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Abstract
We propose a novel technique for algorithm-selection, applicable to optimisation
domains in which there is implicit sequential information encapsulated in the data,
e.g., in online bin-packing. Specificallywe train two types of recurrent neural networks
to predict a packing heuristic in online bin-packing, selecting from four well-known
heuristics. As input, the RNN methods only use the sequence of item-sizes. This con-
trasts to typical approaches to algorithm-selection which require a model to be trained
using domain-specific instance features that need to be first derived from the input
data. The RNN approaches are shown to be capable of achieving within 5% of the
oracle performance on between 80.88 and 97.63% of the instances, depending on the
dataset. They are also shown to outperform classical machine learning models trained
using derived features. Finally, we hypothesise that the proposed methods perform
well when the instances exhibit some implicit structure that results in discriminatory
performance with respect to a set of heuristics. We test this hypothesis by generating
fourteen new datasets with increasing levels of structure, and show that there is a
critical threshold of structure required before algorithm-selection delivers benefit.
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1 Introduction

Algorithm-selection—the process of selecting the best algorithm to solve a given prob-
lem instance—ismotivated by the potential to exploit the complementary performance
of different algorithms on sets of diverse problem instances. However, determining
the best-performing algorithm for an unseen instance has been shown to be a complex
problem that has attracted much interest from researchers over the decades (Kotthoff
2016; Kerschke et al. 2018a; Smith-Miles 2009). A common approach to tackling the
Algorithm-Selection Problem (ASP) is to treat it as a classification problemwhere each
instance is described in terms of a vector of hand-designed features, and an instance’s
class indicates the best performing algorithm. Although there have been a number of
successful studies using this method, e.g. Perez et al. (2004), Kandanaarachchi et al.
(2018), Collautti et al. (2013), Kerschke and Trautmann (2019), the task of identifying
appropriate features that correlate to algorithm performance is far from trivial in many
domains: in some domains, specifying features is not intuitive, and it can be diffi-
cult to create a sufficient number to train a model, while in others in which there are
many features, it is necessary to invoke feature-selection methods in order to choose
appropriate features (Kerschke et al. 2018b; Smith-Miles et al. 2014) as the noisy and
uninformative features prevent the selection techniques making intelligent decisions
(Loreggia et al. 2016).

Feature-design is even more complex in domains in which the data has sequential
characteristics. For example, in online bin-packing (Lee and Lee 1985; Ramanan
et al. 1989) and online job-shop scheduling problems (Weckman et al. 2008; Liu et al.
2009), items/tasks arrive in a stream (one at a time) and have to be packed/assigned to
a container/machine exactly in the sequence that they arrive. In such cases, it would
be appropriate to derive features that capture the sequential information contained
in the sequence in order to be informative, but deriving such features is even more
challenging than in the cases mentioned above.

One solution to dealing with sequential data can be found in the field of deep
learning, where the use of recurrent neural networks with Long-Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber 1997) or Gated Recurrent Units (GRU) (Cho
et al. 2014) to classify sequential data has becomewidespread in recent years; example
applications include text classification (Lee and Dernoncourt 2016), scene-labelling
(Byeon et al. 2015) and time-series classification (Karim et al. 2017). Such networks
directly use a sequence of data as input (e.g the size of the next item to be packed in
bin-packing). In this sense they are ‘feature-free’ in that it is not necessary to derive
auxiliary features from the data to train the network. The addition of the LSTM/GRU
to the network enables amodel to learn the long-term context or dependencies between
symbols present in an input sequence, and also handles variable-length sequences of
information. Therefore, we propose that an RNN-LSTM or RNN-GRU could be used
as a feature-free classification technique to performalgorithm-selection in optimisation
domains in which there is sequential data.1 To be clear, in the context of this paper,
the term feature-free refers to the use of raw input data defining a problem instance

1 In fact, it is possible to re-cast some optimisation problems that do not contain natural sequential infor-
mation in sequence form; we return to this in the Conclusion.
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as input to a selector, where there is no pre-processing of data required or a need to
define and derive features a-priori from the problem data. This therefore addresses
the associated issues outlined above. Also, we restrict the algorithm space to a set of
deterministic heuristics, however, we use the phrase “algorithm-selection” as it is the
familiar phrase of this problem in the literature.

In a recent conference paper (Alissa et al. 2019), we described an initial implemen-
tation of an RNN-LSTM to perform algorithm-selection in the field of 1D bin-packing,
showing that it was able to outperform the Single-Best Solver (SBS) (i.e. the single
heuristic that achieves the best performance over the instance set) on multiple datasets
and achieving comparable performance to the Virtual-Best Solver (VBS), i.e. the ora-
cle. Our approach has subsequently been adopted by (Seiler et al. 2020) and modified
to work in the TSP domain. Here we extend our previous work by proposing an addi-
tional neural architecture for prediction that uses gated-recurrent units. In addition,
we compare the two RNN architectures to six different classical machine learning
techniques that use derived features as input to provide better insight into the rela-
tive merits of recurrent vs classical networks. An extensive evaluation is conducted
using five benchmark datasets. In order to understand the conditions under which the
proposed methods are likely to be useful, we then conduct a systematic investigation
over fourteen newly created datasets that exhibit increasing levels of structure within
the data, using a proxy for structure defined in terms of the performance difference
between heuristics on the same instance. This sheds new light on why some spaces
are more likely to facilitate classification than others.

