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Field theory of survival probabilities, extreme values, first-passage times,
and mean span of non-Markovian stochastic processes
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We provide a perturbative framework to calculate extreme events of non-Markovian processes, by mapping
the stochastic process to a two-species reaction-diffusion process in a Doi-Peliti field theory combined with
the Martin-Siggia-Rose formalism. This field theory treats interactions and the effect of external, possibly self-
correlated, noise in a perturbation about a Markovian process, thereby providing a systematic, diagrammatic
approach to extreme events. We apply the formalism to Brownian motion and calculate its survival probability
distribution subject to self-correlated noise.
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I. INTRODUCTION

Many nonequilibrium systems are studied by projecting
out a single slow degree of freedom which evolves stochasti-
cally and often displays non-negligible memory effects [1–3].
A classic object of study is its survival probability, which
describes the probability of the degree of freedom not having
reached a threshold yet [4,5]. The survival probability defines
not only the persistence exponents [6] but is also closely
linked to the distribution of first-passage times, running max-
ima, and spans via some simple relations. All of these extreme
events aptly characterize the nonequilibrium nature of com-
plex systems and have been studied separately over the last
hundred years (for classic references see Refs. [7–11]; for
recent overviews, Refs. [12,13]).

Survival probabilities of non-Markovian processes are,
however, notoriously hard to compute as they depend on
the entire trajectory whose distribution is usually impossi-
ble to obtain [13–16]. Perturbative schemes such as those
in Refs. [17,18] have proven to be successful in charac-
terizing the behavior of the survival probabilities for large
times in classical nonequilibrium models. More recently, a
similar perturbation theory has been applied to fractional
Brownian motion to further access the full survival probability
in a perturbation theory about the Hurst parameter [15,19].
These techniques, however, heavily rely on Gaussianity and
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do not readily translate to more general non-Gaussian non-
Markovian processes.

In this article, we compute the full survival probability
of processes subject to both uncorrelated and self-correlated
noise in a perturbation theory in the strength of the self-
correlated noise. A physical realization of such processes is
a particle immersed in a heat bath and subject to a random
self-propelling force. Our perturbative framework is valid in
the regime where the self-correlated noise is small compared
to thermal fluctuations stemming from the heat bath. More
generally, this type of process is central to the study of active
matter [20–24] and nonequilibrium phenomena [25–27].

In our recent work [28], we presented a scheme to
calculate first-passage distributions for the same class of non-
Markovian processes. These results relied on a perturbative
functional expansion of a renewal-type equation inspired by
the classical work of Refs. [10,29]. Using a field-theoretic ap-
proach that draws on both the Doi-Peliti [30,31] as well as the
Martin-Siggia-Rose formalism [32], in the present work we
generalize these results to a broader class of extreme events.

Using a field theory has some notable advantages. First,
the diagrammatics give a clear intuition of the underlying
microscopic processes otherwise hidden within cumbersome
expressions. Second, the field theory provides a systematic
perturbative framework naturally drawing on renormalization
techniques. Third, it is easily extended to incorporate fur-
ther interactions, such as reactions, and external and pair
potentials.

This article is structured as follows. First, we map a Marko-
vian process onto a field theory. Second, we introduce a
field-theoretic mechanism which is designed to keep track of
the space already visited by the process. This defines the visit
probability Q(x0, x, t ), the probability that the process started
at x0 has been at x prior to time t , and which is the complement
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of the survival probability. Third, we add the self-correlated
driving noise, thus breaking Markovianity, and compute the
corrections induced in Q. Finally, we illustrate the approach
by computing the correction to the survival probability of
Brownian motion driven by self-correlated noise.

II. FIELD THEORY FOR MARKOVIAN VISIT
PROBABILITIES

A. Markovian transition probabilities

In this article, we construct a perturbation theory around
Markovian processes characterized by a Langevin equa-
tion [33],

ẋt = −V ′(xt ) + ξt ,

x(t = t0) = x0, (1)

where V ′(xt ) is the gradient of a potential and ξt Gaussian
white noise with correlator 〈ξtξt ′ 〉 = 2Dxδ(t − t ′). Further, we
introduce T (x, t ) ≡ T (x0, x; t0, t ) as the transition probability
for the walker to travel from x0 at time t0 to x at time t . This
probability density is also known as the Green’s function or
propagator in related fields of mathematics. We will state x0

and t0 only where needed for clarity. The transition probability
satisfies a Fokker-Planck equation [34],

∂t T (x, t ) = (V ′′(x) + V ′(x)∂x + Dx∂
2
x

)
T (x, t ), (2)

with initial condition T (x, t0) = δ(x − x0).
As is detailed in Ref. [35], process (1) can be mapped

to a Doi-Peliti field theory [35–37] containing two fields,
the annihilator field ϕ(x, t ) and the creator field ϕ†(x, t ) =
1 + ϕ̃(x, t ), which are jointly distributed according to

P[ϕ, ϕ̃] = exp (−Sϕ[ϕ, ϕ̃]). (3)

Here the action Sϕ[ϕ, ϕ̃] is constructed as

Sϕ =
∫∫

dx dt ϕ̃
(
∂t − V ′′(x) − V ′(x)∂x − D∂2

x

)
ϕ. (4)

Moreover, the transition probability satisfies

T (x, t ) = 〈ϕ(x, t )(1 + ϕ̃(x0, t0))〉Sϕ
, (5)

where 〈·〉Sϕ
denotes the expectation over the measure (3).

Constructing a solution to the partial differential equa-
tion in Eq. (2) via a path integral can in principle be done with
the Feynman-Kac theorem [38,39]. Here, however, we use a
nonequilibrium field theory following Ref. [32] (see Sec. V A
2 for further discussion).

B. Visit probability and extreme events

The key problem we address here is how to approximate
the distribution of first-passage times, running maxima, and
mean volume explored of the process defined in Eq. (1). These
extreme events are all mutually related via the visit proba-
bility which we define as Q(x0, x, t0, t ) = Q(x, t ) = P [xs =
x at some time t0 � s � t], i.e., the complement of the sur-
vival probability Psurv = 1 − Q. This measures the probability
that the particle has been at x at or before time t . In Fig. 1, we
show a single realization of xt , together with its visited area.

FIG. 1. A continuous random path xt (red line) evolves in time.
The visited area is shaded in blue. In this article, we study the visit
probability Q(x, t ), i.e., the probability that a point (x, t ) lies within
the blue area. As discussed in Sec. II B, the visit probability allows
one to compute the distribution of (i) first-passage times τx0,x1 [blue
dashed line, Eq. (6)] and (ii) running maxima x̂t [green line, Eq. (7)],
as well as (iii) the average volume explored [purple arrow, Eq. (8)].

The visit probability contains various information about
the process: When taking the derivative ∂tQ(x, t ), one mea-
sures the weight of those paths which visit x at t for the first
time. The latter is the first-passage time, shown in Fig. 1 as a
blue dashed line, and thus its distribution satisfies

PFPT
(
τx0,x1 = t

) = ∂tQ(x1, t ). (6)

Analogously, taking the derivative −∂xQ(x, t ) weighs those
paths that at time t visit x for the first time or, alternatively,
the distribution of the maximum x̂t = maxs�t xs, shown as a
green line in Fig. 1, i.e.,

PMax(x̂t = x) = −∂xQ(x, t ), (7)

for x > x0. Moreover, integrating over
∫

dx Q(x, t ) gives the
average of the volume explored, which is defined as the differ-
ence between running maximum and minimum, Vol([xt ], t ) =
maxs�t xs − mins�t xs, as illustrated in Fig. 1. Its mean is given
by

〈Vol〉 =
∫

dx Q(x, t ). (8)

Higher moments of the volume explored are considered in
Ref. [40].

C. Overview of main results

In the following, we build a framework to compute the
visit probability Q(x, t ) for a specific class of non-Markovian
processes. These are given by the solution to the stochastic
differential equation

ẋt = −V ′(xt ) + ξt + gyt . (9)

This equation extends the Markovian Langevin equation (1)
by adding a second independent noise term yt which is
assumed to be stationary, of zero mean, but not necessarily
Gaussian. The driving noise yt further carries dimensions of
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a velocity, leaving g as a dimensionless coupling constant
which we suppose to be small. The main result of this article
then is a perturbative expansion of the visit probability of
xt to leading order in g2; i.e., assuming the visit probability
allows for an analytical expansion around g = 0 as Q(x, t ) =
Q(0)(x, t ) + g2Q(2)(x, t ) + O(g3), we find formulas for the
correction terms. As is further detailed below, the assumption
that Q(x, t ) is analytic in g restricts the possible choice of
driving noises depending on the choice of potential V (xt ).
Together, Eqs. (28) and (29) provide a general formula for the
leading perturbative correction, Q(2)(x, t ), which is expressed
in terms of the Markovian transition probability T (x, t ) and
the two-time correlation function of yt ,

C2(t − s) = ysyt , (10)

where · denotes the average with respect to the path measure
of yt .

In principle, the framework also allows to compute
higher-order corrections, i.e., gnQ(n)(x, t ), using the n point
correlations of the driving noise. In the presentation of the
results, however, we restrict ourselves to the leading-order
perturbation only.

The processes described by Eq. (9) do not satisfy a (gen-
eralized) fluctuation-dissipation relation, and hence cannot be
brought into the form of a generalized Langevin equation. In-
stead, these processes are often used to model active matter in
thermal environments [20–27], which typically operate away
from equilibrium.

Finally, although the expression for the visit probability ap-
plies to all potentials V (x), and can be employed numerically
to study these, an analytically closed expression can only be
expected in cases where an analytic solution to the Markovian
Fokker-Planck equation (2) is known. This effectively reduces
the class of potentials for which we obtain analytical results
to harmonic or flat potentials, i.e., perturbations of Brownian
motion or Ornstein-Uhlenbeck processes.

D. Markovian visit probabilities

In this section, we present a field theory of visit prob-
abilities for Markovian processes. While in the case of
transition probabilities it is well known that the solution to
the Fokker-Planck equation (2) can be expressed as a path
integral, Eq. (5), this has not yet been established for the
visit probability Q(x, t ). Our aim is to construct a field theory
whose correlation functions equal Q(x, t ), in close analogy to
Eq. (5). In difference to the case for the transition probability,
however, this field theory cannot be straightforwardly con-
structed for Q(x, t ), since no evolution equation for Q(x, t ),
comparable to Eq. (2), exists to our knowledge.

As is explained in great detail in Refs. [40–42], and briefly
discussed in Appendix A, the visit probability Q(x, t ) can
be expressed as a field-theoretic expectation value under a
Doi-Peliti field theory by introducing two additional auxiliary
(“trace”) fields ψ (x, t ) and ψ̃ (x, t ) with a joint distribution

P[ϕ, ϕ̃, ψ, ψ̃]

= lim
γ→∞ exp(−Sϕ[ϕ, ϕ̃] − Sψ [ψ, ψ̃] + γSγ [ϕ, ϕ̃, ψ, ψ̃])

(11)

such that the visit probability can be written as

Q(x, t ) = n−1
0 〈ψ (x, t )(1 + ϕ̃(x0, t0))〉S , (12)

where 〈·〉S is understood as the average with respect to the
measure in Eq. (11). Here, we have introduced a normalizing
density n0 which is further detailed below and in Appendix A.

