely many triangular domains within the disk
ξ2 + η2 < 1 in [17, Fig. 1.2 on p. 82] or [42, Fig. 6.2]. Choosing one triangular
domain is equivalent to choosing a reduced basis up to isometry, not up to rigid
motion. For instance, the mirror-symmetric bases v1 = (1, 0), v±2 = (−1

2 ,±1) have

the same reduced non-acute form x2−xy+ 5
4y

2 represented only by (ξ, η) = (19 ,
4
9 ).

The above ambiguity up to rigid motion is resolved by sign(Λ) in the twice larger
space LSSo(R2) visualised as the quotient square QS, see Example 7.6.

More importantly, the inverse map from RIo(Λ) to a reduced basis is discontin-
uous at any rectangular lattice Λ with a unit cell a× b. Indeed, slight perturbations
of Λ have unique reduced bases that are not close to each other, being close to the
distant bases (a, 0), (0,±b), which are not equivalent up to rigid motion for a < b.
This discontinuity of lattice bases will emerge in R3 even up to isometry [21]. In
R2, Corollary 7.9 will completely settle the basis discontinuity up to rigid motion.

Another complete invariant is the ordered voform v21 ≤ v22 ≤ v20 or the lengths
|v1| ≤ |v2| ≤ |v0| of the three shortest Voronoi vectors from Lemma 4.3. However,
this invariant doesn’t extend even to dimension n = 3 due to a 6-parameter family
of pairs of non-isometric lattices Λ1 ̸∼= Λ2 that have the same lengths of seven
shortest Voronoi vectors in R3, see [21]. The above reasons justify the choice of
homogeneous coordinates rij, which easily extend to higher dimensions. ■

The projected invariant PI = (x, y) obtained from RI is preferable to the
coordinates (ξ, η), which define a non-isosceles triangle, while the isosceles quotient
triangle QT will lead to easier formulae for metrics in the next section. Since the
metric tensor (v21 , v1 · v2, v22) = (q11, q12, q22) and its 3-dimensional analogue are
more familiar to crystallographers, we will rephrase key results from sections 5-6
by using these non-homogeneous cooordinates in the companion paper [10].

Proposition 4.9 (inverse design of 2D lattices) For σ > 0 and any point
(x, y) in the quotient triangle QT, there is a unique (up to isometry) lattice Λ
with the projected invariant PI(Λ) = (x, y) and size σ = r12 + r01 + r02. Then

(4.9a) RI(Λ) = (r12, r01, r02) =
(σ
3
y,

σ

6
(3− 3x− y),

σ

6
(3 + 3x− y)

)
.

If (x, y) is in the interior of QT, the invariant RI defines a pair of lattices Λ±

that have opposite signs and unique (up to isometry) reduced basis vectors v1, v2
with the lengths |v1| =

√
r212 + r201, |v2| =

√
r212 + r202 and the anticlockwise angle

(4.9b) ∠(v1, v2) = arccos
−4y2√

(9x2 + 5y2 − 6y + 9)2 − 36x2(3− y)2
. ▲

Proof In Definition 4.5 the projected invariant PI(Λ) = (x, y) is obtained from the

coordinates (r̄12, r̄01, r̄02) of RI(Λ) satisfying the equations


x = r̄02 − r̄01,

y = 3r̄12,

r̄12 + r̄01 + r̄02 = 1.

The solution is RI(Λ) = (r̄12, r̄01, r̄02) = (y3 ,
1
2 − x

2 − y
6 ,

1
2 + x

2 − y
6 ). Multiplying

all coordinates by the size σ = r12 + r01 + r02 gives the root invariant in (4.9a).
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By Proposition 3.10 a (unique up to isometry) reduced basis v1, v2 consist of
two shortest vectors of an obtuse superbase. Lemma 4.1 implies the formulae for
|v1|, |v2|. The angle formula from Lemma 4.1 can be expressed in x, y as follows:

cos∠(v1, v2) =
−r212

|v1| · |v2|
=

−y2/9
1
6

√
(2y)2 + (3− 3x− y)2 1

6

√
(2y)2 + (3 + 3x− y)2

=

=
−4y2√

4y2 + (3− y)2 + 9x2 + 6x(3− y)
√
4y2 + (3− y)2 + 9x2 − 6x(3− y)

=

=
−4y2√

(9x2 + 5y2 − 6y + 9) + 6x(3− y)
√
(9x2 + 5y2 − 6y + 9)− 6x(3− y)

. □

Example 4.10 shows the power of Proposition 4.9 based on Theorem 4.2 and
Corollary 4.6 for inverse design by sampling the square QS at interesting places.

Fig. 14 (right) visualises the doubled cone DC of oriented root invariants RIo

from Definition 3.4 by uniting the triangular cone TC = {0 ≤ r12 ≤ r01 ≤ r02}
with its mirror reflection in the vertical plane {r01 = r02} including the r12-axis.

The lattice Λ0 with RI = (1, 1, 4) is represented by two boundary points of
DC identified by (r01, r02) ↔ (r02, r01). The lattices Λ±

∞ with the root invariant
RI = (r12, r01, r02) = (1, 4, 7) are represented by (1, 4, 7) and its mirror image
(1, 7, 4) in DC related by the reflection in the vertical bisector plane r01 = r02
containing the root invariants of Λ4, Λ6. The superscript shows sign(Λ±

∞) = ±1.

Example 4.10 (inverse design of 2D lattices) We will inversely design the
lattices Λ4, Λ6, Λ0, Λ

±
2 , Λ±

∞, see their visualised invariants in Fig. 14 (right).

(Λ4Λ4Λ4) We design the square lattice Λ4 starting from its projected invariant at the ori-
gin PI(Λ4) = (0, 0) ∈ QT, which is identified with the top right vertex (1, 1) ∈ QS
in Fig. 14 (left). Formula (4.9a) for the size σ(Λ4) = 2 (only to get simplest inte-
gers) gives RI(Λ4) = (0, 1, 1). An obtuse superbase {v0, v1, v2} can be reconstructed
by Lemma 4.1. The vonorms are v21 = v22 = 02 + 12 = 1, v20 = 12 + 12 = 2. We
can choose the standard obtuse superbase v1 = (1, 0), v2 = (0, 1), v0 = (−1,−1).

(Λ6Λ6Λ6) We design the hexagonal lattice Λ6 starting from the projected invariant at
the top left vertex PI(Λ6) = (0, 1) ∈ QT, which is identified with the bottom right
vertex (1, 0) ∈ QS in Fig. 14 (left). Formula (4.9a) for the size σ(Λ6) = 3 (only to
get simplest integers) gives RI(Λ6) = (1, 1, 1). To reconstruct an obtuse superbase
{v0, v1, v2} by Lemma 4.1, find the vonorms v21 = v22 = v20 = 12 + 12 = 2. For-
mula (4.9b) gives the angle ∠(v1, v2) = arccos −4√

(5−6+9)2
= arccos

(
−1

2

)
= 120◦.

We can choose the superbase v1 = (
√
2, 0), v2 = (− 1√

2
,
√
3√
2
), v0 = (− 1√

2
,−

√
3√
2
).

(Λ0Λ0Λ0) We inversely design the lattice Λ0 in Fig. 14 starting from PI(Λ0) = (x, y) at
the centre (12 ,

1
2 ) ∈ QS. Formula (4.9a) for the size σ(Λ0) = 6 (only to get simplest

integers) gives RI(Λ0) = (1, 1, 4). To reconstruct an obtuse superbase {v0, v1, v2}
by Lemma 4.1, find the vonorms v21 = 12 + 12 = 2, v20 = v22 = 12 + 42 = 17.

Formula (4.9b) gives the angle ∠(v1, v2) = arccos
−4√

(94 + 5
4 − 3 + 9)2 − 9(54 )

2
=
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Fig. 14 Left: QS = QT+ ∪ QT− includes mirror-symmetric lattices Λ4, Λ6, Λ0 and non-
mirror-symmetric lattices Λ±

∞, see Example 5.2 and Table 3 later. Right: the doubled cone DC
is visualised as {0 ≤ r12 ≤ min{r01, r02} > 0} bounded by the planes {r12 = 0}, {r12 = r01},
{r12 = r02} with the identifications (r12, r01, r02) ↔ (r12, r02, r01) on the boundary ∂DC.

arccos(− 1√
34
) ≈ 99.9◦. We can choose the following superbase, see Fig. 15: v1 =

(
√
2, 0), v2 = |v2|(cos∠(v1, v2), sin∠(v1, v2)) = (− 1√

2
,
√
33√
2
), v0 = (− 1√

2
,−

√
33√
2
).

(Λ2Λ2Λ2) We inversely design the lattice Λ2 in Fig. 14 starting from their projected in-
variants PI(Λ2) = ( 1

2+
√
2
, 1
2+

√
2
), which will maximise the chiral distance PC[D2]

in Theorem 6.6(a). Formula (4.9a) for the size σ(Λ2) = 6 (only to simplify the
root invariant) gives RI(Λ2) = (2 −

√
2, 2

√
2 − 1, 5 −

√
2). Since all root prod-

ucts are non-zero and distinct, by Lemma 3.3 there is a pair of lattices Λ±
2 with

sign(Λ±
2 ) = ±1. The lattices Λ±

2 are related by reflection, not by rigid motion.

To reconstruct an obtuse superbase {v0, v1, v2} of Λ±
2 by Lemma 4.1, find

v20 = (2
√
2− 1)2 + (5−

√
2)2 = (9− 4

√
2) + (27− 10

√
2) = 36− 14

√
2 ≈ 16.2,

v21 = (2−
√
2)2 + (2

√
2− 1)2 = (6− 4

√
2) + (9− 4

√
2) = 15− 8

√
2 ≈ 3.7,

v22 = (2−
√
2)2 + (5−

√
2)2 = (6− 4

√
2) + (27− 10

√
2) = 33− 14

√
2 ≈ 13.2,

and the anticlockwise angle ∠(v1, v2) = arccos
−r212

|v1| · |v2|
≈ 92.8◦. Then Λ±

2 have

the following obtuse superbases in Fig. 15: v1 = (
√
15− 8

√
2, 0) ≈ (1.9, 0), v2 =

|v2|(cos∠(v1, v2), sin∠(v1, v2)) ≈ (−0.18, 3.63), v0 ≈ (−1.72,−3.63).

(Λ∞Λ∞Λ∞) We inversely design the lattice Λ∞ in Fig. 15 starting from PI(Λ∞) =
(x, y) at the mid-point (14 ,

1
4 ) of the segment between PI(Λ4),PI(Λ0) ∈ QT. For-

mula (4.9a) for the size σ(Λ∞) = 12 (only to simplify the root invariant) gives
RI(Λ∞) = (1, 4, 7). Since all root products are non-zero and distinct, by Lemma 3.3
there is a pair of lattices Λ±

∞ of opposite signs sign(Λ±
∞) = ±1.

To reconstruct an obtuse superbase {v0, v1, v2} of Λ±
∞ by Lemma 4.1, find the

vonorms v20 = 42 + 72 = 65, v21 = 12 + 42 = 17, v22 = 12 + 72 = 50, and the

anticlockwise angle ∠(v1, v2) = arccos
−r212

|v1| · |v2|
= arccos(− 1√

850
) ≈ 92◦. Then

Λ±
∞ have the following obtuse superbases in Fig. 15: v1 = (

√
17, 0) ≈ (4.12, 0),

v±2 = |v2|(cos∠(v1, v2), sin∠(v1, v2)) =
(
− 1√

17
,±

√
849√
17

)
≈ (−0.24,±7.1),
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Fig. 15 The doubled cone DC in Fig. 14 (right) projects to the doubled triangle DT pa-
rameterised by x ∈ (−1, 1), y ∈ [0, 1] and obtained by gluing two copies QT± of the quotient
triangle along vertical sides instead of hypotenuses as in QS, see Example 4.10 and Table 3.

v±0 = −v1 − v±2 = (− 16√
17
,∓

√
849√
17

) ≈ (−3.88,∓7.1), see all forms in Table 3. ■

Table 3 Various invariants of the lattices computed in Example 4.10, see Fig. 14 and 15.

Λ Λ4 Λ6 Λ0 Λ±
2 Λ±

∞

σ(Λ) 2 3 6 6 12

PI(Λ) (0, 0) (0, 1)

(
1

2
,
1

2

) (
1

2 +
√
2
,

1

2 +
√
2

) (
1

4
,
1

4

)
RIo(Λ) (0,1,1) (1,1,1) (1,1,4) (2−

√
2, 2

√
2− 1, 5−

√
2)± (1, 4, 7)±

VF(Λ) (2,1,1) (2,2,2) (17,2,17) (15− 8
√
2, 33− 14

√
2, 36− 14

√
2) (65,17,50)

5 Metrics on spaces of lattices up to isometry, rigid motion, similarity

All lattices Λ ⊂ R2 are uniquely represented up to isometry and similarity by
their invariants RI ∈ TC and PI ∈ QT, respectively. Then any metric d on the
triangular cone TC ⊂ R3 or the quotient triangle QT ⊂ R2 gives rise to a metric
in Definition 5.1 on the spaces LIS and LSS, respectively. The oriented case in
Definition 5.4 will be harder because of identifications on the boundary ∂TC.

