
PNAS  2022 Vol. XX No. XX e2 118379119 https://doi.org/10.1073/pnas.2107266119   1 of 15

Redox signaling by glutathione peroxidase 2 links vascular 
modulation to metabolic plasticity of breast cancer
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In search of redox mechanisms in breast cancer, we uncovered a striking role for glu-
tathione peroxidase 2 (GPx2) in oncogenic signaling and patient survival. GPx2 loss 
stimulates malignant progression due to reactive oxygen species/hypoxia-inducible factor 
1-alpha/VEGFA signaling, causing poor perfusion and hypoxia, which were reversed by 
GPx2 re-expression or HIF1α inhibition. Ingenuity Pathway Analysis revealed a link 
between GPx2 loss, tumor angiogenesis, metabolic modulation, and HIF1α signaling. 
Single-cell RNA analysis and bioenergetic profiling revealed that GPx2 loss stimulated 
the Warburg effect in most tumor cell populations, except for one cluster which was 
capable of oxidative phosphorylation and glycolysis, as confirmed by discrete co-expres-
sion of phosphorylated AMPK and GLUT1. These findings underscore a unique role for 
redox signaling by GPx2 dysregulation in breast cancer, underlying tumor heterogeneity, 
leading to metabolic plasticity and malignant progression.

breast cancer | progression | glutathione peroxidase 2 | reactive oxygen species | hypoxia |  
HIF1α | VEGFA | angiogenesis | oxidative phosphorylation | glycolysis | scRNA-seq | metabolic 
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Tumor cell hyperproliferation results in cell crowding causing nutrients and oxygen dep-
rivation, leading to hypoxia (1). To meet the energetic demands of cancer cells, mito-
chondria consume the cellular oxygen, resulting in oxidative phosphorylation, leading to 
reactive oxygen species (ROS) production (2).

While low to mild ROS levels promote oncogenic signaling and malignancy, high levels 
of ROS cause DNA damage and apoptosis (3, 4), an effect that is often co-opted by 
chemotherapy or radiation to target cancer cells (5). Tumor cells evade ROS cytotoxicity 
by increasing the expression of antioxidant enzymes such as superoxide dismutase, peri-
odoxin-theriodoxin, catalases, and glutathione peroxidases (6, 7), which generally convert 
hydrogen peroxide produced by mitochondrial electron leak into water using glutathione 
(8).

ROS are known to stimulate oncogenic signaling with special emphasis on hypoxia-in-
ducible factor 1-alpha (HIF1α). ROS stabilize HIF1α protein via inhibition of the oxy-
gen-sensing propyl hydroxylase protein D (PHD), which normally marks HIF1α for 
proteasomal degradation (9, 10). HIF1α promotes malignancy via effects on tumor angi-
ogenesis, proliferation, epithelial-to-mesenchymal transition, stemness, and glucose metab-
olism (1, 11). HIF1α stimulates VEGFA gene transcription which promotes angiogenesis, 
thereby increasing nutrient availability and oxygen supply to hypoxic tumor areas (12, 
13). Paradoxically, VEGFA overproduction may also cause vascular malfunction, resulting 
in immature or poorly perfusing vessels, thereby exacerbating hypoxia (14). This further 
stabilizes HIF1α protein, which shifts cells from oxidative phosphorylation (OXPHOS) 
to aerobic glycolysis, known as the Warburg effect (12, 15). While OXPHOS generates 
high levels of ATP as compared to glycolysis, tumor cells leverage glucose metabolism to 
generate building blocks for biomass biosynthesis (16). However, aggressive cancer cells 
were also shown to be able to use OXPHOS and glycolysis, which might be necessary to 
survive under hypoxic and aerobic conditions that can be encountered at the primary 
tumor, in circulation, or at metastatic sites (17, 18).

