
SUPERHYDROPHOBICITY CAN ENHANCE
CONVECTIVE HEAT TRANSFER IN PRESSURE-DRIVEN

PIPE FLOW
by HENRY RODRIGUEZ-BROADBENT† and DARREN G. CROWDY

(Department of Mathematics, Imperial College London, London SW7 2AZ, UK)

[Received 1 January 2022. Revised 26 October 2022. Accepted 27 October 2022]

Summary

Theoretical evidence is given that it is possible for superhydrophobicity to enhance steady laminar
convective heat transfer in pressure-driven flow along a circular pipe or tube with constant heat
flux. Superhydrophobicity here refers to the presence of adiabatic no-shear zones in an otherwise
solid no-slip boundary. Adding such adiabatic no-shear zones reduces not only hydrodynamic
friction, leading to greater fluid volume fluxes for a given pressure gradient, but also reduces the
solid surface area through which heat enters the fluid. This leads to a delicate trade-off between
competing mechanisms so that the net effect on convective heat transfer along the pipe, as typically
measured by a Nusselt number, is not obvious. Existing evidence in the literature suggests that
superhydrophobicity always decreases the Nusselt number, and therefore compromises the net
heat transfer. In this theoretical study, we confirm this to be generally true but, significantly, we
identify a situation where the opposite occurs and the Nusselt number increases thereby enhancing
convective heat transfer along the pipe.

1. Introduction

In heat transfer engineering, the study of fully developed laminar flow convection in pipes and ducts
is a fundamental one of long-standing interest. The Nusselt number is a measure of convective
heat transfer, characterised by the difference between the temperature of a flow at its conducting
boundary and its mixing cup temperature, at a given axial location. It can be interpreted as inversely
proportional to the convective resistance of a flow which, in addition to the caloric resistance,
constitutes the full thermal resistance of a flow (1). It is therefore often desirable to increase the
Nusselt number so as to promote the removal of heat in the system by the fluid. Examples range from
typical heat exchangers to cooling systems in microelectronic devices such as laptop computers.
In 1971, Shah and London (2) compiled a comprehensive survey of known solutions, in the so-
called fully developed situation, for the laminar flow and temperature profiles, and heat transfer
coefficients (the Nusselt number) in uniform pipes of different cross-sectional shapes. One of the
simplest cases of laminar flow along a circular pipe of uniform cross-section and with a constant heat
flux entering the fluid uniformly through the no-slip circular boundary is known to have a Nusselt
number Nu = 48/11.

In surface engineering, on the other hand, a class of surfaces described as superhydrophobic
(3 to 5) has been receiving increasing attention, owing to the fact that they can dramatically reduce
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316 H. RODRIGUEZ-BROADBENT AND D. G. CROWDY

flow resistance. This is a result of capillary effects that allow a surface microstructure to support
interfaces, or menisci, that prevent fluid from fully penetrating interstitial regions between pillars,
posts or gratings, leading to trapped gas pockets and enhanced slip over the spanning menisci.
Maintaining and controlling this so-called Cassie state remains a key challenge for the successful
deployment of superhydrophobic surfaces in applications and is a subject of active ongoing research
(5).

The implications for heat transfer of superhydrophobic surfaces are a subject of burgeoning
interest. Making the boundary of a pipe ‘superhydrophobic’ by adding no-shear regions creates a
trade-off in the context of convective heat transfer: the presence of free surfaces, which are generally
treated as adiabatic, reduces the area of contact between fluid and boundary through which heat
conduction occurs and this can reasonably be expected to decrease the efficacy of heat transfer; on the
other hand, those same free surfaces generally increase the fluid flow rate by reducing hydrodynamic
friction suggesting that any heat entering the system is advected downstream more efficiently. While
it is clear that the improved flow rate alone reduces the caloric resistance of the flow (1), the net
effect on convective resistance and therefore the Nusselt number is not obvious and has been a
topic of recent investigation. So far, the consensus from the wider experimental and theoretical
literature is that superhydrophobicity does not typically lead to increased Nusselt numbers: that
is, the loss of surface area for heat conduction is not mitigated by the enhanced advection leading
overall to less effective convective heat transfer. Consequently, at the time of writing, early hopes
that superhydrophobicity might be a boon for convective heat transfer appear to be misplaced.

The present paper has been inspired by an important recent paper by Kirk et al. (6) which studied
the thermally fully developed flow along a channel between two superhydrophobic surfaces where
heat enters the fluid along the no-slip portions of the boundary walls with constant heat flux, but not
through an array of no-shear slots that decorate the walls and enhance the hydrodynamic slip. The
aim of Kirk et al. (6) was to extend the earlier work of Maynes et al. (7) and Maynes and Crockett
(8) who were the first to investigate the Nusselt number mathematically in such a channel geometry.
A distinction is that Kirk et al. (6) solve the mixed boundary value problem for the flow rather
than relying, as did the earlier authors, on an effective Navier-slip boundary condition to model the
heterogeneous surface and which leads to simpler boundary value problems for both the flow and
the temperature fields. Kirk et al. (6) also relax the assumption that the no-shear slots are flat, and
flush with the no-slip surface, in order to investigate the effect of meniscus curvature on the heat
transfer properties. This work was motivated by similar theoretical work examining the effect of
meniscus curvature on hydrodynamic slip by Sbragaglia and Prosperetti (9) and Crowdy (10). It is
worth mentioning that there are similarities with mass transfer problems; Haase and Lammertink
(11) have studied heat and mass transfer problems in channel geometries focusing mainly on the
transverse flow case where the pressure gradient drives flow across the grooves, rather than the case
of longitudinal flow along the grooves.

It turns out that analytical solutions exist for the velocity field associated with pressure-driven
longitudinal flow along a pipe whose circular boundary has a regular array of no-shear slots, m such
slots say, interspersed with no-slip zones (Fig. 1); the solutions to boundary value problems relevant
to such a flow were derived by Philip (12) albeit in a different physical context. The heat transfer
problem in Philip’s superhydrophobic pipe does not appear to have been investigated before and
is the focus of the present paper. Like Kirk et al. (6), we examine the full mixed boundary value
problem and avoid making any Navier-slip approximation. For now, however, we assume that the
meniscus curvature is the same as the solid boundary so that the shape of the global pipe boundary
is still a circle, albeit now with boundary conditions of mixed type imposed on it. We also simplify
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SUPERHYDROPHOBICITY CAN ENHANCE CONVECTIVE HEAT TRANSFER IN PIPES 317

conditions along the meniscus by neglecting the effects of evaporation and condensation, and of
thermocapillary stresses, both of which have been previously studied (13, 14).

Incidentally, Philip’s pipe flow solutions have recently been extended by Crowdy (15) who found
generalized analytical solutions for flow in superhydrophobic pipes with an annular cross-section
and no-shear patterning on one of the two boundary walls. The heat transfer properties of those flows
are also of interest and will be studied in future work.

Our main finding here is that while a cylindrical tube with m > 1 slots follows the trend of previous
literature of having a reduced Nusselt number compared to a fully no-slip boundary, the single-slot
case m = 1 deviates from this and, in fact, leads for a range of slot sizes to an enhanced Nusselt
number. This surprising result is demonstrated theoretically by using complex variable methods
to solve the laminar flow boundary value problems for the temperature field. From these, it is a
simple matter to calculate diagnostic quantities such as the mass and enthalpy flux rates and the
Nusselt number. On an applied mathematical note, the methods of complex analysis and conformal
mapping which we espouse here are not commonly used in studying heat transfer problems although
their relevance and usefulness in this context is known (16).

A second key result of this article stems from a matched asymptotic analysis in the many-slot
limit. This yields an expression for the first-order correction to the Nusselt number from the familiar
value of 48/11 associated with the fully no-slip boundary.