Definition 5.1 (root metrics RM, projected metrics PM) Any metric d on
R3 defines the root metric RM(Λ1, Λ2) = d(RI(Λ1),RI(Λ2)) on lattices Λ1, Λ2 ⊂
R2 up to isometry. The Root Invariant Space RIS = (TC, d) is the triangular cone
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with a fixed metric d. If we use the Minkowski norm Mq(v) = ||v||q = (
n∑

i=1

|xi|q)1/q

of a vector v = (x1, . . . , xn) ∈ Rn for any real q ∈ [1,+∞], the root metric is
denoted by RMq(Λ1, Λ2) = ||RI(Λ1) − RI(Λ2)||q. The limit case q = +∞ uses
||v||∞ = max

i=1,...,n
|xi|. The projected metric PM(Λ1, Λ2) = d(PI(Λ1),PI(Λ2)) is

on lattices up to similarity for any metric d on R2. The space of projected in-
variants PIN = (QT, d) is the quotient triangle with a metric d. The notation
PMq(Λ1, Λ2) = ||PI(Λ1)− PI(Λ2)||q includes a parameter q ∈ [1,+∞] of Mq. ■

The Minkowski distance Mq for q = 2 is Euclidean. The root metric RMq can
take any large values in original units of vector coordinates such as Angstroms.
The projected metric PMq is unitless and the space PIN = (QT, d) is bounded.

Table 4 Metrics RMq and PMq for the lattices from Example 5.2 and shown Fig. 14 and 15.

RM∞ Λ4 Λ6 Λ0 Λ±
∞

RI(Λ4) = (0, 1, 1) 0 1 3 6

RI(Λ6) = (1, 1, 1) 1 0 3 6

RI(Λ0) = (1, 1, 4) 3 3 0 3

RI(Λ±
∞) = (1, 4, 7) 6 6 3 0

PM∞ Λ4 Λ6 Λ0 Λ±
∞

PI(Λ4) = (0, 0) 0 1 1
2

1
4

PI(Λ6) = (0, 1) 1 0 1
2

3
4

PI(Λ0) = ( 1
2
, 1
2
) 1

2
1
2

0 1
4

PI(Λ±
∞) = ( 1

4
, 1
4
) 1

4
3
4

1
4

0

RMq for q ∈ [1,+∞) Λ4 Λ6 Λ0 Λ±
∞

RI(Λ4) = (0, 1, 1) 0 1 (1 + 3q)1/q (1 + 3q + 6q)1/q

RI(Λ6) = (1, 1, 1) 1 0 3 (3q + 6q)1/q

RI(Λ0) = (1, 1, 4) (1 + 3q)1/q 3 0 3 · 21/q

RI(Λ±
∞) = (1, 4, 7) (1 + 3q + 6q)1/q (3q + 6q)1/q 3 · 21/q 0

PMq for q ∈ [1,+∞) Λ4 Λ6 Λ0 Λ±
∞

PI(Λ4) = (0, 0) 0 1 2(1/q)−1 2(1/q)−2

PI(Λ6) = (0, 1) 1 0 2(1/q)−1 1
4
(1 + 3q)1/q

PI(Λ0) = ( 1
2
, 1
2
) 2(1/q)−1 2(1/q)−1 0 2(1/q)−2

PI(Λ±
∞) = ( 1

4
, 1
4
) 2(1/q)−2 1

4
(1 + 3q)1/q 2(1/q)−2 0

Example 5.2 (metrics RMq,PMq) Table 4 summarises metric computations for
the lattices Λ4, Λ6, Λ0, Λ

±
∞, which were inversely designed in Example 4.10. ■

Lemma 5.3 (metric axioms for RM,PM) (a) Any metrics RM and PM from
Definition 5.1 satisfy all metric axioms in (1.1c) on the Lattice Isometry Space
LIS(R2) and the Lattice Similarity Space LSS(R2), respectively. ▲

Proof The metric axioms for RM,PM from Definition 5.1 follow from the same
axioms for an underlying metric d. Only the first axiom is non-trivial: by the first
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axiom for d we know that RM(Λ1, Λ2) = d(RI(Λ1),RI(Λ2)) = 0 if and only if
RI(Λ1) = RI(Λ2). Now Theorem 4.2 says that RI(Λ1) = RI(Λ2) is equivalent
to Λ1, Λ2 being isometric. Corollary 4.6 classifying lattices up to similarity by
projected invariants similarly justifies the first axiom for PM(Λ1, Λ2). □

Since the mirror images Λ±
∞ have the same root invariant RI(Λ±

∞) = (1, 4, 7),
for any lattice Λ, the distances RM(Λ,Λ±

∞) and PM(Λ,Λ±
∞) are independent of

sign(Λ±
∞) = ±1. Any mirror images Λ± have RM(Λ+, Λ−) = 0 = PM(Λ+, Λ−)

because Λ± are isometric to each other. The metric RM from Definition 5.1 is
well-defined only for lattices up to any isometry including reflections.

Definition 5.4 introduces the metric RMo on lattices up to rigid motion so that
RMo(Λ+, Λ−) > 0 on mirror images of a non-mirror-symmetric lattice, see Fig. 16.

Fig. 16 By Definition 5.4, the projected metric PM2(Λ
+
1 , Λ−

2 ) is the minimum sum

PM2(Λ
+
1 , Λ3) + PM2(Λ3Λ

−
2 ) achieved in the left image, see computations in Proposition 5.8.

Definition 5.4 (orientation-aware metrics RMo,PMo) For lattices Λ1, Λ2 ⊂
R2 with sign(Λ1)sign(Λ2) ≥ 0, the orientation-aware root metric is RMo(Λ1, Λ2) =
RM(Λ1, Λ2) as in Definition 5.1. If any lattices Λ1, Λ2 have opposite signs, set
RMo(Λ1, Λ2) = inf

sign(Λ3)=0
(RM(Λ1, Λ3)+RM(Λ2, Λ3)). The orientation-based met-

ric PMo(Λ1, Λ2) is defined by the same formula, where we replace RM by PM. ■

The infimum in RMo(Λ1, Λ2) is the greatest lower bound defining a metric on
a union of metric spaces glued by isometries. Theoretically, this bound may not be
achieved over a non-compact domain. When using a Minkowski base metric Mq,
Propositions 5.8-5.9 explicitly compute RMo

q,PM
o
q for q = 2,+∞, so the infimum

in Definition 5.4 can be replaced by a minimum in practice.

The oriented root invariant space RISo and the space of oriented projected
invariants PINo can be defined similarly to RIS and PIN in Definition 5.1 as the
doubled cone DC and quotient square QS with any metrics from Definition 5.4.

Lemma 5.5 (metric axioms for RMo,PMo) Any root metric RMo and pro-
jected metric PMo from Definition 5.4 satisfy all metric axioms in (1.1c) on the
Lattice Isometry Space LISo and the Lattice Similarity Space LSSo, respectively. ▲
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Proof Lemma 5.3 implies metric axioms in all cases when involved lattices have
the same sign or sign 0. For example, the metrics RMo,PMo vanish only if the
lattices Λ1, Λ2 in question have equal invariants RIo,PIo, respectively, so Λ1, Λ2 are
isometric or similar by Theorem 4.2 or Corollary 4.6, respectively. The symmetry
axiom for any lattices Λ,Λ′ with opposite signs follows from the symmetry of the
sum in Definition 5.4: RMo(Λ1, Λ2) = min

sign(Λ3)=0
(RM(Λ1, Λ3) + RM(Λ2, Λ3)).

Without loss of generality it suffices to prove the required triangle inequality
RMo(Λ1, Λ2) + RMo(Λ2, Λ3) ≥ RMo(Λ1, Λ3) in the following two cases below.

Case sign(Λ1) ≥ 0 and sign(Λ2) ≥ 0 > sign(Λ3). Then RMo(Λ1, Λ2) = RM(Λ1, Λ2)
is the root metric without minimisation from Definition 5.1. Let Λ′ be some achiral
lattice minimising RMo(Λ2, Λ3) = min

sign(Λ′)=0
(RM(Λ2, Λ

′) + RM(Λ3, Λ
′)). Then

RMo(Λ1, Λ2) + RMo(Λ2, Λ3) = RM(Λ1, Λ2) + RM(Λ2, Λ
′) + RM(Λ3, Λ

′) ≥

≥ RM(Λ1, Λ
′)+RM(Λ3, Λ

′) ≥ min
sign(Λ′)=0

(RM(Λ1, Λ
′)+RM(Λ3, Λ

′)) = RMo(Λ1, Λ3),

where we used the triangle inequality for the root metric RM and Λ1, Λ
′, Λ2.

Case sign(Λ1) ≥ 0 and sign(Λ3) ≥ 0 > sign(Λ2). Then RMo(Λ1, Λ3) = RM(Λ1, Λ3)
is the root metric without minimisation from Definition 5.1. Let Λ′, Λ′′ be mirror-
symmetric lattices minimising RMo(Λ1, Λ2) = min

sign(Λ′)=0
(RM(Λ1, Λ

′)+RM(Λ2, Λ
′))

and RMo(Λ2, Λ3) = min
sign(Λ′′)=0

(RM(Λ2, Λ
′′) + RM(Λ3, Λ

′′)), respectively. Then

RMo(Λ1, Λ2)+RMo(Λ2, Λ3) = RM(Λ1, Λ
′)+RM(Λ2, Λ

′)+RM(Λ2, Λ
′′)+RM(Λ3, Λ

′′)

≥ RM(Λ1, Λ
′) + RM(Λ′, Λ′′) + RM(Λ3, Λ

′′) ≥ RM(Λ1, Λ3), where

we used the triangle inequality for RM and the lattices Λ2, Λ
′, Λ′′ with non-positive

signs, then for the lattices Λ1, Λ
′, Λ′′, Λ3, which have only non-negative signs. □

Lemma 5.6 speeds up computations in the oriented case, see Example 6.8.

Lemma 5.6 (reversed signs) If lattices Λ±
1 , Λ±

2 ⊂ R2 have specified signs, then
RMo(Λ+

1 , Λ
−
2 ) = RMo(Λ−

1 , Λ+
2 ) and PMo(Λ+

1 , Λ
−
2 ) = PMo(Λ−

1 , Λ+
2 ). ▲

Proof By Definition 5.4, for any base distance d on R3, when minimising over
mirror-symmetric lattices Λ3 with sign(Λ3) = 0, the metrics RMo are computed
for lattices that have one zero sign and one non-zero sign. Hence RMo(Λ±

1 , Λ3) can
be replaced by the simpler metric RM(Λ1, Λ3) = d(RI(Λ1),RI(Λ3)) depending only
on the unoriented root invariants RI(Λ1) and RI(Λ3) without a sign. After that
the metric RM can lifted back to the lattices Λ−

1 , Λ+
3 with reversed signs:

RMo(Λ+
1 , Λ

−
2 ) = min

sign(Λ3)=0
(RM(Λ+

1 , Λ3) + RM(Λ−
2 , Λ3)) =

= min
sign(Λ3)=0

(d(RI(Λ1),RI(Λ3)) + d(RI(Λ2),RI(Λ3)) =

= min
sign(Λ3)=0

(RM(Λ−
1 , Λ3) + RM(Λ+

2 , Λ3)) = RMo(Λ−
1 , Λ+

2 ).

The proof for the projected metric PMo is similar to the above arguments. □
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Lemma 5.7 will help compute RMo
q,PM

o
q for q = 2,+∞ in Propositions 5.8, 5.9.

Lemma 5.7 (maximum sum of moduli) For any real numbers a, b, c, d ≥ 0,
the maximum sum S(x) = max{|a− x|+ |x− b|, |c− x|+ |x− d|} over x ≥ 0 has
the minimum value MS(a, b, c, d) = max{|a− b|, |c− d|, 1

2 |a+ b− c− d|}. ▲

Proof The maximum sum S(x) and the formula for MS(a, b, c, d) are invariant
under permutations a ↔ b, c ↔ d and (a, b) ↔ (c, d). Without loss of generality
one can assume that a ≤ b and a ≤ c ≤ d. Then Fig. 17 shows the graphs of
y = |a−x|+ |x− b|, y = |c−x|+ |x−d|, y = S(x) in green, blue, red, respectively.

Fig. 17 Lemma 5.7 finds a minimum value of S(x) for all different positions of a, b, c, d.

If b ≥ c, then a ≤ c ≤ b ≤ d or a ≤ c ≤ d ≤ b, see the first two pictures of
Fig. 17. In the first case S(x) has the minimum value max{b − a, d − c} for any
x ∈ [c, b]. In the second case S(x) has the minimum value b − a ≥ d − c for any
x ∈ [a, b]. In both cases the minimum value coincides with max{|a− b|, |c− d|}.

If b ≤ c, then a ≤ b ≤ c ≤ d, see the last picture of Fig. 17. Then S(x) =
max{2x− a− b, c+ d− 2x} has a minimum at x such that 2x− a− b = c+ d− 2x,
so x = 1

4 (a+ b+ c+ d). The minimum value is MS(a, b, c, d) = 1
2 |a+ b− c− d| ≥

max{|a − b|, |c − d|} in this case. The last inequality is reversed in the previous
two cases. So MS(a, b, c, d) = max{|a− b|, |c− d|, 1

2 |a+ b− c− d|} in all cases. □

If lattices Λ1, Λ2 have non-opposite signs, so sign(Λ1)sign(Λ2) ≥ 0, then the
metrics RMo

q and PMo
q from Definition 5.4 coincide with the easily computable

unoriented metrics RMq,PMq from Definition 5.1. Hence Propositions 5.8 and 5.9
compute RMo

q(Λ1, Λ2) and PMo
q(Λ1, Λ2) only for lattices of opposite signs.

Proposition 5.8 (root metrics for q = 2,+∞) Let Λ1, Λ2 ⊂ R2 be lattices of
opposite signs with RI(Λ1) = (r12, r01, r02) and RI(Λ2) = (s12, s01, s02). Then

(a) RMo
2(Λ1, Λ2) is the minimum of the Euclidean distances from the point RI(Λ1)

to the three points (−s12, s01, s02), (s01, s12, s02), and (s12, s02, s01) in R3.