The pair of fields ψ, ψ̃ is a stochastic auxiliary variable
which tracks the volume explored by the process xt (see
Fig. 1). This is in analogy to ϕ, ϕ̃ whose correlation tracks
the current position of the process xt [cf. Eq. (5)]. Hence,
measuring the average field density ψ (x, t ), and normalizing
by a unit density n0, amounts to computing the probability that
the process visited x up to time t . The average in Eq. (12) then
corresponds to the probability density that x has been visited
prior to t conditioned on the process having been initialized
at x0 at time t0, thus matching our definition of the visit
probability.

The field action Sϕ + Sψ − γSγ consists of three actions
which model (i) the diffusion of the process xt [cf. Eq. (4)], (ii)
the noninteracting dynamics of the auxiliary fields tracking
the volume explored by the particle, and (iii) the interaction
between the random process xt and the auxiliary fields track-
ing its explored volume. Clearly, the explored volume depends
on all the previous positions of the process xt and therefore
the third contribution contains all four fields ϕ, ϕ̃, ψ, ψ̃ . It
is multiplied with a rate γ to be taken to ∞. This rate is
interpreted as the rate with which the process xt “traces,” i.e.,
marks as explored, a given point x. Taking γ → ∞ amounts
to the field ψ tracking every visited point.1 In what follows,
we outline the components of the action in Eq. (11) and refer
the reader to the Appendixes for technical details.

The first term in the exponential of Eq. (11) is the diffusion
action Sϕ introduced in Eq. (4). The second term Sψ denotes
the trace action:

Sψ =
∫∫

dx dt ψ̃ (∂t + ε)ψ. (13)

Comparing with Sϕ , Eq. (4), the trace action can be inter-
preted as corresponding to the process (1) with V (x) ≡ 0,
Dx = 0, i.e., a deterministic immobile particle. This reflects
the fact that a point, once visited by the process xt , remains
visited forever. To ensure convergence of the path integral
over Eq. (11), we have included a positive parameter ε > 0.
The latter further ensures causality [40,44], i.e., that a point is
only marked visited after it has been visited by the process xt .
In a field-theoretic context, the parameter ε is referred to as a
mass or an infrared regulator as it suppresses the divergencies
otherwise arising in Eq. (11) from the contributions of Eq. (13)
at large times. The parameter ε is to be taken to zero at the end
of the calculation.

The third term of the exponential of Eq. (11) is the depo-
sition action. It describes the growth of the volume explored
due to fluctuations of the process xt and is derived in Ref. [41].

1Leaving γ finite amounts to imperfect tracking, suitable to study
imperfect reaction kinetics as discussed in, e.g., Ref. [43].
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In the continuum limit, it reads

Sγ =
∫∫

dx dt (τ ψ̃ϕ + σ ϕ̃ψ̃ϕ − λψ̃ϕψ − κϕ̃ψ̃ϕψ ).

(14)

The four dimensionfull couplings τ , σ , κ , and λ, are intro-
duced differently for independent renormalization. However,
the rates τ and σ and the densities κ and λ are each equal and
are related to each other via

λ = κ = n−1
0 τ = n−1

0 σ (15)

(see Appendix A for details). Overall, Sγ is multiplied with a
dimensionless constant γ which needs to be taken to γ → ∞.

Each of the four vertices in Eq. (14) is diagrammatically
represented as

(16)

and enters into the action multiplied by γ [see Eq. (11)]. Here,
straight red lines represent the propagators of ϕ, ϕ̃, and green
wriggly lines those of ψ̃, ψ . As a convention, we read vertices
and diagrams from right to left.

It follows that the diagrammatic expansion of the trace
function (12) is

(x, t) = n 1
0 lim

(x 0 , t 0)(x, t)
(17)

where the central dot stands for the renormalized coupling τR

and the limit in γ → ∞ stems from the definition of the action
in Eq. (11). This renormalization is given by the diagrammatic
expansion

(18)

The only diagrams contributing to this expansion are chains
of the loop diagram . We introduce the return proba-
bility R(x, t ) = T (x, x, t ) and likewise its Fourier transform
R(x, ω). As shown in Appendix B the fully renormalized
vertex can be evaluated using a geometric sum as

τR(ω) = γ τ

1 + γ κR(x, ω)
, (19)

which is an exact result for all γ , such that the effective trace
function, Fourier transformed, is∫

dt eiωtQ(x, t ) = n−1
0

1

−iω + ε
τR(ω)T (x0, x, ω)

= 1

−iω

T (x0, x, ω)

R(x, ω)
, (20)

where we made use of time-translational invariance to write
the Fourier transform in one frequency only, tacitly took the
limit ε → 0, and used τ/κ = n0 [see Eq. (15)]. Multiplying
this result with (−iω) gives the first-passage-time moment-
generating function. Then, the result in Eq. (20) agrees with
classical results given in Refs. [10,29].

In summary, by introducing an extended field theory via the
four-field action in Eq. (11), the visit probability of a Marko-
vian process can be written as the field-theoretic average (12),
in direct analogy to the (simpler) transition probability which
can be represented with two fields [cf. Eq. (5)]. This effective
field theory for visit probabilities comes at the cost of the ad-
ditional fields ψ, ψ̃ which need to be related to the fields ϕ, ϕ̃

by a nonlinear interaction Sγ . The effect of this interaction
on the growth of the volume explored by xt can be captured
by evaluating the effective (“renormalized”) deposition vertex
τR. Formally, this amounts to evaluating an infinite series of
correction terms, diagrammatically represented in Eq. (18).
Using field-theoretic tools, the entire sum can be exactly
evaluated [see Eq. (19)]. The result, Eq. (20), is in agreement
with previous classical results. So far, we therefore have con-
structed a field theory for Markovian visit probabilities that
reproduces known results. In the next section we consider
non-Markovian processes, and use this field-theoretic formu-
lation to compute the perturbative corrections to the exact
result (20).

III. NON-MARKOVIAN VISIT PROBABILITIES:
A PERTURBATIVE APPROACH

The process introduced in Eq. (1) is driven by δ-correlated
noise and hence is Markovian [45]. As a perturbative general-
ization towards non-Markovian processes, we thus extend the
class of processes given by Eq. (1) to

ẋt = −V ′(xt ) + ξt + gyt . (21)

The additional driving noise yt is assumed to be stationary
with zero mean and a general autocorrelation function

C2(t − s) = ysyt . (22)

By · we denote in the following averages over the path distri-
bution of yt . Importantly, yt is not required to be Gaussian such
that higher nontrivial cumulants Cn(t2 − t1, . . . , tn − tn−1) =
〈yt1 · · · ytn〉c may exist. Such higher-order cumulants enter only
at perturbative order gn. The correlation function C2(t − s)
of the driving noise yt may decay exponentially, such as for
run-and-tumble particles in noisy environments [20,22], or
algebraically.

In the following we perform a diagrammatic expansion
of the visit probability Q(x, t ) in the dimensionless coupling
constant g. Therefore, g is assumed to be small (g � 1). A
condition for the validity of the expansion is that cumulants
of the noise Cn(t2 − t1, . . . , tn − tn−1) = 〈yt1 · · · ytn〉c are such
that diagrams of the expansion are finite, for instance the
diagram in Eq. (27). In what follows, we derive the visit prob-
ability Q(x, t ) averaged over both the Gaussian white noise
ξt and the driving noise yt to first leading perturbative order
g2. For the case of Brownian motion driven by self-correlated
noise, we find expressions that depend on a double integral of
the cumulant C2(t ), Eq. (31). Existence of this double integral
allows for a broad class of correlation functions, even when
C2(t ) decays algebraically slowly at large times. Such alge-
braic decay occurs in processes driven by fractional Gaussian
noise [21].

As is outlined in Appendix C, the visit probability con-
ditioned on a fixed realization of the driving noise can still

043197-4



FIELD THEORY OF SURVIVAL PROBABILITIES, … PHYSICAL REVIEW RESEARCH 4, 043197 (2022)

be obtained by Eq. (12) using the average with respect to the
modified path measure:

P[ϕ, ϕ̃, ψ, ψ̃]

= lim
γ→∞

∫
D[yt ] exp

(
−Sϕ[ϕ, ϕ̃] − Sψ [ψ, ψ̃]

+ γSγ [ϕ, ϕ̃, ψ, ψ̃] +
∫∫

gyt ϕ̃∂xϕ

)
P[yt ]. (23)

As is shown in Appendix C, one can compute averages with
respect to this yt -dependent path average, to then integrate
over the path measure of yt . As it turns out, one does not need
to know the full path measure of yt , but can instead rewrite the
double average 〈•〉 using the moment-generating functional of
yt which is defined as

Zy[g · jt ] =
∫

D[yt ]e
g
∫

dt jt ytP[yt ]. (24)

Expanding the exponential to second order, and averaging
over yt , gives [cf. Eq. (22)]

Zy[g · jt ] = 1 + 1

2
g2
∫∫

dt1 dt2 jt1C2(t2 − t1) jt2 + O(g3).

(25)

Therefore, we may approximate expectation values such as
the one appearing in Eq. (23) using the identity

〈•〉S =
〈
• · Zy

[
g
∫∫

dx dt ϕ̃∂xϕ

]〉
S
, (26)

which to this perturbative order only contains C2(t − s), the
correlation function of yt [Eq. (22)].

Diagrammatically speaking, this amounts to computing the
same diagrams as in Eq. (18), but additionally decorating them
with driving noise correlation loops represented as

g2
y1 , s1 y2 , s2

x0x,t (27)

FIG. 2. Diagrammatic representation of the four different kinds
of terms appearing in the perturbative expansion of Q [cf. Eqs. (C11)
and (27)]. The Markovian diagrams [cf. Eq. (18)] are corrected by the
external driving noise gyt , giving rise to the expansion in Eq. (C11).
These four types of diagrams result in four different correction terms
explicitly derived in Appendix E, and which together give the final
result for the driving-noise-corrected transition probability stated in
Eq. (29).

As in Eq. (16), red solid lines denote bare transition probabili-
ties. The blue dashed line connecting two internal vertices [cf.
Eq. (25) and Appendix C], represents the correlation kernel
C2(s2, s1). The two vertical bars inserted to the right of each
such vertex represent the gradient operator acting on the target
point of the incoming transition probability. Combinatorially,
there are four ways in which these loops decorate the diagrams
of the (Markovian) visit probability, which are displayed in
Fig. 2. As is shown in Appendix E, the new visit proba-
bility, Q(x, t ) = 〈ψ (x, t )̃ϕ(0, 0)Zy[g

∫∫
ϕ̃∇ϕ]〉S , acquires a

functionally similar form to the Markovian case (20):

Q(x0, x, t )

=
∫

d̄ω
e−iωt

−iω

T (0)(x0, x, ω) + g2T (2)(x0, x, ω)

R(0)(x, ω) + g2R(2)(x, ω)
+ O(g3).