The structure of the article is as follows. The mathematical formulation is presented in section 2.
Section 3 then gives details of the complex variable methods used to solve for the velocity and
temperature fields in the fully developed flow scenario. The Nusselt number is defined in section 4
and the use of the complex form of Stokes theorem to compute several important integral quantities is
discussed. The main Nusselt number calculations are presented in sections 5 and 6, and a discussion
of the implications of these results is given in section 7. Many of the more technical details have
been relegated to a set of appendices for clarity of exposition.

2. Mathematical formulation

We consider fully thermally developed (17), steady, unidirectional, incompressible, laminar flow
through a cylindrical tube or pipe, with m ≥ 1 azimuthally periodic, longitudinal slots, held in Cassie
state as proposed by Lam et al. (1). The tube cross-section is a circular disc of radius R and is
assumed to sit in an (x∗, y∗) plane with Z∗ taken as the axial coordinate, in the direction of the
flow. (We have avoided use of z since later it will denote the complex variable z = x + iy; note also
that starred variables indicate dimensional quantities, not complex conjugate quantities which will
later be denoted using overbars). As shown in Figs 2 and ??, θ/m is defined as half the solid angle
subtended at the centre of the pipe by each no-slip ridge, parametrising the arclength of contact
between the fluid and the boundary for each geometry, and therefore the size of menisci as well.
A no-slip condition holds where the fluid is in contact with the ridge top, and a no-shear condition
holds on the meniscus (held above what we assume to be vapour-filled grooves (18)). In this steady
unidirectional flow scenario the three-dimensional Navier–Stokes equations for a fluid with constant
viscosity μ, axial pressure gradient ∂p/∂Z∗ and axial velocity w∗(x∗, y∗) simplify to

∂p

∂Z∗ = μ

(
∂2w∗
∂x∗2

+ ∂2w∗
∂y∗2

)
. (2.1)
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318 H. RODRIGUEZ-BROADBENT AND D. G. CROWDY

Fig. 1 Fluid flow along a superhydrophobic tube. The surface of the tube is patterned by a regular array of
m ≥ 1 no-shear slots. The slots reduce not only the hydrodynamic friction but also the surface area for heat
conduction into the fluid, making the effect on the Nusselt number unclear.

Fig. 2 A cross-section of the tube in the case m = 4; the Z∗ direction is taken ‘into’ the page. The ratio θ/π

is the fraction of the boundary where a no-slip condition holds.
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SUPERHYDROPHOBICITY CAN ENHANCE CONVECTIVE HEAT TRANSFER IN PIPES 319

Define unstarred, dimensionless variables, and calligraphic dimensional scales:

x∗ = Rx, y∗ = Ry, w∗ = Ww, (2.2)

and choose that

W = −R2

μ

∂p

∂Z∗ ; (2.3)

the negative sign is included in consistency with the literature, as ∂p/∂Z∗ is taken to be a negative
constant, so that the dimensionless flow goes ‘into’ the page. The dimensionless governing equation
is then of Poisson type,

∇2w = −1, (2.4)

where ∇2 denotes the two-dimensional (2D) Laplacian. The no-slip and no-shear boundary
conditions are then

w = ∂w

∂s
= 0 on the no-slip ridges,

∂w

∂n
= 0 on the no-shear menisci.

(2.5)

The notations ∂/∂s and ∂/∂n refer to tangential and fluid-inward normal derivatives around the
boundary, respectively, where s increases with the fluid region to the left as the boundary is traversed.

Now consider the thermal problem. For a fluid with thermal conductivity k, specific heat under
constant pressure cp and density ρ, the dimensional temperature T∗ is governed by the advection–
diffusion equation (17)

k

(
∂2T∗
∂x∗2

+ ∂2T∗
∂y∗2

)
= ρcpw

∂T∗
∂Z∗ , (2.6)

where the unidirectional and fully developed assumptions have simplified the advection and
diffusion terms, respectively. Conduction with constant heat flux per unit area q′′

sl through the wetted
perimeter is modelled by the boundary condition

− k
∂T∗
∂n∗ =

{
q′′

sl, on the no-slip ridges,
0, on the no-shear menisci.

(2.7)

The thermally developed assumption gives that ∂T∗/∂Z∗ is constant (17), so by similarly defining

dimensionless temperature T such that T∗ = Rq′′
sl

k T , and introducing the dimensionless parameter

P = Rρcp

Wq′′
sl

∂T∗
∂Z∗ , the dimensionless advection–diffusion equation is

∇2T = Pw, (2.8)

with boundary conditions

− ∂T

∂n
=

⎧⎨
⎩

1, on the no-slip ridges,

0, on the no-shear menisci.
(2.9)
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320 H. RODRIGUEZ-BROADBENT AND D. G. CROWDY

3. Solutions for the velocity and temperature profiles

It is convenient to introduce the complex coordinate z = x + iy as the coordinate in the flow cross-
section and write the axial velocity profile as a function of this variable and its complex conjugate
z, that is, w = w(z, z̄). The no-slip and no-shear boundary conditions (2.5) are then stated as

w = ∂w

∂s
= 0 for |z| = 1, |arg(zm)| < θ,

∂w

∂n
= 0 for |z| = 1, |arg(zm)| > θ,

(3.1)

where the argument is taken as arg(z) ∈ (−π, π ]. Philip (12) has given the solution to this flow
problem. Rephrased in present notation, it is

w(z, z̄) = 1

4
(1 − zz̄) + 1

m
Im

⎡
⎣cos−1

⎧⎨
⎩

cos
(
− im

2 log((−1)1/mz)
)

cos π−θ
2

⎫⎬
⎭ + im

2
log((−1)1/mz)

⎤
⎦ , (3.2)

which can be rewritten as

w(z, z̄) = 1

4

(
1 − zz̄ + f (z) + f (z)

)
, (3.3)

where f (z) is the holomorphic function

f (z) = 2

m

(
log

(
1 − zm +

√
z2m − 2zm cos θ + 1

)
− log

(
2 sin

θ

2

))
. (3.4)

This expression differs from that given by Philip (12) but proves convenient for present purposes.
With this result at hand, the temperature problem can then be stated in complex variable form as

∂2T

∂z∂ z̄
= P

16

(
1 − zz̄ + f (z) + f (z)

)
, (3.5)

which is readily solved by

T(z, z̄) = P

16

(
zz̄ − z2z̄2

4
+ z̄F(z) + zF(z)

)
+ g(z) + g(z), (3.6)

where

F(z) ≡
∫ z

0
f (ẑ)dẑ, (3.7)

and g(z) is a holomorphic function to be determined by enforcing the boundary conditions (2.9)
which can be restated as

− ∂T

∂n
=

⎧⎨
⎩

1, for |z| = 1, |arg(zm)| < θ,

0, for |z| = 1, |arg(zm)| > θ.

(3.8)
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SUPERHYDROPHOBICITY CAN ENHANCE CONVECTIVE HEAT TRANSFER IN PIPES 321

Further, by integrating the governing equation over the domain we find that

P = 16θ

π
(

1 − 8
m log sin θ

2

) (3.9)

which can be viewed as a conservation of energy result. Due to the assumption of a thermally fully
developed flow, this solution is unique up to a constant that depends on the axial coordinate (17), so
without loss of generality we impose

T(0, 0) = 0. (3.10)

We find the solution to the temperature problem (the details are in Appendix A) to be

T(z, z̄) = P

16

(
zz̄ − z2z̄2

4
+ (1 + zz̄)

(
F(z)

z
+ F(z)

z̄

)
− 2f (0)

)

+ Re

[
i

πm

(
Li2

(
zme−iθ

)
− Li2

(
zmeiθ

))
− P

4

(∫ z

0

f (ẑ) − f (0)

ẑ
dẑ

)]
,

(3.11)

where Li2 is the dilogarithm (19). Note that in the special case that m = 1:

F(z)|m=1 =zf (z) +
√

z2 − 2z cos θ + 1

+ 2 cos2 θ

2
log

z − cos θ +
√

z2 − 2z cos θ + 1

1 − cos θ
− z − 1,

(3.12)

although this is the only case for which any of the indefinite integrals in (3.11) can be expressed in
terms of elementary functions.