(b) RMo
∞(Λ1, Λ2) = min{d0, d1, d2}, where

d0 = max{r12 + s12, |r01 − s01|, |r02 − s02|},
d1 = max{MS(r12, r01, s12, s01), |r02 − s02|},
d2 = max{|r12 − s12|,MS(r01, r02, s01, s02)},
see MS(a, b, c, d) = max{|a− b|, |c− d|, 1

2 |a+ b− c− d|} in Lemma 5.7. ▲

Proof (a) By Definition 5.4 RMo(Λ1, Λ2) is the minimum value of RM(Λ1, Λ3) +
RM(Λ2, Λ3) over mirror-symmetric lattices Λ3. By Lemma 4.7 the root invariant
RI(Λ3) belongs to one of the boundary sectors of the triangular cone TC. Let RI′

be the mirror image of RI(Λ2) in the boundary sector containing RI(Λ3).
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The triangle inequality for the Euclidean distance with q = 2 implies that

RM(Λ1, Λ3) + RM(Λ2, Λ3) = ||RI(Λ1)− RI(Λ3)||2 + ||RI(Λ3)− RI′||2

achieves minimum value ||RI(Λ1)−RI′||2 when the point RI(Λ3) is in the straight
line between the points RI(Λ1),RI′. The mirror images RI′ of RI(Λ2) = (s12, s01, s02)
in the three boundary sectors {s12 = 0}, {s12 = s01}, {s01 = s02} of the cone
TC are the points (−s12, s01, s02), (s01, s12, s02), (s12, s02, s01), respectively. So
RMo(Λ1, Λ2) is the minimum of the Euclidean distances to the points above.

(b) For RI(Λ1) = (r12, r01, r02) and RI(Λ2) = (s12, s01, s02), the required formula
RMo

∞(Λ1, Λ2) = min{d0, d1, d2} will be proved by minimising the total length
D = RM∞(Λ1, Λ3) + RM∞(Λ2, Λ3) of a path from Λ1 to Λ2 via Λ3 whose root
invariant RI(Λ3) can be in one of the three boundary sectors of TC.

Horizontal boundary : RI(Λ3) = (0, t01, t02) for variables 0 ≤ t01 ≤ t02. Then

D = max{|r12 + s12|, |r01 − t01|+ |t01 − s01|, |r02 − t02|+ |t02 − s02|}

has the minimum d0 = max{r12+s12, |r01−s01|, |r02−s02|} for t01 = 1
2 (r01+s01),

t02 = 1
2 (r02 + s02) or any values of t01, t02 close enough to these averages.

Inclined boundary : RI(Λ3) consists of variables t12 = t01 ≤ t02. By Lemma 5.7

D = max{|r12 − t12|+ |t12 − s12|, |r01 − t12|+ |t12 − s01|, |r02 − t02|+ |t02 − s02|}

has the minimum value d1 = max{MS(r12, r01, s12, s01), |r02−s02|}, where t02 can
be anywhere between r02, s02, see the formula of MS in Lemma 5.7.

Vertical boundary : RI(Λ3) consists of variables t12 ≤ t01 = t02. By Lemma 5.7

D = max{|r12 − t12|+ |t12 − s12|, |r01 − t01|+ |t01 − s01|, |r02 − t01|+ |t01 − s02|}

has the minimum value d2 = max{|r12−s12|,MS(r01, r02, s01, s02)}, where t12 can
be anywhere between r12, s12. The final distance is D = min{d0, d1, d2}. □

Proposition 5.9 (projected metrics for q = 2,+∞) Let Λ1, Λ2 be lattices with
opposite signs and projected invariants PI(Λ1) = (x1, y1), PI(Λ2) = (x2, y2).

(a) PMo
2(Λ1, Λ2) is the minimum of the Euclidean distances from PI(Λ1) = (x1, y1)

to the three points (−x2, y2), (x2,−y2), (1− y2, 1− x2) in R2.

(b) For x1 ≤ x2, PM
o
∞(Λ1, Λ2) = min{dx, dy, dxy} for dx = max{x2−x1, y2+y1},

dy = max{x2 + x1, |y2 − y1|}, dxy = max{x2 − x1, 1− x2 − y2 + |1− y1 − x2|}. ▲

Proof (a) By Definition 5.4 PMo(Λ1, Λ2) is the minimum value of PM(Λ1, Λ3) +
PM(Λ2, Λ3) achieved for a mirror-symmetric lattices Λ3. By Lemma 4.7 the in-
variant PI(Λ3) belongs to one of the sides of the quotient triangle QT. Let PI′ be
the mirror image of PI(Λ2) with respect to the side of QT containing PI(Λ3).

The triangle inequality for the Euclidean distance with q = 2 implies that

PM(Λ1, Λ3) + PM(Λ2, Λ3) = ||PI(Λ1)− PI(Λ3)||2 + ||PI(Λ3)− PI′||2

achieves minimum value ||PI(Λ1)−PI′||2 when the point PI(Λ3) is in the straight
line between the points PI(Λ1),PI

′ in the plane R2 containing the quotient triangle
QT. The mirror images PI′ of PI(Λ2) = (x2, y2) in the three sides x2 = 0, y2 = 0,
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x2+y2 = 1 are the points (−x2, y2), (x2,−y2), (1−y2, 1−x2), respectively. Hence
PMo(Λ1, Λ2) is the minimum of the Euclidean distances to the points above.

(b) PMo(Λ1, Λ2) is the minimum value of PM(Λ1, Λ3) +PM(Λ2, Λ3) over mirror-
symmetric lattices Λ3. The formula PMo

∞(Λ1, Λ2) = min{dx, dy, dxy} will be
proved by minimising the Minkowski length M∞ of a path from Λ1 to Λ2 via
Λ3 whose projected invariant PI(Λ3) can be in one of the three sides of the quo-
tient triangle QT. For given PI(Λ1) = (x1, y1) and RI(Λ2) = (x2, y2) with x1 ≤ x2,
we minimise D = PM∞(Λ1, Λ3) + PM∞(Λ2, Λ3) for each side of QT below.

Horizontal side : PI(Λ3) = (x3, 0) for a variable parameter x3 ≥ 0. For any x3 ∈
[x1, x2], the distance D = max{(x3 − x1) + (x2 − x3), y2 + y1} equals the simpler
function dx = max{x2 − x1, y2 + y1} and can be only larger for any x3 ̸∈ [x1, x2].

Vertical side : PI(Λ3) = (0, y3) for a variable parameter y3. For any y3 between
y1, y2, the distance D = max{x1 + x2, |y1 − y3| + |y3 − y2|} has the minimum
dy = max{x1 + x2, |y1 − y2|} and is larger for any y3 that is not between y1, y2.

Fig. 18 Relative positions of (x1, y1), (x2, y2) for x1 ≤ x2 in the proof of Proposition 5.9(b).

Hypotenuse : PI(Λ3) = (x3, y3) for variables x3, y3 such that x3 + y3 = 1. For
x1 ≤ x2, we aim to minimise D = max{|x1 − x3|+ |x3 − x2|, |y1 − y3|+ |y3 − y2|}.
Fig. 18 shows all three different cases how we can find an optimal chiral lattice
Λ3 with a projected invariant PI(Λ3) = (x3, y3) for given PI(Λ1) = (x1, y1) and
PI(Λ2) = (x2, y2). The sum |x1−x3|+ |x3−x2| has the minimum value x2−x1 for
any x3 ∈ [x1, x2]. Similarly, |y1 − y3|+ |y3 − y2| has the minimum value |y1 − y2|
for any y3 between y1, y2. If the point (x3, y3) moves along the hypotenuse so that
both x3, y3 are outside their minimum ranges above, then |x1 − x3|+ |x3 − x2| =
|2x3 − x1 − x2| increases at the same rate as |y1 − y3|+ |y3 − y2| = |2y3 − y1 − y2|
decreases during this movement because x3 + y3 = 1. Hence x3 can be chosen as
x1 or x2 to minimise D. In the first two pictures of Fig. 18 we choose x3 = x2.

In the last picture of Fig. 18, any (x3, y3) between the triangles with right-
angled vertices at (x1, y1), (x2, y2) gives the minimum values x2−x1 and |y2−y1|.
Hence x3 = x2 always gives the minimum value of the distance

dxy = max{x2 − x1, |y1 − y3|+ |y3 − y2|} for y3 = 1− x2,

so dxy = max{x2 − x1, 1− x2 − y2 + |1− y1 − x2|} and D = min{dx, dy, dxy}. □
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6 Real-valued chiral distances measure asymmetry of lattices

The classical concept of chirality is a binary property distinguishing mirror im-
ages of the same object such as a molecule or a periodic crystal. Continuous
classifications in Theorem 4.2 and Corollary 4.6 imply that the binary chirality is
discontinuous under almost any perturbations similar to other discrete invariants
such as symmetry groups. To avoid arbitrary thresholds, it makes more sense to
continuously quantify a deviation of a lattice from a higher-symmetry neighbour.

The term chirality often refers to 3-dimensional molecules or crystal lattices.
One reason is the fact that in R2 a reflection with respect to a line L is realised by
the rotation in R3 around L through 180◦. However, if our ambient space is only R2,
the concepts of isometry and rigid motion differ. For example, Lemma 3.3 described
root invariants of all lattices that are related to their mirror images by rigid motion.
Such lattices can be called achiral. We call them mirror-symmetric to avoid a
potential confusion with the literature in crystallography. Definition 6.1 introduces
the real-valued G-chiral distances of a lattice Λ ⊂ R2. Proposition 7.10 proves the
continuity of these functions RC[G] : LIS(R2) → R and PC[G] : LSS(R2) → R.

Recall that the crystallographic point group G of a lattice Λ ⊂ R2 containing
the origin 0 consists of all symmetry operations that keep 0 and map Λ to itself.
For example, any such group G includes the central symmetry with respect to
0 ∈ Λ ⊂ R2. If G has no other non-trivial symmetries, we get G = C2 in Schonflies
notations. All 2D lattices split into four crystal families by their point groups:
oblique (C2), orthorhombic (D2), tetragonal or square (D4) and hexagonal (D6).
Orthorhombic lattices split into rectangular and centred rectangular, see Fig. 13.

Fig. 19 Left: by Definition 6.1, the projected D2 chiral distance PC2[D2](Λ) is the minimum
Euclidean distance from PI(Λ) ∈ QT to the boundary ∂QT. Middle: PC2[D4](Λ) is the
distance from PI(Λ) to (0, 0). Right: PC2[D6](Λ) is the distance from PI(Λ) to (0, 1).

Definition 6.1 (G-chiral distances RC[G] and PC[G]) For any crystallographic
point group G in R2, let LIS[G] ⊂ LIS(R2) be the closure of the subspace of all
(isometry classes of) lattices that have the crystallographic point group G. For
G = D2 or G = D4 or G = D6, the root and projected G-chiral distances are

RC[G](Λ) = min
Λ′∈LIS[G]

RM(Λ,Λ′) ≥ 0 and PC[G](Λ) = min
Λ′∈LIS[G]

PM(Λ,Λ′) ≥ 0,

where RM, PM are any metrics from Definition 5.1 with a base metric d. If d = Mq

for q ∈ [1,+∞], denote the G-chiral distances by RCq[G] and PCq[G]. ■
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Since any lattice Λ is symmetric with respect to the origin 0 ∈ Λ, the closed sub-
space LIS[C2] coincides with the 3-dimensional Lattice Isometry Space LIS(R2).
The 2-dimensional subspace LIS[D2] consists of all mirror-symmetric lattices (rect-
angular and centred-rectangular) represented by root invariants RI on the bound-
ary ∂TC of the triangular cone in Definition 4.4, see Fig. 12. The 1-dimensional
subspaces LIS[D4],LIS[D6] ⊂ LIS[D2] can be viewed as the blue and orange rays
{r12 = 0 < r01 = r02} and {0 < r12 = r01 = r02}, respectively.

The G-chiral distance RC[G] in Definition 6.1 measures a distance from RI(Λ)
to the root invariant of a closest neighbour in the subspace LIS[G]. Any RC[G](Λ) is
invariant up to isometry and measures a distance from Λ to its nearest neighbour
Λ′ ∈ LIS[G]. The signed chiral distances sign(Λ)RC(Λ) and sign(Λ)PC(Λ) are
invariant up to rigid motion. Since LIS[G] is a closed subspace within LIS(R2),
the continuous distances RM,PM achieve their minima if their base distances d
are continuous. If LIS[D2] was defined as an open subspace of only lattices that
have the point group D2 (not D4 or D6), then RC[G],PC[G] should be defined
via infima instead of simpler minima. Indeed, any square or hexagonal lattice Λ
can be approximated by infinitely many closer and closer orthorhombic lattices
Λ′, but the expected distance RM(Λ,Λ′) = 0 will not be achieved on an open set.

For q = 2,+∞, the distances RCq,PCq are computed in Propositions 6.5, 6.6.

Lemma 6.2 (properties of chiral distances) (a) A lattice Λ ⊂ R2 is mirror-
symmetric if and only if RC[D2](Λ) = 0 or, equivalently, PC[D2](Λ) = 0.

(b) For any crystallographic point group G in R2, mirror reflections Λ± ⊂ R2 have
equal G-chiral distances: RC[G](Λ+) = RC[G](Λ−), PC[G](Λ+) = PC[G](Λ−). ▲

Proof (a) By Definition 6.1 RC[D2](Λ) = min
sign(Λ′)=0

{RM(Λ,Λ′)} = 0 means that

RI(Λ) = RI(Λ′) for some mirror-symmetric lattice Λ′ due to Lemma 4.7. Then Λ
is isometric to Λ′ by Theorem 4.2 and is mirror-symmetric.

(b) The G-chiral distances from Definition 6.1 depend only on a root invariant
RI(Λ) and projected invariant PI(Λ), which are the same for mirror images Λ±. □

Lemma 6.3 (lower bounds) (a) If lattices Λ1, Λ2 have opposite signs, then
RMo(Λ1, Λ2) ≥ RC[D2](Λ1) + RC[D2](Λ2) and
PMo(Λ1, Λ2) ≥ PC[D2](Λ1) + PC[D2](Λ2).

