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We study the space of supersymmetric AdS5 solutions of type IIB supergravity corresponding to the
conformal manifold of the dual N ¼ 1 conformal field theory. We show that the background geometry
naturally encodes a generalized holomorphic structure, dual to the superpotential of the field theory, with
the existence of the full solution following from a continuity argument. In particular, this work allows us to
address the long-standing problem of finding the gravity dual of the genericN ¼ 1 deformations ofN ¼ 4

conformal field theory: even if we are not able to give it in a fully explicit form, we provide a proof-of-
existence of the supergravity solution. Using this formalism, we derive a new result for the Hilbert series of
the deformed field theories.
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Introduction.—Over the last two decades, the AdS=CFT
correspondence [1] has provided remarkable insights into
the properties of superconformal field theories (SCFTs).
For the canonical example of four-dimensional N ¼ 1
SCFTs, it gives a dual description in terms of a type II (or
eleven-dimensional) supergravity background that is a
product AdS5 ×M of five-dimensional anti-de Sitter space
(AdS5) with a five- (or six-) dimensional internal space M.
Supersymmetry constrains the internal geometry. For
example, in the case of type IIB supergravity, with only
the metric and five-form flux nontrivial,M is required to be
a Sasaki-Einstein (SE) manifold.
Certain properties of N ¼ 1 SCFTs depend only on

holomorphic data. For example, the set of gauge-invariant
operators in chiral supermultiplets forms a complex
ring, determined by the superpotential of the theory W.
Classically, W is a holomorphic function of the chiral
matter fields and in a suitable scheme it is not renormalized.
For an SCFT dual to an SE geometry, the ring of (single
trace) mesonic chiral operators trOf (those built from chiral
matter fields) then elegantly translates into the ring of
holomorphic functions f on the cone over M, which is, by
definition, Calabi-Yau.
SCFTs often come in continuous families related by

perturbations by exactly marginal operators, that is oper-
ators with zero anomalous scaling dimension even after
quantum corrections. Such a family describes a “conformal

manifold” within the space of all couplings. The canonical
example is the N ¼ 1 deformations of N ¼ 4 SUðNÞ
super Yang-Mills theory (SYM) [2]. In addition to defor-
mations of the N ¼ 4 coupling constant, there are two
superpotential deformations, parametrized by

ΔW ¼ fβtrðΦ1Φ2Φ3 þΦ3Φ2Φ1Þ
þ fλtr½ðΦ1Þ3 þ ðΦ2Þ3 þ ðΦ3Þ3�; ð1Þ

where Φa, with a ¼ 1, 2, 3, are adjoint matter fields of
N ¼ 4 SYM written as three chiral N ¼ 1 multiplets.
A long-standing problem has been to find the type IIB

background dual to any point in the family of N ¼ 1

deformations of N ¼ 4. Although the duals with fλ ¼ 0,
the so-called “beta deformations,” were found fifteen years
ago by Lunin and Maldacena [3] using a beautiful solution-
generating technique, to date the full dual geometry for the
generic deformation is unknown. (A tour de force pertur-
bative calculation found the solution to second order in
Ref. [4].) The internal space always has the topology of a
five-sphere, but only at the N ¼ 4 point is the geometry
simple, with only five-form flux and the round metric on
S5. The difficulty is that away from this point, generically
all the supergravity fields must be nontrivial and all the
continuous isometries of the sphere, other than the circle
action generating the Uð1ÞR symmetry common to all
N ¼ 1 SCFTs, are broken.
This Letter gives a solution to this problem, together with

its extension to the case where S5 is replaced by any SE
geometry. Details will appear in Ref. [5]. Following
Ref. [6], we use the description of the internal space M
in terms of E6ð6Þ ×Rþ generalized geometry. The geometry
of M is characterized by a pair of objects ðX;KÞ that from
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the point of view of the five-dimensional external space
transform in hypermultiplets and vector multiplets. Our
first observation is that, quite generally, fixing the super-
potential of the dual field theory fixes a certain class of
hypermultiplet structures [X].
The second step is one familiar from other problems in