4. The Nusselt number

The Nusselt number is a convenient quantifier of the benefit to convective heat transfer attained by
using a superhydrophobic surface (6, 18, 20 to 23) with the value for a fully no-slip cylindrical tube
well known to be the benchmark 48/11. To define the Nusselt number, we first define the mixing
cup temperature of the flow, Tb (17) to be

Tb =
∫∫

pipe wTdA∫∫
pipe wdA

. (4.1)

This quantity characterises the temperature of the bulk flow. In an unbounded system the far-
field temperature is typically used, however in bounded systems such as that considered here, this
weighted average of the fluid temperature is preferred (6, 17). The local Nusselt number, Nu(z),
is the ratio of cooling through all mechanisms to cooling through convection alone at a particular
boundary point (8), so on the boundary |z| = 1 it is defined as

Nu(z) = h(z)D

k
, (4.2)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/75/4/315/6831862 by Im

perial C
ollege London Library user on 06 January 2023



322 H. RODRIGUEZ-BROADBENT AND D. G. CROWDY

where h(z) = q′′
sl

T∗−T∗
b

is the Newton cooling coefficient (and T∗
b = Rq′′

sl
k Tb), and D = 2 is the hydraulic

diameter. Consequently, for present purposes this simplifies to

Nu(z) :=
⎧⎨
⎩

2
T(z)−Tb

, for |arg(zm)| < θ,

0, for |arg(zm)| > θ.

(4.3)

In order to characterise each geometry in a more general sense, the average Nusselt number Nu, is
defined as

Nu := 1

2π

∫ π

−π

Nu(eis)ds. (4.4)

4.1 Integral Quantities

The complex form of Stokes’ theorem says that, given a domain D with boundary ∂D, and a function
� regular in D, then ∫∫

D

∂�

∂ z̄
dA = 1

2i

∮
∂D

�dz. (4.5)

This, and its complex conjugate form, can be used to efficiently determine the mass and enthalpy
flux rates. Indeed it can be shown that

Q(θ, m) :=
∫∫

|z|<1
wdA = π

8

(
1 − 8

m
log sin

θ

2

)
, (4.6)

matching Philip’s result (24). Similarly, for the enthalpy flux rate H(θ, m):

H(θ, m) :=
∫∫

|z|<1
wTdA

= θ

4
(

1 − 8
m log sin θ

2

)
(

7

48
− 7

3m
log sin

θ

2
+ 8

m2

(
log sin

θ

2

)2
)

+
∞∑

n=1

⎛
⎝ an sin nθ

2mn2(mn + 1)
− θa2

n

2
(

1 − 8
m log sin θ

2

) 3mn + 4

mn(mn + 1)2(mn + 2)

⎞
⎠,

(4.7)

where an are the Taylor coefficients of f (z), that is:

f (z) =
∞∑

n=0

anzmn. (4.8)

The details of these calculations are included in Appendix B. Equations (4.6) and (4.7) provide useful
formulas for Q and H from which Tb = H/Q can be readily calculated without the need to perform
any area integrals over the pipe cross-section.

As described by (4.3) and (4.4), we now can calculate each of the quantities on which the Nusselt
number depends. This is done in section 5.
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SUPERHYDROPHOBICITY CAN ENHANCE CONVECTIVE HEAT TRANSFER IN PIPES 323

4.2 Axial temperature gradient

With the velocity and temperature fields in the cross-section now found, the energy balance described
by (3.9) determines the axial temperature gradient along the tube as

∂T∗
∂Z∗ = 16q′′

slθ

ρcpπ
(

1 − 8
m log sin θ

2

)W
R . (4.9)

5. Nusselt numbers: m ∈ O(1) − O(10)

With the flow and temperature fields determined, the Nusselt number can now be calculated as a
function of the slot number m and any θ , representing the solid fraction of the tube boundary.

Our principal interest is in assessing whether there is any advantage to convective heat transfer in
using this family of superhydrophobic pipes, over a fully no-slip tube. To make this comparison, we
must first establish this benchmark. While the result for this Poiseuille flow is well known (17) and
was mentioned earlier, we can set θ = π in the solutions here to recover the Nusselt number for the
fully no-slip tube:

Nu|θ=π = 48

11
. (5.1)

Replacing the fully no-slip boundary with longitudinal ridges held in the Cassie state can be expected
to impact the Nusselt number, that is, the ratio of convective and conductive mechanisms for heat
transfer, in two ways. On the one hand, reducing contact between the fluid and the boundary reduces
the surface area over which conduction can occur; on the other hand, this diminished contact reduces
the drag that the tube exerts on the fluid, increasing the mass flux and thus improving convection
(20). As already mentioned, the net effect on the Nusselt number is therefore not obvious without a
detailed calculation.

Existing evidence in the literature where channel flows have been the focus (6, 8) shows that
punctuating a fully no-slip boundary with superhydrophobic ridges can increase the local Nusselt
number at points in certain configurations, typically at the triple contact point at the edge of a ridge,
however ultimately it decreases the average Nusselt number. Figure 3 shows that this feature is
confirmed for the pipe flow scenario provided m > 1. However, interestingly, the calculation for
m = 1 deviates from this trend: it is found that for a range of values of large θ near π , the average
Nusselt number Nu increases relative to the fully no-slip case. It is also found that there is a finite
range of θ for which Nu becomes singular. Such singular behaviour occurs when, at some point
on the no-slip boundary, the tube reaches the mixing cup temperature. Numerically we determine
that when m = 1, this singular behaviour occurs in the range 0.7373π < θ < 0.8939π . Physically,
this corresponds to points on the boundary over which there is no conduction, so that the ratio of
convection to conduction becomes infinite. For 0.8939π < θ < π , however, the average Nusselt
number for a pipe with a single slot m = 1 is both well defined and higher than 48/11.

It should also be pointed out that Fig. 3 is the analogue of Figure 7a in Kirk et al. (6). For increasing
m, it bares a strong resemblance to their figure for increasing h, except in the m = 1 case, where we
see the surprising improvement in Nu.
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324 H. RODRIGUEZ-BROADBENT AND D. G. CROWDY

Fig. 3 Average Nusselt number, Nu, as a function of solid ridge angle θ : calculated by truncating ten terms
in the series for H. For m = 1, there is a range of angles θ where Nu is undefined, and a range just below π

where Nu is enhanced above the 48/11 value for a fully no-slip pipe.

6. Nusselt numbers: m → ∞
The many-slot limit, m → ∞, is also of interest. Appendix C gives details of the derivation of
asymptotic expansions of the velocity and temperature fields in terms of increasing powers of 1/m.
In this limit, the first-order correction term to the fully no-slip local Nusselt number, Nu∞(z), for
|z| = 1 is found to be

Nu∞(z) = 48π

11θ
− 1

m

1152π

121θ

(
2 log sin

θ

2
+ 1

θ
Im

[
Li2(zmeiθ ) − Li2(zme−iθ )

])
+ O

(
1

m2

)
, (6.1)

where Li2 is the dilogarithm (19), and the analogous result for the average Nusselt number, Nu∞, is
that

Nu∞ = 48

11
+ 1

m

576

121

(
1

θ2
Re

[
Li3(e2iθ ) − 2Li3(1) + Li3(e−2iθ )

]
− 4 log sin

θ

2

)
+ O

(
1

m2

)
,

(6.2)
where Li3 is the trilogarithm (19). It is interesting that the coefficient of this first-order correction in
1/m can be found as a function of θ in analytical form. This coefficient is plotted against θ in Fig. 4
and, being negative over the range of θ values, corroborates that adding a large number of no-shear
slots to flow in circular pipe will always be to the detriment of the Nusselt number.
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SUPERHYDROPHOBICITY CAN ENHANCE CONVECTIVE HEAT TRANSFER IN PIPES 325

Fig. 4 Coefficient of the first-order correction, as an expansion in 1/m, of the average Nusselt number plotted
against solid ridge angle θ .