(b) For the mirror images Λ± of any lattice Λ, the lower bounds in part (a) become
equalities: RMo(Λ+, Λ−) = 2RC[D2](Λ) and PMo(Λ+, Λ−) = 2PC[D2](Λ). ▲

Proof (a) The first lower bound follows from Definitions 6.1 and 5.4, because the
minimisations of the root chiral distances are over separate lattices Λ′

1, Λ
′
2.

RMo(Λ1, Λ2) = min
sign(Λ′)=0

(RM(Λ1, Λ
′) + RM(Λ2, Λ

′)) ≥

min
sign(Λ′

1)=0
RM(Λ1, Λ

′
1) + min

sign(Λ′
2)=0

RM(Λ2, Λ
′
2) = RC[D2](Λ1) + RC[D2](Λ2),

where the root chiralities are independent of a sign by Lemma 6.2(b). The proof
for the projected metric PMo is similar to the above arguments.

(b) If Λ1 = Λ2, the sum RM(Λ1, Λ
′) + RM(Λ2, Λ

′) in part (a) consists of equal
terms. Hence the inequality becomes equality giving the double distance. □
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Lemma 6.4 will help prove Propositions 6.5, 6.6 to explicitly express the chiral
distances RCq[G](Λ),PCq[G](Λ) via the invariants RI(Λ) ∈ TC and PI(Λ) ∈ QT.

Lemma 6.4 (maximum modulus) For any fixed points a, b ∈ R, the function

D∞(x) = max{|a− x|, |x− b|} has the minimum value
1

2
|a− b| for x =

a+ b

2
. ▲

Proof Without loss of generality assume that a ≤ b. For x ∈ [a, b], the function

D∞(x) = max{x − a, b − x} has the minimum value
b− a

2
at the mid-point x of

the interval [a, b] and takes values larger than b− a for any x ̸∈ [a, b]. □

Proposition 6.5 (chiral distances RCq[G] for q = 2,+∞) Let a lattice Λ ⊂
R2 have a root invariant RI(Λ) = (r12, r01, r02) with 0 ≤ r12 ≤ r01 ≤ r02. Then

(6.5a) RC2[D2](Λ) = min

{
r12,

r01 − r12√
2

,
r02 − r01√

2

}
;

RC2[D4](Λ) =
√
r212 +

1
4 (r02 − r01)2;

RC2[D6](Λ) =
√

2
3 (r

2
12 + r201 + r202 − r12r01 − r12r02 − r01r02);

(6.5b) RC∞[D2](Λ) = min
{
r12,

r01 − r12
2

,
r02 − r01

2

}
.

RC∞[D4](Λ) = min{r12,
r02 − r01

2
};

RC∞[D6](Λ) =
r02 − r12

2
. ▲

Proof (a) The chiral distance RC2[D2](Λ) = min
sign(Λ′)=0

||RI(Λ)−RI(Λ′)||2 by Def-

inition 6.1 is the minimum Euclidean distance from RI(Λ) to the boundary of
TC. This boundary of three triangular sectors consists of root invariants of all
mirror-symmetric lattices by Lemma 4.7. Any point RI(Λ) = (r12, r01, r02) with

0 ≤ r12 ≤ r01 ≤ r02 has Euclidean distances r12,
r01 − r12√

2
,
r02 − r01√

2
to the hori-

zontal boundary r12 = 0, inclined boundary r12 = r01, and the vertical boundary
r01 = r02, respectively, see Fig. 14(right). Then RC2[D2](Λ) is the minimum of
the above Euclidean distances to the three boundary sectors of TC.

RC2[D4](Λ) is the Euclidean distance from RI(Λ) = (r12, r01, r02) to a closest root
invariant RI(Λ′) = (0, s, s) of a square lattice Λ′. The square of ||RI(Λ)−RI(Λ′)||2
is d4(s) = r212 + (s− r01)

2 + (s− r02)
2. The quadratic function d4(s) is minimised

when 0 = d′4(s) = 2(s−r01)+2(s−r02), so s = 1
2 (r01+r02). Then d4(

1
2 (r01+r02)) =

r212 +
1
4 (r02 − r01)

2 and RC2[D4](Λ) =
√
r212 +

1
4 (r02 − r01)2.

RC2[D6](Λ) is the Euclidean distance from RI(Λ) = (r12, r01, r02) to a closest
root invariant RI(Λ′) = (s, s, s) of a hexagonal lattice Λ′. The square of ||RI(Λ)−
RI(Λ′)||2 is d6(s) = (s − r12)

2 + (s − r01)
2 + (s − r02)

2. The quadratic function
d6(s) is minimised when 0 = d′6(s) = 2(s − r12) + 2(s − r01) + 2(s − r02), so
s = 1

3 (r12 + r01 + r02). Substituting the minimum point s above, we get

9d6(s) = (2r12 − r01 − r02)
2 + (2r01 − r12 − r02)

2 + (2r02 − r12 − r01)
2 =
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= 6(r212 + r201 + r202)− (4 + 4− 2)(r12r01 + r12r02 + r01r02).

Then RC2[D6](Λ) =
√
d6(s) =

√
2
3 (r

2
12 + r201 + r202 − r12r01 − r12r02 − r01r02).

(b) RC∞[D2](Λ) = min
sign(Λ′)=0

||RI(Λ)−RI(Λ′)||∞ is minimised over mirror-symmetric

lattices Λ′ whose root invariants by Lemma 4.7 belong to one of the three boundary
sectors of the triangular cone TC. We consider them below one by one.

Horizontal boundary : RI(Λ′) = (0, s01, s02) for 0 < s01 ≤ s02. Then ||RI(Λ) −
RI(Λ′)||∞ = ||(r12, r01, r02) − (0, s01, s02)||∞ = max{r12, |r01 − s01|, |r02 − s02|}
has the minimum r12 for s01 = r01, s02 = r02 or any s01, s02 close to r01, r02.

Inclined boundary : a variable root invariant RI(Λ′) has equal root products
s12 = s01. By Lemma 6.4 the M∞-distance ||RI(Λ)−RI(Λ′)||∞ = ||(r12, r01, r02)−
(s01, s01, s02)||∞ = max{|r12 − s01|, |r01 − s01|, |r02 − s02|} has the minimum
r01 − r12

2
for s02 = r02 and s01 at the mid-point of the interval [r12, r01].

Vertical boundary : RI(Λ′) has s01 = s02. By Lemma 6.4 ||RI(Λ) − RI(Λ′)||∞ =
||(r12, r01, r02) − (s12, s01, s01)||∞ = max{|r12 − s12|, |r01 − s01|, |r02 − s01|} has

the minimum
r02 − r01

2
for s12 = r12 and s01 at the mid-point of the interval

[r01, r02]. Finally, RC∞[D2](Λ) is the minimum of the three Λ∞ distances.

RC∞[D4](Λ) is the distance M∞ from RI(Λ) to a closest root invariant RI(Λ′) =
(0, s, s) of a square lattice Λ′. Then ||RI(Λ)−RI(Λ′)||∞ = max{r12, |s− r01|, |s−
r02|}. If we ignore r12, by Lemma 6.4 the minimum of the largest value among the
last two is 1

2 (r02 − r01), so RC∞[D4](Λ) = min
{
r12,

r02−r01

2

}
.

RC∞[D6](Λ) is the distance M∞ from RI(Λ) = (r12, r01, r02) to a closest root
invariant RI(Λ′) = (s, s, s) of a hexagonal lattice Λ′. Then ||RI(Λ)− RI(Λ′)||∞ =
max{|s− r12|, |s− r01|, |s− r02|}. Since r12 ≤ r01 ≤ r02, we could ignore |s− r01|
in the maximum. By Lemma 6.4 the final maximum is r02−r01

2 = RC∞[D6](Λ). □

When considering lattices up to similarity, the subspace LSS[D4] consists of a
single class of all square lattices, which are all equivalent up to isometry and uni-
form scaling. The subspace LSS[D6] is also a single point representing all hexagonal
lattices. Then PC[D4] and PC[D6] are distances to these single points.

Proposition 6.6 (chiral distances PCq for q = 2,+∞) Let a lattice Λ have a
projected invariant PI(Λ) = (x, y) ∈ QT so that x ∈ [0, 1), y ∈ [0, 1], x+ y ≤ 1.

(6.6a) PC2[D2](Λ) = min

{
x, y,

1− x− y√
2

}
,

PCq[D4](Λ) = (xq + yq)1/q for any q ∈ [1,+∞),

PCq[D6](Λ) = (xq + (1− y)q)1/q for any q ∈ [1,+∞);

(6.6b) PC∞[D2](Λ) = min

{
x, y,

1− x− y

2

}
,

PC∞[D4](Λ) = x,

PC∞[D6](Λ) = 1− y.
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(6.6c) The upper bounds PC2[D2](Λ) ≤ 1
2+

√
2
, PC∞[D2](Λ) ≤ 1

4 hold for any Λ,

achieved for lattices with PI(Λ2) = ( 1
2+

√
2
, 1
2+

√
2
), PI(Λ∞) = (14 ,

1
4 ), respectively.

For q ∈ [1,+∞], the bound PCq[D4](Λ) ≤ 1 holds for any Λ and is achieved for any
hexagonal lattice. For q ∈ [1,+∞), the upper bound PCq[D6](Λ) < 21/q holds for
any Λ and is approached but not achieved as x → 1. The bound PC∞[D6](Λ) ≤ 1
holds for any Λ and is achieved for any square and rectangular lattice. ▲

Proof (a) By Definition 6.1 PC2[D2](Λ) is the minimum Euclidean distance from
PI(Λ) to the three boundary sides of the quotient triangle QT. These sides consists
of projected invariants of all mirror-symmetric lattices by Lemma 4.7. Any point

PI(Λ) = (x, y) ∈ QT has distances x, y,
1− x− y√

2
to the vertical side x = 0,

horizontal side y = 0, and the hypotenuse x+y = 1, respectively, see Fig. 14 (left).
Hence PC2(Λ) is the minimum of the above Euclidean distances.

PCq[D4](Λ) = (xq + yq)1/q is the Minkowski Mq distance from PI(Λ) = (x, y) ∈
QT to the single-point subspace LSS[D4] = (0, 0) for any q ∈ [1,+∞).

PCq[D6](Λ) = (xq + (1 − y)q)1/q is the Minkowski Mq distance from PI(Λ) =
(x, y) ∈ QT to the single-point subspace LSS[D6] = (0, 1) for any q ∈ [1,+∞).

(b) PC∞(Λ) = min
sign(Λ′)=0

||PI(Λ) − PI(Λ′)||∞ is minimised over lattices Λ′ whose

projected invariant is in one of the three sides of the quotient triangle QT.

Horizontal side : PI(Λ′) = (s, 0) for a variable s. The distance ||PI(Λ)−PI(Λ′)||∞ =
||(x, y)− (s, 0)||∞ = max{|x− s|, y} has the minimum value y for s = x.

Vertical side : PI(Λ′) = (0, t) for a variable t. The distance ||PI(Λ)− PI(Λ′)||∞ =
||(x, y)− (0, t)||∞ = max{x, |y − t|} has the minimum x for t = y.

Hypotenuse : PI(Λ′) = (s, t) for variables s, t ≥ 0 such that s+ t = 1. To compute
the M∞ distance from (x, y) to (s, t), first assume that s ≥ x, t ≥ y. Then
||(x, y)−(s, t)||∞ = max{s−x, t−y} is minimised when s−x = t−y. Substituting

t = 1 − s, we get s − x = 1 − s − y, s =
1 + x− y

2
, t =

1− x+ y

2
. One can

check that s + t = 1 and s ≥ x, t ≥ y due to x + y ≤ 1 as (x, y) ∈ QT. Then

s− x = t− y =
1− x− y

2
. It remains to show that the minimum M =

1− x− y

2
of the distance from (x, y) to (s, t) cannot have a smaller value for s ≤ x or t ≤ y.

If s ≤ x, then ||(x, y)−(s, t)||∞ = max{x−s, t−y} = max{x−1+t, t−y} ≤ t−y,

whose minimum value (1− x)− y is not less than M =
1− x− y

2
as x+ y ≤ 1.

If t ≤ y, then ||(x, y)−(s, t)||∞ = max{s−x, y−t} = max{s−x, y−1+s} ≤ s−x,

whose minimum value (1− y)− x is not less than M =
1− x− y

2
as x+ y ≤ 1.

So PC∞(Λ) is the minimum of the above three M∞ distances.

PC∞[D4](Λ) = x is the distance M∞ from (x, y) to LSS[D4] = (0, 0).

PC∞[D6](Λ) = 1− y is the distance M∞ from (x, y) to LSS[D6] = (0, 1).

(c) The quotient triangle QT in Fig. 13 (left) is parameterised by 0 ≤ x < 1 and
0 ≤ y ≤ 1 such that x + y ≤ 1, By Theorem 6.6(a) the distance PC2[D2](Λ) =
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min{x, y, 1− x− y√
2

} is maximal when x = y =
1− x− y√

2
, so x = y =

1

2 +
√
2
. By

Theorem 6.6(b) PC∞[D2](Λ) = min{x, y, 1− x− y

2
} is maximal when x = y =

1− x− y

2
, x = y =

1

4
. Then xq ≤ x, yq ≤ y and (xq + yq)1/q ≤ (x + y)1/q ≤ 1

for any q ∈ [1,+∞). Hence the upper bound PCq[D4](Λ) ≤ 1 holds for any
q ∈ [1,+∞] and is achieved for any hexagonal lattice with PI = (0, 1). Similarly,
the upper bound PCq[D6](Λ) < 21/q holds for any q ∈ [1,+∞) and is approached
but not achieved as x → 1, y = 0. The bound PC∞[D6](Λ) = 1− y ≤ 1 holds for
any Λ and is achieved for any square and rectangular lattice with y = 0. □

Example 6.7 (distances RCq,PCq) Table 5 shows the chiral distances computed
by Propositions 6.5, 6.6 for the prominent lattices Λ±

2 , Λ±
∞ in Example 4.10. ■

Table 5 Chiral distances PCq ,RCq for the lattices Λ±
2 , Λ±

∞ in Fig. 14 and 15, see Example 6.7.