A comparison of carcinoma cell lines derived from the polyoma middle T (PyMT) 
mammary tumor model unraveled a dramatic downregulation of glutathione peroxidase 
2 (GPx2) in metastatic relative to non-metastatic cells from the parental tumor. Moreover, 
the loss of GPx2 in several molecular breast cancer (BC) subtypes was correlated with 
poor patient survival, underscoring the clinical significance of GPx2 loss in BC. GPx2 
knockdown (KD) in murine and human BC cells stimulates ROS/HIF1α/VEGFA sign-
aling which enhanced malignant progression via vascular modulation, resulting in poor 
perfusion, hypoxia, and a shift from OXPHOS to aerobic glycolysis (the Warburg effect). 
Transcriptomic analysis of scRNA-seq data and bioenergetic profiling confirmed that 
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Redox regulation of breast 
cancer underlies malignant 
progression. Loss of the antioxi-
dant glutathione peroxidase 2 
(GPx2) in breast cancer cells 
increases reactive oxygen species 
(ROS), thereby activating hypox-
ia-inducible factor 1-alpha (HIF1α) 
signaling. This in turn causes 
vascular malfunction, resulting in 
hypoxia and metabolic heteroge-
neity. HIF1α suppresses oxidative 
phosphorylation and stimulates 
glycolysis (the Warburg effect) in 
most of the tumors, except for 
one cancer subpopulation which 
was able to use both metabolic 
modalities. Hence, adopting a 
hybrid metabolic state may allow 
tumor cells to survive under 
aerobic or hypoxic conditions, a 
vulnerability that may be 
exploited for therapeutic 
targeting by either metabolic or 
redox-based strategies.
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The expansion of mitochondrial DNA molecules with deletions has been associated
with aging, particularly in skeletal muscle fibers; its mechanism has remained unclear
for three decades. Previous accounts have assigned a replicative advantage (RA) to
mitochondrial DNA containing deletion mutations, but there is also evidence that
cells can selectively remove defective mitochondrial DNA. Here we present a spatial
model that, without an RA, but instead through a combination of enhanced density
for mutants and noise, produces a wave of expanding mutations with speeds consistent
with experimental data. A standard model based on RA yields waves that are too fast.
We provide a formula that predicts that wave speed drops with copy number, consonant
with experimental data. Crucially, our model yields traveling waves of mutants even
if mutants are preferentially eliminated. Additionally, we predict that mutant loads
observed in single-cell experiments can be produced by de novo mutation rates that are
drastically lower than previously thought for neutral models. Given this exemplar of
how spatial structure (multiple linked mtDNA populations), noise, and density affect
muscle cell aging, we introduce the mechanism of stochastic survival of the densest
(SSD), an alternative to RA, that may underpin other evolutionary phenomena.

aging | mitochondria | evolution | stochastic | biomathematics

The accumulation of mitochondrial DNA (mtDNA) mutations to high levels has been re-
peatedly linked to aging (1, 2), especially in postmitotic tissues such as neurons or muscles
(3). In these tissues, a bioenergetic defect can be triggered when the proportion of mutant
mtDNA in a region exceeds a threshold value (4, 5). Sarcopenia, the loss of skeletal muscle
mass and strength with age, is widely associated with high levels of mtDNA with deletions
(Fig. 1A) (6–8). A defining feature of the expansion of mtDNA deletions in muscle fibers
is clonality: Damaged regions of the muscles are taken over by a single variant (8–10). The
mechanism behind this phenomenon has remained unclear despite numerous authors us-
ing mathematical modeling to probe it (11–18). Some models reproduce the clonal expan-
sion by assigning a replicative advantage (RA) to mtDNA deletions (14–18), considering
them as a “selfish” genome that spreads despite being detrimental to cellular health (19,
20). Biological mechanisms to justify the supposed RA of deletions have been suggested
(21–28), but for postmitotic tissues like the skeletal muscle, evidence remains equivocal
(29). Moreover, there is evidence that mtDNA with deletions is preferentially eliminated
(30, 31), which makes its expansion more puzzling. Neutral stochastic models have also
been proposed (11–13), describing the clonal expansion in terms of neutral stochastic
drift, but they require excessively high de novo mutation rates to reproduce observed mu-
tant loads in short-lived animals (14, 32). Furthermore, most existing models neglect the
spatial structure of muscle fibers. Another widely reported feature of the clonal expansion
is the higher density of deletions: Regions of the muscle fiber taken over by the mutations
present an approximately fivefold increase (7, 8, 33–35) in the absolute mtDNA copy
number. Therefore, mtDNA deletions are the denser species, as their copy number is
higher than that of wild types in the same system. Molecular mechanisms to explain the
increased mutant density have been previously proposed, including the “maintenance of
wild type” hypothesis (11, 36), homeostasis on adenosine triphosphate (ATP) production
(37, 38), proteome status (13, 39), and copy number (40). These mechanisms essentially
hypothesize that malfunctioning mutant mtDNA molecules cause an overall increase in
mtDNA replication as a nuclear response to restore some compromised cellular function,
such as ATP production or protein synthesis. This brings about a higher absolute number
of mtDNA molecules when the proportion of mutants is higher, leading to a higher
mutant density.

In this paper, we introduce a stochastic model of the spatiotemporal dynamics
of mtDNA populations in skeletal muscle fibers that, consonant with data, predicts
the clonal expansion of deletions without assuming any RA, even allowing mutants
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Clonal spread of DNA mutations
is a fundamental phenomenon in
both evolution and aging. High
levels of mitochondrial DNA
mutations are linked to muscle
weakness in aging, which has a
knock-on effect on overall health,
contributing to mounting
pressures on health care systems.
For decades, scientists have
asked how mitochondrial DNA
harboring deleterious mutations
can expand in skeletal muscle
fibers. We provide evidence that
this expansion could be driven by
an unusual evolutionary
mechanism, requiring only noise
(stochasticity), a higher density of
mutants, and a system with
spatial structure. Critically,
mutants need not replicate faster.
This mechanism, that we have
termed stochastic survival of the
densest, can yield traveling waves
of mutants, with potential
applications in a range of
evolutionary models.
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to be subject to preferential elimination, and drastically lowers
the de novo mutation rate required to account for a given
mutant load. Our analysis and results rely on the abovemen-
tioned higher density of mutants but are independent of the
detailed molecular mechanism behind it. We underline that
higher mutant density is not an assumption of our model but
a well-established fact. The model’s parameters all have a
clear biological interpretation and are estimated from published
experimental data.