Comparing (6.2) against the exact average Nusselt number for a given m shows that this
approximation breaks down for smaller values of θ . The size of the range of values of θ for which
it is a good approximation is larger for bigger values of m. This is illustrated in Fig. 5. This is an
encouraging result for the applicability of this formula: smaller menisci (that is, larger values of
θ ) are more typically seen in this family of surfaces, owing to increased meniscus stability and the
consequent ease in maintaining the Cassie state that underpins the technology.

7. Discussion

The primary result of this article is the discovery of a family of superhydrophobic pipe designs
that cause a marked improvement to the Nusselt number compared to a fully no-slip pipe. This is a
departure from the consensus to date that superhydrophobicity always lowers the Nusselt number in
a given pipe geometry compared to the fully no-slip scenario.

Some intuition on this phenomenon can be gained by studying Fig. 6. The fluid along the solid
ridge shows much greater temperature variation in the top row of figures associated with the m = 1
case than in the others: note that the contours adjacent to the solid, heated boundary are hot relative
to the flow for m > 1, while for m = 1, θ = 4π/5 the contours adjacent to the solid boundary span
a wider range of cooler temperatures. The Nusselt number is a ratio of cooling via all mechanisms
to cooling via conduction alone (that is, Newton cooling to Fourier cooling (17)) and when the
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Fig. 5 The error for approximation (6.2), plotted for a range of values of m. The domain of θ with 10−2

accuracy, indicated by dashed lines, is seen to grow with m.

fluid temperature at the boundary reaches the mixing cup temperature, the local Newton cooling
coefficient, typically denoted by h as in (4.2), blows up; this is illustrated explicitly in Fig. 7 for the
configurations in the first row of Fig. 6. In the range of θ where the singular behaviour occurs (which
includes the case θ = 4π/5), this variability means that that fluid in contact with the boundary
reaches cooler temperatures than that seen for other parameter values, making it possible for this
fluid to reach the mixing cup temperature. At this point, the Nusselt number denominator in (4.3)
approaches zero, resulting in the observed singular behaviour.

This singularity in the Nusselt number should not be considered too seriously: it is not a physical
singularity, it merely signifies that the defined diagnostic quantity has reached a limitation, at least
in its current mathematical definition, for this class of problem (6). The same blow-up of the Nusselt
number as defined herein has been observed in other heat transfer problems (25). A common fix is
to define other measures of convective heat transfer that do not blow up in the same way: Enright
et al. (18) consider one such alternative measure, which is shown to have its own challenges with
singularities for this problem in Appendix D. Our conjecture is that while the average Nusselt number
introduced here becomes undefined for angles in this range, this very failure might still be expected
to be a signature of enhanced convective heat transfer, at least for the larger angles within this range.
Indeed, as already pointed out, there is a range of angles close to π where the average Nusselt number
is well defined and larger than 48/11.
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Fig. 6 Temperature contours (T − Tb): left-right: θ = π
5 , π

2 , 4π
5 , 9π

10 ; top-bottom: m = 1, 3, 5, 10. Solid lines
at the boundary indicates where heat enters the pipe.

There are practical engineering matters to be considered in building a superhydrophobic pipe of
the kind shown here to increase the Nusselt number, since the single slot case features the least
robust Cassie state, which in turn typically increases caloric resistance. Nevertheless, this results of
this article may rekindle interest in the use of suitably designed superhydrophobic pipes for enhanced
convective heat transfer. The same increase in Nusselt number can be expected for other pipe cross-
sections leaving open for future investigation the question of designing a practically viable one.

This study has focused on solving the full mixed-type boundary value problem in preference to
use of any homogenised Navier-slip ‘effective’ boundary condition. But it is worth pointing out that,
from the matched asymptotics in Appendix C, the outer solution (C. 3) is indeed found to be one
corresponding to enforcing such an effective Navier-slip condition, thereby underpinning the use of
such approximations in this limit.
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328 H. RODRIGUEZ-BROADBENT AND D. G. CROWDY

Fig. 7 The difference between the fluid temperature and mixing cup temperature, along the portion of the
pipe boundary that conducts heat, in the case m = 1 for the range of values of θ featured in the first row of
Fig. 6: that is, the ends of the curves stop at the positions on the boundary where the meniscus starts, where
the temperature is not relevant to the definition of Nu. Intersection with the dashed line indicates Nu blow-up,
marked with red circles on the graph.
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A. Solving for the temperature field

Here, we solve for T(z, z̄), detailing the method summarised in section 3. The governing equations are

∇2T = Pw, (A. 1)

with

∂T

∂n
=

⎧⎪⎨
⎪⎩

−1 for |z| = 1, |arg(zm)| < θ

0 for |z| = 1, |arg(zm)| > θ.

(A. 2)

In terms of the complex variable z this is

4
∂2T

∂z∂ z̄
= Pw (A. 3)

with, noting the complex form of the inward normal,

− 2Re

[
z
∂T

∂z

]
=

⎧⎪⎨
⎪⎩

−1 for |z| = 1, |arg(zm)| < θ

0 for |z| = 1, |arg(zm)| > θ.

(A. 4)

The following decomposition of T is useful:

T(z, z̄) = Tf (z, z̄) + g(z) + g(z), (A. 5)

where, using the form for w(z, z̄) found previously, Tf satisfies

4
∂2Tf

∂z∂ z̄
= P

4

(
1 − zz̄ + f (z) + f (z)

)
, (A. 6)

and g(z) is a holomorphic function determined by the boundary conditions. Integrating this gives

Tf (z, z̄) = P

16

(
zz̄ − z2z̄2

4
+ z̄F(z) + zF(z)

)
, (A. 7)

where

F(z) =
∫ z

0
f (ẑ)dẑ. (A. 8)
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Fig. A.1 The transformed domain in the ξ plane, illustrating the definition of θ .

On substituting the expression (A. 5) into the boundary conditions (A. 4), we have that

Re

[
2z

∂Tf

∂z
+ 2zg′(z)

]
=

⎧⎪⎨
⎪⎩

1 for |z| = 1, |arg(zm)| < θ

0 for |z| = 1, |arg(zm)| > θ.

(A. 9)

With the known form of Tf (z, z̄), and using the fact that zz̄ = 1 on the boundary, this reduces the problem to
finding a holomorphic function g(z) satisfying, in terms of the transformed coordinate ξ = zm,

Re
[
2ξ (z)g′(ξ (z))

] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

m
− P

8m
Re

[(
1

2
+ f (z) + zF(z)

)]
for |ξ (z)| = 1, |arg(ξ (z))| < θ

− P

8m
Re

[(
1

2
+ f (z) + zF(z)

)]
for |ξ (z)| = 1, |arg(ξ (z))| > θ.