The contributions are as follows:

– Anovel feature-free algorithm-selection approach using a recurrent neural network
with either long-short-termmemory or gated recurrent units that avoids the need to
identify features through training, using only the sequential information defining
a problem instance.

– Anextensive comparisonof the feature-free approaches to feature-based approaches,
using a wide range of features as input to six well-known classifiers, each tuned
to ensure optimised performance.

– A systematic investigation of the relationship between classification performance
and the level of structure in the dataset, using fourteen newly developed datasets
that exhibit controllable levels of structure.

Results show that on the five benchmark datasets, the feature-free approach signif-
icantly outperforms the best feature-based approaches, with classification accuracies
across the five datasets that are very close to the theoretical optimum. We further
find that there is a threshold for ‘structure’, below which algorithm-selection might
be unnecessary. Given that many real-world problems are known to be structured
Smith-Miles (2009); Hains et al. (2011) this underlines the need to develop better
algorithm-selection methods to be used in practice.

The rest of the paper is organised as following, Sect. 2 explains the different
approaches of dealing with ASP from the literature. A brief summary of Online 1D
Bin-Packing Problem (1D-BPP) and the heuristics used in this study are presented in
Sect. 3. Section 4 shows the problem instances we use in this research. We describe
the Deep Learning and the Machine Learning models (including the features used) in
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Fig. 1 Schematic of the
algorithm-selection problem
(Rice 1976)

Sect. 5. This research methodology is explained in Sect. 6. The results are presented
in Sect. 7 followed by a systematic analysis across multiple datasets in Sect. 8.

2 Related work

Originally formulated by Rice (1976), the per-instance Algorithm-Selection Prob-
lem (ASP) can be defined as:

“Given a set I of instances of a problem P , a set a = {a1, . . . , an} of algorithms
for P and a metric m : a × I → R that measures the performance of any algorithm
a j ∈ Aon instance set I , construct a selector S that maps any problem instance i ∈ I
to an algorithm S(i) ∈ A such that the overall performance of S on I is optimal
according to metric m. (Kerschke et al. 2018a)

A schematic of the ASP is shown in Fig. 1 (Rice 1976). In Rice’s definition:

– The problem space P represents a potentially infinite sized set of instances for the
problem domain

– The feature spaceF describes a set of characteristics derived using feature extrac-
tion from P

– The algorithm space A is the set of algorithms available for the problem domain
– The performance space Y maps each algorithm to a set of performance metrics
(Smith-Miles et al. 2014).

The objective is to identify a mapping between P and A that maximises Y . In this
paper, we restrict the algorithm space to a set of deterministic 1D-BPP heuristics.

For a finite set of problem instances I , a fixed set of heuristics H and a single
performance metric m, the Virtual Best Solver (VBS) is defined as a perfect mapping
between I and H . The Single Best Solver (SBS) is the heuristic ∈ H that achieves
the best performance over I . Although Rice’s framework is a useful approach for
describing ASP, it provides no advice about the mapping from problem space P to
the feature space F , and it clearly shows that the effectiveness of the algorithm-
selection process for solving a particle problem domain relies on the quality of the
problem’s features (Smith-Miles and vanHemert 2011; Smith-Miles and Lopes 2012).
A comprehensive review of different approaches towards algorithm-selection can be
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found in a number of survey papers in this active area of research (Kerschke et al.
2018a; Kotthoff 2016; Smith-Miles 2009). Some of the most relevant approaches are
described here.

2.1 ASP with feature-based approaches

One of the most common approaches to ASP is to identify features using expert
knowledge, and then train machine learning methods to predict the best performing
algorithm(s) for an instance from its feature-profile (Kerschke et al. 2018a). However,
identifying features that are significant in determining performance is complex, usually
requires hand-crafting (Nudelman et al. 2004; Hutter et al. 2014; Smith-Miles and van
Hemert 2011; Pihera and Musliu 2014), and often is not intuitive. Often the approach
must also be combined with a feature-reduction method to simplify learning, e.g
Principal Component Analysis (PCA) (Smith-Miles et al. 2014; López-Camacho et al.
2013), and understand the correlations between features and algorithm performance.