Λ Λ∞ Λ2

PI(Λ) ( 1
4
, 1
4
) ( 1

2+
√

2
, 1
2+

√
2
)

PC2[D2]
1
4

1
2+

√
2

PC2[D4]
√
2
4

√
2− 1

PC2[D6]
√
10
4

√
2−

√
2

PC∞[D2]
1
4

1
2+

√
2

PC∞[D4]
1
4

1
2+

√
2

PC∞[D6]
3
4

1√
2

Λ Λ∞ Λ2

RI(Λ) (1, 4, 7) (2−
√
2, 2

√
2− 1, 5−

√
2)

RC2[D2] 1 2−
√
2

RC2[D4]
√
13
2

(2−
√
2)

√
13
2

RC2[D6] 3
√
2

√
2(13− 3

√
2)

RC∞[D2] 1 2−
√
2

RC∞[D4] 1 2−
√
2

RC∞[D6] 3 3
2

Example 6.8 (metrics RMo
q,PM

o
q) Table 6 has RMo

q,RMo
q for q = 2,+∞ and

the prominent lattices Λ±
2 , Λ±

∞, which were inversely designed in Example 4.10.

If lattices have the same sign, then RMo,PMo coincide with their unoriented
versions by Definition 5.4. For example, PMo

q(Λ
+
2 , Λ

+
∞) is the distance Mq between

the invariants PI(Λ∞) = (14 ,
1
4 ) and PI(Λ2) = ( 1

2+
√
2
, 1
2+

√
2
) = (1− 1√

2
, 1− 1√

2
),

so PMo
∞(Λ+

2 , Λ
+
∞) = 3

4 − 1√
2
≈ 0.04 and PMo

2(Λ
+
2 , Λ

+
∞) = 3

4

√
2− 1 ≈ 0.06.

Similarly, RMo
q(Λ

+
2 , Λ

+
∞) is the Mq distance between the root invariants PI(Λ∞) =

(1, 4, 7) and RI(Λ2) = (2−
√
2, 2

√
2− 1, 5−

√
2), so RMo

∞(Λ+
2 , Λ

+
∞) = max{

√
2−

1, 5− 2
√
2, 2 +

√
2} = 2 +

√
2 ≈ 3.41 and RMo

2(Λ
+
2 , Λ

+
∞) =

√
6(7− 3

√
2) ≈ 4.1.

By Lemma 6.3(b) the distance between mirror images of the same lattice equals
the doubled D2-chiral distance. For example, PMo

q(Λ
+
∞, Λ−

∞) = 2PCq[D2](Λ∞) = 1
2

and PMo
q(Λ

+
2 , Λ

−
2 ) = 2PCq[D2](Λ2) =

2
2+

√
2
= 2−

√
2 ≈ 0.59 for q = 2,+∞.

Lemma 6.3(b) and Table 5 also give RMo
q(Λ

+
∞, Λ−

∞) = 2RCq[D2](Λ∞) = 2 and

RMo
q(Λ

+
2 , Λ

−
2 ) = 2RCq[D2](Λ2) = 2(2−

√
2) ≈ 1.17 for q = 2,+∞.
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Lemma 5.6 says that RMo(Λ+
2 , Λ

−
∞) = RMo(Λ−

2 , Λ+
∞) and PMo(Λ+

2 , Λ
−
∞) =

PMo(Λ−
2 , Λ+

∞). Using the above properties, it remains to find four distances.

Table 6 Metrics PMo
q and RMo

q for the lattices given by their invariants in Table 5, see Fig. 14.

PMo
2 Λ+

∞ Λ−
∞ Λ+

2 Λ−
2

Λ+
∞ 0 1

2
3
4

√
2− 1 ≈ 0.06

√
25−16

√
2

2
√
2

≈ 0.54

Λ−
∞

1
2

0

√
25−16

√
2

2
√
2

≈ 0.54 3
4

√
2− 1 ≈ 0.06

Λ+
2

3
4

√
2− 1 ≈ 0.06

√
25−16

√
2

2
√
2

≈ 0.54 0 2−
√
2 ≈ 0.59

Λ−
2

√
25−16

√
2

2
√
2

≈ 0.54 3
4

√
2− 1 ≈ 0.06 2−

√
2 ≈ 0.59 0

PMo
∞ Λ+

∞ Λ−
∞ Λ+

2 Λ−
2

Λ+
∞ 0 1

2
3
4
− 1√

2
≈ 0.04 5

4
− 1√

2
≈ 0.54

Λ−
∞

1
2

0 5
4
− 1√

2
≈ 0.54 3

4
− 1√

2
≈ 0.04

Λ+
2

3
4
− 1√

2
≈ 0.04 5

4
− 1√

2
≈ 0.54 0 2−

√
2 ≈ 0.59

Λ−
2

5
4
− 1√

2
≈ 0.54 3

4
− 1√

2
≈ 0.04 2−

√
2 ≈ 0.59 0

RMo
2 Λ+

∞ Λ−
∞ Λ+

2 Λ−
2

Λ+
∞ 0 2

√
6(7− 3

√
2) ≈ 4.1

√
50− 22

√
2

Λ−
∞ 2 0

√
50− 22

√
2 ≈ 4.3

√
6(7− 3

√
2)

Λ+
2

√
6(7− 3

√
2)

√
50− 22

√
2 ≈ 4.3 0 2(2−

√
2)

Λ−
2

√
50− 22

√
2

√
6(7− 3

√
2) ≈ 4.1 2(2−

√
2) ≈ 1.17 0

RMo
∞ Λ+

∞ Λ−
∞ Λ+

2 Λ−
2

Λ+
∞ 0 2 2 +

√
2 ≈ 3.41 3

Λ−
∞ 2 0 3 2 +

√
2 ≈ 3.41

Λ+
2 2 +

√
2 ≈ 3.41 3 0 2(2−

√
2) ≈ 1.17

Λ−
2 3 2 +

√
2 ≈ 3.41 2(2−

√
2) ≈ 1.17 0

Proposition 5.9(a) finds PMo
2(Λ

+
2 , Λ

−
∞) as the minimum of the Euclidean dis-

tances from PI(Λ2) = ( 1
2+

√
2
, 1
2+

√
2
) = (1− 1√

2
, 1− 1√

2
) to the three points (−1

4 ,
1
4 ),

(−1
4 ,

1
4 ), (

3
4 ,

3
4 ) obtained from PI(Λ∞) = (14 ,

1
4 ) by reflections in the edges of QT.

The first two distances equal to

√
25−16

√
2

2
√

2
≈ 0.54 are larger than the third.

Given PI(Λ2) = (x1, y1) = (1 − 1√
2
, 1 − 1√

2
) and PI(Λ∞) = (x2, y2) = (14 ,

1
4 ),

Proposition 5.9(b) computes PMo
∞(Λ+

2 , Λ
−
∞) for as the minimum of dx = max{x2−

x1, y2 + y1} = 5
4 − 1√

2
, dy = max{x2 + x1, |y2 − y1|} = 5

4 − 1√
2
, dxy = max{x2 −

x1, 1− x2 − y2 + |1− y1 − x2|} = 1
4 + 1√

2
, so PMo

∞(Λ+
2 , Λ

−
∞) = 5

4 − 1√
2
≈ 0.54
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Proposition 5.8(a) computes RMo
2(Λ

+
2 , Λ

−
∞) as the minimum of the Euclidean

distances from RI(Λ2) = (2 −
√
2, 2

√
2 − 1, 5 −

√
2) to the three points (−1, 4, 7),

(4, 1, 7), (1, 7, 4) obtained from RI(Λ∞) = (1, 4, 7) by reflections in the boundaries

of TC. The first distance is the smallest, so RMo
2(Λ

+
2 , Λ

−
∞) =

√
50− 22

√
2 ≈ 4.3.

Given RI(Λ2) = (r12, r01, r02) = (2 −
√
2, 2

√
2 − 1, 5 −

√
2) and RI(Λ∞) =

(s12, s01, s02) = (1, 4, 7), by Proposition 5.8(b) RMo
∞(Λ+

2 , Λ
−
∞) = min{d0, d1, d2}.

Using MS(a, b, c, d) = max{|a− b|, |c− d|, 1
2 |a+ b− c− d|}, we compute

d0 = max{r12 + s12, |r01 − s01|, |r02 − s02|}
= max{3−

√
2, 5− 2

√
2, 2 +

√
2} = 2 +

√
2 ≈ 3.4,

d1 = max{MS(r12, r01, s12, s01), |r02 − s02|} =
= max{MS(r12, r01, s12, s01), 2 +

√
2} =

= max{MS(2−
√
2, 2

√
2− 1, 1, 4), 2 +

√
2} =

= max{max{3(
√
2− 1), 3, 2− 1√

2
}, 2 +

√
2} = max{3, 2 +

√
2} = 2 +

√
2,

d2 = max{|r12 − s12|,MS(r01, r02, s01, s02)} =
= max{

√
2− 1,MS(2

√
2− 1, 5−

√
2, 4, 7)} =

= max{
√
2− 1,max{6− 3

√
2, 3, 7−

√
2

2 )} = 3, hence RMo
∞(Λ+

2 , Λ
−
∞) = 3. ■

7 Bi-continuity of the map from obtuse superbases to root invariants

Theorems 3.7 and 4.2 established the bijections LIS → OSI → RIS, Λ 7→ B →
RI(B) = RI(Λ), mapping any lattice Λ ⊂ R2 to its (unique up to isometry) obtuse
superbase B and then to the complete invariant RI(Λ). Hence the Lattice Isometry
Space LIS(R2) having a root metric RM can be identified with the Root Invariant
Space RIS = (TC, d) having any metric d on the triangular cone TC ⊂ R3.

This section studies continuity of the bijection B 7→ Λ(B), where an obtuse
superbase B and its lattice Λ(B) are considered up to isometry, rigid motion or
two types of similarity. To state continuity results, we need metrics on lattices
and superbases. Up to each of the four equivalence relations, a lattice Λ will be
identified with its complete invariant with a relevant metric. For example, up to
isometry, the space LIS(R2) is represented by root invariants RI with the root
metric RM. Now we define natural metrics on obtuse superbases in any Rn.

Definition 7.1 (space OSI of obtuse superbases up to isometry) (a) Let
B = {vi}ni=0 and B′ = {ui}ni=0 be any obtuse superbases in Rn. The Superbase
Isometry Metric SIM∞(B,B′) = min

f∈O(Rn)
max

i=0,...,n
|f(ui)− vi| minimises vector dif-

ferences over orthogonal maps f from the group O(Rn). Let OSI(Rn) denote the
space of all obtuse superbases up to isometry with the metric SIM∞.

(b) Define the space OSIo(Rn) of obtuse superbases up to rigid motion (orientation-
preserving isometry) with the metric SIMo

∞(B,B′) = min
f∈SO(Rn)

max
i=0,...,n

|f(ui)−vi|.

(c) Define the spaces OSS(Rn),OSSo(Rn) of obtuse superbases up to similar-
ity and orientation-preserving similarity with the Superbase Similarity Metrics
SSM∞,SSMo

∞ minimising basis differences over O(Rn)× R+,SO(Rn)× R+. ■

Since any continuous function over a compact domain achieves its minimum
value and SO(Rn),O(Rn) are compact, the minima in Definition 7.1 are achievable.
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Lemma 7.2 (metric axioms for SIM∞) The metrics from Definition 7.1 on
OSI(Rn),OSIo(Rn),OSS(Rn),OSSo(Rn) satisfy all metric axioms in (1.1c). ▲

Proof Let Bj = {vj0, . . . , vjn}, j = 1, 2, 3, be any obtuse superbases in Rn. The
first axiom: if 0 = SIM∞(B1, B2) = min

f∈O(Rn)
max

i=0,...,n
|f(v1i) − v2i|, there is an

isometry f ∈ O(Rn) such that f(B1) = B2. The superbases B1, B2 are isometric.

Since any isometry f preserves Euclidean distance, we get |f(v1i) − v2i| =
|f−1(f(v1i) − v2i)| = |v1i − f−1(v2i)| and the second axiom: SIM∞(B1, B2) =
min

f∈O(Rn)
max

i=0,...,n
|f(v1i)−v2i| = min

f−1∈O(Rn)
max

i=0,...,n
|v1i−f−1(v2i)| = SIM∞(B2, B1).

To prove the triangle inequality in the third axiom for SIM∞, let f, g ∈ O(Rn)
be rotations that minimise the distances SIM∞(B1, B2) = max

i=0,...,n
|f(v1i)−v2i| and

SIM∞(B2, B3) = max
i=0,...,n

|g(v2i)−v3i|, respectively. Then we get SIM∞(B1, B3) ≤

max
i=0,...,n

|g(f(v1i))− v3i| ≤ max
i=0,...,n

|g(f(v1i))− g(v2i)|+ max
i=0,...,n

|g(v2i)− v3i| =

max
i=0,...,n

|f(v1i)−v2i|+SIM∞(B2, B3) = SIM∞(B1, B2)+SIM∞(B2, B3). The proof

for other spaces is identical after replacing O(Rn) with the relevant groups. □

Lemma 7.3 (bounds for root products) Let vectors u1, u2, v1, v2 ∈ Rn have
a maximum length l, have non-positive scalar products u1 · u2, v1 · v2 ≤ 0, and be
δ-close in the Euclidean distance so that |ui − vi| ≤ δ for i = 1, 2. Then

|u1 · u2 − v1 · v2| ≤ 2lδ and |
√
−u1 · u2 −

√
−v1 · v2| ≤

√
2lδ. ▲

Proof If
√
−u1 · u2 +

√
−v1 · v2 ≤

√
2lδ, the difference of square roots is at most√

2lδ. Assuming that
√
−u1 · u2 +

√
−v1 · v2 ≥

√
2lδ, it remains to prove that

|u1 · u2 − v1 · v2| = |
√
−u1 · u2 −

√
−v1 · v2|(

√
−u1 · u2 +

√
−v1 · v2) ≤ 2lδ.