geometry. The lack of isometries means there is little hope
of finding the explicit solution ðX;KÞ that describes the
generic deformation. Instead, we find an “exceptionally
deformed” solution ðXED; KÞ satisfying slightly weaker,
but nontrivial, conditions that translate to an N ¼ 1 theory
with the same superpotential as the deformed theory but
which is not conformal. We then use continuity arguments
to show that there must exist a solution ðX;KÞ, in the same
class ½X� ¼ ½XED�, that satisfies the full set of conditions.
Physically, it represents the end point of the renormaliza-
tion group flow from the nonconformal point dual to
ðXED; KÞ. This is very analogous to the analysis of
Calabi-Yau metrics. There one considers a set of Kähler
metrics with fixed complex structure and Kähler class, and
the Calabi-Yau theorem implies there is a unique Ricci-flat
metric within the class.
Since the class [X] is uniquely fixed by the holomorphic

data of the SCFT (the superpotential), we should be able to
find the dual description of any of the holomorphic
properties of the theory from XED. In particular, we derive
a new result for the Hilbert series H̃ðtÞ, that is the
generating function for the number nk of single trace
mesonic operators of R charge 2

3
k (and hence conformal

dimension k), for generic deformations of a theory dual to
any SE geometry. The general expression is given in terms
of a new cohomology calculated by one of us in Ref. [7],
and can be written as

H̃ðtÞ ≔ 1þ I s:t:ðtÞ − ½k≡3 0; k > 0�t2k; ð2Þ

where I s:t:ðtÞ is the single-trace superconformal index and
the “Iverson bracket” notation is defined in Eq. (31). For S5,
it is natural to write H̃ðtÞ ¼ Hðt2Þ, giving

HðtÞ ¼
X
k

nktk ¼
ð1þ tÞ3
1 − t3

; ð3Þ

in agreement with the field theory expression, namely, the
“reduced cyclic homology” [8], as calculated in Ref. [9].
Holomorphic structure.—Let us briefly review the

results of Ref. [6]. We consider generic type IIB solutions
of the form AdS5 ×M preserving eight supercharges using
the conventions of Ref. [10]. (All E6ð6Þ ×Rþ tensor
expressions actually apply equally well to AdS5 solutions
in M theory.) There is a warped metric

ds2 ¼ e2Δds2ðAdS5Þ þ ds2ðMÞ; ð4Þ

with nontrivial axion-dilaton τ ¼ C0 þ ie−ϕ, a doublet
i ¼ 1, 2 of three-form fluxes Fi ¼ dBi and a five-form
flux F ¼ dCþ 1

2
ϵijBi ∧ Fj ≔ fvolM onM (with dual five-

form flux fvolAdS5 on AdS5). We normalize the AdS metric

to have unit radius RAdS5
μν ¼ −4gAdS5μν . The bosonic sym-

metry of the supergravity combines diffeomorphisms and
gauge transformations δBi ¼ dλi, δC ¼ dρ − 1

2
ϵijdλi ∧ Bj,

into a “generalized diffeomorphism” group GDiff.
In the special case of Fi ¼ 0 and τ and Δ constant, the

metric onM is SE [11]. The geometry is defined by a vector
field ξ, a real one-form σ, a real two-form ω, and a complex
two-form Ω satisfying

{ξσ ¼ 1; {ξω ¼ {ξΩ ¼ 0; ω ∧ ω ¼ 1

2
Ω ∧ Ω̄; ð5Þ

and the differential conditions

dσ ¼ 2ω; dΩ ¼ 3iσ ∧ Ω: ð6Þ

Mathematically, ðξ; σ;ω;ΩÞ define an SUð2Þ ⊂ GLð5;RÞ
structure with singlet intrinsic torsion.
The generic solution defines an “exceptional Sasaki-

Einstein structure” (ExSE) onM [6]. It is encoded by a pair
of generalized tensors ðX;KÞ that are combinations of
conventional GLð5;RÞ tensors, transforming under an
enlarged structure group E6ð6Þ ×Rþ ⊃ GLð5;RÞ. K is a
real generalized vector that defines a “vector-multiplet
structure.” A generic generalized vector V is a section of
[12,13]