(A. 10)

We further decompose g(z) into the sum of two terms

g(z) = g1(z) + g2(z), (A. 11)

where (henceforth omitting the dependence of ξ on z)

Re[2ξg′
1(ξ )] =

⎧⎪⎪⎨
⎪⎪⎩

1

m
for |z| = 1, |arg(ξ )| < θ,

0 for |z| = 1, |arg(ξ )| > θ,

(A. 12)
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and

Re[2zg′
2(z)] = −P

8
Re

[(
1

2
+ f (z) + zF(z)

)]
, on all of |z| = 1. (A. 13)

Notice that it is more useful to work in ξ for g1(z), and in z for g2(z). To solve for g1(z), we let

χ (ξ ) = (ξ − b)(1 − b̄)

(b − 1)(ξ − b̄)
, b = eiθ , (A. 14)

which, as a conformal map, transplants the slotted pipe to the upper half plane, the no-slip region to the negative
real axis, and the no-shear boundary portion to the positive real axis. Then, since we require

Re
[
2ξg′

1(ξ )
] =

{
1/m for |ξ | = 1, |arg(ξ )| < θ

0 for |ξ | = 1, |arg(ξ )| > θ.

=
{

1/m χ on negative real axis
0 χ on positive real axis,

(A. 15)

a suitable form is found to be

ξg′
1(ξ ) = − i

2πm
log χ = − i

2πm
log

(ξ − b)(1 − b̄)

(b − 1)(ξ − b̄)

=⇒ g′
1(ξ ) = − i

2πm

(
log(ξ − b)

ξ
− log(ξ − b̄)

ξ
+ 1

ξ
log

1 − b̄

b − 1

)

= − i

2πm

1

ξ

(
log

ξ − b

b
− log

ξ − b̄

b̄
+ iθ

)

=⇒ g1(z) = − i

2πm

(
Li2

(
zmeiθ

)
− Li2

(
zme−iθ

))
+ θ

2π
log z,

(A. 16)

where Li2(z) is the polylogarithmic function of order 2, or dilogarithm (19). Note the logarithmic singularity at
z = 0, which we expect to be removed by a corresponding term in g2(z).

As for g2(z), using the fact that Re[zF(z))] = Re [z̄F(z)], and z̄ = 1/z on the unit circle, (A. 13) can be
rewritten as

Re
[
2zg′

2(z)
] = −P

8
Re

[
1

2
+ f (z) + F(z)

z

]
, on |z| = 1. (A. 17)

The term in square brackets resembles a holomorphic function now. Motivated by this, we seek a function g2
satisfying

g′
2(z) = − P

16

(
1

2z
+ f (z)

z
+ F(z)

z2

)
+ ic

z
, c ∈ R

= − P

16

(
1

2z
+

d
dz (zF(z))

z2

)
+ ic

z
,

(A. 18)
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where the constant c is arbitrary due to the freedom given by the real part taken in (A. 17). On integration,

g2(z) = − P

16

(
1

2
log z + F(z)

z
− f (0) + 2

∫ z

0

F(ẑ)

ẑ2
dẑ

)
+ ic log z

= − P

16

(
1

2
log z − F(z)

z
+ f (0) + 2

∫ z

0

f (ẑ)

ẑ
dẑ

)
+ ic log z

= − P

16

((
1

2
+ 2f (0) + ic

)
log z − F(z)

z
+ f (0) + 2

∫ z

0

f (ẑ) − f (0)

ẑ
dẑ

)
.

(A. 19)

Note that T is defined up to a constant, so the constant of integration has been taken such that T(0) = 0. We
must now chose c to cancel the logarithmic singularity in g1(z). For this, consider the energy balance equation
(derived from the statement of the divergence theorem for T in the cross-sectional domain)

Pπ

8
(1 + 4Re[f (0)]) = PQ =

∫∫
|z|<1

PwdA =
∫∫

|z|<1
∇2TdA = −

∮
|z|=1

∂T

∂n
ds = 2θ

=⇒ P = 16θ

π
(

1 − 8
m log sin θ

2

) .

(A. 20)

Therefore,

g1(z) ∼ P

16

(
1

2
+ 2Re[f (0)]

)
log z as z → 0, (A. 21)

where we have used (A. 20) to substitute for P. In order to cancel the logarithmic singularities in g1 and g2 on
addition, we choose

c = −2Im[f (0)] = 0, (A. 22)

so that

g2(z) = − P

16

(
1

2
(1 + 4Re[f (0)]) log z − F(z)

z
+ f (0) + 2

∫ z

0

f (ẑ) − f (0)

ẑ
dẑ

)

= θ

2π
log z + P

16

(
F(z)

z
− f (0) − 2

∫ z

0

f (ẑ) − f (0)

ẑ
dẑ

)
.

(A. 23)

Finally, we find

g(z) = i

2πm

(
Li2

(
zme−iθ

)
− Li2

(
zmeiθ

))
+ P

16

(
F(z)

z
− f (0) − 2

∫ z

0

f (ẑ) − f (0)

ẑ
dẑ

)
. (A. 24)

The final expression for the temperature field is then

T(z, z̄) = P

16

(
zz̄ − z2z̄2

4
+ z̄F(z) + zF(z)

)

+ Re

[
i

πm

(
Li2

(
zme−iθ

)
− Li2

(
zmeiθ

))
+ P

8

(
F(z)

z
− f (0) − 2

∫ z

0

f (ẑ) − f (0)

ẑ
dẑ

)]
.

(A. 25)
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B. Integral calculations using Stokes’ theorem

This appendix shows how the complex form of Stokes’ theorem as stated in (4.5) can be used to calculate
integrals over the pipe cross-section—specifically, the mass flux rate Q and the enthalpy flux rate H—without
performing any 2D integrals.

The mass flux rate Q is

Q =
∫∫

|z|<1
wdA =

∫∫
|z|<1

1

4
(1 − zz̄ + f (z) + f (z))dA. (B. 1)

On the pipe boundary z̄ = 1/z, so we can use Stokes theorem to write

∫∫
|z|<1

1

4
(1 − zz̄ + f (z))dA = 1

2i

∮
|z|=1

1

4

(
1

2z
+ f (z)

z

)
dz = π

4

(
1

2
+ f (0)

)
, (B. 2)

and

∫∫
|z|<1

1

4
f (z)dA = − 1

2i

∮
|z|=1

1

4
zf (z)dz̄ = − 1

8i

∮
|z|=1

f (z)

z̄
dz̄ = 1

8i

∮
|z|=1

f (z)

z
dz = π

4
f (0). (B. 3)

Adding (B. 2) and (B. 3), it follows from (B. 1) that

Q = π

8
(1 + 4Re[f (0)]). (B. 4)

On use of (3.4),

f (0) = − 2

m
log sin

θ

2
, (B. 5)

so it follows that

Q(θ, m) = π

8

(
1 − 8

m
log sin

θ

2

)
. (B. 6)

This result matches that found by Philip (24).
Next consider the enthalpy flux rate given by

H =
∫∫

|z|<1
wTdA =

∫∫
|z|<1

wTf dA +
∫∫

|z|<1
w(g + ḡ)dA := H1 + H2, (B. 7)

where we have named the two integrals H1 and H2. After application of Stokes’ theorem it follows, by steps
akin to those used above for Q, that

H1 = P

64

1

2i

∮
|z|=1

(
1

2
zz̄2 − 5

12
z2z̄3 + 1

16
z3z̄4

)
dz

− P

64

1

2i

∮
|z|=1

(
1

2
z2F(z) − 1

3
z3z̄F(z) + 1

2
z2z̄f (z) − 1

12
z3z̄2f (z) + 1

2
z2f (z)F(z) + z̄f (z)	(z)

)
dz̄

+ P

64

1

2i

∮
|z|=1

(
1

2
z̄2F(z) − 1

3
zz̄3F(z) + 1

2
zz̄2f (z) − 1

12
z2z̄3f (z) + 1

2
z̄2f (z)F(z) + zf (z)	(z)

)
dz,

(B. 8)
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where

	(z) =
∫ z

0
F(s)ds. (B. 9)

Then, using the fact that z̄ = 1/z on the boundary, and noting that the second and third integrals are complex
conjugates, this simplifies to

H1 = P

64

1

2i

∮
|z|=1

7

48z
dz + P

32
Re

[
1

2i

∮
|z|=1

(
F(z)

6z2
+ 5f (z)

12z
+ 1

2z2
f (z)F(z) + zf (z)	(z)

)
dz

]
.