We estimate the scalar product |u·v| ≤ |u|·|v| by using Euclidean lengths. Then we
apply the triangle inequality for scalars and replace vector lengths by l as follows:
|u1 ·u2−v1 ·v2| = |(u1−v1) ·u2+v1 · (u2−v2)| ≤ |(u1−v1) ·u2|+ |v1 · (u2−v2)| ≤
≤ |u1 − v1| · |u2|+ |v1| · |u2 − v2| ≤ δ(|u2|+ |v1|) ≤ 2lδ as required.

Lemma 7.4 (a lower bound of the size) If all vectors of an obtuse superbase
B = {v0, v1, v2} of a lattice Λ ⊂ R2 have a maximum length l, the size σ(Λ) =
r12 + r01 + r02 of the lattice Λ has the lower bound l ≤ σ(Λ). ▲

Proof Let |v1| = l. Formula 2.7(a) gives p12 + p01 = v21 = l2 and r12 + r01 + r02 =√
(r12 + r01 + r02)2 ≥

√
r212 + r201 + r202 =

√
p12 + p01 + p02 ≥ l. □

For q = +∞, both 21/q, 31/q are interpreted as their limit 1 when q → +∞.

Theorem 7.5 (continuity of OSI → LIS = RIS) (a) Let q ∈ [1,+∞] and lat-
tices Λ,Λ′ ⊂ R2 have obtuse superbases B and B′ whose vectors have a maximum
length l. If SIM∞(B,B′) = δ ≥ 0, then RMq(Λ,Λ

′) ≤ 31/q
√
2lδ. Hence the bijec-

tion OSI(R2) → LIS(R2) is continuous in the metrics SIM∞ and RMq.

(b) In the conditions above, the projected metric satisfies PMq(Λ,Λ
′) ≤ 21/q3

√
2δ/l,

so the bijection OSS(R2) → LSS(R2) is continuous in the metrics SIM∞,PMq.

(c) In the oriented case, if δ → 0 then RMo
q(Λ,Λ

′) → 0 and PMo
q(Λ,Λ

′) → 0, so
both OSIo(R2) → LISo(R2) and OSSo(R2) → LSSo(R2) are continuous. ▲
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Proof (a) One can assume that given obtuse superbases B = (v0, v1, v2) and B′ =
(u0, u1, u2) satisfy |ui − vi| ≤ δ for i = 0, 1, 2 after applying a suitable isometry to
B′ by Definition 7.1. Lemma 7.3 implies that the root products rij =

√−vi · vj
and

√−ui · uj differ by at most 2lδ for any pair (i, j) of indices. The Mq-norm of

the vector difference in R3 is RMq(Λ,Λ
′) ≤ 31/q

√
2lδ, q ∈ [1,+∞].

(b) The coordinates x = r̄02 − r̄01 and y = 3r̄12 have an error bound that is
at most three times larger than the error for r̄ij . In Definition 4.5 each r̄ij is
obtained by dividing the root product rij by the sizes with the lower bound l ≤
σ = r12 + r01 + r02 by Lemma 7.4. The above error bound

√
2lδ for rij gives the

error bound 3
√
2δ/l for x, y. Then PMq(Λ,Λ

′) ≤ 21/q3
√
2δ/l, q ∈ [1,+∞].

(c) In the oriented case, if sign(Λ) > 0, then RI(Λ) is strictly inside the triangular
cone TC. The continuity of RM implies that under any continuous motion of δ-
close superbases B → B′, if δ is sufficiently small, then all intermediate lattices
have their unoriented root invariants inside TC, so their signs are positive and
sign(Λ′) > 0. Hence sign(Λ), sign(Λ′) coincide or one of them is 0. In all cases by
Definition 5.4 the metric RMo(Λ,Λ′) coincides with RM(Λ,Λ′) whose convergence
to 0 as δ → 0 was proved above. The proof of PMo(Λ,Λ′) → 0 is similar. □

Theorem 7.5 is proved for the metrics RMq,PMq only to give explicit upper
bounds. A similar argument proves continuity for any metrics RM,PM in Defini-
tion 5.1 based on a metric d satisfying d(u, v) → 0 when u → v coordinate-wise.
All Minkowski norms in Rn are topologically equivalent [1] due to the bounds

||v||q ≤ ||v||r ≤ n
1
q
− 1

r ||v||q for any 1 ≤ q ≤ r, hence continuity for one value of q
is enough. Theorem 7.5 implies continuity of OSIo → RISo, because closeness of
superbases up to rigid motion is a stronger condition than up to isometry.

Example 7.6 illustrates Theorem 7.5 and shows that the root invariant changes
continuously for a deformation when a reduced basis changes discontinuously.

Example 7.6 (continuity of root invariants) The obuse superbase v1 = (1, 0),
v2(t) = (−t, 2), v0(t) = (t−1,−2) continuously deforms for t ∈ [0, 1] in Fig. 4. The
basis of v1, v2(t) is reduced (non-acute) for t ∈ [0, 1

2 ] and at the critical moment
t = 1

2 changes to its mirror image v1, v0(t), which remains reduced for t ∈ [12 , 1].
The obtuse superbase of unordered vectors {v1, v2(t), v0(t)} keeps changing contin-
uously because v2(t), v0(t) only swap their places at t = 1

2 . The discontinuity of
the obtuse superbases in the above deformation emerges at t = 1 when the final
superbase of (1, 0), (−1, 2), (0,−2) becomes a mirror image of the initial super-
base of (1, 0), (0, 2), (−1,−2), not related by rigid motion, though both (unordered)
superbases at t = 0, 1 generate the same lattice with the rectangular cell 1× 2.

The root invariants are r12 =
√
t, r01 =

√
1− t, r02 =

√
4− t+ t2. Since

4− t+ t2 ≥ 15
4 ≥ max{t, 1− t} for t ∈ [0, 1], the root invariant can be written as

RI(Λ(t)) =

 (
√
t,
√
1− t,

√
4− t+ t2) for t ∈ [0, 1

2 ],

(
√
1− t,

√
t,
√
4− t+ t2) for t ∈ [12 , 1].
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Fig. 20 Left: graphs of root products in RI(Λ(t)), see Example 7.6. Middle: graphs of the
components in PI(Λ(t)). Right: the continuous path of PI(Λ(t)) in the quotient square QS.

By Definition 4.5 the size is σ(Λ(t)) = r12 + r01 + r02 =
√
t +

√
1− t +√

4− t+ t2. The projected invariant is PI(Λ(t)) = (x(t), y(t)), see Fig. 23. where

x(t) =

√
4− t+ t2 −max{

√
t,
√
1− t}√

t+
√
1− t+

√
4− t+ t2

, y(t) =
3min{

√
t,
√
1− t}√

t+
√
1− t+

√
4− t+ t2

.

If t = 0 or t = 1, then RI(Λ(t)) = (0, 1, 2), σ(Λ(t)) = 3, PI(Λ(t)) = (13 , 0). If

t = 1
2 , then

√
t =

√
1− t =

√
2
2 ,

√
4− t+ t2 =

√
15
2 , σ(Λ(12 )) =

√
2 +

√
15
2 . So

RI

(
Λ
(1
2

))
=

(√
2

2
,

√
2

2
,

√
15

2

)
, PI

(
Λ
(1
2

))
=

( √
15−

√
2√

15 + 2
√
2
,

3
√
2√

15 + 2
√
2

)
.

The last point is approximately (0.37, 0.63) in the diagonal x+y = 1 of QS. Under
the symmetry t ↔ 1− t, all the functions above remain invariant and Λ(t) changes
its sign. Both paths RI(Λ(t)) and PIo(Λ(t)) ∈ QS are continuous everywhere, while
the obtuse superbasis is discontinuous (up to rigid motion) at t = 0, 1. ■

Theorem 7.7 below proves the inverse continuity of RIS → OSI and a weaker
claim in the oriented case saying that we can choose an obtuse superbase B′ of a
perturbed lattice arbitrarily close to a given superbase B of an original lattice.

Theorem 7.7 (continuity of LIS → OSI) (a) For q ∈ [1,+∞], let lattices Λ,Λ′

in R2 satisfy RMq(Λ,Λ
′) ≤ δ. For any obtuse superbase B of Λ, there is an obtuse

superbase B′ of Λ′ such that SIM∞(B,B′) ≤ SIMo
∞(B,B′) → 0 as δ → 0.

(b) The bijection LIS(R2) → OSI(R2) is continuous in the metrics RMq,SIM∞.
LISo(R2) → OSIo(R2) is continuous in RMo

q,SIM
o
∞ at non-rectangular lattices.

(c) The above conclusions hold for lattices and superbases up to similarity. ▲

Proof (a) The obtuse superbase B = (v0, v1, v2) of Λ is already given. Let B′ =
(u0, u1, u2) be any obtuse superbase of Λ′ found from RI(Λ′) by Lemma 4.1.

Up to rigid motion in R2, one can assume that Λ,Λ′ share the origin and the
first vectors v0, u0 lie in the positive x-axis. Let rij , sij be the root products of
B,B′, respectively. Formulae (2.7a) imply that v2i = r2ij + r2ik and u2

i = s2ij + s2ik
for distinct indices i, j, k ∈ {0, 1, 2}, for example if i = 0 then j = 1, k = 2.
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For any given continuous transformation of root invariants from RI(Λ) to
RI(Λ′), all root products have a finite upper bound M , which we use to estimate

|v2i − u2
i | = |(r2ij + r2ik)− (s2ij + s2ik)| ≤ |r2ij − s2ij |+ |r2ik − s2ik| =

(rij + sij)|rij − sij |+ (rik + sik)|rik − sik| ≤ (rij + sij)δ + (rik + sik)δ ≤ 4Mδ.

Since at least two continuously changing conorms are strictly positive to guar-
antee positive lengths of basis vectors by formula (2.7a), all basis vectors re-
constructed by Lemma 4.1 have a minimum length a > 0. Then ||vi| − |ui|| ≤

4Mδ

|vi|+ |ui|
≤ 2M

a
δ. Since the vectors v0, u0 lie in the positive horizontal axis, the

lengths can be replaced by vectors: |v0 − u0| ≤
2M

a
δ, so |v0 − u0| → 0 as δ → 0.

If the superbases B,B′ have opposite signs, apply to B′ the reflection with
respect the fixed x-axis. To conclude that SIMo

∞(B,B′) → 0, we show below that
the basis vectors vi, ui from both superbases have close angles αi, βi measured
anticlockwise from the positive x-axis for i = 1, 2. To estimate the small difference
αi − βi, we first express the angles via the root products by Lemma 4.1:

αi = arccos
v0 · vi

|v0| · |vi|
= arccos

−r20i√
r201 + r202

√
r2ij + r2ik

,

βi = arccos
u0 · ui

|u0| · |ui|
= arccos

−s20i√
s201 + s202

√
s2ij + s2ik

,

where j ̸= k differ from i = 1, 2. If δ → 0, then sij → rij and αi − βi → 0 for all
indices because all functions above are continuous for |uj |, |vj | ≥ a, j = 0, 1, 2.

We estimate the squared length of the difference by using the scalar product:

|vi−ui|2 = v2i+u2
i−2uivi = (|vi|2−2|ui|·|vi|+|ui|2)+2|ui|·|vi|−2|ui|·|vi| cos(αi−βi)

= (|vi|−|ui|)2+2|ui|·|vi|(1−cos(αi−βi)) = (|vi|−|ui|)2+|ui|·|vi|4 sin2 αi − βi

2
≤

≤ (|vi| − |ui|)2 + |ui| · |vi|4
(
αi − βi

2

)2

= (|vi| − |ui|)2 + |ui| · |vi|(αi − βi)
2,

where we used that | sinx| ≤ |x| for x ∈ R. The upper bound M of root products
guarantees a fixed upper bound for the lengths |ui|, |vi|. If δ → 0, then |vi|−|ui| →
0 and αi − βi → 0 as proved above, so vi − ui → 0 and SIMo

∞(B,B′) → 0. Since
the metric SIM∞ from Definition 7.1 is minimised over the larger group O(R2) in
comparison with SO(R2), we have SIM∞(B,B′) ≤ SIMo

∞(B,B′) → 0 as δ → 0.

(b) By Theorem 3.7, the obtuse superbases B,B′ of Λ,Λ′ are unique up to isom-
etry, also up to rigid motion if Λ,Λ′ are not rectangular. Since we can start with
any obtuse superbase B, the convergence SIMo

∞(B,B′) → 0 for a unique ob-
tuse superbase B′ proves the continuity of LIS(R2) → OSI(R2). The continuity of
LISo(R2) → OSIo(R2) similarly follows for all non-rectangular lattices.

(c) To extend part (a) to the similarity equivalence, we use the size σ = r12 +
r01 + r02 of the given superbase B to reconstruct an obtuse superbase B′ of Λ′
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from PI(Λ′) with the same size σ by Proposition 4.9. By formula (4.9) the given
condition PMq(Λ,Λ

′) → 0 implies that RMq(Λ,Λ
′) → 0, hence part (a) implies the

required conclusions for the smaller metrics SSM∞ ≤ SIM∞ and SSMo
∞ ≤ SIMo

∞.
The same argument extends part (b) to the similarity case. □

Lemma 7.8 proves a non-trivial lower bound needed for Corollary 7.9 later.

