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Deep learning models for predicting RNA 
degradation via dual crowdsourcing

Hannah K. Wayment-Steele    1,2,26, Wipapat Kladwang2,3,26, 
Andrew M. Watkins2,3,4,26, Do Soon Kim2,3,26, Bojan Tunguz3,5,26, Walter Reade    6, 
Maggie Demkin6, Jonathan Romano    2,3,7, Roger Wellington-Oguri2, 
John J. Nicol2, Jiayang Gao    8, Kazuki Onodera9, Kazuki Fujikawa    10, 
Hanfei Mao    11, Gilles Vandewiele    12, Michele Tinti    13, Bram Steenwinckel12, 
Takuya Ito14, Taiga Noumi15, Shujun He16, Keiichiro Ishi17, Youhan Lee18,19, 
Fatih Öztürk20, King Yuen Chiu    21, Emin Öztürk22, Karim Amer23, 
Mohamed Fares    23,24, Eterna Participants* & Rhiju Das    2,3,25 

Medicines based on messenger RNA (mRNA) hold immense potential, 
as evidenced by their rapid deployment as COVID-19 vaccines. However, 
worldwide distribution of mRNA molecules has been limited by their 
thermostability, which is fundamentally limited by the intrinsic instability of 
RNA molecules to a chemical degradation reaction called in-line hydrolysis. 
Predicting the degradation of an RNA molecule is a key task in designing 
more stable RNA-based therapeutics. Here, we describe a crowdsourced 
machine learning competition (‘Stanford OpenVaccine’) on Kaggle, 
involving single-nucleotide resolution measurements on 6,043 d iv er se 
1 02–130-nucleotide RNA constructs that were themselves solicited through 
crowdsourcing on the RNA design platform Eterna. The entire experiment 
was completed in less than 6 months, and 41% of nucleotide-level predictions 
from the winning model were within experimental error of the ground 
truth measurement. Furthermore, these models generalized to blindly 
predicting orthogonal degradation data on much longer mRNA molecules 
(504–1,588 nucleotides) with improved accuracy compared with previously 
published models. These results indicate that such models can represent 
in-line hydrolysis with excellent accuracy, supporting their use for designing 
stabilized messenger RNAs. The integration of two crowdsourcing platforms, 
one for dataset creation and another for machine learning, may be fruitful for 
other urgent problems that demand scientific discovery on rapid timescales.

Therapeutics based on messenger RNA (mRNA) have shown immense 
promise as a modular therapeutic platform, allowing potentially any 
protein to be delivered and translated1,2, as evidenced by the rapid 
deployment of mRNA-based vaccines against severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2)3–5. However, the chemical 
instability of RNA sets a fundamental limit on the stability of RNA-based 

therapeutics1,6–8, with RNA hydrolysis specifically setting a limiting 
factor on stability in lipid nanoparticle (LNP)-based formulations9,10. 
Hydrolysis in LNP formulations degrades the amount of mRNA remain-
ing during shipping and storage, and hydrolysis in vivo after vaccine 
injection limits the amount of resulting protein produced over time9. 
Better methods to develop thermostable RNA therapeutics would allow 
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an mRNA molecule of length N is equivalent to the sum of degradation 
rates at each dinucleotide linkage in the backbone12:

kmRNA
deg = ∑

N−1
i=1 kideg, (1)

where kideg is the degradation of nucleotide linkage i. The half-life of 
the mRNA is calculated as

t1/2 =
ln 2

kmRNA
deg

. (2)

We tested the above model empirically by comparing the summed 
degradation rates per nucleotide to the abundance of the entire 
construct remaining from sequencing and found high agreement 
(Extended Data Fig. 1). Using the above ansatz, the resulting models 
were tested in a second blind challenge of predicting the overall deg-
radation of full-length mRNAs encoding a variety of model proteins, 
experimentally tested using PERSIST-seq. The models also demon-
strated increased predictive power over existing methods in predicting 
these overall degradation rates. These models therefore appear imme-
diately useful for guiding design of low-degradation mRNA molecules. 
Analysis of model performance suggests that the task of predicting RNA 
degradation patterns is limited by both the amount of data available 
as well as the accuracy of the structure prediction tools used to create 
input features. Further developments in experimental data and second-
ary structure prediction, when combined with network architectures 
such as those developed here, will further advance RNA degradation 
prediction and therapeutic design.

Results
Dual-crowdsourced competition design and assessment
The aim of the OpenVaccine Kaggle competition (Fig. 1b) was to develop 
computational models for predicting RNA degradation patterns. We 
asked participants on the Eterna platform to submit RNA designs using 
a web-browser design window (Fig. 1c), which resulted in a diversity of 
sequences and structures (Fig. 1d). In total, 150 participants (Supple-
mentary Table 1) submitted sequences. A secondary motivation was 
an opportunity for participants to receive feedback on RNA fragments 
they may wish to use in mRNA design challenges described by Leppek 
et al.13 In total, 3,029 RNA designs of length 107 nt were collected in 
the first ‘Roll Your Own Structure’ round I (RYOS-I), which opened on  
26 March 2020 and closed on 19 June 2020 (Fig. 1e).