= P

64

(
7π

48
+ 2Re

[
πF′(0)

6
+ 5π f (0)

12
+π

2

(
f ′(0)F(0) + f (0)F′(0)

) + 1

2i

∮
|z|=1

zf (z)	(z)dz

])
.

(B. 10)

Conveniently, F′(z) = f (z), and the f (0) terms can be simplified as before. Also, by taking all indefinite integrals
along radial paths starting at the origin, we have that F(0) = 0. Then, collecting the integral into the real part
of a single term gives:

H1 = Pπ

64

(
7

48
+ 2Re

[
7f (0)

12
+ 1

2
f (0)2 + 1

2π i

∮
zf (z)	(z)dz

])

= Pπ

64

(
7

48
+ 7

6
f (0) + f (0)2 + 2Re

[
Res

(
zf (z)	(z)dz; z = 0

)])
.

(B. 11)

It remains to determine the residue of zf (z)	(z) at 0. Note that f (z) and 	(z) are holomorphic their Taylor series
are as follows:

f (z) =
∞∑

n=0

anzmn =⇒ F(z) =
∞∑

n=0

an

mn + 1
zmn+1 =⇒ 	(z) =

∞∑
n=0

an

(mn + 1)(mn + 2)
zmn+2, (B. 12)

where the coefficients an can be determined by using the standard result from complex analysis

an = 1

2π i

∮
|z|=1

f (z)

zn+1
dz. (B. 13)

With this, 	(z) can be rewritten on the boundary as:

	(z) = 	

(
1

z

)
=

∞∑
n=0

an

(mn + 1)(mn + 2)

(
1

z

)mn+2
. (B. 14)

Then, also on the boundary, we have

zf (z)	(z) =
∞∑

n=0

∞∑
k=0

anak

(mn + 1)(mn + 2)
zmn−mk−1, (B. 15)

which admits

Res
(
zf (z)	(z); z = 0

) =
∞∑

n=0

anan

(mn + 1)(mn + 2)
. (B. 16)
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This implies

H1 = Pπ

64

⎛
⎝ 7

48
+ 7

6
f (0) + f (0)2 + 2

∞∑
n=0

|an|2
(mn + 1)(mn + 2)

⎞
⎠, (B. 17)

and noting that a0 = f (0), this can be written as

H1 = Pπ

64

⎛
⎝ 7

48
+ 7

6
f (0) + 2f (0)2 + 2

∞∑
n=1

|an|2
(mn + 1)(mn + 2)

⎞
⎠. (B. 18)

We turn now to H2. Stokes’ theorem can be used to write

H2 =1

2
Re

[
1

2i

∮
|z|=1

(
z̄g(z) − z2z̄g(z)

2
+ z̄f (z)g(z) + F(z)g(z)

)
dz

]

=1

2
Re

[
1

2i

∮
|z|=1

(
g(z)

2z
+ f (z)g(z)

z
+ F(z)g(z)

)
dz

]

=1

2
Re

[
1

2i

∮
|z|=1

(
F(z)g(z)

)
dz

]
,

(B. 19)

where we have used the residue theorem and the fact that g(0) = 0 to arrive at the final line. Since

Li2(z) =
∞∑

n=1

zn

n2
, (B. 20)

incorporating the Taylor expansion for f (z) with (A. 24), we have that

g(z) =
∞∑

n=0

cnzn =
∞∑

n=1

(
sin nθ

πmn2
zmn − Pan(mn + 2)

16mn(mn + 1)
zmn

)
(B. 21)

and noting that (B. 12) gives that on the unit circle

F(z) =
∞∑

n=0

an

mn + 1
z−(mn+1), (B. 22)

we have that

F(z)g(z) =
∞∑

n=0

∞∑
k=0

anck

mn + 1
zmk−mn−1, (B. 23)

similarly yielding that

Res
(
F(z)g(z); z = 0

) =
∞∑

n=0

ancn

mn + 1
. (B. 24)

Use of the residue theorem simplifies (B. 19) to

H2 = 2Re

⎡
⎣π

4

∞∑
n=0

ancn

mn + 1

⎤
⎦. (B. 25)
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Then, at last, adding (B. 18) and (B. 25), we have

H = Pπ

64

⎛
⎝ 7

48
+ 7

6
f (0) + 2f (0)2 + 2

∞∑
n=1

|an|2
(mn + 1)(mn + 2)

⎞
⎠ + π

2

∞∑
n=0

Re [ancn]

mn + 1
. (B. 26)

Using the explicit form for cn, per (B. 21), and noting that an are all real,

H =Pπ

64

(
7

48
+ 7

6
f (0) + 2f (0)2

)

+
∞∑

n=1

(
an sin nθ

2mn2(mn + 1)
− Pπa2

n
32

3mn + 4

mn(mn + 1)2(mn + 2)

) (B. 27)

Written even more explicitly, using (3.9), this is

H = θ

4
(

1 − 8
m log sin θ

2

)
(

7

48
− 7

3m
log sin

θ

2
+ 8

m2

(
log sin

θ

2

)2
)

+
∞∑

n=1

⎛
⎝ an sin nθ

2mn2(mn + 1)
− θa2

n

2
(

1 − 8
m log sin θ

2

) 3mn + 4

mn(mn + 1)2(mn + 2)

⎞
⎠.

(B. 28)

It is clear from their functional form that the Taylor coefficients decay algebraically in n, at order 1/m2n2. Since
the terms of H outside the series are typically of order 10−1, only a small number of terms are required to see
convergence at machine accuracy in practice. Indeed, for 99% accuracy, no more than three terms need be used.

C. Asymptotic analysis

This appendix shows how to derive the result in section 6. In the limit m → ∞, we look at the problem in
terms of coordinate (r, φ), where z = reiφ . As we expect φ variations to be small as m → ∞, we seek an outer
solution wouter(r), satisfying

∇2wouter = 1

r

d

dr

(
r

d

dr
wouter

)
= −1 in r < 1 (C. 1)

with

dwouter

dr
(0) = 0, wouter(1) = λ, (C. 2)

where λ is a constant slip velocity that remains to be determined. These are satisfied by

wouter(r) = 1

4
(1 − r2) + λ. (C. 3)

Notice that this also satisfies the Navier-slip condition

wouter(1) = −λ

2

∂wouter

∂r
. (C. 4)
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In order to study the φ variation in the flow the velocity problem is now rephrased in terms of the repeating
sector of the pipe: that is,

∇2w = 1

r

∂

∂r

(
r
∂w

∂r

)
+ 1

r2

∂2w

∂φ2
= −1 in r < 1, |φ| <

π

m
(C. 5)

with conditions on r = 1

w = ∂w

∂φ
= 0 on |φ| <

θ

m
,

∂w

∂r
= 0 on

θ

m
< |φ| <

π

m
,

∂w

∂φ
= 0 on |φ| = π

m
.

(C. 6)

Defining ‘inner variables’ (R,�) with ε = 1/m, namely,

r = 1 − εR φ = ε� winner(R,�) = εW1(R,�) + ε2W2(R,�) + . . . , (C. 7)

and noting that

∂

∂r
= −1

ε

∂

∂R

∂

∂φ
= 1

ε

∂

∂�

1

r
= 1 + εR + ε2R2 + . . .