Lemma 7.8 (lower bound for SIMo
∞) For any ordered obtuse superbases B,B′

of lattices in R2 with coforms CF(B) = (p12, p01, p02) and CF(B′) = (p′12, p
′
01, p

′
02),

let CM∞(B,B′) = min
ζ∈A3

max
i ̸=j

{|pij − p′ζ(i)ζ(j)|} be minimised over three cyclic per-

mutations ζ ∈ A3 of indices 0, 1, 2. Let l be a maximum length of all vectors from
B,B′. Then we have the lower bound SIMo

∞(B,B′) ≥ CM∞(B,B′)/2l. ▲

Proof For the superbase B = {v0, v1, v2}, by Definition 7.1find an optimal rotation
around the origin so that the resulting image {v′0, v′1, v′2} of B′ satisfies |ui − vi| ≤
SIMo

∞(B,B′), i = 0, 1, 2. Lemma 7.3 implies that |pij − p′ij | ≤ 2l · SIMo
∞(B,B′)

for all distinct i, j ∈ {0, 1, 2}. The above rotation might have cyclically shifted
the coforms of B′, but CM∞(B,B′) is minimised over cyclic permutations. Then
CM∞(B,B′) ≤ max

i̸=j
{|pij − p′ij |} ≤ 2l · SIMo

∞(B,B′) gives the lower bound. □

One can prove that the min-max distance in Lemma 7.8 satisfies all metric ax-
ioms. Corollary 7.9 shows that Theorem 7.7(b) is the strongest possible continuity
in the oriented case. In R3, a similar discontinuity around high-symmetry lattices
will be much harder to resolve for continuous invariants even up to isometry [21].

Corollary 7.9 (partial discontinuity of RISo → OSIo) The bijection LISo →
OSIo is discontinuous in the metrics RM∞,SIMo

∞ at any rectangular lattice. ▲

Proof For any 0 ≤ 3δ < a < b, start from any rectangular lattice with a unit cell
a× b and consider the lattices Λ±(δ) ⊂ R2 with the obtuse superbases

B+(δ) : v1 = (a, 0) v+2 (δ) = (−δ, b) v+0 (δ) = (δ − a,−b)

B−(δ) : v1 = (a, 0) v−2 (δ) = (δ − a, b) v−0 (δ) = (−δ,−b)

Notice that the vectors in both superbases are ordered anticlockwise around
0. The initial lattice Λ±(0) has two superbases v1 = (a, 0), v±2 (0) = (0,±b),
v0 = (−a,∓b) related by reflection, not by rigid motion, see Fig. 1 (right).

Keeping the anticlockwise order above, write the ordered coforms below.

CF(B+(δ)) −v1 · v+2 = δa −v0 · v+1 = a2 − δa −v0 · v+2 = b2 − δa+ δ2

CF(B−(δ)) −v1 · v−2 = a2 − δa −v0 · v−1 = δa −v0 · v−2 = b2 − δa+ δ2

The above coforms differ by the transposition of the first two conorms. The
maximum difference of all corresponding conorms in CF(B±(δ)) is a2 − 2δa. If we
cyclically shift CF(B−(δ)) to the left, the maximum difference becomes b2−a2+δ2.
If we cyclically shift CF(B−(δ)) to the right, the maximum difference becomes
b2 − 2δa+ δ2. By Lemma 7.8 and δ < a

3 , the cyclic metric between the coforms is

CM∞(B+(δ), B−(δ)) = min{ a2−2δa, b2−a2+δ2, b2−2δa+δ2 } ≥ min{a
2

3
, b2−a2}.
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Since the vectors of B±(δ) have a maximum length l ≤
√
a2 + b2, we get

SIMo
∞(B+(δ), B−(δ)) ≥ CM∞(B+(δ), B−(δ))/2l ≥ min{a

2

3
, b2 − a2}/2

√
a2 + b2.

This lower bound shows that, for any 0 < δ < a
3 , the (unique up to rigid motion)

obtuse superbases B±(δ) of the lattices Λ±(δ) are not close in the metric SIMo
∞.

The lattices Λ±(δ) have RI(Λ±(δ)) consisting of
√
δa,

√
a2 − δa,

√
b2 − a2 + δ2,

which might need to be ordered. Since the lattices Λ±(δ) are related by reflection,
Lemma 6.3(b) computes RM(Λ+(δ), Λ−(δ)) as the double distance 2RC[D2](Λ(δ))
depending only on the root invariant above without signs. For the Minkowski
parameter q = +∞, Proposition 6.5(a) computes the required distance as follows:

RC∞[D2](Λ(δ)) = min{δa, a
2 − 2δa

2
,
b2 − 2a2 + δa+ δ2

2
} ≤ δa → 0 as δ → 0.

Hence the lattices Λ±(δ) have close root invariants with RM∞(Λ+(δ), Λ−(δ)) → 0
as δ → 0, but their obtuse superbases have a constant lower bound for the metric
SIMo

∞ independent of δ. The discontinuity conclusion holds for all q ∈ [1,+∞),
because all Minkowski distances Mq are topologically equivalent [1]. □

Corollary 7.9 should be positively interpreted in the sense that we need to
study lattices up to rigid motion by their complete oriented root invariants in the
continuous space LISo(R2) rather than in terms of reduced bases (or, equivalently,
obtuse superbases due to Proposition 3.10b), which are inevitably discontinuous.

Proposition 7.10 shows that all G-chiral distances RC[G] : LIS(R2) → R and
PC[G] : LSS(R2) → R are continuous in any metrics RM,PM from Definition 5.1.

Proposition 7.10 (continuous chiral distances) For a crystallographic point
group G and lattices Λ1, Λ2 in R2, we have |RC[G](Λ1)−RC[G](Λ2)| ≤ RM(Λ1, Λ2)
and |PC[G](Λ1)− PC[G](Λ2)| ≤ PM(Λ1, Λ2) for any metrics RM and PM. ▲

Proof In Definition 6.1 let Λ1, Λ2 ∈ LIS[G] be lattices that minimise RC[G](Λ1) =
RM(Λ1, Λ

′
1) and RC[G](Λ2) = RM(Λ2, Λ

′
2). The triangle inequality implies that

RC[G](Λ1) ≤ RM(Λ1, Λ
′
2) ≤ RM(Λ1, Λ2)+RM(Λ2, Λ

′
2) = RM(Λ1, Λ2)+RC[G](Λ2)

and RC[G](Λ1)−RC[G](Λ2) ≤ RM(Λ1, Λ2). Swapping indices 1 ↔ 2, we similarly
get RC[G](Λ2) − RC[G](Λ1) ≤ RM(Λ1, Λ2). Hence we get the required upper
bound |RC[G](Λ1)−RC[G](Λ2)| ≤ RM(Λ2, Λ1). The proof for PC[G] is similar. □

8 New mathematical structures on lattices, conclusions, and discussion

This section first connects the recent invariants of more general periodic point sets
with the complete invariants of lattices. Then we discuss linear operations, scalar
products, CAT(0) property of LIS(R2) and finally describe the future work.

Below we prove that other continuous isometry invariants AMD (average min-
imum distances) and PDD (pointwise distance distribution) are complete for lat-
tices, though they make sense for general periodic and finite point sets [41,40].
Other isometry invariants such as persistent homology turned out to be weaker
than expected, see generic families of sets that have identical persistence in [33].
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Definition 8.1 (RSD invariant) For any lattice Λ ⊂ Rn, both AMD and PDD
invariants reduce to the sequence of distances (d1, d1, d2, d2, d3, d3, . . . ) from the
origin 0 ∈ Λ to its k-th nearest neighbour in Λ for k ≥ 1. Since any Λ is sym-
metric with respect to 0, define the Reduced Sequence of Distances RSD(Λ) =
(d1, d2, d3, . . . ) containing one distance from each pair of equal distances above. ■

In 1938 Delone reduced RSD(Λ) even further and considered only distinct
increasing distances [15, p. 163]. He proved that the resulting weaker invariant (of
only the first four distinct distances) is complete for all lattices Λ ⊂ R2 except
the two lattices Λ6, Λ in Fig. 21, which are distinguished by the stronger RSD:

RSD(Λ6) = (1, 1, 1,
√
3,
√
3,
√
3, 2, 2, 2,

√
7,
√
7,
√
7,
√
7,
√
7,
√
7, 3, 3, 3, . . . ),

RSD(Λ) = (1,
√
3, 2, 2, 2,

√
7,
√
7, 3, . . . ).

Fig. 21 Left and Right: first neighbours of the origin 0 in the hexagonal lattice Λ6 and
rectangular lattice Λ with unit cell 1×

√
3. Middle: RSD(Λ6) and RSD(Λ), see Definition 8.1.

Any quadratic form Q(x, y) is uniquely determined (up to a linear change of
variables) by the sets of its values with the only exception of Q6 = x2 + xy + y2

and Q = x2 + 3y2 corresponding to the lattices in Fig. 21, see references in [39].

For any lattice Λ ⊂ Rn, the ‘halved’ sequence RSD contains the same infor-
mation as AMD and PDD. We conjecture that PDD is complete for all finite and
periodic points sets in R2. Proposition 8.2 means completeness for lattices in R2.

For any lattice Λ ⊂ Rn, RSD(Λ) can be represented as the theta series ΘΛ(q) =∑
v∈Λ

q|v|
2

= 1+ 2
∑
k≥1

qRSD2
k(Λ), q ∈ C. Lecture 2 in [11, p. 45] mentions that ΘΛ(q)

determines the shape of any lattice Λ ⊂ R2, which is proved below via RSD(Λ).

Proposition 8.2 (RSD completeness) Any lattices Λ,Λ′ ⊂ R2 are isometric if
and only if RSD(Λ) = RSD(Λ′). ▲

Proof The lengths |v1| ≤ |v2| ≤ |v0| of shortest Voronoi vectors from Fig. 3 are
not necessarily the first three distances in RSD. For example, if Λ has the basis
v1 = (1, 0), v2 = (0, 3), then RSD(Λ) = (1, 2, 3, . . . ), where 2 = 2|v1| ̸= |v2| = 3.
We will extract |v1| ≤ |v2| ≤ |v0| from RSD(Λ), which proves completeness.

For any integer k > 1, the shortest Voronoi vector v1 ∈ Λ of length d1 = |v1|
generates a single integer multiple kv1 ∈ Λ of length kd1, which can be removed
from RSD(Λ). The second shortest Voronoi vector v2 ∈ Λ may accidentally have
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the same length |v2| = d1. If not, the next distance d2 in the resulting sequence
equals |v2| as in RSD(Λ) = {1,

√
3, . . . } for the lattice Λ in Fig. 21 (right). If yes,

we recognise the repeated value of d1 as d2 = |v2| and do not confuse d2 with any
multiple kd1 for k > 1. For example, if Λ has the basis v1 = (1, 0), v2 = (0, 2),
then RSD(Λ) = {1, 2, 2, . . . }, where one distance 2 is 2d1, another distance 2 is
d2, so we remove only one distance 2 = 2d1. Again for any k > 1, we remove
one multiple kd2 and find the next distance d3 equal to the length of the third
shortest Voronoi vector v0 = −v1 − v2 as in Fig. 3. Since (v21 , v

2
2 , v

2
0) = (d21, d

2
2, d

2
3)

is a complete invariant by Theorem 4.2 and Lemma 4.3, then so is RSD(Λ). □

The invariant RSD(Λ) can be made complete for lattices up to rigid motion
by adding sign(Λ) and up to similarity after dividing all distances by the first d1.

Now Remark 8.3 summarises a wide range of rich mathematical structures that
can be considered on the lattice spaces in addition to continuous metrics.

Remark 8.3 (linear structure, scalar product on lattices) Since the trian-
gular cone TC in Fig. 12 is convex, we can consider any convex linear combina-
tion of root invariants tRI(Λ1) + (1 − t)RI(Λ2) ∈ TC, t ∈ [0, 1]. The resulting
root invariant determines (an isometry class of) the new lattice that can be de-
noted by tΛ1 + (1 − t)Λ2. The average of the square and hexagonal lattices with
RI(Λ4) = (0, 1, 1), RI(Λ6) = (1, 1, 1) has RI = (12 , 1, 1). The new lattice 1

2 (Λ4+Λ6)

is centred rectangular and has the basis v1 = (
√

3
2 , 0) and v2 = (−1

9

√
3
2 ,

4
9

√
15
2 ).

We can define similar sums in LSS(R2) due to the convexity of the triangle QT.

The usual scalar product of vectors in R3 defines the positive product of root
invariants: RI(Λ4) · RI(Λ6) = (0, 1, 1) · (1, 1, 1) = 2. The lattice spaces LISo(R2)
and LSSo(R2) up to rigid motion and orientation-preserving similarity are geodesic
metric spaces, even CAT(0) spaces and flat manifolds (locally Euclidean). ■

In conclusion, Problem 1.1 was resolved by the new invariants RI,RIo,PI,PIo

classifying all 2D lattices up to four equivalences, see a summary in Table 7.

(1.1a) Invariants : Definitions 3.1 and 3.4, Lemma 3.6 and Lemma 3.8(a).

(1.1b) Completeness of invariants : Theorem 4.2 and Corollary 4.6.

(1.1c) Continuous metrics : Definitions 5.1 and 5.4, Theorems 7.5 and 7.7.

(1.1d) Computability of metrics : Propositions 5.8,5.9 with Examples 5.2, 6.7.

(1.1e) Inverse design : Lemma 4.1 and Proposition 4.9 with Example 4.10.

The key contributions are the easily computable metrics in Definitions 5.1,5.4,
which led to continuous real-valued deviations of lattices from their higher sym-
metry neighbours. The chiral distances in Definition 6.1 continuously extend the
classical binary chirality and have explicit formulae in Propositions 6.5,6.6.