We then obtained nucleotide-level degradation profiles for the 
first 68 nucleotides of these RNAs using In-line-seq13, a method for 
characterizing in-line RNA degradation in high throughput for the 
purposes of designing stabilized RNA therapeutics. In brief, a library 
of short RNA fragments was produced from a DNA library via in vitro 
transcription, each of which contained a unique barcode at the 3′ 
terminus. The RNA library was subjected to one of several accelerated 
degradation conditions, which included combinations of increases 
in Mg2+ concentration, basicity and temperature. The resulting frag-
mented RNA was reverse transcribed and the complementary DNA 
was sequenced. The base-pairing structures of the constructs were also 
characterized via selective 2′ hydroxyl acylation with primer extension 
(SHAPE; termed ‘Reactivity’ below)20,21, a technique to characterize 
RNA secondary structure. SHAPE experiments were performed analo-
gously to the In-line-seq experiments described above, but instead of 
degradation conditions, the RNA was subjected to a chemical modifier 
(1-methyl-7-nitroisatoic anhydride, 1M7) which acylates the 2′-OH 
group. When the RNA is reverse transcribed, such an acylation causes 
the reverse transcriptase enzyme to terminate. The resulting cDNA 
fragments were used to create a ‘reactivity profile’ for each molecule.

The Kaggle competition was designed to create models that 
would have predictive power for three of these data types, given RNA 
sequence and secondary structure as input (Fig. 1f). In addition to 

for increasing the equitability of their distribution, reducing their cost 
and possibly increasing their potency10,11.

An underexplored path to more shelf-stable mRNA therapeutics 
lies in the prospect of synonymous sequence design. A simple calcu-
lation reveals that there exist 10633 mRNA sequences that all code for 
the SARS-CoV-2 spike protein antigen. With an astronomical number 
of mRNA sequences available for a given therapeutic target, it is likely 
that some of these sequences may harbour structural features that 
make them more resistant to hydrolysis than first-generation mRNA 
vaccine formulations. Indeed, initial results have demonstrated that 
more stable mRNAs for model protein systems can be designed by 
optimizing candidate RNA sequences, scored with a model for RNA 
hydrolysis12,13. These initial studies indicate that stabilized mRNAs can 
produce equivalent, and for some designs, more protein compared 
with non-optimized mRNAs13. These design strategies are predicted 
to be able to produce mRNAs that do not activate double-stranded 
RNA immune sensors12 such as RIG-I14. These strategies have also 
demonstrated compatibility with mRNAs synthesized from modified 
nucleotides including pseudouridine13, which are used in mRNA vac-
cine formulations15.

However, the potential of any such mRNA design algorithm is 
limited by the accuracy of the underlying model in predicting RNA 
degradation. Previous models for RNA degradation have assumed 
that the probability of any RNA nucleotide linkage being cleaved is 
proportional to the probability of the 5′ nucleotide being unpaired12. 
Computational studies with this model suggested that at least a two-
fold increase in stability could be achieved through sequence design, 
while maintaining a wide diversity of sequences and features related to 
translatability, immunogenicity and global structure13. However, it is 
unlikely that degradation depends only on the probability of a nucleo-
tide being unpaired: local sequence- and structure-specific contexts 
may vary widely, as evidenced by ribozyme RNAs found in nature, 
whose sequences adopt specific structures that undergo self-scission16.

We wished to understand the maximum predictive power achiev-
able for RNA degradation on a short timescale for model development. 
To do this, we combined two crowdsourcing platforms: Eterna, an 
RNA design platform, and Kaggle, a platform for machine learning 
competitions. The problem of ‘RNA design’ involves designing RNA 
sequences with specific target properties such as a particular overall 
structure17,18, a target function such as sensor activity19, or, in this case, 
high chemical stability13. We used degradation data from short RNA 
fragments designed on the Eterna platform, which comprised a wide 
diversity of sequences and structures, and hypothesized that crowd-
sourcing the problem of obtaining a machine learning architecture 
would result in a model capable of expressing the resulting complexity 
of sequence- and structure-dependent degradation patterns (Fig. 1a). 
We hypothesized that this ‘dual crowdsourcing’ would lead to stringent 
and independent tests of the models developed, minimizing sharing 
of assumptions between the individuals designing the constructs to 
test (Eterna participants) and the individuals building the models 
(Kaggle participants) and leading to better generalizability on inde-
pendent datasets.

The resulting models were subjected to two blind prediction chal-
lenges. The first was in the context of the Kaggle competition, where the 
RNA structure probing and degradation data that participants would 
be aiming to predict was not acquired until after the competition was 
announced. The experimental method used for these data, In-line-seq, 
allowed for measuring the degradation rate of individual nucleotide 
linkages. However, this method relies on probing short RNA fragments 
and is unable to scale to make single-nucleotide degradation meas-
urements of full-length mRNAs for protein targets of interest. Other 
experimental methods such as PERSIST-seq13 have been developed to 
characterize the overall degradation rates per mRNA molecule, which 
is the primary value of interest to minimize when designing stabilized 
RNA-based therapeutics. In principle, the overall degradation rate of 
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scoring two types of degradation data, we also scored predictions 
for SHAPE data, hypothesizing that models would be more accurate 
if able to learn shared underlying features between degradation data 
and SHAPE data as a form of multi-task training. Nucleotides that are 
more reactive to the SHAPE reagent would be predicted to also have 
dinucleotide linkages with higher degradation rates.