(28)

This is a central result of the present article. Here, as we do
from now on, we denote the (Fourier-transformed) Marko-
vian transition probability density of the undriven process in
Eq. (1) as T (0)(x0, x1, ω) instead of T (x0, x1, ω), and, anal-
ogously, R(0)(x1, ω) = T (0)(x1, x1, ω). Further, we introduced
the g2 correction to the yt -averaged transition probability

T (2)(x0, x, ω) =
∫∫

dy1 dy2 d̄ ω̃

[
T (y1, x, ω − ω̃)

R(x, ω − ω̃)
T (x, y2, ω − ω̃) − T (y1, y2, ω − ω̃)

]
× (∂y1 T (x0, y1, ω))(∂y2 T (y2, x, ω))Ĉ2(ω̃), (29)

and, analogously, R(2)(x, ω) = T (2)(x, x, ω).
In the case of a Brownian motion additionally driven by

self-correlated noise, the second-order corrections given by
Eq. (29) drastically simplify, as demonstrated below.

IV. EXAMPLE: BROWNIAN MOTION DRIVEN
BY SELF-CORRELATED NOISE

We briefly discuss the example process of active ther-
mal Brownian motion (ATBM) [28] on a real line. In our
previous article [28], we found the perturbative correction
to the first-passage-time moment-generating function for an
active thermal Ornstein-Uhlenbeck process, and an active

Brownian motion on a ring. Since the distribution of first-
passage times and visits are closely linked via Q(x, ω) =
(−iω)−1χFPT(x, ω), we report the visit probabilities of the
latter two processes in Appendix G.

To illustrate the method outlined above we use the example
of ATBM on a real line defined via

ẋt = ξt + gyt , (30)

where ξt is white noise of strength 〈ξsξt 〉 = 2Dxδ(t − s),
and yt is a stationary, not necessarily Gaussian,
driving noise with a nonwhite self-correlation function
C2(|s − t |) = 〈ysyt 〉. Without loss of generality, we
assume x0 = 0 and x > 0. The transition probability
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T (x0, x, ω) = T (x = x − x0, ω) of simple Brownian motion,
g = 0, is given by T (x, t ) = (4πDxt )−1/2 exp(− x2

4Dxt ), so

that T (x, ω) = (
√−4iωDx )−1 exp(−√−iω/Dx|x|) and

Q(x, t ) = Q(0)(x, t ) = 1 − erf ((4Dxt )−1/2|x|) via Eq. (20)
and a subsequent inverse Fourier transform.

For g �= 0, we compute the correction T (2)(x, ω) using
Eq. (29). As is detailed in Appendix F, the integral simplifies
drastically, and we state here only the results, which can be
summarized most succinctly using a “time-stretch function”
ϒ(t ) as follows. Given the correlation function C2(t ), Eq. (22),
it is defined as

ϒ(t ) =
∫ t

0
ds sC2(t − s) =

∫ t

0
du
∫ u

0
dsC2(s), (31)

or, alternatively, ∂2
t ϒ(t ) = C2(t ) with ϒ(0) = 0, ∂tϒ(t ) = 0.

The second-order correction to the transition probability can
then be written as

T (2)(x0, x, ω) =
∫

dt eiωtϒ(t )
(
∂2

x1

)
T (x0, x, t )

=
∫

dt eiωt D−1
x ϒ(t ) ∂t T (x0, x, t ), (32)

where we made use of the Brownian relation ∂t T (x, t ) =
Dx∂

2
x T (x, t ). In real time, the correction T (2)(x0, x, t ) =

D−1
x ϒ(t )∂t T (x, t ) can be absorbed into the t dependence of

the tree level as

T (x, t ) = T
(
x, t + g2D−1

x ϒ(t )
)+ O(g3). (33)

This result is in agreement with the expression for the full
transition probability found in Ref. [46], and is exact if yt

further is Gaussian. The externally driven non-Markovian
process xt has therefore transition probabilities that are,
to order g2, equal to those of a time-stretched Brown-

ian motion with t �→ τ (t ) = (1 + g2(Dxt )−1ϒ(t ))t , thus xt
d=√

2DxWτ (t ). That, however, does not mean that the return
probabilities agree between the original, externally driven
non-Markovian process xt and the time-stretched Brownian
motion, because of the latter not accounting for the now
hidden variable yt (see also the discussion in Ref. [46]). The
time-stretched Brownian motion ignores correlations between
that yt and xt . For example, the transition probability is no
longer correctly given by the first passage and repeated return,
as first passage is favored for particular values of yt that the
subsequent return does not account for. Returning to Eq. (28),
and using Eq. (32), we slightly rephrase the result for driven
Brownian motion by explicitly expanding in g2 to

Q(x, ω; g) = Q(0)(x, ω)

[
1 + g2

Dx

(∫
dt eiωtϒ(t )∂t T (x, t )

T (x, ω)
−
∫

dt eiωtϒ(t )∂t R(x, t )

R(x, ω)

)]
+ O(g3). (34)

This relation illuminates the relation between the correction to
the Fourier-transformed visit probability and the correlation
function of the driving noise. To obtain the visit probabili-
ties, and derive extreme event distributions, in real time [cf.
Eqs. (6)–(8)], numerical integration will be necessary in most
cases.

For exponentially correlated driving noise, such as “col-
ored” or telegraphic noise, we have C2(t ) = Dxβe−β|t |,
Eq. (22), for some noise strength Dx and timescale of relax-
ation β−1. The corresponding time-stretch function is

ϒ(t ) = Dy

β
(e−βt + βt − 1). (35)

From this function alone, one can read off that for large times
the driving noise effectively shifts the diffusion constant by
Dx → Dx + g2Dy. At short timescales (t � β−1), however,
the correction is nontrivial.

We can further verify the validity of the expansion of the
trace function Q(x, ω; g), Eq. (34), by numerically inverting
the Fourier transform and comparing to Monte Carlo simu-
lations of the process in Eq. (30). To this end, we estimate
numerically the probability that xt has reached x1, at some
given t and parameters such as g, Dx, and Dy, and subtract
from it the exact result Q(x, t ; g = 0). Plotting this difference
over g2 produces an estimate of the correction of Q(x, t ; 0) to
Q(x, t, g), described by Eq. (34) to leading order [see Eq. (G1)
for explicit result]. Figure 3 shows this numerically estimated
correction together with the inverted correction in Eq. (34).

The persistence exponent θ is defined as the tail expo-
nent of the survival probability Psurv(x, t ) = 1 − Q(x, t ) ∼
t−θ [4,6]. It is also contained in the small ω expansion of
the trace as (−iω)−1 − Q(x, ω) ∼ ωθ−1. Evaluating Eq. (34)
using the time-stretch function (35) shows that the Markovian
result of θ = 1

2 [4] does not acquire corrections as is expected
for short-range correlated driving noise yt .

V. DISCUSSION AND SUMMARY

In this section, we discuss our findings in the context of the
literature of (quantum) field theory and stochastic dynamics
and summarize our results.

A. Discussion

1. Relation to Markovian techniques

Our study is motivated by the study of complex systems
comprising many interacting degrees of freedom of which
we single out the slowest one as a stochastically evolving
coordinate xt (see Sec. I). The remaining degrees of freedom
are subsumed into a bath, exerting a stochastic force onto the
particle, here modeled by Eq. (21).

Often, the fast degrees of freedom in a complex system are
assumed to evolve infinitely fast, thus rendering the stochastic
evolution Markovian, since all correlations disappear within
an infinitesimal time [47]. This assumption is reflected in
the mathematical structure of the usual stochastic representa-
tions, such as Langevin equations [48,49] or Fokker-Planck
equations [34] which evolve locally in time, i.e., with no
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FIG. 3. Rescaled perturbative correction in g2 to the visit probability Q(x1, t ) of Brownian motion driven by correlated noise [ATBM; cf.
Eq. (30)]. The left plot shows the result for fixed time, Q(x1, t = 1), and the right plot for fixed distance, Q(x1 = 1, t ). The inset of the left
plot shows the visit probability Q(x1, t = 1) over distance for simple Brownian motion (g2 = 0, black line) as well as ATBM for β = 1.0 and
g2 = 0.25 (green dashed line), or g2 = 0.5 (bright green dot-dashed line), respectively. The inset of the right plot shows the complement of
the corresponding visit probability 1 − Q(x1 = 1, t ) over time, with identical parameters and symbols. The left (right) main panel shows the
rescaled correction to the visit probability over distance x1 (rescaled time βt) for three different values of, from top to bottom, β = 2.0 (red and
orange), β = 1.0 (green), and β = 0.5 (blue). Plot marks indicate the result obtained from simulation for either g2 = 0.25 (circles) or g2 = 0.5
(crosses). The solid lines indicate our predictions to first leading order in g2 obtained by calculating the result of Eq. (34) [cf. Eq. (G1)], and
numerically inverting the Fourier transform. All simulations used Dx = Dy = 1, and �106 realizations.

recourse to the past evolution. In this article, we set up a
field-theoretic framework for Markovian processes in Sec. II.
The “Markovianness” of the field theory can be seen from the
field action (14) which is local in time. At this stage, the field
theory is fully equivalent to any other Markovian description,
and in fact reproduces the known Markovian result for the
visit probability in Eq. (20).

The assumption of an infinitely fast evolving bath, how-
ever, is unphysical [47] and hence in each time increment
the future stochastic evolution depends on the, potentially
entire, past of the trajectory. This implies that the time-local
formalisms mentioned above need to be extended to in-
clude nonlocal time interactions (e.g., to generalized Langevin
equations [50] or fractional diffusion equations [51]). In our
work, this self-interaction of the process with its own past
is encapsulated by the nonlocal contribution (25). The self-
interaction is most clearly seen diagrammatically by the loop
diagram given in Eq. (27).

2. Field theory

Field-theoretically inspired path-integral methods are com-
monly used in the study of stochastic processes [52–56].

In this article, we begin by writing the solution of the
Markovian (g = 0) forward equation (2), the transition prob-
ability T (x, t ), as a path integral in Eq. (5) over fields whose
distribution is given by the action in Eq. (4). In setting up the
field theory, Eq. (11), we constructed a nonequilibrium field
theory using the Doi-Peliti formalism [30,31]. In principle, the
transition probability can be obtained using alternative routes,
following for instance the Feynman-Kac theorem [38,39]
which expresses the solution to parabolic PDEs such as Eq. (2)
as path integrals over trajectories rather than fields.

These alternative techniques, however, do not extend to
either (i) the transition probability of driven, non-Markovian,

processes, such as Eq. (21), which render the forward equa-
tion nonlocal in time, or (ii) the stochastic description of the
visit probability Q(x, t ) which to the best of our knowledge
cannot be characterized as a solution to a parabolic PDE.
This then requires two respective additional technical points
with respect to alternative methods suitable to study transition
probabilities of Markovian processes.