A Minimal Model of a Counterintuitive
Evolutionary Mechanism

The building block of our approach is a simple stochastic model
that describes a population of mtDNA, wild type w and mutants
m, evolving under central regulation by the nucleus. The main
quantity of interest is the proportion of the population that
is mutants, that we call heteroplasmy: h = m

m+w . This usage
is accepted in the field of mathematical modeling applied to
mitochondrial biology (31, 41). Importantly, we principally
focus on the mechanism by which a preexisting mutation
reaches high heteroplasmy through clonal expansion; we will
later consider de novo mutations occurring continuously through
time. The model is neutral: the two species have an identical
constant degradation rate µ and an identical replication rate λ
given by

λ(w,m) = µ+ c(Nss − w − δm) [1]

with parameters c, Nss, δ. The parameter c quantifies the strength
of control exerted by the nucleus (SI Appendix, section 1.A). The
replication rate is scaled by the distance of a count, w + δm,
of the current population size from a target population Nss.
The parameter δ sets the relative density of mutants, whose
carrying capacity is 1/δ that of wild types (Nss/δ against Nss,
see SI Appendix, section 1.A). For 0 < δ < 1, which will always
be the case in this work, mutants have a higher carrying
capacity and can live at higher copy numbers in the system, as
observed in experimental studies referenced in the introduction
(7, 8, 33–35). Therefore, mutants are denser, and this is encoded
by 0 < δ < 1. With the above death and replication rates, a
deterministic description of the system is given by the system
of ODEs

dw
dt

= cw(Nss − w − δm),

dm
dt

= cm(Nss − w − δm).
[2]

In this setting, the system tends to the steady state λ(w,m) = µ
(equivalently w + δm = Nss), while heteroplasmy stays constant
over time (ḣ = 0). More details and derivations can be found in
SI Appendix, section 1.A.

In this work, we focus on stochastic modeling of the dynamics
of mtDNA population and on the temporal evolution of mean
quantities. Numerical results are obtained by averaging over
multiple replicates of the dynamics of the system, simulated
through the individual-based Gillespie algorithm (42) (more
details in SI Appendix, section 1.C). A stochastic model of the
single-unit system is formalized by the chemical reaction network

{W
µ
−→ ∅,M

µ
−→ ∅,W λ

−→ W + 1,M λ
−→ M + 1}, where

M and W stand for the (integer) number of wild-type and
mutant molecules. Here, for 0 ≤ δ < 1, mean heteroplasmy stays
constant, but the mean mutant copy number increases through
stochastic mechanisms. In SI Appendix, section 1.C, we provide

derivations (see SI Appendix, Eqs. S14 and S16) and a heuristic
argument for this surprising, but long-established (11, 43, 44),
behavior.

Next, we move to the stochastic two-unit model, formalized
in SI Appendix, Eq. S37, that highlights the core contribution
of our work. We introduce minimal spatial structure coupling
two units, allowing exchange of mtDNA molecules at a per
capita rate γ (see Fig. 1B). In each unit, there is an mtDNA
population evolving under Eq. 1. Adding spatial structure with
exchange of molecules makes no difference under deterministic
dynamics (Fig. 1 C, Top Left, black), makes no difference
under stochastic dynamics if δ = 1 (Fig. 1 C, Bottom Left,
black) but crucially leads to an increase in mean heteroplasmy
for stochastic dynamics with higher mutant density (0 ≤ δ < 1,
Fig. 1 C, Bottom Right, red). This illustrates that the increase in
mean heteroplasmy requires 1) spatial structure with diffusion
of molecules between units, 2) stochasticity, and 3) higher
density of mutants (0 < δ < 1). For this reason, we term
this mechanism stochastic survival of the densest (SSD): mutants
outcompete wild types in a stochastic setting by virtue of being
denser.