In total, each independent construct of length N required predict-
ing 3 × N values for the three data types. In addition to these experimen-
tal data, Kaggle participants were also provided with features related 
to RNA secondary structure computed from available biophysical 
models to use if they wished. These features included N × N base-pairing 
probability matrices from EternaFold22, a recently developed pack-
age with state-of-the-art performance on RNA structural ensembles; 
dot-parenthesis notated minimum free energy (MFE) RNA secondary 
structure from the ViennaRNA package23; and a six-character featuriza-
tion of the MFE structure calculated using bpRNA24.

We developed training and ‘public test’ datasets from the RYOS-I 
dataset (Fig. 2). The public test dataset was used to rank submissions 
during the competition. The 3,029 constructs were filtered for those 
with mean signal-to-noise values greater than 1, resulting in 2,218 
constructs (Fig. 2, dark blue track, Methods). These constructs were 
segmented into splits of 1,179 in the public training dataset, 400 con-
structs in the public test set and 639 for the ‘private test’ dataset, the 
set which would be used in the final evaluation. The sequences that 
did not pass the signal-to-noise filter were also provided to Kaggle 
participants with the according description. The RYOS-I data con-
tained some ‘clusters’ of sequences where Eterna players included 
many small variations on a single sequence (clusters visible in Fig. 1d).  
To mitigate the possibility of sequence motifs in these clusters biasing 
evaluation, we segmented the RYOS-I data into a public training, public 
test and private test sets by clustering the sequences and including 
only sequences that were singly, doubly or triply clustered in the 
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Fig. 1 | Dual-crowdsourcing setup for creating predictive models of RNA 
degradation. a, mRNA molecules fold into secondary structures containing 
unpaired regions prone to hydrolysis and limiting to therapeutic stability. b, 
Screenshot of the OpenVaccine Kaggle competition public leaderboard. c, 
Screenshot of an example construct designed by an Eterna participant in the 
‘Roll Your Own Structure’ challenge (‘rainbow tetraloops 7’ by Omei). d, tSNE38 
projection of training sequences of ‘Roll Your Own Structure’ Round I, marker 
style and colours indicating 150 Eterna participants. Lines indicate example short 

68 nt RNA fragments. e, Timelines of dual-crowdsourced challenges. Eterna 
participants designed datasets that were used for training and blind test data for 
Kaggle machine learning competition to predict RNA chemical mapping signal 
and degradation. f, Kaggle participants were given RNA sequence and structure 
information and asked to predict RNA degradation profiles and SHAPE reactivity. 
In-structure encoding features, S = stem, H = hairpin, E = end, etc. from bpRNA24. 
Data are presented as mean ± standard deviation estimated from Poisson 
counting error in sequencing reads (n = 1 biologically independent sample).
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private test set (Methods). This strategy was described to Kaggle 
participants during the competition.

To ensure that the majority of the data used for the private test 
set were fully blind, we initiated a second ‘Roll Your Own Structure’ 
challenge that was launched for Eterna design collection on 18 August 
2020. Given that useful models for degradation should be agnostic to 
RNA length, we designed the constructs in RYOS-II to be 34 nucleotides 
longer (102 versus 68 nt) than the constructs in RYOS-I to discour-
age modelling methods that would overfit to constructs of length 
68. Design collection was closed on 7 September, 3 days before the 
launch of the Kaggle challenge on 10 September. The RYOS-II wet-lab 
experiments were conducted concurrently with the Kaggle challenge, 
enabling a completely blind test for the models developed on Kaggle. 
The Kaggle competition was closed on 6 October. The RYOS-II was simi-
larly clustered and filtered to ensure that the test set used for scoring 
consisted primarily of singly and doubly clustered constructs. Three 
data types were used to score models: SHAPE; 10 mM Mg2+, pH 10, 1 day, 
24 °C; and 10 mM Mg2+, pH 7.2, 1 day, 50 °C. Models were scored using 
the mean column RMSE (MCRMSE) across three data types, defined as

MCRMSE = 1
Nt

∑
Nt

j=1√
1
n ∑

n
i=1 (yij − ̂yij)

2, (3)

where Nt is the number of scored data types, n is the number of nucle-
otides in the dataset, yij is the measured data value, and ̂yij is the pre-
dicted data value for nucleotide i in sequence j. Two additional data 
types were included in the training data corresponding to RNAs 
degraded for 7 days without Mg2+ rather than 1 day with Mg2+: (pH 10, 
7 days, 24 °C; and pH 7.2, 7 days, 50 °C). However, these data were not 
collected for the second round to accelerate competition turnaround.

Kaggle team performance and common attributes of top models
During the 3 week competition period, 1,636 teams submitted 35,806 
solutions. The overall performance of teams compared to baseline 
models for RNA degradation is depicted in Fig. 3a. Kaggle entries sig-
nificantly outperformed the ‘DegScore’ linear regression model for 
RNA degradation13 by 37% in MCRMSE for the public test set and 25% 
for the private test set (Fig. 3a). We found that for predictions from the 
top 100 teams (Extended Data Fig. 2) as well as amongst predictions 
between individual constructs (Extended Data Fig. 3), performance 
between data types was highly correlated in the public dataset and 
less strongly correlated in the private dataset. Overall, the weakest 
correlation was between SHAPE and degradation data types.