E ≃ T ⊕ ðT� ⊕ T�Þ ⊕ Λ3T� ⊕ ðΛ5T� ⊕ Λ5T�Þ;
V ¼ vþ λi þ ρþ σi ∈ ΓðEÞ; ð7Þ

transforming in the 271 representation, where T and T� are
the tangent and cotangent bundles ofM and v is a vector, λi

a pair of one-forms and so on. The subscript denotes theRþ
weight, normalized such that detT� has weight three. We
will also consider sections A of a bundle

ad F̃ ≃ ðR ⊕ R ⊕ RÞ ⊕ ðT ⊗ T�Þ ⊕ ðΛ2T ⊕ Λ2TÞ
⊕ ðΛ2T� ⊕ Λ2T�Þ ⊕ Λ4T ⊕ Λ4T�

A ¼ aij þ rþ βi þ bi þ γ þ c ∈ ΓðadF̃Þ ð8Þ

transforming in the 780 adjoint representation [13–15] and
where aij is an element of the sl2;R S-duality Lie algebra, r
is a gl5;R matrix, βi is a doublet of bivectors, and so on. In
general, we write A· for the e6ð6Þ ⊕ R adjoint action on any
generalized tensor. The complex tensor X defines a “hyper-
multiplet structure” and is a section (of the complex-
ification) of the weighted 783 adjoint bundle

detT� ⊗ adF̃ ≃ T� ⊕ ðΛ3T� ⊕ Λ3T�Þ ⊕ …; ð9Þ
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where we have used detT� ⊗ ΛpT ≃ Λ5−pT� and the
dots represent tensor bundles with forms of higher
degree. Together ðX;KÞ are invariant under USpð6Þ ⊂
E6ð6Þ × Rþ, implying the algebraic conditions, analogs of
Eq. (5),

X · K ¼ 0; trXX̄ ¼ cðK;K;KÞ2; ð10Þ

where tr is the trace in the adjoint and cðK;K;KÞ is the
symmetric cubic invariant of E6ð6Þ, both given in Ref. [6]. In
addition, writing trXX̄ ¼ κ4 and X ¼ κðJ1 þ iJ2Þ defines a
(highest root) su2 ⊂ e6ð6Þ algebra fJαg with α ¼ 1, 2, 3,
satisfying ½Jα; Jβ� ¼ 2κϵαβγJγ .
In generalized geometry GDiff is generated infinitesi-

mally by the generalized Lie derivative [13,15,16]. Acting
on generalized tensors it is given by the operator

LV ¼ Lv − ðdλi þ dρÞ·; ð11Þ

where V is a section of Eq. (7), Lv is the usual Lie
derivative and dλi þ dρ acts as a section of Eq. (8). The
Killing spinor equations for the background are equivalent
to differential conditions on ðX;KÞ given by

LKK ¼ 0; μþðVÞ ¼ 0; ð12Þ

LKX ¼ 3iX; μ3ðVÞ ¼
Z
M
cðK;K; VÞ; ð13Þ

holding for all generalized vectors V. The objects

μαðVÞ ¼ −
1

2
ϵαβγ

Z
M
trJβLVJγ ð14Þ

are formally a triple of moment maps for the action of
GDiff on the (hyper-Kähler) infinite-dimensional space Z
of structures X. Geometrically, ðX;KÞ define a generalized
USpð6Þ structure with singlet generalized intrinsic torsion
[17]. The generalized Lie derivative 2

3
LK generates an

isometry dual to the SCFT R-symmetry.
For the special case of a SE background

K ¼ eC · ðξ − σ ∧ ωÞ;
X ¼ −eCþ1

2
iω∧ω · viσ ∧ Ω; ð15Þ

where the four-forms act by the exponentiated e6ð6Þ adjoint
action, vi ¼ ðτ0; 1Þi=

ffiffiffiffiffiffiffiffiffiffi
Imτ0

p
for constant axion-dilaton τ0,

and F ¼ dC ¼ 2σ ∧ ω ∧ ω.
What part of the structure ðX;KÞ encodes the holomor-

phic information of the SCFT? Our claim is that it is
independent of K and depends only on the class