In order to address the average over the driving noise yt ,
we introduced Eq. (26) where we replaced the path integral
over the driving noise by its moment-generating function
(or partition function) Zy. Following field-theoretic standard
procedures [57,58], we expand the latter in a power series
in g. This is analogous to the perturbative treatment of self-
interaction in classical field theories.

Second, in order to cast the visit probability Q(x, t ) (which
does not readily follow from a Fokker-Planck equation) into a
field theory, we used the tracing mechanism and its Doi-Peliti
formulation to track the volume explored via the auxiliary
fields ψ, ψ̃ . This formalism (introduced in Ref. [41]) does
not correspond to a classical field-theoretic technique, but is
rooted in the study of reaction-diffusion methods with field-
theoretic methods.

3. Stochastic dynamics

The problem of finding the transition probability, let alone
the extreme event distribution, of non-Markovian processes
has been a long-standing problem in stochastic dynam-
ics. In terms of computing the transition probability, our
field-theoretic approach recovers results known in the lit-
erature [46] in which non-δ-correlated driving noises are
also treated using functional methods (see also Refs. [59,60]
for a similar discussion of first-passage times). However,
for non-Markovian processes the visit probability does not
straightforwardly follow from the transition probability. The
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visit probability Q(x, t ) therefore represents the central result
of the present work.

B. Summary

In the present work we have established a method to com-
pute the visit probability (the complement of the survival
probability) for random motion in a one-dimensional poten-
tial, as defined in Eq. (21).

By mapping the problem to a field theory we systematically
compute corrections to the Markovian result (20) to any order
in the coupling g. The leading-order correction is of the form
(28), which involves the g2-corrected transition probability
given in Eq. (29). Generally, to compute the contribution to
order gn, it is sufficient to know the Markovian transition
probability and the n-point function of the driving noise yt . In
the absence of an external potential, the expressions reduce to
Eq. (34) which depends on the twice-integrated driving noise
correlation ϒ(t ), Eq. (31).

By casting the problem in a field-theoretic language, we
replaced the single degree of freedom by a field ϕ representing
the full density. This allows us to extend the model to the case
of many, potentially interacting, random walkers. Also, the
Doi-Peliti framework allows for the inclusion of potentials. To
the best of our knowledge, this is the first time that both Doi-
Peliti and Martin-Siggia-Rose have been used simultaneously
to construct an action.

Overall, we have established a method which further lays
bare the interplay between non-Markovianness and extreme
events in stochastic processes.
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APPENDIX A: TRACING MECHANISM

The visit probability for Markovian processes [cf. Eq. (1)],
given in Eq. (12), is a result that can be derived in vari-
ous ways (indirectly, via the first-passage-time distribution,
∂tQ(x, t ), this result has been found in, e.g., Ref. [10] using a
renewal-type approach). Here, we derived the result by taking
the continuum limit of a discrete reaction-diffusion process
designed to track visits, which we refer to as a “tracing mech-
anism” and which has been introduced in Refs. [40,41].

To describe the tracing mechanism, we consider a coarse-
grained version xt of the stochastic process xt of Eq. (1),
which takes values only on a lattice δaZ where δa is the lattice
spacing, so that formally xt = δa[δ−1

a xt ] where [x] rounds to
the nearest integer. At any time, the random walker attempts
to deposit a trace at xt with Poissonian rate proportional to
γ . Each lattice site, however, has a “carrying capacity” n0

which limits the number of trace particles that can be de-
posited at this site. If at a site n0 trace particles have already
been deposited, any further deposition is suppressed. Hence,
the number of trace particles deposited at any lattice site is
an integer bound above by n0. Taking γ → ∞, the particle
deterministically deposits trace particles at any site visited for
the first time. In the limit of δa → 0, the process xt tends to xt ,
and the expected number of trace particles at a site, divided by
n0, converges to Q(x, t ).

Cast into the language of reaction-diffusion processes, we
have at each lattice site i

Wi + nTi
γ−→ Wi + (n + 1)Ti, n < n0, (A1)

Ti
ε−→ ∅, (A2)

where particles of species W (“walkers”) deposit particles of
species T (“traces”) at rate γ , provided their number does
not surpass the carrying capacity n0. Meanwhile W diffuses
according to (a discretized form of) Eq. (1), and T remains at
a given site and “evaporates” with rate ε, later sent to zero.

The Doi-Peliti formalism [30,31] describes the continuum
limit of particle densities in a reaction-diffusion system, such
as defined in Eqs. (A1) and (A2), by mapping the problem
onto a nonequilibrium field theory, where each particle species
corresponds to a pair of fields (see Ref. [41] for details). The
local density of walkers, δ−1

a Wi, is mapped to ϕ(x, t ), ϕ̃(x, t )
(referred to as annihilation and creation fields, respectively),
and the trace particle density limδa→0 δ−1

a Ti to ψ (x, t ), ψ̃ (x, t ).
As shown in Refs. [40,41], the joint distribution of the four
fields then follows from the Doi Peliti framework to be dis-
tributed according to the action given in Eqs. (4), (11), and
(14). In order to turn the density of tracers into a probability
of visit, it needs to be divided by the normalizing density n0

corresponding to the continuum limit of n0. Hence, the field-
theoretic formula for the visit probability, Eq. (12), contains a
prefactor of n−1

0 .

APPENDIX B: FIELD-THEORETIC CALCULATION
OF MARKOVIAN VISIT PROBABILITY

We derive Eq. (20), the expression for the visit probability
in the Markovian case. First, we consider the field theory
in the case of γ = 0, when the probability measure (11) is
Gaussian.

We introduce the forward and backward operators L,L†
,

L(x) = V ′′(x) + V ′(x)∂x + Dx∂
2
x , (B1)

L†(x) = −V ′(x)∂x + Dx∂
2
x , (B2)

associated to Eq. (1) and generating the corresponding
Fokker-Planck equation

∂t T (x, t ) = LT (x, t ),

T (x, t = t0) = δ(x − x0), (B3)

with T (x, t ) the transition probability of the process. The
forward and backward operators have a set of eigenfunctions

Lun(x) = −λnun(x), (B4)

L†vn(x) = −λnvn(x), (B5)
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with eigenvalues 0 � λ0 < λ1 < · · · . The eigenfunctions are
L2 normalized to satisfy the orthonormal relation∫

dx um(x)vn(x) = δmn, (B6)

and since they form a complete set in L2 they further satisfy
[34] ∑

n

vn(x1)un(x2) = δ(x1 − x2). (B7)

Thus, every field ϕ, ϕ̃, ψ, ψ̃ has a unique decomposition into
the un(x), vn(x) in space. Together with a Fourier transform in
time, we then write

ϕ(x, t ) =
∫

d̄ω
∑

k

ϕk (ω)uk (x)e−iωt , (B8)

ϕ̃(x, t ) =
∫

d̄ω
∑

k

ϕ̃k (ω)vk (x)e−iωt , (B9)

and analogously for ψ, ψ̃ with coefficients ψk (ω), ψ̃k (ω′),
respectively. This mode transform diagonalizes the nonpertur-
bative parts of the action, Sϕ and Sψ [cf. Eq. (11)], which read

Sϕ[ϕ, ϕ̃] =
∫

d̄ω
∑

n

ϕ̃n(−ω)(−iω + λn)ϕn(ω), (B10)

Sψ [ψ, ψ̃] =
∫

d̄ω
∑

n

ψ̃n(−ω)(−iω + ε)ψn(ω). (B11)

For γ = 0, the measure in Eq. (11) is Gaussian and the
(Fourier-transformed) bare propagators of both fields, 〈ϕϕ̃〉
and 〈ψψ̃〉, therefore immediately follow from Eqs. (B10) and
(B11) using standard path-integral techniques [61],

(B12)

(B13)

where we introduced a diagrammatic representation for
both bare propagators. These propagators are commonly
interpreted as the (linear) response functions [61]. Using
Eq. (5), and transforming back into real space and time using
Eqs. (B8) and (B9), we obtain the transition probability

T (x, t ) =
∑

n

vn(x0)un(x)e−λn(t−t0 )�(t − t0), (B14)

where �(t ) is the Heaviside � function. Crucially, we made
use of the property [44,61]

〈ϕ〉S = 0 (B15)

such that 〈ϕ(1 + ϕ̃)〉 = 〈ϕϕ̃〉.
We next consider the expectation (5) in the case of γ �= 0

when the nonlinear contributions of Sγ , Eq. (14), enter. Each
of the four vertices is diagrammatically represented as

(B16)

and enters into the action multiplied by γ . Following
Refs. [40,41], we introduce the carrying-capacity density n0

which is the continuum limit of δ−1
a n0, where n0 is the max-

imal number of trace particles which can simultaneously be
deposited at a single site. At bare level, the carrying capacity
enters in the couplings via the relation

λ = κ = n−1
0 τ = n−1

0 σ. (B17)

It follows that the diagrammatic expansion of the trace func-
tion (12), which counts the average number of tracer particles
at a site, needs to be normalized with n−1

0 in order to indicate
the visit probability, and hence

(x, t ) = n� 10 lim
(x 0 , t 0)(x, t)

(B18)∫
dt eiωtQ(x, t )

= n−1
0 〈ψ (x)ψ̃ (x)〉( lim

γ→∞ τR(ω)
)〈ϕ(x, ω )̃ϕ(x0, ω)〉 (B19)

= n−1
0

1

−iω + ε

(
lim

γ→∞ τR(ω)
)
T (x0, x, ω), (B20)

where the central dot in the diagram stands for the renormal-
ized coupling τR, and T (x0, x, ω) is the Fourier transform of
the transition probability. This renormalization of τ is given
by the diagrammatic expansion of the amputated vertex

(B21)

The only diagrams contributing to this expansion are chains
of the loop diagram , referred to in the following as a
“bubble.” Considering the expansion in Fourier and mode
transform, Eqs. (B8) and (B9) (see Appendix D for details),
each diagram factorizes into a product over the bubbles and
can hence be evaluated using a geometric or Dyson sum (see
Appendix D for derivation), resulting in

τR(ω1) = γ τ

1 + γ κR(x1, ω1)
(B22)

such that the effective trace function, Fourier transformed, is∫
dt eiωtQ(x, t )

= lim
γ→∞

1

−iω + ε

γ τn−1
0

1 + γ κR(x1, ω + iε)
T (x0, x, ω)

= 1

−iω + ε

T (x0, x, ω)

R(x1, ω + iε)
, (B23)

where we made use of time-translational invariance to write
the Fourier transform in one frequency only. The couplings
τ/κ in Eq. (B22) cancel with n−1

0 following their bare values,
Eq. (B17). This then leads to the central Markovian result for
the trace function

Q(x, t ) =
∫

d̄ωe−iωt T (x0, x, ω)

(−iω)R(x, ω)
, (B24)

where we have tacitly taken the limit ε → 0.
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FIG. 4. The random walker xt (red solid path) travels from x0 <

x1 to xt > x1, thereby passing x1 (green solid line) infinitely often
(black dots). If the random walker is additionally driven by self-
correlated noise [cf. Eq. (21)], this induces correlations between
increments at any different times t1, t2 (blue dashed line). Meanwhile
the perturbative expansion in γ [cf. Eq. (18)] tracks the probability
of all possible transitions T (x1, t ) and subsequent returns from x0

to x1; the second perturbative expansion in g includes the effect
of correlated increments. If g = 0, the Markovian case, the process
undergoes renewal at every return at x1, thus rendering the results
such as Eq. (B23) exact.