An additional benchmark model that used the DegScore win-
dowed featurization (see Methods) with improved XGBoost25 training, 
termed the DegScore-XGB model, resulted in moderate improvement 
(public MCRMSE 0.35854, private MCRMSE 0.43850 compared to 

public MCRMSE 0.39219, private MCRMSE 0.47197 for the original 
DegScore). Kaggle participants developed feature encodings beyond 
what was provided. One of the most widely used community-developed 
featurizations was a graph-based distance embedding depicted in 
Fig. 3b. Several teams, including the top three teams, used a publicly 
shared autoencoder/GNN/GRU kernel (https://www.kaggle.com/code/
mrkmakr/covid-ae-pretrain-gnn-attn-cnn/), which alone achieved a 
MCRMSE of 0.24860 on the public and 0.36106 on the private test set 
(Fig. 3a). This notebook was the most forked (forked 936 times as of 
March 2022) and upvoted (upvoted 386 times). The architecture of 
the winning ‘Nullrecurrent’ model (Fig. 3c) depicts the architecture 
of this shared kernel, which feeds 1D and 2D features, including adja-
cency matrices based on the secondary structure of the RNA inputs, 
into a multi-head attention network, the output of which is then fed 
into convolutional neural net layers. Many teams additionally cited 
pseudo-labelling and generating additional mock data as being integral 
to their solutions. The architecture of the second-placed team (Fig. 3d) 
demonstrates an example implementation of using pseudo-labelling. 
The practice of pseudo-labelling, which is similar to the student-teacher 
learning paradigm,26 involves using predictions from one model as 
‘mock ground truth’ labels for another model. To generate additional 
mock data, participants generated random RNAs and structure featuri-
zations from five different secondary structure prediction algorithms 
using the package Arnie (https://github.com/DasLab/arnie) and used 
these RNAs in training as well (see Supplementary Information for more 
detailed descriptions of solutions from Kaggle teams).

We explored whether increased accuracy in modelling could be 
achieved by ensembling models, that is, combining predictions from 
multiple models; a common feature of Kaggle competitions is that win-
ning solutions are dissimilar enough that ensembled models frequently 
improve predictive ability. We found that ensembling resulted in only 
modest improvements (Methods), suggesting the majority of signal 
had been captured by the top two models.

Top models are capable of deep representation of RNA motifs
We analysed predictions from the first-placed model (‘Nullrecurrent’) in 
greater depth to better understand its performance. Across all nucleo-
tides in the private test set, 41% of nucleotide-level predictions for 
SHAPE reactivity agreed with experimental measurements with an error 
margin that was lower than experimental uncertainty; for comparison, 
if experimental errors are distributed as normal distributions, a perfect 
predictor would agree with experimental values over 68% of data points. 
For Deg_Mg_pH10 and Deg_Mg_50C, 28% and 42% of predictions were 
within error, respectively.

The nucleotides with the highest RMSE in the Deg_Mg_pH10 
data type were any nucleotide type in bulges, and U’s in any unpaired 
context. Figure 4a depicts representative constructs with the lowest 
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Fig. 2 | Signal-to-noise filtering and hierarchical clustering was used to filter the constructs designed by Eterna participants to create a test set of constructs 
that were maximally distant from other test constructs. Heatmaps of data type ‘Deg_Mg_pH10’ (10 mM Mg2+, pH 10, 1 day, 24˚C).
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RMSE for the Deg_Mg_pH10 data type out of the private test data, 
demonstrating that diverse structures and structure motifs were 
capable of being predicted correctly. Aggregating predictions from 
the Nullrecurrent model over secondary structure motifs (Fig. 4b) 
demonstrates that the Nullrecurrent model captured patterns previ-
ously observed in the experimental signal13. The most reactive RNA 
structure motifs were triloops, a previously unknown biological find-
ing. Another unexpected finding from these data was that symmetric 
internal loops were more stable against degradation than internal 
loops with asymmetric lengths. The fact that the Nullrecurrent model 
was able to capture this trend indicates that using such models within 
a design algorithm would allow for an automated way to model such 
biochemical attributes within a designed mRNA. Constructs with the 
highest RMSE highlight instances in which the provided structure 
features were incorrect. Figure 4c depicts two constructs with the 
highest RMSE for the SHAPE modification prediction. The SHAPE 
data for the first construct, ‘2204Sept042020’, has high reactivity in 
predicted stem areas, indicating that the stems were unfolded in solu-
tion. By contrast, construct ‘Triple UUUU Tetraloops’ has low reactivity 
in the exterior loop, suggesting that those nucleotides were paired 
rather than unpaired. These examples notwithstanding, we found no 
correlation between the EternaScore, a metric indicating how closely 
the experimental reactivity signal matches the predicted structure17, 
and RMSE summed per construct, suggesting that, in general, quality 
of the input structure features was not a limitation in model training 
(Extended Data Fig. 4).