½X� ¼ fX̃ ¼ g�X∶g ∈ GDiffCg ð16Þ

of hypermultiplet structures X̃ related to X by a complexi-
fied generalized diffeomorphism. (Strictly speaking GDiffC

does not form a group and [X] is actually defined as the
orbit of X generated by LV for all complex V.)
The first argument for this identification comes from

considering generic nonconformal supersymmetric defor-
mations of the SCFT. These are of either “superpotential”
or “Kähler potential” type, corresponding to the highest
component of a chiral or general vector supermultiplet (see,
for example, Ref. [18]). In the dual gravity theory at the
AdS5 point, the former are dual to a 5d hypermultiplet and
the latter to a 5d vector eating a hypermultiplet to become
massive. Formally X and K can be viewed as an infinite set
of hyper and vector multiplets, respectively, in a 5d
supergravity gauged by GDiff [6,10]. The hypermultiplet
deformations that are eaten to form a long vector are then of
the form δX ¼ LVX for complex V. Since it is only the
superpotential deformations that deform the holomorphic
structure of the field theory, we see we need to consider
deformations of X modulo those of the form LVX as
in Eq. (16).
The second argument comes from considering the

supergravity domain-wall flow equations where the
AdS5 metric in Eq. (4) is replaced by a foliation of
Minkowski spaces,

ds2 ¼ a2ðrÞημνdxμdxν þ dr2: ð17Þ
By using the analysis of Ref. [19], we can show that
supersymmetry of the domain-wall solution implies that
Eq. (12) hold together with the flow equations

X0 ¼ −
2

3
iLKX;

Z
M
cðK;K0; VÞ ¼ μ3ðVÞ; ð18Þ

for all V, where 0 ¼ d=dr. Under the AdS=CFT corre-
spondence, these describe the renormalization group flow
of a non-conformal supersymmetric N ¼ 1 field theory,
with r playing the role of the energy scale. We see that X
flows by an imaginary generalized diffeomorphism. Given
a supersymmetric scheme, the superpotential should not
flow, but this precisely implies that the holomorphic
information is encoded in the class [X] rather than X itself.
Marginal deformations.—We define an “exceptional

Sasaki” (ExS) geometry by the slightly weaker set of
conditions

LKK ¼ 0; LKX ¼ 3iX; μþðVÞ ¼ 0; ð19Þ

where we also drop the constraint trXX̄ ¼ cðK;K;KÞ2. In
particular, conventional Sasaski geometries are examples of
ExS spaces. We now show that given a SE background (15)
and a choice of function f, one can construct an ExS
solution. The tangent space on a SE manifold decomposes
as TC ≃ Cξ ⊕ T1;0 ⊕ T0;1 with the corresponding decom-
position of the exterior derivative
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df ¼ σ ∧ Lξf þ ∂f þ ∂̄f: ð20Þ

The action of ∂̄ on forms in ΛpT�
1;0 ⊗ ΛqT�

0;1 of charge ik
under Lξ defines the “transverse” cohomology groups

Hðp;qÞ
∂̄ ðkÞ [7,20]. If f is holomorphic on the Calabi-Yau

cone then k ≥ 0 and ∂̄f ¼ 0. Given such a function, we
define

XED ≔ eCþ1
2
iω∧ω · eϵr

irjþαri · ðdf − viσ ∧ ΩÞ; ð21Þ

where ri ¼ ð1; 0Þi, ri ¼ ϵijrj, the two-form α is given by

α ¼ −
i

2ðk − 1Þ σ ∧ a −
k

k − 1
fΩ̄; ð22Þ

where, writing ðβ#Þm ¼ gmnβn for a one-form β, a ¼ {df#Ω̄,
and ϵ satisfies

∂̄ϵ ¼ −
i

8ðk − 1Þ {a#ð∂aÞ: ð23Þ

The right-hand side of Eq. (23) is ∂̄ closed and, since
Hð0;1ÞðkÞ ¼ 0 on a SE manifold, there is always a solution
for ϵ. In particular, for S5 we have explicitly

ϵ ¼ i
4!27ðk − 1Þ2 ðω ∧ ωÞmnpqð∂a ∧ ∂aÞmnpq: ð24Þ

For general f, one can show that ðXED; KÞ satisfies the
supersymmetric domain-wall conditions (12), and so char-
acterizes the dual of anN ¼ 1 field theory. (In the language
of Refs. [21,22] we are solving all but the ReΦþ equation.)
In particular, we claim ½XED� is the dual of a finite
deformation of the original superpotential by the mesonic
operator ΔW ¼ trOf. At linear order in f, one can check
that XED gives the deformations dual to trOf derived
in Ref. [23].
Since LKf ¼ Lξf, the deformation has R charge 2