The discontinuity of basis reduction in [41, Theorem 15] was proved with a
simple metric on bases without isometry. When we consider obtuse superbases up
to isometry, the continuity holds in Theorem 7.7 up to isometry for all lattices and
up to rigid motion for non-rectangular lattices. For rigid motion, when orientation
is preserved, Corollary 7.9 proves discontinuity at any rectangular lattice in R2.
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Table 7 A summary of classifications of all lattices Λ ⊂ R2 up to four equivalence relations.

equivalence complete invariant configuration space continuous metric visual results

any root invariant LIS(R2) ↔ TC root metric Theorem 4.2

isometry RI(Λ) triangular cone RM Fig. 12 (left)

rigid oriented LISo(R2) ↔ DC oriented Theorem 4.2

motion invariant RIo(Λ) doubled cone metric RMo Fig. 14 (right)

any projected LSS(R2) ↔ QT projected Corollary 4.6

similarity invariant PI(Λ) quotient triangle metric PM Fig. 13 (left)

orientation- oriented LSSo(R2) ↔ QS oriented Corollary 4.6

preserving projected quotient projected Fig. 13 (right)

similarity invariant PIo(Λ) square metric PMo Fig. 15

It was important to clarify the above discontinuity of bases in Corollary 7.9
since the 3-dimensional case is much harder to resolve even up to isometry [21].

Applications. The structures in Remark 8.3 help treat lattices as vectors in
a meaningful way (independent of a basis), for example, as inputs or outputs in
machine learning algorithms. The paper [10] visualises for the first time millions
of 2D lattices extracted from real crystals in the Cambridge Structural Database
(CSD), see the Python code at https://github.com/MattB-242/Lattice Invariance.
Patterns of symmetries for densest packings in R2 were found in [35] based on a new
optimisation in [36]. It will be interesting to compare the distribution of these real
lattices with the uniform distribution of 2D lattices defined by the Haar measure
[25] on the fundamental domain of the action of SL(R2) on the upper half-plane.

Lattice invariants can be used as a first ultra-fast step to find (near-)duplicates
of a potential new material in all existing experimental datasets. In the next step,
more advanced distance-based invariants of general periodic point sets detected
five pairs of isometric duplicates in the CSD [40]. In each pair, one atom was re-
placed with a different one, which seems physically impossible without perturbing
distances to neighbours. As a result, five journals are investigating the integrity of
the underlying publications. The same invariants PDD (Pointwise Distance Dis-
tributions) were used for real materials applications in [43,38]. The underlying
Earth Mover’s Distance on PDDs was used to map the discrete space of chemical
125,627 chemical compositions from the Inorganic Crystal Structure Database.

In summary, this paper essentially contributed to the foundations of Geometric
Data Science (GDS), which studies geometry on moduli spaces of data objects up
to important equivalences. The first achievement of GDS is the Crystal Isometry
Principle [40] saying that all real periodic crystals can be uniquely parameterised
by complete isometry invariants of periodic point sets. The second achievement of
GDS is a continuous parameterisation of finite point sets under isometry [23,22].

The future work [21,9] extends the isometry classification of Theorem 4.2 to R3.
The author thanks all reviewers for their valuable time and helpful suggestions, also
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Peter Bubenik, Nikolai Dolbilin, Marjorie Senechal, Jens Marklof, Andy Cooper,
Olga Anosova, Matt Bright, Dan Widdowson for fruitful discussions.
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tiques. J. Reine Angew. Math (133), 97–178 (1908)
38. Vriza, A., Sovago, I., Widdowson, D., Wood, P., Kurlin, V., Dyer, M.: Molecular set

transformer: Attending to the co-crystals in the cambridge structural database. Digital
Discovery (2022). DOI 10.1039/D2DD00068G

39. Watson, G.: Determination of a binary quadratic form by its values at integer points:
Acknowledgement. Mathematika 27(2), 188–188 (1980)

40. Widdowson, D., Kurlin, V.: Resolving the data ambiguity for periodic crystals. Advances
in Neural Information Processing Systems (Proceedings of NeurIPS 2022) 35 (2022)

41. Widdowson, D., Mosca, M., Pulido, A., Kurlin, V., Cooper, A.: Average minimum dis-
tances of periodic point sets. MATCH Communications in Mathematical and in Computer
Chemistry 87, 529–559 (2022)

42. Zhilinskii, B.: Introduction to lattice geometry through group action. EDP sciences (2016)
43. Zhu, Q., Johal, J., Widdowson, D., Pang, Z., Li, B., Kane, C.M., Kurlin, V., Day,

G., Little, M., Cooper, A.I.: Analogy powered by prediction and structural invariants:
Computationally-led discovery of a mesoporous hydrogen-bonded organic cage crystal. J
American Chemical Society 144, 9893–9901 (2022)

A Appendix A: examples and proofs of past results by Conway-Sloane

To make the paper self-contained, the appendix includes detailed proofs of past
results whose outlines in Delone [14], Conway, Sloane [12] contained a few typos.

Fig. 22 shows the deformation of Λ(t) generated by v1 = (1, 0), v2(t) = (−t,−1)
for t ∈ [0, 1]. The square lattice Λ(0) deforms to Λ(12 ) in Fig. 22 (bottom middle),
where the reduced (non-acute) basis v1, v2(t) = (−t,−1) becomes non-reduced at
t = 1

2 and is replaced by the new reduced basis v1, v
′
2(t) = (t− 1, 1) for t ∈ (12 , 1].

Example A.1 illustrates Theorem 7.5 and shows that the root invariant changes
continuously for a deformation while a reduced basis changes discontinuously.

Example A.1 In Fig. 22, the superbase v1 = (1, 0), v2(t) = (−t,−1), v0 =
(t− 1, 1) of the lattice Λ(t) remains obtuse for t ∈ [0, 1] and is unique up to rigid
motion by Theorem 3.7. Then r12 =

√
t, r01 =

√
1− t, r02 =

√
1− t+ t2. Since



52 Vitaliy Kurlin

Fig. 22 The basis v1 = (1, 0), v2(t) = (−t,−1) is reduced only for t ∈ [0, 1
2
] and at t = 1

2

discontinuously changes to another reduced basis v1 = (1, 0), v′2(t) = (t− 1, 1) for t ∈ ( 1
2
, 1].

1− t+ t2 ≥ max{t, 1− t} for t ∈ [0, 1], the root invariant can be written as

RI(Λ(t)) =

 (
√
t,
√
1− t,

√
1− t+ t2) for t ∈ [0, 1

2 ],

(
√
1− t,

√
t,
√
1− t+ t2) for t ∈ [12 , 1].

Fig. 23 Left: graphs of root products in RI(Λ(t)), see Example A.1. Middle: graphs of the
components in PI(Λ(t)). Right: the continuous path of PI(Λ(t)) in the quotient square QS.

By Definition 4.5 the size is σ(Λ(t)) = r12 + r01 + r02 =
√
t +

√
1− t +√

1− t+ t2. The projected invariant is PI(Λ(t)) = (x(t), y(t)), see Fig. 23. where

x(t) =

√
1− t+ t2 −max{

√
t,
√
1− t}√

t+
√
1− t+

√
1− t+ t2

, y(t) =
3min{

√
t,
√
1− t}√

t+
√
1− t+

√
1− t+ t2

.

If t = 1
2 , then

√
t =

√
1− t =

√
2
2 ,

√
1− t+ t2 =

√
3
2 , σ(Λ(12 )) =

√
2 +

√
3

2 . So

RI

(
Λ
(1
2

))
=

(√
2

2
,

√
2

2
,

√
3

2

)
, PI

(
Λ
(1
2

))
=

( √
3−

√
2√

3 + 2
√
2
,

3
√
2√

3 + 2
√
2

)
.

The last point is approximately (0.07, 0.93) in the diagonal x+y = 1 of QS. Under
the symmetry t ↔ 1 − t, all the functions above invariant and Λ(t) changes its
sign. The paths RI(Λ(t)) and PI(Λ(t)) ∈ QS are continuous everywhere, while the
reduced basis v1, v2(t) is discontinuous up to rigid motion at t = 1

2 .
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The obtuse superbase {v1, v2(t), v0(t)} remains continuous for t ∈ [0, 1]. For
t = 0, 1, the superbases are related by rotation through 90◦. There is no such a
rotation for the strictly rectangular lattice in Fig. 4 and Example 7.6. ■

Lemma A.2 (probably due to Voronoi) was mentioned in [14, section 2.3].

Lemma A.2 (lattices ↔ Voronoi domains) Lattices Λ,Λ′ ⊂ Rn are related
by an isometry f if and only if Voronoi domains V (Λ), V (Λ′) are related by f . ▲

Proof Since any isometry f preserves distances and the Voronoi domain is defined
in terms of distances, if f maps a lattice Λ to Λ′, then f restricts to an isometry
of Voronoi domains: V (Λ) → V (Λ′). Conversely, the whole space Rn is covered by
the lattice translates V (Λ)+Λ = {V (Λ)+v | v ∈ Λ}, which have disjoint interiors.
Hence any isometry f : V (Λ) → V (Λ′) gives rise to an isometry of Rn. □

Proof (of Lemma 2.5) We prove the second part for strict Voronoi vectors with
all strict inequalities. The first part follows by making all inequalities non-strict.

Assume that v ∈ Λ is a Voronoi vector of a lattice Λ ⊂ R2 but there is a shorter
vector w ∈ v+2Λ. Then the point 1

2v is closer to 1
2 (v+w) ∈ Λ than to v, because

1
2 |w| < 1

2 |v|, which contradicts the assumption that v is a Voronoi vector.

Conversely, let v be a shortest vector in its 2Λ-class. If v is not a Voronoi
vector, there is another vector w ∈ Λ whose bisector hyperspace separates 1

2v

from 0. Then 1
2v · w > 1

2 |w|2, |v2| > |v − 2w|2, so v − 2w is shorter than v. □

Lemma A.3 For any basis v1, . . . , vn in Rn, let pij = −vi · vj be the conorms of

a superbase v0, v1, . . . , vn with v0 = −
n∑

i=1

vi. The squared norm v2 of any vector

v =
n∑

i=1

civi equals N(v) =
n∑

i=1

c2i p0i +
∑

1≤i<j≤n

(ci − cj)
2pij. If we decompose

v =
n∑

i=0

civi over the full superbase, then N(v) =
∑

0≤i<j≤n

(ci − cj)
2pij. ▲

Proof In the right hand side of the required formula, we substitute the conorms
in terms of scalar products of basis vectors as follows: pij = −vi · vj for i, j ∈

{1, . . . , n}. Then p0i = −v0 · vi = vi ·
n∑

j=1

vj = v2i +
n∑

j ̸=i

vi · vj and
n∑

i=1

c2i p0i +∑
1≤i<j≤n

(ci − cj)
2pij =

n∑
i=1

c2i (v
2
i +

n∑
j ̸=i

vi · vj)−
∑

1≤i<j≤n

(c2i − 2cicj + c2j )vi · vj

=
n∑

i=1

c2i v
2
i +

n∑
i=1

c2i
n∑

j ̸=i

vi · vj −
∑

1≤i<j≤n

(c2i + c2j )(vi · vj) +
∑

1≤i<j≤n

2cicj(vi · vj) =

=

n∑
i=1

c2i v
2
i + 2

∑
1≤i<j≤n

cicj(vi · vj) =

(
n∑

i=1

civi

)2

= N(v) as required. The last

formula for n+ 1 vectors follows by replacing ci with ci − c0 for i = 1, . . . , n. □

Proof (of Lemma 2.8) By Lemma 2.5 Voronoi vectors have smallest squared norms

N(v) in their 2Λ-classes. The 2Λ-class of any vector v =
n∑

i=0

civi ∈ Λ with ci ∈ Z

remains invariant of any coefficient ci keeps its parity modulo 2. Within the 2Λ-
class, the squared norm N(v) =

∑
0≤i<j≤n

(ci − cj)
2pij computed in Lemma A.3
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is minimal if all even ci are replaced by 0 and all odd ci are replaced by 1. The
resulting shortest vectors with coefficients 0, 1 are all 2n − 1 symmetric pairs of
partial sums ±vS for a proper subset S ⊂ {0, 1, . . . , n}. If all conorms pij > 0, to
guarantee a minimum value of N(v), every difference |ci − cj | should be 0 or 1,
hence there are no other Voronoi vectors apart from the partial sums above. □

Proof (of Theorem 2.9 for n = 2) For any lattice Λ ⊂ R2, permuting vectors of a
superbase B = (v0, v1, v2) allows us to order the conorms: p12 ≤ p01 ≤ p02. Our
aim is to reduce B so that all pij ≥ 0. Assuming that p12 = −v1 · v2 = −ε < 0, we
change the superbase: u1 = −v1, u2 = v2, u0 = v1 − v2 so that u0 + u1 + u2 = 0.

Two vonorms remain the same: u2
1 = v21 , u

2
2 = v22 . The third vonorm decreases

by 4ε > 0 as follows: u2
0 = (v1 − v2)

2 = (v1 + v2)
2 − 4v1v2 = v20 − 4ε. One conorm

changes its sign: q12 = −u1 · u2 = −p12 = ε > 0. The two other conorms decrease:

q01 = −u0 · u1 = −(v1 − v2) · (−v1) = −(−v1 − v2)v1 − 2v1 · v2 = p01 − 2ε,

q02 = −u0 · u2 = −(v1 − v2) · v2 = −(−v1 − v2)v2 − 2v1 · v2 = p02 − 2ε.

If one of the new conorms becomes negative, we apply the above reduction again.

To prove that all conorms eventually become non-negative, note that every re-
duction can make superbase vectors only shorter, but not shorter than a minimum
distance between points of Λ. The angle between vi, vj can have only finitely many
values when lengths of vi, vj are bounded. Then the scalar product ε = vi · vj > 0
cannot converge to 0. Since every reduction makes one superbase vectors shorter
by a positive constant, the reductions will finish in finitely many steps. □
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