APPENDIX C: VISIT PROBABILITY
FOR DRIVEN PROCESS

In this Appendix, we provide some technical details to
the derivation of the key result of Eqs. (28) and (29) which
together provide the visit probability for non-Markovian pro-
cesses of the form (21).

There are three technical steps: First, we consider the per-
turbative correction of the visit probability in the presence
of a fixed, but random, realization of the driving noise yt .
Second, we average over all such realizations of yt . This then
leads to a large set of correction terms which we interpret
diagrammatically and which, third, we evaluate to leading
perturbative order.

1. Averaging general observables over driving noise

The presence of the autocorrelated driving noise yt affects
the transition and return probabilities of the random walker
xt (see Fig. 4). Conditioned on a fixed realization of yt , the
forward operator [cf. Eqs. (1), (B3), (B1), and (21)] is shifted
by

L �→ L + gyt∂xϕ(x, t ). (C1)

Hence, the yt -conditioned random walker action in Eq. (4),
which is essentially of the form ϕ̃(∂t − L)ϕ, is shifted also:

Sϕ[yt ] =
∫∫

dx dt ϕ̃(∂t − L − gyt∂x )ϕ. (C2)

To obtain the y-averaged joint distribution of the four fields,
one needs to evaluate [Eqs. (11), (23)]

P[ϕ, ϕ̃, ψ, ψ̃]

= lim
γ→∞

∫
D[yt ] exp(−Sϕ[ϕ, ϕ̃] − Sψ [ψ, ψ̃]

+ γSγ [ϕ, ϕ̃, ψ, ψ̃] +
∫∫

gyt ϕ̃∂xϕ)P[yt ], (C3)

where gyt ϕ̃∂xϕ may be interpreted as a new vertex [see
Eq. (27)]. While we were able to compute the result exactly
in γ , we need to resort to perturbative methods to approx-
imate in small couplings g. Although the path integral in
Eq. (23) appears to require complete knowledge of the full
path measure P[yt ] of the driving noise yt , we can relax this
requirement by introducing the normalized partition function
(or moment-generating function) of yt ,

Zy[g · jt ] =
∫

D[yt ] exp

(
g
∫

dt jt yt

)
P[yt ] (C4)

= 1 + 1

2
g2
∫∫

dt1 dt2 jt1C(t2 − t1) jt2 + O(g3),

(C5)

where we ignore terms of higher perturbative order. We
may thus replace the yt integration in Eq. (23) by inserting
Zy[g

∫∫
dx dt ϕ̃∂xϕ] into expectations over the fields and con-

sequently evaluate double averages via

〈•〉S+gy =
〈
• · Zy

[
g
∫∫

dx dt ϕ̃∂xϕ

]〉
S
. (C6)

For example, the transition probability, averaged over all
driving noises yt , acquires a correction term which up to g2

reads

T (x, t ) =〈ϕ(x, t )̃ϕ(x0, 0)〉 + g2
∫∫

dy1 ds1 dy2 ds2

× C2(s2 − s1)〈ϕ(x, t )̃ϕ(y1, s1)∂y1ϕ(y1, s1)

× ϕ̃(y2, s2)∂y2ϕ(y2, s2 )̃ϕ(x0, 0)〉S + O(g4). (C7)

The remaining field average in Eq. (C7) can now be eval-
uated normally, using standard Wick product rules (see
Appendix B), Eq. (5), and the nondriven path measure (11). A
straightforward calculation shows that the only nonvanishing
correction to order g2 in Eq. (C7) is

g2
∫ t

0
ds1

∫ s1

0
ds2

∫∫
dy1 dy2 T (y1, x, t − s1)

× (∂y1 T (y2, y1, s1 − s2)
)
C2(s1 − s2)

(
∂y2 T (x, y2, s1)

)
,

(C8)

using 〈ϕ(x1, t )̃ϕ(y1, s1)〉 = T (y1, x1, t − s1),
〈∂y1ϕ(y1, t )̃ϕ(y2, s1)〉 = ∂y1 T (y2, y1, s1 − s2), etc. Here,
and in particular for more cumbersome expressions, it
is advantageous to use diagrammatics to keep track of
perturbative correction terms. The correction of the transition
probability in Eq. (C8) is represented as

g2
y1 , s1 y2 , s2

x0x, t (C9)

As in Eq. (B12), red solid lines denote bare transition proba-
bilities. The blue dashed line connecting two internal vertices,
Eq. (23), represents the correlation kernel C2(s2, s1). The two
vertical bars inserted to the right of each such vertex represent
the gradient operator acting on the target point of the incom-
ing transition probability. As usual for Feynman diagrams,
external fields depend on fixed parameters (x0, x, t), while
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internal fields depend on variables to be integrated over (e.g.,
y1, s1, y2, s2). In addition to providing a better overview of
terms arising in the perturbative expansion, diagrams also act
as graphical cues illustrating how the driving noise induces
memory into the evolution of xt .

2. The driving noise averaged visit probability

Following Eq. (26), we are able to evaluate driving noise
averaged observables. In order to derive the central results of
Eqs. (28) and (29), it remains to evaluate the driving noise
averaged visit probability

Q(x, t ) =
〈
ψ (x, t )̃ϕ(0, 0)Zy[g

∫
ϕ̃∇ϕ]

〉
S

(C10)

=
〈
ψ (x, t )ϕ(x0, 0)

(
1 + g2

∫∫
dy1,2 ds1,2 ϕ̃1∂y1ϕ1C2(s1 − s2 )̃ϕ2∂y2ϕ2

)〉
S

+ O(g3), (C11)

where we use ϕi = ϕ(yi, si ) for brevity. Each term appearing in the γ -perturbative expansion of the trace function [cf. Eq. (18)] is
additionally corrected to order g2 by replacing two internal ϕϕ̃ propagators by two “yt -driven propagators” ϕ̃∂xϕ and connecting
them with the two-point correlator C2 of yt . As can be seen easiest diagrammatically, all possible corrections fall into one of
the four categories shown in Fig. 2. They are classified according to whether both g vertices couple to the same or different
propagator of a transition or a return. It is simplest to compute the four contributions in frequency rather than direct time as the
loops factorize. The calculation itself is given in Appendix E.

APPENDIX D: RENORMALIZATION OF TRANSMUTATION RATE

In this Appendix, we derive the result for the renormalization of the coupling τ which is stated in Eq. (19). To simplify the
computation, we perform the calculation in x, ω variables, i.e., in real space and Fourier transformed time. The renormalization
is given by [cf. Eq. (18)]

= + 2 + 3 + ... (D1)

which is a diagrammatic representation of the terms arising in the path-integrated average of the visit probability, Eq. (12), when
expanding in γ ,

n−1
0 〈ψ (x, ω1 )̃ϕ(x0, ω0)〉S = n−1

0 γ τ

∫∫
dz d̄ω′〈ψ (x, ω1)ψ̃ (z, ω′)ϕ(z, ω′ )̃ϕ(x0, ω0)〉S;γ=0

− n−1
0 γ 2λσ

∫∫
dz1 dz2 d̄ω′

1d̄ω′
2d̄ω1

′′d̄ω2
′′〈ψ (x, ω1)ψ̃ (z1,−ω′

1 − ω′′
1 )ψ (z1, ω1

′′)

× ϕ(z1, ω
′
1)ψ̃ (z2, ω2

′′ )̃ϕ(z2, ω
′
2)ϕ(z2,−ω′

2 − ω′′
2 )̃ϕ(x0, ω0)〉S;γ=0 + · · · . (D2)

Crucially, the averages 〈·〉S;γ=0 are taken over Gaussian random variables since for γ = 0 the path action [Eq. (11)] is bilinear.
Thus, Wick’s theorem (e.g., Ref. [57]) applies and all averages in Eq. (D2) decompose into products of two-point functions. The
only such Gaussian two-point functions which do not vanish are

〈ϕ(z1, ω1 )̃ϕ(z0, ω0)〉S;γ=0 = T (z0, z1; ω1)δ̄(ω0 + ω1) =
∫

dt eiω1(t−t0 )T (z0, z1; t )δ̄(ω0 + ω1), (D3)

〈ψ (z1, ω1)ψ̃ (z0, ω0)〉S;γ=0 = δ(z1 − z0)δ̄(ω0 + ω1)

−iω1 + ε
=
∫∫

dt0 dt eiω1t+iω0t0�(t − t0)δ(z1 − z0)e−ε(t−t0 ). (D4)

The second correlator intuitively characterizes the behavior of the trace which, once deposited at z0 at time t0, remains there for
an infinitely long time, as ε → 0. Equipped with these correlators, the nonvanishing contributions to the averages appearing in
Eq. (D2) are, following Wick’s theorem,

n−1
0 γ τ

∫∫
dz d̄ω′〈ψ (x, ω1)ψ̃ (z, ω′)ϕ(z, ω′ )̃ϕ(x0, ω0)〉S;γ=0 = n−1

0 γ τ

∫∫
dz d̄ω′ δ(x − z)δ(ω1 + ω′)

−iω1 + ε
T (x0, z, ω′)δ̄(ω′ + ω0)

= n−1
0 γ τ

T (x0, x,−ω1)

−iω1 + ε
δ̄(ω0 − ω1), (D5)
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and to second order,

−n−1
0 γ 2λσ

∫∫
dz1 dz2 d̄ω′

1d̄ω′
2d̄ω′′

1d̄ω2
′′ (D6)

×〈ψ (x, ω1)ψ̃ (z1,−ω′
1 − ω′′

1 )ψ (z1, ω1
′′)ϕ(z1, ω

′
1)ψ̃ (z2, ω2

′′ )̃ϕ(z2, ω
′
2)ϕ(z2,−ω′

2 − ω′′
2 )̃ϕ(x0, ω0)〉S;γ=0

= −n−1
0 γ 2λσ

1

−iω1 + ε

∫
d̄ω′′

2
R(x, x, ω1 − ω′′

2 )

−iω′′
1 + ε

T (x0, x, ω0)δ̄(ω0 + ω1) (D7)

= −n−1
0 γ 2λσR(x, ω1 + iε)

T (x0, x, ω0)

−iω1 + ε
δ̄(ω0 + ω1), (D8)

where in the first equality we used the definition of the return probability to abbreviate∫∫
dz1 dz2 δ(x − z1)δ(z1 − z2)T (z1, z2, ω) = R(x, ω), (D9)

and in the second equality used Cauchy’s residue formula to solve the integral by evaluating the residue of the simple pole at
ω′′

2 = −iε.
Since both correlators in Eq. (D3) are proportional to δ̄(ω0 + ω1), all higher-order expansion terms factorize, after integrating

over the internal frequencies, into a product over amputated one-loop bubble diagrams (i.e., interpreted here as a function of
external parameters z1, ω1 and z2, ω2, respectively) which by analogous reasoning to the calculation above evaluate as

(D10)

The bubble diagram graphically encodes the probability of a particle depositing a trace and then returning to it, in other words a
“time-ordered” return probability: The green wriggly line may be understood as the trace which once placed remains immobile;
meanwhile the red solid line represents the diffusing, and returning, walker. Likewise, the higher-order diagrams in Eq. (18) may
be interpreted as repeated returns to x.