Kaggle models improve prediction of mRNA degradation
As an independent test, we assessed the ability of the top two Kag-
gle models to predict the overall degradation rates for a dataset of 
full-length mRNAs that were not publicly available at the time of 
the Kaggle competition. Because the throughput of the In-line-seq 
experimental method is limited to RNA lengths easily accessible by 
Illumina sequencers (500 nt), these mRNAs could not be probed at 
a per-nucleotide level akin to the datasets used in the Kaggle experi-
ments. However, their overall degradation rates (related to the 
per-nucleotide degradation rate via equation (1)), were characterized 
using PERSIST-seq13. In brief, the PERSIST-seq technique measured 
the overall degradation rate of a mRNA by monitoring the mRNA’s 
abundance using reverse transcription followed by polymerase chain 
reaction amplification (RT-PCR) at varying timepoints after degrada-
tion was initiated. The lengths of these mRNAs ranged from 504 to 1,588 
with a median length of 928 (Fig. 5a), nearly tenfold longer than the 
longest RNA fragments used in the OpenVaccine Kaggle challenge (full 
mRNA dataset, attributes and calculations in Supplementary Table 2).  
The experimentally determined structures of two example mRNAs 
designed by Eterna participants13 are depicted in Fig. 5b. Both code 
for Nanoluciferase but have a 2.5-fold difference in hydrolysis lifetime. 
‘Yellowstone’ was designed by an Eterna participant using codons 
that mimic nucleotide frequencies from organisms in Yellowstone 
hot springs27; ‘LinearDesign-1’ was designed by an Eterna participant 
using an initial sequence from the LinearDesign mRNA structure opti-
mization server28.
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represent nucleotide proximity to other nucleotides in secondary structure. 
c, Schematic of the single neural net (NN) architecture used by the first-
placed solution. This solution combined two sets of features into a single NN 

architecture, which combined elements of classic recurrent neural networks and 
convolutional neural networks. d, Schematic of the full solution pipeline for the 
second-placed solution. This solution combined single-model neural networks, 
similar to the ones used for the first-placed solution, with more complex 
second- and third-level stacking using XGBoost25 as the higher level learner. 
Abbreviations in schematics: CNN: convolutional neural network, GRU: gated 
recurrent unit, GNN: graph neural network, LSTM: long short-term memory 
neural network, SN: signal-noise, XGB: XGBoost.
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To compare the Kaggle predictors to the single overall degradation 
rate from PERSIST-seq, we made predictions for all nucleotides in the 
full mRNA constructs and summed the predictions from the region that 
was captured by RT-PCR in PERSIST-seq which, in most cases, included 
the mRNA’s 5′ untranslated region (UTR) and coding sequence (CDS) 
(Fig. 5c). Carrying out predictions on the full RNA sequence and then 
summing over the probed window accounts for interactions between 
the untranslated regions and CDS, as can be seen for two example 
constructs in Fig. 5b–nucleotides in the 5′ and 3′ UTRs are predicted to 
pair with the CDS. We made predictions for 188 mRNAs in four classes of 
protein targets: a short multi-epitope vaccine (MEV), the model protein 
nanoluciferase, with one class consisting of varied UTRs and a second 
consisting of varied CDSs, and enhanced green fluorescent protein 
(eGFP). We found that the Kaggle second-placed ‘Kazuki2’ model exhib-
ited the highest correlation to experimentally determined degradation 
rates, followed by the Kaggle first-placed ‘Nullrecurrent’ model (Fig. 5c),  
with Spearman correlation coefficients of 0.48 (p = 3.3 × 10–12) and 
0.43 (p = 9.5 × 10–10), respectively. Both Kaggle models outperformed 
unpaired probability values from ViennaRNA RNAfold v. 2.4.1423 
(R = 0.25, p = 5.4 × 10–4), the DegScore linear regression model (R = 0.36, 

p = 2.9 × 10–7) and the DegScore-XGBoost model (R = 0.42, p = 1.8 × 10–9). 
An ensemble of the Nullrecurrent and Kazuki2 models did not outper-
form the Kazuki2 model (R = 0.47, p = 1.4 × 10–11), again suggesting that 
the models themselves had reached their predictive potential. To esti-
mate an upper limit for correlation considering experimental error, we 
resampled the measured degradation rates from within experimental 
error and calculated the correlation to the mean degradation rate. This 
resulted in a Spearman correlation of 0.88 (Table 1).

Discussion
The OpenVaccine competition uniquely leveraged resources from two 
complementary crowdsourcing platforms: Kaggle and Eterna. The 
participants in the Kaggle competition were tasked with predicting 
stability measurements of individual RNA nucleotides. The urgency of 
timely development of a stable COVID-19 mRNA vaccine necessitated 
that the competition be run on a relatively short timeframe of three 
weeks, as opposed to three months, which is more common with Kag-
gle competitions.