One can gain an intuitive understanding of SSD considering
the limit in which the hopping rate γ is much smaller than
the birth and death rates, such that the fixation time in a
single unit is much less than the typical time between hops
of molecules. Consider two coupled units at carrying capacity,
one containing only Nss wild types and the other containing
exclusively Nss/δ mutants (0 < δ < 1). At some point,
one molecule will hop to the neighboring region, and it will
have time to either fix or go extinct before another hopping
takes place (the low hopping rate limit). Because of the larger
number of mutants, the rate of mutant hopping into the wild-
type unit is higher than that of the wild type hopping into
the mutant region. Likewise, because of the larger number of
mutants, the fixation probability of a mutant hopping into the
wild type-only unit (1/Nss) is higher than that of a wild type
entering the mutant-only unit (δ/Nss). Because of the higher
probabilities of hopping and fixation for mutants, the whole-
system fixation probability of mutants is higher than that of
wild types. In SI Appendix, section 3, we show that, for any
value of the hopping rate, the higher whole-system mutant
fixation probability is directly related to the increase in mean
heteroplasmy. Therefore, the above argument gives an intuition
for SSD, while also clarifying the crucial role of diffusion and
higher mutant density.

In the next sections, we link SSD to the clonal expansion of
mtDNA deletion mutations in skeletal muscle fibers.

Clonal Waves of Mutants in Skeletal Muscle
Fibers

Skeletal muscle fibers are long, multinucleated cells, with each
nucleus surrounded by a mitochondrial population under its
control. The clonality of the expansion of deletion mutations
(8–10) supports the idea that mtDNA molecules move along the
fibers, as it is unlikely that the same mutation event occurred
multiple times in distinct but adjacent regions of the same
fiber. Mitochondria are tightly packed in skeletal muscle, and
the mitochondrial network is hyperfused (45, 46). Moreover,
it has been observed that mtDNA nucleoids move diffusively in
mitochondria (47). Therefore, we assume that mtDNA molecules
diffuse along muscle fibers.

We model a fiber as a chain of discrete units, each containing a
nucleus and an mtDNA population notionally evolving under
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Fig. 1. Stochastic survival of the densest (SSD) can produce increases in the proportion of mutants even if they are subject to higher degradation rates than
wild types. (A) Dysfunctional mtDNA mutants expand in muscle fibers with age in a wave-like manner, leading to defects in oxidative-phosphorylation (OXPHOS).
(B) In a spatially extended system, the possible events are birth and death of a wild type (first two), birth and death of a mutant (third and fourth), and a mutant
or wild type hops to a neighboring unit (fifth). Births happen at rate �(w,m) (defined at the bottom), deaths at a constant rate �, and hopping at a constant
rate . (C) SSD (bottom right subpanel) is observed in the presence of noise, spatial structure (with diffusion), and higher density of mutants, which lead to an
increase in mean heteroplasmy in a neutral model (red line) and even with higher degradation of mutants (green line). If any of the factors is missing, as in the
other subpanels, (mean) heteroplasmy stays constant in a neutral model (black) or decreases with preferential elimination of mutants (green). Parameters in SI
Appendix, section 9.A. Error bars are SEM, averaged over 2 ·103 stochastic replicates. (D) In a spatially structured model (chain of units with migration), SSD drives
a traveling wave of mutants only in the presence of noise and higher mutant density (rightmost subpanel), while the high-heteroplasmy front diffuses away if
either noise (Left) or higher mutant density (Middle) is missing. “Length” on the horizontal axis stands for the position along the chain of units. Parameters in SI
Appendix, section 9.A. Averaged over 2 · 103 stochastic replicates. (E) For the same model as in D, if mutants are preferentially degraded, an invasive wave can
still occur because of SSD. If any of the three factors of SSD is missing, mutants subject to a higher degradation rate go extinct instead (SI Appendix, Fig. S5B).

nuclear control Eq. 1. Neighboring units exchange mtDNA
molecules at a constant rate γ , which models diffusion when
space is discretized. In this setting, the high-heteroplasmy front
diffuses away without noise (Fig. 1 D, Left) or without higher
mutant density (Fig. 1 D, Middle) and advances only in the
presence of noise and higher density mutants (Fig. 1 D, Right),
i.e., when driven by SSD. This expanding traveling wave of
mutants requires spatial structure with diffusion, noise, and
higher mutant density. When these three elements are present,
the wave-like expansion of mutants takes place even if mutants
are preferentially degraded (Fig. 1E), whereas in a deterministic
model, a higher degradation rate for mutants leads to their
extinction (SI Appendix, Fig. S5B).

In the limit of low diffusion (hopping) considered in the
previous section, one can gain an intuitive understanding of how
SSD leads to a traveling wave of mutants taking over the system.
In this situation, there will be a sharp separation between the
mutant-only and wild type-only regions, with a step consisting
of a unit containing Nss wild types adjacent to a unit containing
Nss/δ mutants (recall 0 < δ < 1). Here, the higher probabilities
of hopping and fixation for mutants—justified at the end of the

previous section—produce a net movement of the mutant front
into the wild type-only region.

SSD Matches Clonal Expansion in Muscles

Experimental data (Fig. 2A, 33) show the characteristic spa-
tial profile of heteroplasmy data, with high-heteroplasmy
(OXPHOS-defective) regions flanked by transition regions to low
or zero heteroplasmy. This heteroplasmy profile is well described
by a sigmoid (SI Appendix, section 18), the shape expected for
a traveling wave (SI Appendix, section 16), compatibly with
the expansion being a wave-like phenomenon. We report more
profiles in Fig. 3 A and C and in SI Appendix, section 6.