1

r2
= 1 + 2εR + 3ε2R2 + . . . ,

(C. 5) becomes

(1 + εR + ε2R2 + . . . )

(
−1

ε

)
∂

∂R

[
(1 − εR)

(
−1

ε

)
∂

∂R
(εW1 + ε2W2 + . . . )

]

+(1 + 2εR + 3ε2R2 + . . . )
1

ε2

∂2

∂�2
[εW1 + ε2W2 + . . . ] = −1

=⇒ (1 + εR + . . . )
∂

∂R

[
(1 − εR)

∂

∂R
(W1 + εW2 + . . . )

]

+(1 + 2εR + . . . )
∂2

∂�2
[W1 + εW2 + . . . ] = −ε,

(C. 8)

so that, at leading order,

∂2W1

∂R2
+ ∂2W1

∂�2
= 0 at O(1). (C. 9)

The required boundary conditions for the inner problem are

W1 = ∂W1

∂�
= 0 on |�| < θ, R = 0,

∂W1

∂R
= 0 on θ < |�| < π, R = 0,

∂W1

∂�
= 0 on |�| = π,

(C. 10)
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together with the matching condition

lim
R→∞

∂winner

∂R
= lim

r→1

∂wouter

∂R

= − lim
r→1

ε
∂

∂r

∂wouter

∂r
= ε

2

=⇒ winner ∼ λ + ε
R

2
as R → ∞.

(C. 11)

This imposes a shear condition on the inner problem:

∂W1

∂R
= 1

2
as R → ∞, (C. 12)

while also giving means to link back to the outer solution through the constant λ. These equations are now
analogous to Philip’s (1972) equations for the difference between the flow over a flat plate with periodic
longitudinal no-shear menisci with far-field shear, and pure shear flow as if over a meniscus-free plate (X �→ �,
Y �→ R, τ∞/μ = 1/2, w3 �→ W1) (12). Philip shows that this has the solution, in terms of complex variable
Z = � + iR,

W1 = Im

[
cos−1

{
cos π+Z

2

cos π−θ
2

}]
. (C. 13)

Note that the additional π ’s to the Z’s correspond to transforming the orientation of Philip’s problem statement
to ours (that is, a rotation of half the ridge period in the pipe). Then, we notice that

W1 ∼ R

2
− log sin

θ

2
as R → ∞, (C. 14)

and therefore the matching condition determines our slip velocity

λ = −ε log sin
θ

2
. (C. 15)

Considering the zero boundary conditions for the higher order problems, we find that

Wn ≡ 0 for n � 2, (C. 16)

and therefore

wasymptotic :=winner + wouter − lim
R→∞ winner

=1

4
(1 − r2) + εIm

[
cos−1

{
cos π+Z

2

cos π−θ
2

}
− 1

2
(π + Z)

]

:=w0(r) + εw1(Z).

(C. 17)

We then notice that

z = reiφ = (1 − εR)eiε� =⇒ zm =
(

1 − R

m

)m
ei� → e−Rei� = eiZ as m → ∞. (C. 18)
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Hence,

i(π + Z) = log
(−zm) =⇒ π + Z

2
= − im

2
log(−z). (C. 19)

Substituting this into wasymptotic, with r2 = zz̄, gives the composite solution

w(z, z̄) = 1

4
(1 − zz̄) + 1

m
Im

⎡
⎣cos−1

⎧⎨
⎩

cos
(
− im

2 log((−1)1/mz)
)

cos π−θ
2

⎫⎬
⎭ + im

2
log((−1)1/mz)

⎤
⎦

= 1

4
(1 − zz̄) + εIm

⎡
⎣cos−1

⎧⎨
⎩

sin
(

i
2 log(z1/ε )

)
sin θ

2

⎫⎬
⎭ + i

2
log(z1/ε )

⎤
⎦ ,

(C. 20)

which matches (3.2).
Equation (C. 18) indicates exponential accuracy in this limit. It also illustrates that this adjustment term due

to the superhydrophobicity differs between the pipe and plate problems by the conformal map eZ . Considering
these terms are both solutions to Laplace’s equations with conformally equivalent boundary conditions, this is
unsurprising.

We now turn to the temperature problem. Noting that (3.9) becomes

P = 16θ

π
(1 + 8ε log sin

θ

2
+ . . . ), (C. 21)

seek a radial outer temperature profile

Touter(r) = τ0(r) + ετ1(r) + O(ε2), (C. 22)

satisfying (2.8), together with the outer velocity (C. 3): that is,

1

r

d

dr

(
r

d

dr
(τ0 + ετ1)

)
= 16θ

π

(
1 + 8ε log sin

θ

2

)(
w0 − ε log sin

θ

2

)
+ O(ε2) (C. 23)

noting that the remaining contribution from the velocity to the right hand side is asymptotically small in the
outer region. This gives that the leading order temperature satisfies

1

r

d

dr

(
r

dτ0

dr

)
= 4θ

π
(1 − r2) (C. 24)

with
dτ0

dr
(0) = 0. (C. 25)

As in the exact problem, we also enforce (without loss of generality) that τ0(0) = 0, giving

τ0(r) = θ

π
r2

(
1 − r2

4

)
. (C. 26)

Moving next to first order, we have that

1

r

d

dr

(
r

dτ1

dr

)
= 16θ

π

(
log sin

θ

2

)
(1 − 2r2) (C. 27)
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with
dτ1

dr
(0) = 0. (C. 28)

This similarly gives that

τ1(r) = 4θ

π

(
log sin

θ

2

)
r2

(
1 − r2

2

)
, (C. 29)

and so combining these yields that

Touter(r) = θ

π
r2

(
1 − r2

4
+ 4ε

(
log sin

θ

2

)(
1 − r2

2

))
+ O(ε2). (C. 30)

Moving again to the inner region, we seek

Tinner(R, �) = T0(R,�) + εT1(R,�), (C. 31)

where
∇2Tinner = Pwinner, (C. 32)

which implies that

(1 + εR + . . . )
∂

∂R

[
(1 − εR)

∂

∂R
(T0 + εT1 + . . . )

]

+(1 + 2εR + . . . )
∂2

∂�2
[T0 + εT1 + . . . ] = ε3P(W1 + εW2 + ...),

(C. 33)

that is, at leading two orders

∂2Tn

∂R2
+ ∂2Tn

∂�2
= 0 at O(1), for n = 0, 1, (C. 34)

together with the relevant boundary conditions: the heat flux condition along the solid boundary is given by

∂

∂r
(T0 + εT1 + ...) =

⎧⎪⎨
⎪⎩

−1 for R = 0, |� + 2πn| < θ

0 for R = 0, θ < |� + 2πn| < π,

(C. 35)

for n ∈ Z, and changing variables gives that

∂

∂R
(T0 + εT1 + ...) =

⎧⎪⎨
⎪⎩

ε for R = 0, |� + 2πn| < θ

0 for R = 0, θ < |� + 2πn| < π.

(C. 36)

Conservation of energy in a period window within the inner region gives the far field condition

∂

∂R
(T0 + εT1 + ...) → ε

θ

π
as R → ∞

=⇒ (T0 + εT1 + ...) ∼ σ + ε
θ

π
R as R → ∞,

(C. 37)
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where σ is a constant to be determined. These conditions are satisfied at order ε0 by

T0 ≡ σ, (C. 38)

and at order ε1 by T1 such that
∂2T1

∂R2
+ ∂2T1

∂�2
= 0, (C. 39)

with

∂T1

∂R
=

⎧⎪⎨
⎪⎩

0 for R = 0, |� + 2πn| < θ

1 for R = 0, θ < |� + 2πn| < π,

(C. 40)

and

T1 ∼ θ

π
R as R → ∞. (C. 41)

To solve this, first define T̂1 such that

T1 = θ

π
R + T̂1, (C. 42)

so that we are now seeking a T̂1 that still solves Laplace’s equation, now with boundary conditions

∂T̂1

∂R
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− θ

π
for R = 0, |� + 2πn| < θ

1 − θ

π
for R = 0, θ < |� + 2πn| < π

0 as R → ∞.