Returning to Eq. (18), the renormalized τ coupling, τR, is the effective factor satisfying

〈ψ (x, ω1 )̃ϕ(x0, ω0)〉S = 1

−iω1 + ε
τR(ω1)T (x0, x,−ω0)δ̄(ω0 + ω1) (D11)

and, collecting the factors generated by the terms in Eq. (D2) and evaluated using Eq. (D10), one obtains

R (ω1) = + 2 + 3 + ... (D12)

= [γ τ − γ 2λσR(x, ω1 + iε) + γ 3λσκ (R(x, ω1 + iε))2 − γ 4cσκ2(R(x, ω1 + iε))3 + · · · ]δ̄(ω0 + ω1). (D13)

This series can be resummed using the geometric series, in field theory often referred to as Dyson summation [57]. Rearranging
the sum gives

τR(ω1) =
[
γ τ + γ

λσ

κ

∞∑
r=1

(−γ κR(x, ω1 + iε))r

]
(D14)

=
[
γ τ + γ

λσ

κ

∞∑
r=0

(−γ κR(x, ω1 + iε))r − γ
cσ

κ

]
(D15)

=

⎡⎢⎢⎣ γ τ

1 + γ κR(x, ω1 + iε)
+ γ

⎛⎜⎜⎝τ − cσ

κ︸ ︷︷ ︸
=0

⎞⎟⎟⎠
⎤⎥⎥⎦ (D16)

= γ τ

1 + γ κR(x, ω1 + iε)
, (D17)

where we made use of the bare values given in Eq. (14); i.e., we replaced σ with τ and used λ = κ at bare level. This vertex
interpolates the physical pictures for γ = 0, where no deposition takes place (τR = 0), and γ → ∞, where every newly visited
site gets marked immediately by a deposited trace. For γ → ∞, the coupling tends to

lim
γ→∞ τR(ω1) = n0

R(x, ω1 + iε)
, (D18)

using n0 = τ/κ .
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APPENDIX E: DERIVATION OF FOUR NON-MARKOVIAN CORRECTION TERMS TO TRACE FUNCTION

When expanding the nonlinear action in Eq. (C11) to all orders in γ and to O(g2), the nonvanishing contribution of joint
perturbative order γ ng2 is obtained by inserting the (Fourier-transformed) g2 decoration

y1 , ω̃1
y2 , ω̃2 y3 , ω̃3

y4 , ω̃4

=
∫∫

d̄ d ω̃1 · · · d̄ d ω̃4dy1 · · · dy4 ϕ̃(y1, ω̃1)∂y2ϕ(y2, ω̃2)C2(ω̃3 + ω̃4 )̃ϕ(y3, ω̃3)∂y4ϕ(y4, ω̃4) × δ̄(ω̃1 + ω̃2 + ω̃3 + ω̃4) (E1)

into the expansion of the trace function 〈ψϕ̃〉 as

Q(x0, x, ω)δ̄(ω + ω′) =
∞∑

n=0

γ 2+n
∫

d̄ω1 · · · d̄ωnd̄ ω̃1 · · · d̄ ω̃4dz1 · · · dzn dy1 · · · dy4

× 〈ψ (x, ω)(−λψ̃ (z1, ω1)ϕ(z1, ω1)ψ (z1, ω1))(−κϕ̃(z2, ω2)ψ̃ (z2, ω2)ϕ(z2, ω2)ψ (z2, ω2)) · · ·
(−κϕ̃(zn−1, ωn−1)ψ̃ (zn−1, ωn−1)ϕ(zn−1, ωn−1)ψ (zn−1, ωn−1))(σ ϕ̃(zn, ωn)ψ̃ (zn, ωn)ϕ(zn, ωn))

× ϕ(x0, ω
′)g2ϕ̃(y1, ω̃1)∂y2ϕ(y2, ω̃2)C2(ω̃3 + ω̃4 )̃ϕ(y3, ω̃3)∂y4ϕ(y4, ω̃4) × δ̄(ω̃1 + ω̃2 + ω̃3 + ω̃4)

〉
.

(E2)

As usual, we employ Wick’s theorem to evaluate this average over Gaussian random variables: When expanding the average
n−1

0 〈ψ (x, ω )̃ϕ(x0, ω
′)〉 in powers of γ and g, as shown in Eq. (E2), the resulting coefficients are averages over finite products of

ϕ1 · · ·ϕ j1 , ϕ̃1 · · · ϕ j2 , ψ1 · · · ψ j3 , and ψ̃1 · · · ψ̃ j4 fields [where ϕi = ϕ(zi, ωi ), etc.] with respect to the Gaussian measure [defined
by the action in Eq. (11) for γ = 0]. Each of those coefficients is evaluated using Wick’s theorem, i.e.,〈

ψ1 · · · ψ j1ψ̃1 · · · ψ̃ j2ϕ1 · · · ϕ j3 ϕ̃1 · · · ϕ̃ j4

〉
S;γ=0 =

∑
pairings

∏
(km,�m )

〈
φkmφ�m

〉
S;γ=0, (E3)

where the sum runs over all possible pairwise pairings of the j1 + j2 + j3 + j4 indices, and we use φ in lieu of ϕ, ϕ̃, ψ, ψ̃ to
alleviate notation. Although the number of possible combinations of such pairings is very large, the right-hand side of Eq. (E3)
drastically simplifies because most of the pairwise averages vanish under the Gaussian average. Again, as in the case of g = 0
(cf. Appendix B), the only nonvanishing Gaussian correlators are those of the form 〈ϕϕ̃〉, 〈ψψ̃〉 as given by Eqs. (D3) and (D4).
Thus, the sum over averages in Eq. (E2) simplifies into a sum over integrals over products of these two Gaussian propagators.
The integrals run over n internal spatial variables z1, . . . , zn which stem from the expansion in γ n, and four internal spatial
variables y1, . . . , y4 which stem from the expansion in g2 (and thus are related to the non-Markovian correction). Analogously,
the integration also runs over n frequencies ω1, . . . , ωn stemming from the γ n expansion and four frequencies ω̃1, . . . , ω̃4 from
the g2 expansion. The integral over the internal space variables z1, . . . , zn simplifies significantly, since the corresponding 〈ψψ̃〉
propagators [cf. Eq. (D4)] are proportional to spatial δ functions. This results in all internal space coordinates to identify as
z1 = · · · = zn = x.

The integral over the internal spatial coordinates y1, . . . , y4 appearing in the four ϕ and ϕ̃ fields in Eq. (E2), however, is
less trivial as it involves the correlators (“propagators”) of 〈ϕϕ̃〉. Likewise, the integration over ω̃1, . . . , ω̃4, further involves
the correlator of the driving noise, C2(ω̃3 + ω̃4). Hence, the integrals stemming from the g2 expansion need to be dealt with
more carefully: The four fields ϕ̃(y1, ω̃1)∂y2 ϕ̃(y2, ω̃2 )̃ϕ(y3, ω̃4)∂y4ϕ(y4, ω̃4) appearing in every term of Eq. (E2) have to be paired
up [according to Eq. (E3)] with another creation field ϕ̃(zi ) or annihilation field ϕ̃(zi ) appearing in Eq. (E2), respectively, in
order to have a nonvanishing contribution [cf. Eq. (D3)]. Up to permutation of indices, each of these possible combinations
[which we refer to as “Wick pairings,” Eq. (E3)] can fundamentally be grouped into four different ways that are best understood
diagrammatically: In any case, each of the two ϕ(yi )∂y j ϕ̃(y j ) attaches via Wick pairing to a ϕ(zk )̃ϕ(z�) field appearing in the
terms of Eq. (E2). Concurrently, ϕ̃(zk ), ϕ(z�) Wick-pair with two other corresponding fields, giving rise to connected 〈ϕϕ̃〉—
“propagators” and so on. Thereby, the Wick pairing of ϕ(yi )∂y j ϕ̃(y j ), diagrammatically speaking, splits an existing propagator
in the γ n expansion into two or, as shown below, in three.

In the expansion to order γ n, there is one propagator from x0 to x (transition) and n propagators from x to x (return) represented
by loop diagrams. The g vertex can thus occur in four different ways (Fig. 2), to be distinguished by whether and how the g vertex
enters into the initial transition propagator, , in + + . . ., Eq. (D1), or into any of the return propagators

. First, we consider Q(1)
I (diagram I in Fig. 2), the case of the correlation coupling appearing twice within the same return

propagator leading to the diagrammatic sum

(1)
I (x 0 , x, ω ) = n

−1
0 − 2 + 3 + 3 + ...lim (E4)
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= n 1
0

2
∞

r =0

r ∞

s=0

s
lim (E5)

= − 1

−iω

T (x0, x)

(R(x, ω))2

∫∫
dy1 dy2 d̄ ω̃(∂y1 T (x, y1, ω))(∂y2 T (y1, y2, ω − ω̃))T (y2, x, ω)C2(ω̃). (E6)

In the last line, we replaced the geometric sums in Eq. (E5) by the expression found for τR in Eq. (D17). To be precise, this
is not a matter of trivially renormalizing τ to τR, as the sums appearing in Eq. (E5) are in fact renormalizations of λ and σ ,
respectively,

(E7)

(E8)

where again we made use of the definition n0 = σκ−1. However, comparing to Eq. (D17), they renormalize identically, as does
κ ,

−κR = (−κ)
∞

r =0

r
= (−κ)

∞

r =0

(− κR (x, ω )) r
1

R (x, ω) (E9)

to be used below.
Another identity entering into expressing Q(1)

I , Eq. (E4), as Eq. (E6), is the key ingredient of Q(1)
I :

(x, ω) (x, ω)

ω̃
∂y1

∂y2
= dy1 dy2 d̄ω̃ (∂y1 T (x, y 1 , ω)) ( ∂y2 T (y1 , y2 , ω ˜ )) T (y2− ω , x,ω) C2(ω̃) (E10)

Considering Q(1)
II , shown as diagram II in Fig. 2, next, the two g vertices may be inserted into two different return propagators

of a diagram in the expansion Eq. (D1),

Q(1)
II (x 0 , x, ω) = n

−1
0

3 − 4 4 + ...lim − 4−

(E11)

(E12)

(E13)

Here, we made use again of the geometric sums in Eq. (D17) as well as Eqs. (E7)–(E9), which features three times in
Eq. (E11), once with dummy index r, once with s, and once with t . The central one, running with index s, differs from the others
by the (blue) dashed line that represents the noise carrying momentum ω̃ thus bypassing the loops, so that only ω − ω̃ flows
through loops summed over. Using Eq. (E9) in this loop, the effective vertex of Q(1)

II (x0, x, ω) is

(E14)

=
∫∫

dy1 dy2 d̄ ω̃
(
∂y1 T (x, y1, ω)

)
T (y1, x, ω − ω̃)

1

R(x, ω − ω̃)
(∂y2 T (x, y2, ω − ω̃))T (y2, x, ω)C2(ω̃) , (E15)

to be contrasted with Eq. (E10), the effective vertex of Q(1)
I (x0, x, ω).
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Inserting the result (E15) into Eq. (E13), and using n0 = σ/κ , we obtain an explicit formula

Q(1)
II (x0, x, ω) = 1

−iω

T (x0, x)

(R(x, ω))2

∫∫
dy1 dy2 d̄ ω̃

(∂y1 T (x, y1, ω))T (y1, x, ω − ω̃)

R(x, ω − ω̃)

(
∂y2 T (x, y2, ω − ω̃)

)
T (y2, x, ω)C2(ω̃).