We have estimated the speed of this expansion by analyzing
data from ref. 10 on the length of abnormal regions in rhesus
monkeys (see SI Appendix, section 17 for data processing).
Regressing the lengths against age (Fig. 2B), we observe a
relationship (p = 5 · 10−4), which is approximately linear
(R2 = 0.76) and corresponds to an average wave speed of
(0.131 ± 0.025)µm/d. Fig. 2C, relative to the same fiber as
in Fig. 2A (33), highlights the key fact (known for over 20 y
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Fig. 2. Stochastic survival of the densest predicts a wave-like expansion of mtDNA mutants at a speed in agreement with experimental observations, while a
standard linear replicative advantage model (SI Appendix, Eq. S45) predicts a speed a factor of≈ 300 too large. (A) Spatial profile of mutant fraction (heteroplasmy)
along a human skeletal muscle fiber (33). The heteroplasmy profile follows a sigmoid (SI Appendix, section 18), the shape expected for a traveling wave. (B)
Experimental data on the length of abnormal regions of muscle fibers against age in rhesus monkeys, from ref. (10) (see SI Appendix, section 17 for data
processing). An approximate linear relationship is found (R2 = 0.76, p = 5 · 10−4), compatible with a wave-like expansion with speed (0.131 ± 0.025)µm/d
(linear fit). (C) Spatial structure of copy number for the wild type (blue) and mutants (orange) for the same muscle fiber as in panel A. The heteroplasmic regions
present a higher absolute copy number, i.e., mutants are present at a higher density. (D) Stochastic simulations of a spatially extended model with a standard
replicative advantage for mutants (SI Appendix, Eq. S45), with our best estimate of the model parameters (see SI Appendix, section 10) for muscle fibers of rhesus
monkeys predicting a wave-like expansion with a speed of ' 40µm/d, 300 times faster than the observed speed. We averaged heteroplasmy on an ensemble
of 500 stochastic replicates. Parameters: � = 0.07/d,  = 0.1/d, Nss = 3500, and c = 2 ·10−4/d, no density difference and replicative advantage kRA = 4cNss (see
(SI Appendix, Eq. S45). (E) Simulations of survival of the densest yield a mutant wave speed of ' 0.2µm/d for the fibers or rhesus monkeys, which is comparable
with experimental observations (see panel B). No replicative advantage and � = 0.2; other parameters are as in panel D. Heteroplasmy is averaged over an
ensemble of 800 stochastic replicates. (F) Inserting probabilistic estimates of the model parameters (see SI Appendix, section 10) into Eq. 3, we find that survival
of the densest predicts a distribution for the wave speed (red histogram) compatible with observations (blue), whereas a wave driven by replicative advantage
with the same model parameters is two orders of magnitude faster (gray).

(7, 8, 11, 34, 35)) that the absolute copy number in high-
heteroplasmy regions is larger than in normal regions: Mutants
are the denser species.

In SI Appendix, section 10, we explain our estimates of the
parameter values from published experimental data for a typical
mtDNA deletion mutation in rhesus monkey fibers. With these
estimates, simulations of a standard linear model (SI Appendix,
Eq. S45) based on RA, in which the increase in mutant density
is explained by a higher replication rate as expressed in SI
Appendix, Eq. S46, predict a wave-like expansion of ≈ 40 µm/d
(Fig. 2D), 300 times faster than the observed speed. In contrast,
SSD predicts a wave-like expansion of deletions with a speed of
≈ 0.2 µm/d (Fig. 2E).

By measuring the simulated wave speed from SSD for 110
combinations of parameters, we found that it is well described
(R2 = 0.99, SI Appendix, section 5) by the phenomenological
formula:

v ' 2
√

kD, [3]

where D is the diffusion coefficient of mtDNA along the fibers
and with k =

√
(1− δ)2µγ /N

2
3
ss .

Eq. 3 is analogous to the wave speed formula for the wave
of advance of advantageous mutants introduced by Fisher and
Kolmogorov (48, 49). In our case, k can be seen as an effective
selective advantage for mutants induced by SSD, in contrast with
the RA driving the original Fisher–Kolmogorov waves. In light of
this analogy, our model can be seen as a reaction–diffusion system
in which the reaction component emerges from the combined
effect of noise and higher mutant density.