The models presented here are immediately useful for mRNA 
design in that they could be called within a stochastic mRNA design 
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algorithm12 to minimize the predicted degradation. There is likely 
further opportunity to leverage advancements in natural language 
processing to use datasets such as the ones presented here to gen-
erate mRNA designs using text-generation approaches29–31. The 
degradation data used in this competition were from RNA synthe-
sized with unmodified nucleotides, but mRNA vaccines are being 
formulated with modified nucleotides including pseudouridine or N-
1-methyl-pseudouridine15. Modified nucleotides in general will have 
differing underlying thermodynamics32, and there is a need to develop 
datasets and predictive models to predict structures and resulting 
stabilization of mRNAs formulated with modified nucleotides. The 
In-line-seq method can be performed using RNA with modified nucleo-
tides, and the resulting data could be used to re-train models with archi-
tectures such as the ones presented here. Short of developing complete 

new thermodynamic parameters for modified nucleotides, it may be 
possible to develop principled heuristics to adapt models to mRNAs 
synthesized with modified nucleotides. For instance, Leppek et al. 
modified the DegScore model for pseudouridine by setting all uridine 
degradation measurements to zero to mimic the stabilization effect 
of pseudouridine, and saw moderate improvement in correlation13.

Kaggle competitions with relatively small datasets can be subject 
to serious overfitting to the public leaderboard, which often leads to 
a ‘shake-up’ of the leaderboard when the results on the unseen test set 
are announced. In this competition the shake-up was minimal—most 
of the top teams were ranked close to the same position on the private 
leaderboard as they were on the public leaderboard. As the private 
leaderboard was determined on data that had not been collected at the 
time of the competition launch, this result suggests that the models 
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to PERSIST-seq degradation rates, which account for degradation between two 
RT-PCR primers designed to capture degradation in the CDS region. d, Length-
normalized predictions from the Kaggle first-placed ‘Nullrecurrent’ model and 
Kaggle second-placed ‘Kazuki2’ model show improved prediction over unpaired 
probabilities from ViennaRNA RNAfold23 and the DegScore linear regression 
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Data are presented as mean values ± standard error estimated from the PERSIST-
seq experiment, n = 3 biologically independent samples. Significance test for 
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are robust and generalizable. We demonstrated the top two models 
generalized to the task of predicting degradation for full-length mRNA 
molecules that were tenfold longer than the constructs used for train-
ing. We speculate that the use of a separate, independently collected 
dataset for the private leaderboard tests—a true blind prediction chal-
lenge—was important for ensuring generalizability. The winning solu-
tions all combined neural network architectures that are commonly 
used in modelling 1D sequential data, including multihead attention, 
recurrent NNs (LSTMs and GRUs) and 1D CNNs. The effectiveness of 
pseudo-labelling has two implications: more data will likely benefit 
any future modelling efforts, and the simple architectures that were 
used have enough capacity to benefit from more data.

An under-investigated aspect of the models presented here is the 
effect of training on multiple data types. We speculate that because 
SHAPE reactivity has higher signal-to-noise than the degradation data 
types (Extended Data Fig. 5), models with architectures that allowed 
for weight-sharing between data types benefitted from learning to 
predict SHAPE reactivity as well. Directly predicting RNA degrada-
tion without concurrently training on SHAPE data may result in worse 
model performance. Conversely, the model architectures presented 
here may also prove to have useful biological applications in predicting 
only SHAPE reactivity data. Future directions for model development 
include training such models on larger chemical mapping datasets from 
more diverse experimental sources22 and integrating into inference 
frameworks for RNA structure prediction22,33.

Finally, the models for predicting RNA hydrolysis developed in 
this work may prove useful in computationally identifying classes of 
natural RNAs that have evolved to be resistant to degradation34. Such 
future bioinformatic analysis may suggest entirely new biologically 
inspired approaches for designing hydrolysis-resistant RNA therapeu-
tics. More immediately, it will be of strong interest to computationally 
design mRNA sequences that optimize the predicted degradation 
stability discovered in this study, and to experimentally test if such 
sequences are indeed sufficiently stable to enable wider distribu-
tion of mRNA vaccines. In silico design of neural-network-predicted 
properties is an active area of research, and we speculate that further 
dual-crowdsourcing studies may help accelerate progress.

Methods
Initial feature generation
As a starting point for Kaggle teams, we supplied a collection of features 
for each RNA sequence, including the minimum free energy (MFE) 
structure according to the ViennaRNA 2 energy model23, ‘loop type’, 
or secondary structure type assignments generated with bpRNA24 
(S = Stem, I = Internal loop, B = Bulge, H = Hairpin, M = Multiloop, 
X = external loop, E = end, terminology adopted from bpRNA) and 
the base-pair probability matrix according to the EternaFold22 energy 
model. These features were generated using Arnie (https://github.
com/DasLab/arnie).

Experimental data generation
The first experimental dataset used in this work, for the public training 
and test set, resulted from the ‘Roll-Your-Own-Structure’ Round I lab on 
Eterna, and had been generated previously by Leppek et al.13

The second experimental dataset used in this work, for the private 
test set, was generated for this work specifically. To produce these 
data, and for precise consistency with the public training and test set, 
In-line-seq was carried out as described by Leppek et al.13 In brief, DNA 
templates were ordered via custom oligonucleotide pool from Custom 
Array/Genscript, prepended by the T7 RNA polymerase promoter. Tem-
plates were amplified via PCR, transcribed to RNA via the TranscriptAid 
T7 High Yield Transcription Kit (Thermofisher, K0441), and the purified 
RNA was subjected to degradation conditions: (1) 50 mM Na-CHES 
buffer (pH 10.0) at room temperature without added MgCl2; (2) 50 mM 
Na-CHES buffer (pH 10.0) at room temperature with 10 mM MgCl2; (3) 
phosphate-buffered saline (PBS, pH 7.2; Thermo Fisher Scientific-Gibco 
20012027) at 50 °C without added MgCl2; and (4) PBS (pH 7.2) at 50 °C 
with 10 mM MgCl2. In parallel, purified RNA was subjected to SHAPE 
structure-probing conditions, and one sample was subjected to the 
SHAPE protocol absent addition of the 1-methyl-7-nitroisatoic anhy-
dride reagent.