(E16)

Third, we consider Q(1)
III , shown as diagram III in Fig. 2, the case of the transition propagator, , coupling to one of the

return propagators, , via C2(ω) which results in the diagrammatic expansion

Q(1)
III (x 0 , x, ω ) = n

−1
0 lim − 2 + 3 + 3 + ... (E17)

(E18)

(E19)

where we made use of the renormalization of λ, Eq. (E7). For the remaining diagram in Eq. (E19), which differs from Eq. (E15)
only by an incoming transition propagator instead of a return propagator, we find

=
∫∫

dy1 dy2 d̄ ω̃(∂y1 T (x0, y1, ω))T (y1, x, ω − ω̃)

× γ (−κ )

1 + γ κR(x, ω − ω̃)
(∂y2 T (x, y2, ω − ω̃))T (y2, x, ω)C2(ω̃). (E20)

Inserting the result of Eq. (E20) into Eq. (E19), one obtains

Q(1)
III (x0, x, ω) = − 1

−iω

1

R(x, ω)

∫∫
dy1 dy2 d̄ ω̃

(
∂y1 T (x0, y1, ω)

)
T (y1, x, ω − ω̃)

R(x, ω − ω̃)

(
∂y2 T (x, y2, ω − ω̃)

)
T (y2, x, ω)C2(ω̃).

(E21)

Finally, we consider Q(1)
IV , shown as diagram IV in Fig. 2, where two g vertices couple into the incoming transition propagator,

Q(1)
IV (x 0 , x, ω ) = n

−1
0 − 2 + 3 + ...lim (E22)

= n−10
∞

r =0

r
lim (E23)

= n−1
0 lim

γ→∞

[
γ

1

−iω

(−λ)γ

1 + γ κR(x, ω)

∫∫
dy1 dy2 d̄ ω̃

(
∂y1 T (x0, y1, ω)

)(
∂y2 T (y1, y2, ω − ω̃)

)
T (y2, x, ω)C2(ω̃)

]
(E24)

= 1

−iω

1

R(x, ω)

∫∫
dy1 dy2 d̄ ω̃

(
∂y1 T (x0, y1, ω)

)(
∂y2 T (y1, y2, ω − ω̃)

)
T (y2, x, ω)C2(ω̃). (E25)

The trace function corrected to leading order in the external noise is thus given by

Q(x0, x, ω) = T (x0, x, ω)

(−iω)R(x, ω)
+ g2[Q(1)

I + Q(1)
II + Q(1)

III + Q(1)
IV

]+ O(g3). (E26)

Comparing the four correction terms, Q(1)
I , . . . ,Q(1)

IV , it turns out that they draw on two different integrals,

J1(x0, x, ω) =
∫∫

dy1 dy2 d̄ ω̃
(
∂y1 T (x0, y1, ω)

)(
∂y2 T (y1, y2, ω − ω̃)

)
T (y2, x, ω)C2(ω̃), (E27)

J2(x0, x, ω) =
∫∫

dy1 dy2 d̄ ω̃

(
∂y1 T (x0, y1, ω)

)
T (y1, x, ω − ω̃)

R(x, ω − ω̃)

(
∂y2 T (x, y2, ω − ω̃)

)
T (y2, x, ω)C2(ω̃), (E28)

with J1 entering into Q(1)
I and Q(1)

IV , Eqs. (E6) and (E25), and J2 entering into Q(1)
II and Q(1)

III , Eqs. (E16) and (E21),

Q(1)
I (x0, x, ω) = − 1

−iω

T (x0, x, ω)

(R(x, ω))2 J1(x, x, ω), (E29)
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Q(1)
II (x0, x, ω) = 1

−iω

T (x0, x, ω)

(R(x, ω))2 J2(x, x, ω), (E30)

Q(1)
III (x0, x, ω) = − 1

−iω

1

R(x, ω)
J2(x0, x, ω), (E31)

Q(1)
IV (x0, x, ω) = 1

−iω

1

R(x, ω)
J1(x0, x, ω). (E32)

Equation (E26) simplifies further when factorizing out the term to order g0:

Q(x0, x, ω) = T (x0, x, ω)

(−iω)R(x, ω)

[
1 + g2

(J1(x0, x, ω) − J2(x0, x, ω)

T (x0, x, ω)
− J1(x, x, ω) − J2(x, x, ω)

R(x, ω)

)]
+ O(g3). (E33)

To simplify notation, we introduce

T (2)(x0, x, ω) = J1(x0, x, ω) − J2(x0, x, ω) (E34)

=
∫∫

dy1 dy2 d̄ ω̃

[(
∂y2 T (y1, y2, ω − ω̃)

)− T (y1, x, ω − ω̃)

R(x, ω − ω̃)

(
∂y2 T (x, y2, ω − ω̃)

)]
× (∂y1 T (x0, y1, ω)

)
T (y2, x, ω)C2(ω̃) (E35)

=
∫∫

dy1 dy2
(
∂y1 T (x0, y1, ω)

)(
∂y2 T (y2, x, ω)

)
×
∫

d̄ ω̃

[
T (y1, x, ω − ω̃)

R(x, ω − ω̃)
T (x, y2, ω − ω̃) − T (y1, y2, ω − ω̃)

]
C2(ω̃),

(E36)

where the last equality follows by integration by parts and rearranging terms, arriving at Eq. (29). Using T (2)(x0, x, ω) in
Eq. (E33) it may be written as

Q(x0, x, ω) = T (x0, x, ω) + g2T (2)(x0, x, ω)

(−iω)(R(x, ω) + g2T (2)(x, x, ω))
+ O(g3). (E37)

In keeping with the notation of T (2) as the g2 correction to the transition probability, we henceforth write T (0) for what used to
be called T , the contribution at g = 0. Collecting these terms into the renormalized T , we write

T (x0, x, ω) = T (0)(x0, x, ω) + g2T (2)(x0, x, ω) + O(g3) (E38)

and along the same lines the return probability

R(x, ω) = T (x, x, ω) = R(0)(x, ω) + g2R(2)(x, ω) + O(g3) = T (0)(x, x, ω) + g2T (2)(x, x, ω) + O(g3), (E39)

so that

Q(x0, x, ω) = T (x0, x, ω)

(−iω)R(x, ω)
+ O(g3). (E40)

APPENDIX F: DERIVATION OF EFFECTIVE TRANSITION PROBABILITY FOR BROWNIAN MOTION
DRIVEN BY SELF-CORRELATED NOISE

To compute T (2)(x, ω) in Eq. (E36), we first express the Fourier-transformed correlation function Ĉ2(ω) in terms of the inverse
Laplace transform C̄2(β ), using

Ĉ2(ω) =
∫ ∞

−∞
dt eiωtC(|t |) =

∫ ∞

−∞
dt eiωt

∫ ∞

0
dβ e−β|t |C̄2(β ) (F1)

= 2
∫ ∞

0
dβ

(∫ ∞

0
dt cos(ωt )e−βt

)
C̄2(β ) (F2)

=
∫ ∞

0
dβ

2β

ω2 + β2
C̄2(β ), (F3)

which facilitates the calculation of the convolution over ω̃ in the second line of Eq. (E36), in particular when we
consider exponential correlations, Eq. (35), in which case C̄2(β ) ∝ δ(β − β∗). We first consider the convolution of C2
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with T (0), ∫
d̄ω T (y1, y2, ω − ω̃)C2(ω) =

∫ ∞

0
dβ

∫
d̄ωT (y1, y2, ω − ω̃)

2βC̄2(β )

ω̃2 + β2
(F4)

=
∫ ∞

0
dβ C̄2(β )T (y1, y2, ω + iβ ), (F5)

where we have used that T (y1, y2, ω) cannot have any poles in the upper half plane, because its inverse Fourier transform
T (y1, y2, τ ) must vanish for all τ < 0. If there were any poles in the upper half plane, the auxiliary path that for τ < 0 must pass
through the upper half plane would enclose them, producing T (y1, y2, τ ) �= 0.