Different mtDNA deletion mutations will have different
characteristics, including an increase in density or (supposed)
RA. Other parameters of the system, like the diffusion constant,
are also uncertain. Eq. 3 allowed us to verify robustness
to uncertainty in parameter values. We obtained probability
distributions for the wave speeds predicted by SSD and an RA
model, by inserting draws from the distributions of parameter
values (given in SI Appendix, section 10) into Eq. 3, with
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Fig. 3. A steeper wave of mutants propagates more slowly in fibers which have a higher copy number per unit length, in agreement with the predictions of
stochastic survival of the densest. Data are from previous experimental studies (8, 33), our analysis is in SI Appendix, section 18. (A) Significant difference (disjoint
confidence intervals) in the steepness � of wavefronts of two human muscle fibers H1 and H2: �H1 = (2.46± 0.11) · 10−2/µm, 99% confidence interval (CI) =
[2.13,2.90] · 10−2 /µm for H1 (blue, steeper) and �H2 = (1.36± 0.16) · 10−2/µm, 99% CI = [0.97,1.99] · 10−2 /µm for H2. MLE fit with curve 1/(e�x+b + 1) and
profile-likelihood CIs; data from ref. (33). According to the mathematics of traveling waves (SI Appendix, section 16), the steeper wave is slower. (B) Comparison
between the corresponding Nss of the two fibers H1 and H2. We have found evidence (p = 10−4 , d = 1.48, one-sided Welch’s t-test) that the average copy
number per unit length (a slice of length 20 µm here) in normal regions of the two fibers H1 and H2 (Nss in our model) is higher for the steeper and, hence, slower
wave (H1, blue). This is in qualitative agreement with stochastic survival of the densest, which predicts that wave speed decreases with copy number. In contrast,
a model based on replicative advantage predicts that speed increases with copy number. (C) Two muscle fibers in rats, R1 and R2, present waves of mutants
with significantly different steepness � of the waveform, as seen from the disjoint 99% CIs: �R1 = (3.97± 0.61) · 10−2 /µm, 99% CI = [2.53,8.30] · 10−2 /µm for
R1 (blue, steeper) and �R2 = (1.88± 0.16) · 10−2 /µm, 99% CI = [1.46,2.49] · 10−2 /µm for R2. MLE fit with curve 1/(e�x+b + 1) and profile-likelihood CIs, data
from ref. (8). (D) We have found an indication (p = 0.06, d = 1.00, one-sided Welch’s t-test) that the average copy number per unit length in normal regions of
the two fibers R1 and R2 is higher for the steeper wave (R1, blue).

the appropriate interpretation of k for the two models. The
predicted distributions are plotted in Fig. 2F, together with the
distribution of the experimentally observed wave speed obtained
via linear fit (Fig. 2B). After accommodating this parametric un-
certainty, SSD remains much superior to RA at reproducing the
observed speed.

In SI Appendix, section 11, we show that allowing for both
higher mutant death and replication rate would not change
the RA wave speed distribution of Fig. 2F. We cannot exclude
a situation in which an SSD and RA (and possibly selective
elimination) coexist, but note that our analysis suggests that RA
is not necessary and—on its own and in its standard form—
not viable. Our null model introduces SSD and shows that
it can account for the clonal expansion of mtDNA deletion
mutations.

Linking Aging, Wave Speed, and Copy Number

As Eq. 3 states, SSD predicts a wave speed that decreases when
copy number (per nucleus) increases. Indeed, the expansion
of mutants is driven by stochastic fluctuations, whose effect

generally becomes smaller for larger population size (see also
SI Appendix, Eq. S14). In contrast, a standard model based on
RA predicts a wave speed that increases with population size
(48, 50). This allows us to test SSD and RA models against other
experimental observations. It has been found that copy number
depletion caused by antiretroviral therapy (51) or deficiency of the
enzyme AKT2 (52) is associated with enhanced sarcopenia. Like-
wise, statins are well known for increasing the risk of sarcopenia
(53–55) and have consistently been associated with reduction in
mitochondrial copy number (56–58). Conversely, an increase in
mtDNA content through exercise (59, 60) or overexpression of
mitochondrial transcription factor A (TFAM) (61) and parkin
(62) has been found to protect against sarcopenia and muscle
atrophy.

Skeletal muscle fibers can be broadly classified into type 1
(oxidative) and type 2 (glycolytic) fibers (63). The former rely on
oxidative-phosphorylation (OXPHOS) to function and typically
have twice as many mitochondria as the latter (10, 64, 65),
that depend on glycolysis. It is known that type 2 fibers are
more affected by sarcopenia with aging (7, 10, 66–69). Small,
short-lived animals like rodents show sarcopenia on a time scale
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of years (from ≈ 2 y) and have a larger proportion of type 2
fibers compared to long-lived animals such as rhesus monkeys
and humans (51), that exhibit sarcopenia on a longer time
scale (decades). While there are other physiological differences
between the fiber types, this is a further link between smaller
mtDNA copy numbers and faster mutant expansion. The leading
edge of a faster wave is flatter than that of a slower wave (e.g.,
ref. 70, summarized in SI Appendix, section 16). By exploiting
this property, it is possible to compare the speeds of two waves
by examining their shapes. Previously published data on muscle
fibers for humans (33) (Fig. 3 A and B) and rats (8) (Fig. 3 C and
D) show that flatter—hence faster—waves of mutants propagate
along fibers with smaller copy numbers. All these observations
support our model’s prediction of an inverse relationship between
copy number and wave speed, opposite to that predicted by a
standard RA model (50).