(C. 43)

Note that T̂1 must be the real part of a holomorphic function. We denote

T̂1(Z,Z) = p(Z) + p(Z), (C. 44)

where p(Z) is a holomorphic function. The required boundary conditions are now that

2Re
[
ip′(Z)

] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− θ

π
for R = 0, |� + 2πn| < θ

π − θ

π
for R = 0, θ < |� + 2πn| < π

0 as R → ∞.

(C. 45)

These are all satisfied by

2Re
[
ip′(Z)

] = − θ

π
− 1

π
Re

[
i log

sin Z+θ
2

sin Z−θ
2

]

=⇒ p′(Z) = θ

2π
i − 1

2π
log

sin Z+θ
2

sin Z−θ
2

.

(C. 46)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/75/4/315/6831862 by Im

perial C
ollege London Library user on 06 January 2023



SUPERHYDROPHOBICITY CAN ENHANCE CONVECTIVE HEAT TRANSFER IN PIPES 343

To integrate, we note the general result

∫
log sin xdx = − i

2
x2 +

(
iπ

2
− log 2

)
x + i

2
Li2

(
e2ix

)
+ constant, (C. 47)

which gives, after an appropriate choice of arbitrary constant,

p(Z) = i

2π

(
Li2(ei(Z+θ)) − Li2(ei(Z−θ))

)
. (C. 48)

Therefore, substituting this back into the inner temperature gives

Tinner(R,�) = σ + ε

(
θ

π
R − 1

π
Im

[
Li2(ei(Z+θ)) − Li2(ei(Z−θ))

])
+ O(ε2). (C. 49)

Considering matching, since

lim
r→1

Touter = − 3θ

4π
lim
r→1

∂Touter

∂R
= ε

θ

π
(C. 50)

it is clear that the first condition determines σ = −3θ/4π , and the second is readily satisfied thanks to energy
conservation. Then, noting that zm = eiZ , we arrive at the composite solution

T(z, z̄) = θ

π
zz̄

(
1 − zz̄

4

)

+ ε

(
4θ

π

(
log sin

θ

2

)
zz̄

(
1 − zz̄

2

)
− 1

π
Im

[
Li2(z1/εeiθ ) − Li2(z1/εe−iθ )

])

+ O(ε2),

(C. 51)

agreeing with (3.11) up to O(ε). Now that we have the velocity and temperature fields up to O(ε), we continue
by seeking the first-order correction to the Nusselt number in this large m limit. First, we consider the correction
to the mixing cup temperature. To facilitate this, we write

w(z, z̄) = 1

4
(1 − zz̄) + ε

(
a(z) + a(z)

)
, (C. 52)

where a(z) = mf (z),

T(z, z̄) = θ

π
zz̄

(
1 − zz̄

4
+ 4ε

(
log sin

θ

2

)(
1 − zz̄

2

))
+ ε

(
b(z) + b(z)

) + O(ε2), (C. 53)

where b(z) = p(Z(z)), and

H = h0 + εh1 + O(ε2). (C. 54)

The complex form of Stokes’ theorem gives, at leading order,

h0 =
∫∫

|z|<1

θ

4π
zz̄(1 − zz̄)

(
1 − zz̄

4

)
dA = θ

8π i

∮
|z|=1

(
zz̄2

2
− 5z2z̄3

12
+ z3z̄4

16

)
dz = 7θ

192
, (C. 55)
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and, at the next order,

h1 =
∫∫

|z|<1

(
θ

π
zz̄

(
1 − zz̄

4

) (
a(z) + a(z)

)

+ 1

4
(1 − zz̄)

(
4θ

π

(
log sin

θ

2

)
zz̄

(
1 − zz̄

2

)
+ b(z) + b(z)

))
dA

=Re

[
1

2i

∮
|z|=1

{
θ

π

(
zz̄2

2
− z2z̄3

12

)
2a(z) + θ

π

(
log sin

θ

2

)(
zz̄2

2
− z2z̄3

2
+ z3z̄4

8

)

+ 1

4
2b(z)

(
z̄ − zz̄2

2

)}
dz

]

=Re

[
5θ

6
a(0) + θ

8
log sin

θ

2
+ π

4
b(0)

]

= − 7θ

24
log sin

θ

2
,

(C. 56)

where we have used that a(0) = − 1
2 log sin θ

2 and b(0) = 0. Next, we consider the mass flux rate

Q = π

8

(
1 − 8ε log sin

θ

2

)
, (C. 57)

and so the mixing cup temperature is

Tb = H

Q
=

(
7θ

192
− ε

7θ

24
log sin

θ

2

)
8

π

(
1 + 8ε log sin

θ

2

)
+ O(ε2)

= 7θ

24π

(
1 − 8ε log sin

θ

2

)(
1 + 8ε log sin

θ

2

)
+ O(ε2) = 7θ

24π
+ O(ε2),

(C. 58)

which, interestingly, features no first-order correction. Consequently, the Nusselt number, for z on the no-slip
region, is

Nu(z) = 2

(
3θ

4π
+ ε

(
2θ

π

(
log sin

θ

2

)
− 1

π
Im

[
Li2(z1/εeiθ ) − Li2(z1/εe−iθ )

])
− 7θ

24π

)−1
+ O(ε2)

= 48π

11θ

(
1 − ε

24

11

(
2 log sin

θ

2
+ 1

θ
Im

[
Li2(z1/εeiθ ) − Li2(z1/εe−iθ )

]))
+ O(ε2)

= 48π

11θ
− ε

1152π

121θ

(
2 log sin

θ

2
+ 1

θ
Im

[
Li2(z1/εeiθ ) − Li2(z1/εe−iθ )

])
+ O(ε2),

(C. 59)
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Fig. D.1 Alternative average Nusselt number, Nualt, as a function of solid ridge angle θ : again calculated with
10 terms in the series for H truncated.

and, on taking an average, we find
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(C. 60)

D. Alternate definitions of the Nusselt number

Enright et al. (18), amongst others, posit an alternative to the Nusselt number as defined in this work. Rather
than averaging the local Nusselt number around the solid boundary, they average the solid boundary temperature
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and calculate a global Nusselt number with that. As such, defining the alternative average Nusselt number

Nualt := 2

T − Tb
, T := 1

2θ

∫ θ/m

−θ/m
T(eis)ds, (D. 1)

this is plotted in Fig. D1, showing markedly different results to this work.
Most notably this definition suffers from singular behaviour as θ → 0, while Fig. 3 indicates that

limθ→0 Nu = 0. While this limit is explicitly non-physical, as the fluid velocity is unsurprisingly singular
as the entire boundary becomes a no-shear surface, making energy balance impossible, some intuition can be
gleamed from this. For the original Nusselt number definition (4.3), as the solid boundary arclength vanishes so
too does the arclength over with the local Nusselt number is non-zero, making the average Nusselt number the
mean of a quantity that is uniformly zero. However, in this alternative definition it is the T term that depends
on the vanishing solid boundary: in this limit of θ → 0, it is clear from Fig. 6 that T → Tb, and so Nualt
blows up.

This initial singularity skews the values of the alternative Nusselt number for larger, more physical values of
θ , thus making the improvement to a Nusselt number of 48/11 less meaningful. Interestingly, this alternative
definition has a local minimum in the m = 1, 2 cases, and for some values of θ larger than this minimum we
still see that Nualt > 48/11. However, this quantity’s global behaviour is so vastly different to this originally
defined Nusselt number that the authors deem this connection to be too tenuous to offer serious corroboration.
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