Considering, second, the convolution of C2 with the term of the form T (0)T (0)/R(0) in Eq. (E36), we similarly obtain∫
d̄ ω̃

T (y1, x, ω − ω̃)

R(x, ω − ω̃)
T (x, y2, ω − ω̃)C2(ω̃) =

∫
d̄ ω̃χ

(0)
FPT(y1, x1, ω − ω̃)T (x1, y2, ω − ω̃)

∫ ∞

0
dβ

2βC̄2(β )

ω̃2 + β2
(F6)

=
∫ ∞

0
dβ C̄2(β )χ (0)

FPT(y1, x1, ω + iβ )T (x1, y2, ω + iβ ) (F7)

=
∫ ∞

0
dβ C̄2(β )

T (y1, x, ω + iβ )

R(x, ω + iβ )
T (x1, y2, ω + iβ ), (F8)

where we made use of the Markovian formula, Eqs. (B23) and (6), χ
(0)
FPT(ω) = T (x0, x; ω)/R(x; ω), which is, like T (y1, y2, ω)

above, a Fourier transform of a probability density that vanishes for all τ < 0 and thus has no poles in the upper half plane.
Having performed the convolutions over ω̃, turning them into easier integrals over β, what remains are the two spatial integrals

over y1 and y2,

T (2)(x0, x, ω) =
∫ ∞

0
dβ C̄2(β )

∫∫
dy1 dy2

[
T (y1, x, ω + iβ )

R(x, ω + iβ )
T (x, y2, ω + iβ ) − T (y1, y2, ω + iβ )

]
× (∂y1 T (x0, y1, ω))(∂y2 T (y2, x, ω)). (F9)

We proceed by calculating T (2)(x0, x, ω) for the particular case of Brownian motion, which has transition propagator

T (x0, x, ω) =
∫

d̄k
eik(x−x0 )

−iω + Dxk2
= e

−|x−x0|
√

−iω
Dx

√−4iωDx
. (F10)

Beginning with the simpler integrand in Eq. (F9), the first term we consider is

I1(x0, x, ω) =
∫ ∞

0
dβ C̄2(β )

∫∫
dy1 dy2 T (y1, y2, ω + iβ )(∂y1 T (x0, y1, ω))(∂y2 T (y2, x, ω)) (F11)

=
∫ ∞

0
dβ C̄2(β )

∫∫
dy1 dy2

∫∫
dk d p dq

eik(y2−y1 )

−iω + Dxk2 + β

(ip)eip(y1−x0 )

−iω + Dx p2

(−iq)eiq(x−y1 )

−iω + Dxq2
. (F12)

Integration over both y1 and y2 results in two delta functions δ̄(k − p) and δ̄(p − q), respectively. Integrating over both d̄k and
d̄q then results in

I1(x0, x, ω) =
∫ ∞

0
dβ C̄2(β )

∫
d̄ p

p2eip(x1−x0 )

(−iω + Dx p2)2(−iω + Dx p2 + β )
, (F13)

which using partial fractions can be expressed in terms of the Markovian transition densities (cf. Eq. (125) of Ref. [28]),

I1(x0, x, ω) =
∫ ∞

0
dβ C̄2(β )

∫
d̄ p

(
1

β

p2eip(x1−x0 )

(−iω + Dp2)2 − 1

β2

p2eip(x1−x0 )

−iω + Dp2
+ 1

β2

p2eip(x1−x0 )

−iω + Dp2 + β

)
(F14)

= −
∫ ∞

0
dβ C̄2(β )β−2

(
∂2

x1

)
[−i∂ωβT (x0, x1, ω) − T (x0, x1, ω) + T (x0, x1, ω + iβ )]. (F15)

Expressing T (x0, x, ω) as a Fourier transform in t further leads to

I1(x0, x, ω) = −
∫ ∞

0
dβ C̄2(β )

∫
dt eiωtβ−2[βt − 1 + e−βt ]

(
∂2

x1

)
T (x0, x1, t ) (F16)

= −
∫ ∞

0
dβ C̄2(β )

∫
dt eiωt t2Y (βt )

(
∂2

x1

)
T (x0, x, t ), (F17)

where we introduced the dimensionless scaling function

Y (z) = e−z − 1 + z

z2
(F18)
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with Y (z)
z→0→ 1/2 and Y (z)

z�1� z−1. While Y (z) is specific to Brownian motion, other stochastic processes give rise to similar
scaling functions as Eq. (97) of Ref. [28] indicates for the case of an Ornstein-Uhlenbeck process.

The second contribution of Eq. (F9) is

I2(x0, x, ω) (F19)

=
∫ ∞

0
dβ C̄2(β )

∫∫
dy1 dy2

T (y1, x, ω + iβ )

R(x, ω + iβ )
T (x, y2, ω + iβ )(∂y1 T (x0, y1, ω))(∂y2 T (y2, x, ω)) (F20)

=
∫ ∞

0
dβ C̄2(β )

√
4Dx(β − iω)

∫∫
dy1 dy2

∫∫
d̄k1d̄k2d̄ pd̄q

× eik1(x1−y1 )

−iω + Dxk2
1 + β

eik2(y2−x1 )

−iω + Dxk2
2 + β

(ip)eip(y1−x0 )

−iω + Dx p2

(−iq)eiq(x−y2 )

−iω + Dxq2
, (F21)

using 1/R(x, ω + iβ ) = 1/T (x, x, ω + iβ ) = √
4Dx(β − iω), Eq. (F10). Integrating over y1 and y2 produces two δ functions,

δ(p − k1)δ(q − k2). Using them when integrating over k1, k2 gives

I2(x0, x, ω) =
∫ ∞

0
dβ C̄2(β )

√
4Dx(β − iω)

(∫
dq

(−iq)

(−iω + Dxq2)(−iω + Dxq2 + β )

)
×
(∫

d p
(ip)eip(x1−x0 )

(−iω + Dx p2)(−iω + Dx p2 + β )

)
. (F22)

By symmetry, the integral over d̄q vanishes and thus I2 = 0. For Brownian motion, we thus obtain for T (2)(x0, x, ω), Eqs. (29)
and (E36),

T (2)(x0, x, ω) = −I1(x0, x, ω) =
∫ ∞

0
dβ C̄2(β )

∫
dt eiωt t2Y (βt )

(
∂2

x1

)
T (x0, x, t ). (F23)

By inverting the Fourier transform we further obtain

T (2)(x0, x, t ) =
∫ ∞

0
dβ C̄2(β )t2Y (βt )

(
∂2

x1

)
T (x0, x, t ) (F24)

= ϒ(t )
(
∂2

x1

)
T (x0, x1, t ), (F25)

where we introduced the time-stretch function, Eq. (31),

ϒ(t ) =
∫ ∞

0
dβ C̄2(β )t2Y (βt ) (F26)

=
∫ ∞

0
dβ

C̄2(β )

β2
[e−βt − 1 + βt]. (F27)

Making use of the properties of the Laplace transform, we find∫ ∞

0
dβ β−2e−βtC̄2(β ) =

∫ ∞

0
ds sC2(t + s), (F28)

∫ ∞

0
dβ β−2C̄2(β ) =

∫ ∞

0
ds sC2(s), (F29)

∫ ∞

0
dβ β−1tC̄2(β ) =

∫ ∞

0
ds tC2(s), (F30)

and after some simple transformations,

ϒ(t ) =
∫ ∞

0
ds (sC2(t + s) − sC2(s) + tC2(s)) =

∫ t

0
ds (t − s)C2(s) =

∫ t

0
ds
∫ s

0
duC2(u), (F31)

as in Eq. (31).

APPENDIX G: LIST OF EXPLICIT RESULTS FOR VISIT PROBABILITIES

The concrete perturbative corrections resulting from formulas (28) and (29) are often cumbersome expressions. The correction
for the active thermal Brownian motion on a real line, characterized by Eq. (30), and with an exponentially correlated driving
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noise is given implicitly via Eq. (34). This integral can be performed using Mathematica [62] and delivers

Q(x, ω) = e−
√

−iωx2
Dx

−iω

[
1 + g2Dy

D2
xβ

(
Dx

√
(−iω)(β − iω)

(
e−

√
β−iω−√−iω√

Dx
|x| − 1

)+ 1

2
β
√−iDxω|x|

)]
. (G1)

In the joint limit of β → 0 and Dyβ = w2 fixed, the moment-generating function becomes

Q(x, ω) = e−
√

−iωx2
Dx

−iω

⎡⎣1 + g2w2

8D2
x

⎛⎝x2 −
√

Dxx2

−iω

⎞⎠⎤⎦. (G2)

This corresponds to the visit probability of a Brownian motion with a random but fixed additional drift term y which is Gaussian
distributed with mean zero and variance w2.

In Ref. [28], we developed a perturbative framework which was able to compute the moment-generating functions of first-
passage-time distributions for processes of the form (21). This framework did not use field theory, but instead a functional
perturbation theory. Since Q(x, ω) = 1

−iωχFPT(x, ω), we here report the findings for two other models first reported there, for
future reference.

First, we report the visit probability of an active Brownian motion on a ring of radius r, hence

ẋt = ξt + gyt , xt ≡ xt + 2πr. (G3)

We then study the visit probability over a certain angle θ = x1−x0
r . As a shorthand, we further introduce the inverse diffusive

timescale α−1 = r2/Dx. To leading perturbative order, the visit probability is then given by (see Eq. (127) of Ref. [28])

Q(θ, ω) = cosh((θ − π )
√−iα−1ω)

(−iω) cosh(π
√−iα−1ω)

+ Dyg2

2Dx

√−iα−1ω tanh(π
√−iα−1ω)

−iα−1βω

[
cosh((θ − π )

√
α−1(β − iω))

sinh(π
√

α−1(β − iω))
2
√

α−1(β − iω)

+ cosh((θ − π )
√−iα−1ω)

cosh(π
√−iα−1ω)

(πβ̄ − 2
√

α−1(β − iω) coth(π
√

α−1(β − iω))) + sinh((θ − π )
√−iα−1ω)

sinh(π
√−iα−1ω)

β̄(π − θ )

]
.

(G4)

In the limit of infinite radius, r → ∞, one finds θ
√−iα−1ω →

√
−i ω(x1−x0 )2

Dx
, and accordingly the Markovian result converges,

as expected, to

lim
r→∞

cosh((θ − π )
√−iα−1ω)

(−iω) cosh(π
√−iα−1ω)

= lim
r→∞

1

(−iω)

cosh
(√−i ω

Dx
|x1 − x0| −

√
−i ω

Dx
πr
)

cosh
(√−i ω

Dx
πr
) = e

√−i ω
Dx

|x1−x0|

−iω
. (G5)

Analogously, a more involved computation using, for instance, Mathematica confirms that

lim
r→∞Qring

(
x1 − x0

r
, ω

)
= Qline(x1 − x0, ω) (G6)

with Qring( x1−x0
r , ω) being the result in Eq. (G4) and Qline(x1 − x0, ω) the perturbative result found in Eq. (G1).

Finally we consider the case of a harmonic trap, i.e.,

ẋt = −αx + ξt + gyt , (G7)

which we refer to as an active thermal Ornstein-Uhlenbeck (ATOU) process. The result is more compactly given in dimensionless
units:

β̄ = α−1β, x̄0 = x0/�, x̄1 = x1/�, with � =
√

Dxα−1. (G8)

The Fourier-transformed visit probability is given in terms of parabolic cylinder functions D−ν (x) [63] and reads (for x0 < x1)
(see Eq. (100) or Ref. [28])

Q(x, ω) = e
x̄2
0−x̄2

1
4

Diα−1ω(x̄0)

(−iω)Diα−1ω(x̄1)
+ g2Dyβ̄

Dx(−iω)

(−iα−1ω)e
x̄2
0−x̄2

1
4

2(β̄2 − 1)Diα−1ω(−x̄1)2D−β̄+iα−1ω(−x̄1)

× [(β̄ + 1)(−iα−1ω + 1)D−β̄+iα−1ω(−x̄1)(Diα−1ω(−x̄0)Diα−1ω−2(−x̄1) − Diα−1ω−2(−x̄0)Diα−1ω(−x̄1))

− 2(β̄ − iα−1ω)Diα−1ω−1(−x̄1)(Diα−1ω(−x̄0)D−β̄+iα−1ω−1(−x̄1) − D−β̄+iα−1ω−1(−x̄0)Diα−1ω(−x̄1))]. (G9)
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