Importantly, the traveling wave of mutants with an inverse
relationship between speed and copy number is observed not
only in the case of linear feedback control Eq. 1 but also for other
controls encoding a higher density of mutants (see SI Appendix,
section 15), provided that stochasticity and spatial structure (with
diffusion) are present.

Low Mutation Rates Can Yield Large Mutant
Loads

Previous neutral models of mtDNA dynamics in skeletal muscle
fibers require high de novo mutation rates Rmut to explain
the observed mutational loads in fibers of short-lived animals
(8, 14, 32, 71). In turn, these high mutation rates produce
an unrealistically high mutational diversity, at odds with the
observed clonality of the expansion of deletion mutations: This
shortcoming has motivated theorists to develop RA models.
However, previous studies modeled skeletal muscle fibers as
an unstructured bulk of well-mixed mtDNAs (12, 14, 16).
Conversely, our spatially structured model exhibits SSD, that
increases the probability of fixation of the denser mutants.
Evidently, the Rmut required to explain a given mutant load
is then much lower compared to models without spatial
structure.

We set out to give an order-of-magnitude estimate of Rmut
under SSD after estimating the fixation probability in a long
chain of units via numerical simulations. We focused on the
reciprocal of the fixation probability, as we empirically found
linear relationships with Nss. In Fig. 4, we plot our numerical
estimate of the reciprocal of the probability that a founder
mutation takes over a muscle fiber against Nss over three orders of
magnitude and for our best estimates of the remaining parameters
(SI Appendix, section 10). We infer the fixation probability for
Nss = 3500 (humans (72)). Critically, we discover that fixation
probability is independent of the fiber length and depends
inversely on Nss (a purely local parameter). In SI Appendix,
section 13, we develop a simple argument that connects fixation
probability and Rmut . Based on this argument, we estimate the
corresponding de novo mutation rate as Rmut = 4.1 · 10−8–
1.6 · 10−6 per replication for a typical human fiber (SI Appendix,
section 13). This value is in line with conservative experimental
estimates (12, 73) and two to three orders of magnitude smaller
than estimated in the reference study (12) that neglects spatial
structure (and hence SSD). In conclusion, SSD can reproduce
the observed mutant loads in skeletal muscle fibers requiring
drastically lower de novo mutation rates than previous neutral
models.

Fig. 4. Fixation probability of a founder mutation in a muscle fiber depends
on local numbers of mtDNA per nucleus (Nss in our model) and is independent
of the total number of mtDNA in the fiber. The reciprocal of the fixation
probability Pf increases linearly with Nss (see SI Appendix, section 13), and
hence, Pf ≈ �/Nss , with � = (3.316 ± 0.002) for Nss � 1. The black dots
represent estimates of this probability for 10 < Nss < 1000, obtained via
stochastic simulations (details in SI Appendix, section 14; error bars are
standard deviations). For Nss = 3500, a plausible value for humans, the
predicted fixation probability is Pf = (9.47± 0.06) · 10−4 (blue dot).

Discussion

We have presented a bottom-up, physically interpretable spatial
stochastic model that predicts the wave-like clonal expansion
of mitochondrial deletion mutations in skeletal muscle fibers
without assuming a replicative advantage (RA) and even if mu-
tants are subject to preferential elimination. This counterintuitive
effect is driven by a mechanism that we have termed stochastic
survival of the densest (SSD), that depends on the stochastic
nature of the model, the increased density of mitochondrial
deletions (a widely observed phenomenon (7, 8, 33–35)), and
spatial structure (multiple mtDNA populations with migration).
As mutants are denser, in a stochastic system, a mutant is more
likely to take over a less densely occupied wild type-dominated
region, compared to a wild type in a densely packed mutant
region. Likewise, from a densely populated mutant region, there
is more frequent migration, i.e., more attempts by mutants to
invade neighboring wild-type regions. These considerations help
build an intuitive understanding of SSD as a mechanism whereby
denser mutants can neutrally expand in a spatially structured
system driven by stochastic fluctuations.