cDNA was prepared from the six RNA samples (SHAPE probed, 
control reaction and four degradation conditions). We pooled 1.5 μl of 
each cDNA sample together, ligated with an Illumina adapter, washed 
and resuspended the ligated product, which was quantified by qPCR, 
sequenced using an Illumina Miseq. Resulting reads were analysed 
using MAPseeker (https://eternagame.org/software) following the 
recommended steps for sequence assignment, background subtrac-
tion of the no-modification control, correction for signal attenuation 
and reactivity profile normalization as described previously20.

Signal-to-noise filtering
Data were filtered to include RNAs with a minimum value >0.5, maxi-
mum value <20 across five RNA degradation conditions and RNAs with 
a signal/noise ratio for SHAPE reactivity greater than 1.0. Signal/noise 
ratio for each construct was calculated as

SN ratio = 1
M ∑

M
i=1

1
N ∑

N
j=1

μi,j
σi,j

, (4)

where μi,j is the mean value of data type i at nucleotide j, and σi,j is stand-
ard deviation of data type i at nucleotide j, as calculated by MAPseeker. 
The data that did not pass the above filters were also provided to par-
ticipants to give the option to use in training, and was flagged with the 
variable ‘SN_filter = 0’. Applying the above filter did not significantly 
alter the distribution of the median reactivity or signal/noise of any 
data type (SHAPE reactivity, Deg_Mg_pH10, Deg_Mg_50C) within either 
dataset (RYOS 1 or RYOS 2; Extended Data Fig. 6). However, average 
signal/noise of the Round II constructs was higher than the Round 
1 constructs. Average signal/noise ratio for SHAPE reactivity across 
each dataset increased from 5.3±2.4 (mean ± standard deviation) to 
6.2±3.5; for deg_Mg_pH10, 4.1±2.0 to 6.4±3.8 for Rounds 1 and 2; and 
for deg_Mg_50C 3.87±1.8 to 5.3±3.1 (Extended Data Fig. 5).

Table 1 | Results from models tested in this work on Kaggle 
OpenVaccine public leaderboard, private test set and 
orthogonal mRNA degradation results

Public test 
set (400 
constructs, 
27,200 nt)

Private test 
set (1,801 
constructs, 
162,316 nt)

mRNA degradation 
prediction from ref. 6 
(188 constructs)

Metric MCRMSE MCRMSE Spearman correlation

Experimental error 0.12491 0.10571 0.88a

Single model  
(blind prediction)

DegScore 0.39219 0.47297 0.36

DegScore-XGBoost 0.35854 0.43850 0.42

Nullrecurrent 0.22758 0.34198 0.43

Kazuki2 0.22756 0.34266 0.48

Ensembled models 
(post hoc)

Genetic algorithm  
(10 of top 100 selected)

0.2237 0.3397

Ensemble top two 
models

0.2244 0.33788 0.47

Genetic algorithm on 
private test set

0.3382 –

aSpearman correlation of experimental length-normalized degradation rate,resampled from 
experimental error.
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We wished to ascertain if the measured reactivities and degrada-
tion from Round 2 needed to be rescaled to match Round 1. To assess 
this, we compared distributions of nucleotide reactivities from nucleo-
tide types. We found that for each data type and nucleotide type, the 
median values for Round 2 were within the 50% interquartile range of 
Round 1 (Extended Data Fig. 7a). We also compared distributions of 
reactivity from the first five nucleotides, which are a constant ‘GGAAA’ 
for each construct. The median values for each nucleotide in this were 
within the 50% interquartile range for all except for the first two GG’s 
in the ‘Deg_Mg_pH10’ data type (Extended Data Fig. 7b). We elected to 
not rescale the data from Round 2.

Private test set curation
The private test set was curated to avoid bias toward more highly rep-
resented sequence motifs from the Eterna designs. Sequences that 
passed the above filters were clustered hierarchically using the ‘ward’ 
method in scikit-learn35 and then clustered at a cophenetic distance 
of 0.5. That is, sequences within the same cluster have <50% sequence 
similarity. All sequences that were in clusters with one, two or three 
members were included in the private test set, as well as one cluster 
member from other randomly selected clusters to attain the desired 
number of test set constructs.

Comparing to the DegScore model
We compared Kaggle models to the ‘DegScore’ linear model13, which 
models degradation at a given nucleotide i as a linear function of nucle-
otides surrounding i:

Yi = ∑w
k=−w [∑n∈{A,C,G,U} (βk,nIi+k,n)]

+∑w
k=−w [∑s∈{H,E,I,M,B,S} (βk,sIi+k,s)] + β0,

(5)

where β represents learned coefficients and I is an indicator func-
tion corresponding to the identity of nucleotide i+k. I accounts for 
sequence identity n(A,C,G,U) and its secondary structure type assign-
ment s (S = stem, E = external loop, I = internal loop, B = bulge, H = hair-
pin, M = multiloop). The secondary structure type assignment ‘X’ for 
external loop was replaced with ‘E’ in the DegScore model in ref. 13, to 
reflect the biophysical similarity between the two categories. w is the 
maximum window distance, set to be 12 by Leppek et al.13. For a window 
size of w = 12, there are 251 parameters (25 positions with 4 sequence 
indicators and 6 secondary structure indicators for each position, and 
1 intercept parameter).