3
k

implying that if k ¼ 3 we have an ExS background, dual to
an exactly marginal deformation. For the exactly marginal
deformations of S5, f is a cubic function on the C3 cone.
Working to second order, we see that ϵ deforms the axion-
dilaton τ, and matches the expression given in Ref. [4]. The
undeformed solution is invariant under an SUð3Þ ⊂ GDiff
group of conventional diffeomorphisms, thus XED define
equivalent classes ½XED� under SUð3ÞC ¼ SLð3;CÞ trans-
formations of f, just as in the field theory [18,24,25].
Since we have not satisfied the μ3 condition in Eq. (13),

even in the exactly marginal case K will flow under the
domain-wall equations (18). Physically this corresponds to
the flow of the field theory Kähler potential [18], and
indeed K0 is given by a moment map quadratic in X
matching the field theory expression. Since the Kähler
deformations are irrelevant, physically if k > 3 we expect

the solution to flow back to the original undeformed SE
background, and if k ¼ 3 the ExS background should flow
to a unique new ExSE solution ðX;KÞ with ½X� ¼ ½XED�.
For the case of the beta deformation, we can indeed show

that the solution of Ref. [3] is a GDiffC transformation of
ðXED; KÞ that leaves K invariant [5]. More generally,
although we cannot find the ExSE background explicitly,
we can make a continuity argument that it exists. There is
an important relation between moment maps and geometric
invariant theory (GIT) that underlies, for example, the
remarkable theorems on the existence of solutions of the
Hermitian Yang-Mills equations [26,27] or of Kähler-
Einstein metrics [28]. Let GK ⊂ GDiff be the one-
dimensional R-symmetry group generated by LK (iso-
morphic to the diffeomorphism subgroup generated by
Lξ) and GDiffK be the centralizer of GK in GDiff. The
spaceZK ⊂ Z of structures X satisfying the ExS conditions
(19) with fixed K inherits a GDiffK-invariant Kähler metric
from the hyper-Kähler metric on Z. Furthermore,

μKðVÞ ≔ μ3ðVÞ −
Z
M
cðK;K; VÞ ð25Þ

is a moment map for the action of GDiffK on ZK such that
μK ¼ 0 gives an ExSE background. The Kempf-Ness
theorem implies that there is an open subset of “stable”
pointsZs

K ⊂ ZK that lie on complexified GDiffCK orbits that
intersect μK ¼ 0 at unique solutions (up to the action of
GDiffK). As we scale the function f in ðXED; KÞ we get a
continuous one-parameter family of ExS solutions, that,
from Ref. [23], match the infinitesimal exactly marginal
solutions for small f. Since Zs

K is open we can expect that
for a finite range of f all these solutions are stable, and so
can all be mapped to a ExSE solution ðX;KÞ by a GDiffCK
transformation. It is easy to show that no two XED solutions
are related by a GDiffCK transformation, and hence each
XED solution flows to a unique ExSE solution. (The
exception, as in the S5 case, is when the original SE
solution admits an isometry preserving σ ∧ Ω. In this case,
any two XED solutions related by an isometry transforma-
tion define the same exactly marginal deformation [23],
reproducing the field theory result of Refs. [18,24,25].)
The Hilbert series.—Using our formalism we can cal-

culate the set of single-trace mesonic operators of the
deformed theories, giving new predictions for a large class
of deformed N ¼ 1 SCFTs. As a check, we compare with
the known result for the S5 case. The mesonic operators are
chiral so can act as deformations of the superpotential,
though of course these deformations are not necessarily
marginal. As such we need to find deformations δX that
preserve the domain-wall conditions (12), that is δμþ ¼ 0.
Since the superpotential is determined by the class [X], if
δX ¼ LVX for some complex V, we have a trivial defor-
mation, and so we have a cohomology
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chiral ops: ¼ fδμþ ¼ 0g=fδX ¼ LVXg: ð26Þ

We can grade the cohomology by the action of LK to
identify the number of operators of a given R charge 2

3
k.