Previously, the clonal expansion of mitochondrial deletions
has been modeled via an RA (14–18). We have discovered that
a standard literature-parameterized linear model of this type (SI
Appendix, Eq. S45) produces an expansion that is 300 times faster
than observed speeds. Our model predicts instead a speed that is
of the same order of magnitude as observations. We have provided
a phenomenological formula for the speed of the SSD-driven
wave (Eq. 3) that has implications for therapy, since existing
drugs allow us to modulate some of the parameters influencing
the propagation of mutants. The SSD wave speed decreases when
copy number increases, therefore, increasing copy number via
interventions such as increased physical exercise (59, 60), calorie
restriction (74) or both (75), and administering nicotinamide
riboside (76) or niacin (77), has the potential to slow down the
clonal expansion of mutants. Decreasing mtDNA diffusion (by
fragmenting the mitochondrial network) or turnover seems less
viable, being associated with negative consequences and health
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challenges (78–80). Unlike SSD, models based on RA exhibit a
speed that increases with copy number. By reviewing existing data
on how copy number affects the steepness of the wavefront (which
is connected to wave speed) and the likelihood of developing
sarcopenia, we have corroborated the SSD-based prediction of
Eq. 3 and therefore shown evidence that SSD drives the clonal
expansion. Future experiments investigating the relationship
between copy number and the speed of the expansion (directly
or through wavefront steepness) could provide additional evi-
dence in favor of SSD and possibly against RA. Manipulating
mitochondrial turnover via administration of urolithin A (81)
could also help probe Eq. 3. Finally, we have shown that
SSD lowers the de novo mutation rate needed to reproduce the
observed mutant loads in humans by three orders of magni-
tude compared to previous models based on neutral stochastic
drift (11–13).

Our core claim is that the expansion of mtDNA carrying
deletions in skeletal muscle fibers is not necessarily driven by
an RA or by conventional neutral drift. Rather, mutants might
have an effective selective advantage induced by SSD, namely by
the combined effect of stochasticity, higher density, and spatial
structure with diffusion.

The expansion of mtDNA deletion mutations in skeletal
muscle fibers is an experimental candidate for SSD, that might
be the driving force behind other counterintuitive evolutionary
phenomena. In the supplement, beyond giving a wider posi-
tioning of this work in the evolutionary literature (SI Appendix,
sections 7–8), we show that in our model, the replication rate of all
molecules increases with the proportion of mutants (SI Appendix,
section 1.B). Therefore, each mutant brings a benefit to all
other individuals in the system. Mutants’ higher degradation
rate might be seen as the cost of bringing this benefit (as in
refs. (44, 50, 82, 83)). An altruist can be defined as an individual
that benefits others at a cost to itself (82, 84), and there is thus a
link between this specific definition of altruism and the mutants
in our model, that prevail over wild types by adopting an altruistic
strategy. Clonal expansions of mtDNA deletions in skeletal
muscle fibers are obviously detrimental to cellular and organismal
health, but their strategy is altruistic from the technical point
of view of population dynamics, as formalized in SI Appendix,
section 1.B. Our model may be applicable to a wider range of
cells in the presence of subcellular control on subpopulations
of mitochondria. Neurons might be a candidate, although their
directed mitochondrial trafficking (85) is different from random
diffusion. There is also evidence of exchange of mtDNA between
cells (86), but the scale and nature of this in vivo are under debate.
A classic setting for the wave-like spread of a trait is in the uptake
of agriculture (87), which might not impart an explicit RA and

might lead to higher death rates (88), but nonetheless spreads,
possibly due to an increase in carrying capacity of the land. We
believe that this study and the simplicity of our microscopic
model might pave the way for increased recognition of SSD in
evolutionary biology.

Materials and Methods

InSIAppendix, we provide background, explanations, and details on simulations
and statistical analyses. We give a summary below.

Numerical Simulations. All original results presented in the paper are
obtained by simulating a Poisson point process via the Gillespie algorithm
(42). The point processes are formalized as chemical reaction networks. The
single-unit system dynamics is obtained by simulating the chemical reaction
network {W

µ
−→ ∅, M

µ
−→ ∅, W

λ
−→ W + 1, M

λ
−→ M + 1}, with constant

degradation rateµ and replication rate λ as in Eq. 1.
The dynamics of the two-unit system, the simplest showing SSD, is obtained

by simulating two units evolving under the above dynamics and additionally
exchanging molecules at a constant rate γ . Chains of units are obtained by
coupling together numerous units with exchange of molecules between nearest
neighbors in the chain.

Two plots (Fig. 1 C, Upper Left; Fig. 1 C, Left panel) refer to deterministic
systems, modeled as systems of ordinary differential equations, as in Eq. 2 and
with exchange of molecules for two or more units. These systems have been
integrated numerically using the Python library SciPy.

Statistical Analyses. The sigmoidal functions in Figs. 2A and 3 A and C were
fitted using maximum likelihood estimation (MLE) with normal likelihood. The
linear fits in Figs. 2B and 4 were obtained via MLE, as ordinary linear least
squares with normal likelihood. The distributions in Fig. 2F were obtained with
the approach detailed in ref. (89) and can be reproduced using the online tool at
http://caladis.org/ and the parameter estimates given inSI Appendix, section 10.
The statistical test performed on the data in Fig. 3 B and D is one-tailed Welch’s
test (unequal-variance t test).

Data, Materials, and Software Availability. Previously published data were
used for this work (8, 10, 33).
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