Ensembling models
We explored whether increased accuracy in modelling could be 
achieved by combining models. We used a genetic algorithm to ensem-
ble maximally 10 of the top 100 models. The score on the public dataset 
was used to optimize, with the final ensembled model evaluated on 
the private dataset. With this method, ensembling achieved a public 
MCRMSE of 0.2237 (compared to the best public MCRMSE of 0.2276) 
and a private MCRMSE of 0.3397 (compared to the best private test set 
MCRMSE of 0.3420). By comparison, averaging the outputs of the top 
two models gave a result of 0.2244 public, 0.33788 private. Blending the 
top two solutions with the third solution did not improve the result. An 
estimated bound of ensembling can be found by optimizing directly to 
the private ensemble score. With this method, it was possible to achieve 
a private ensemble score of 0.3382 (again, versus best Leaderboard 
MCRMSE 0.3420). The improvement of 0.0038 over the leaderboard 
for this last approach is about the distance between the first-placed 
and tenth-placed teams, and the ‘correct’ way gives an improvement 
that is the distance between the first- and fifth-placed teams. All these 
experiments suggest that most of the signal has been captured by 
the top two models, and that the use of further ensembling provides, 
at best, modest improvements. The seemingly puzzling result that 

the simple ensemble of the top two models outperforms the genetic 
algorithm blend of the top 10 (on the private test set) suggests that the 
genetic algorithm did not find a global minimum for model weights.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets are downloadable in raw RDAT format from https://rmdb.
stanford.edu at the following accession numbers: SHAPE_RYOS_0620, 
RYOS1_NMD_0000, RYOS1_PH10_0000, RYOS1_MGPH_0000, 
RYOS1_50C_0000, RYOS1_MG50_0000, RYOS2_1M7_0000, 
RYOS2_MGPH_0000, RYOS2_MG50_0000. Kaggle-formatted train 
and test sets are downloadable from https://www.kaggle.com/c/
stanford-covid-vaccine. Datasets, scripts and models are also included 
at https://www.github.com/eternagame/KaggleOpenVaccine. Source 
data are provided with this paper.

Code availability
Code to run the Nullrecurrent model and the DegScore-XGBoost model 
is available at www.github.com/eternagame/KaggleOpenVaccine36. 
Code to use and reproduce the linear regression DegScore model is 
available at www.github.com/eternagame/DegScore37.
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Extended Data Fig. 1 | Summed degradation rates and overall degradation rate are highly correlated. Summed per-nucleotide degradation rates and overall 
degradation rate, estimated by log(abundance of full-length construct), are highly correlated in Rounds 1 and 2.
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Extended Data Fig. 2 | Correlations between data types across models. Correlation between RMSE by data type for the top 100 teams for the (A) public and 
(B) private test sets. Significance test for Spearman correlation value is two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data are 
uncorrelated.
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Extended Data Fig. 3 | Correlations between data types across constructs for top model. Correlation between RMSE by data type across constructs from the 1st 
place ‘Nullrecurrent’ model on the private test set. Significance test for Spearman correlation value is two-sided p-value for a hypothesis test whose null hypothesis is 
that two sets of data are uncorrelated.
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Extended Data Fig. 4 | Comparing model error and EternaScore. RMSE of 
Nullrecurrent model did not significantly correlate with EternaScore, a measure 
of how closely the SHAPE reactivity data matched the predicted secondary 

structure. Significance test for Spearman correlation value is two-sided 
p-value for a hypothesis test whose null hypothesis is that two sets of data are 
uncorrelated.
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Extended Data Fig. 5 | Signal-noise of data splits. Average signal-noise from data splits, separated by data from Rounds 1 and 2. Solid lines: median, dotted lines: 
25/75% percentile.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00571-8

Round 1 Round 2

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n 

SH
AP

E 
re

ac
tiv

ity

Before S/N filter
After S/N filter

Round 1 Round 2

0

5

10

15

20

25

Si
gn

al
/N

oi
se

, S
H

AP
E 

re
ac

tiv
ity

Before S/N filter
After S/N filter

Round 1 Round 2

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n 

de
g_

M
g_

pH
10

Round 1 Round 2

0

5

10

15

20

25

Si
gn

al
/N

oi
se

, d
eg

_M
g_

pH
10

Round 1 Round 2

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n 

de
g_

M
g_

50
C

Round 1 Round 2

0

5

10

15

20

25

Si
gn

al
/N

oi
se

, d
eg

_M
g_

50
C

A

B

Extended Data Fig. 6 | Effect of signal-noise filter on data distributions. Effect of signal-noise filter (described in Methods) on (A) median reactivity/degradation 
per construct and (B) average signal-noise per construct for Rounds 1 and 2. Solid lines: median, dotted lines: 25/75% percentile.
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