The resulting cohomologies are nonzero for both positive
and negative k, and count both supersymmetric deforma-
tions and supersymmetric vevs of the corresponding chiral
operators. Furthermore, they include both single mesonic
operators trO and chiral operators of the form trWαWαO,
where Wα are gauge field strength superfields.
It is straightforward to see that the cohomology depends

only on the class [X], reflecting the fact that the number of
chiral operators depends only on the holomorphic infor-
mation in the field theory. Hence we can calculate it
knowing only XED. If we furthermore impose a regularity
condition that η ≔ df is nowhere vanishing, we can then
write XED in the form

XED ¼ ecþbi · η; ð27Þ

where the complex four- and two-forms c and bi satisfy

dcþ 1

2
ϵijbi ∧ dbj ¼ 0; η ∧ dbi ¼ 0: ð28Þ

One can then show that solutions to Eq. (26) of R charge
r ¼ 2

3
k come from perturbing bi and are counted by a

new graded cohomology Hp
dη
ðkÞ (with p ¼ 2) defined by

the maps

Γðη ∧ Λp−1T�MCÞ!d Γðη ∧ ΛpT�MCÞ: ð29Þ

General properties of these groups and their expressions in
terms of the transverse and Kohn-Rossi cohomologies
defined by the underlying Sasaki-Einstein space will be
given in Ref. [7]. Given that the R charge of trWαWαO is
two units more than that of trO and using the results of
Ref. [7], one can then derive a universal expression for the
Hilbert series of the single-trace mesonic operators

H̃ðtÞ ¼ 1þ I s:t:ðtÞ − ½k≡3 0; k > 0�t2k; ð30Þ

where I s:t:ðtÞ is the single-trace superconformal index and
we use Iverson bracket notation

½k≡3 0; k > 0� ¼
�
1 if k > 0 and k≡ 0ðmod 3Þ;
0 otherwise:

ð31Þ

In defining H̃ðtÞ we use the same power of twice the
conformal dimension t2k that appears in the index. In
examples where the R symmetry is compact, one usually
normalizes by the minimal U(1) charge. These normaliza-
tions do not generally match. By definition, the index is

independent of the marginal deformation and is given in
terms of Kohn-Rossi (or transverse) cohomology groups on
the SE solution [8]. Thus the Hilbert series, although in
general different from the series at the undeformed point, is
also independent of the particular marginal deformation, as
expected since it counts short operators with protected
conformal dimension, so can change only at discrete points
in the moduli space. (Note that we are also only capturing
operators dual to supergravity modes, so miss extra
operators dual to wrapped string states, as, for example,
in Ref. [3], that are expected to appear when there is an
algebraic relation between the marginal couplings.) For S5

the expression (30) reduces to Eq. (3), and applies to
generic deformations but notably not the beta deformation,
since in the latter case η vanishes on the three lines in theC3

cone: z1 ¼ z2 ¼ 0, z2 ¼ z3 ¼ 0, and z3 ¼ z1 ¼ 0.
As discussed in Refs. [8,29] the counting of mesonic

operators is given by the dimensions of the reduced cyclic
homology group HC0ðAÞ of a noncommutative “Calabi-
Yau algebra”A defined by the SCFTwith its superpotential
[30]. For S5 the corresponding algebras are of Sklyanin-
type. The reduced cyclic homology has been calculated in
the mathematics literature [9] and is in agreement with
Eq. (3). We have also checked the first few terms of the
general expression (30) for some other simple examples
(such as the conifold T1;1). More generally, it is a prediction
for the set of mesonic operators for deformations of any
theory away from the SE point, given nonvanishing η.
Final comments.—The essential ingredient of our con-

struction is the generalized structure X that encodes the
holomorphic information of the dual field theory. This
structure is present for any d ¼ 3, 4 CFT with at least four
supercharges, so, in particular, characterizes the Pilch-
Warner solution in type IIB, and AdS4 and AdS5 back-
grounds in M theory. This perspective might be especially
useful for analysing M5-branes wrapped on Calabi-Yau
threefolds [31], and for describing F or a maximization
away from the Sasaki-Einstein limit.
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