Cruz-Reyes et al. (2012) have used meta-learning and hyper-heuristics to solve
ASP in the domain of 1D-BPP. Their methodology relies on data collected from
past experience to characterise algorithm performance and it is divided into three
phases: initial training, prediction, and training with feedback. The output of the train-
ing phase is a trained model that relates the problem characteristics to the algorithms’
performance—this model is used to predict the best algorithm for a new given instance
in the prediction phase. The new solved instances are then incorporated into the knowl-
edge base to improve the selection quality. They used five deterministic heuristics and
two non-deterministic algorithms with 1D-BPP. Three machine learning methods are
compared—Discriminant Analysis (DA) (Pérez et al. 2004), a decision tree to build
the selectors and a Self-Organizing Map (SOM) (Haykin et al. 2009) to implement
the selection system with feedback. Five features were used as input. Their method
obtained 76% accuracy with DA and 81% accuracy with decision tree to select the
best algorithm. Also, the accuracy increased from 78.8% with initial-training up to
100% when using SOMwith feedback and the number of problem characteristics was
the minimum.

López-Camacho et al. (2013) also studied ASP in the packing domain using a wide
range of 23 features and six heuristics within an evolutionary hyper-heuristic frame-
work. They studied the correlation between the structure of 1D- and 2D-BPP instances
and the performance of the solvers using PCA (Ringnér 2008) as a knowledge dis-
covery method. Most of the used features are related to 2D-BPP and a subset of nine
features, includingmeans and standard deviation (std) of the item sizes, are considered
that is strongly correlated with the heuristics performance after the feature-reduction.
They analysed the distribution of feature values across the PCA map and their anal-
ysis suggested that there are indeed correlations between instance characteristics and
heuristic performance. Brownlee et al. (2018) have used ten BPP features that are
related to the distribution of item sizes within each instance and performance features
to analyse the relationship between the training data and automatic design of algo-
rithms. They investigated the distributions of values for features over the instances
in benchmark sets, and how these distributions relate to the performance of algo-
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rithms built by automatic design of algorithms. They concluded that high variation
in some of these features, including mean, standard deviation and maximum of item
size, is a strong indicator for good fitting to the training instances and to achieve good
performance for automatic design of algorithms.

A different type of approach was proposed by Ross et al. (2002) that could be used
for ASP with constructive approaches to solution generation; rather than deriving
features from the original description of an instance, a small number of features were
derived from the current instance state each time a heuristic was applied. A learning
classifier system XCS (Wilson 1995) was used to map a set of problem-states to
specific heuristics. An approach that tries to avoid having to hand-craft good features
was described in Sim et al. (2012) who evolve the parameters of a feature design
method for 1D bin-packing problems to that best improve the performance of k-
Nearest Neighbours (KNN) classifier (Shalev-Shwartz and Ben-David 2014).

Another ASP approach that does not explicitly rely on feature identification and
extraction was proposed by Sim et al. (2015). Here, a system continuously generates
novel heuristics which are maintained in an ensemble, and samples multiple problem
instances from the environment. Heuristics that “win” an instance (perform best) are
maintained. This was shown to rapidly produce solutions and generalise over the
problem space, but required a greedy method of actually selecting between generated
heuristics and hence does not fit with the classical ASP definition.

2.2 ASP with streaming problems

Although feature-based approaches have been shown toworkwell in domains inwhich
there is no sequential information associated with an instance description,2 domains in
which data arrives in a continual stream aremore challenging. Statistical approaches to
defining features for streaming data are complex, and developing algorithm selectors to
tackle streaming data poses considerable challenges due to potentially large streams,
the fact that the order of data points cannot be influenced and that the underlying
distributionof the data points in the streamcan changeover time.A recent survey article
describing the state-of-the-art in algorithm-selection (Kerschke and Trautmann 2019)
highlighted a pressing need to develop automated algorithm-selectionmethods that are
capable of learning in the context of streaming data. A supervised-learning approach
was used by van Rijn et al. (2018, 2014) to predict which classifier performs best on a
(sub)stream. Unsupervised learning approaches such as stream-clustering have been
used to identify, track and update clusters over time (Carnein et al. 2017; Gong et al.
2017). However, due to the huge space of parameter and algorithm combinations, clear
guidelines on how to set and adjust them over time are lacking (Mansalis et al. 2018;
Carnein and Trautmann 2019; Amini et al. 2014).

2 Although it could be argued that some sequential information is implicit in those approaches just men-
tioned that dynamically calculate problem state and use this to select heuristics (Sim et al. 2012; Ross et al.
2002).
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2.3 ASP with deep learning approaches

Recently, deep learning algorithms have gained some traction in theASPfield due their
ability to learn from extremely large datasets in reasonable time.Mao et al. (2017) pro-
posed a heuristic performance predictor using a deep neural network trained on a large
set of instances of variable sized 1D bin-packing problem using 16 features as input,
grouped into item, box and cross features. Their prediction system has achieved up to
72% validation accuracy to select the best performing heuristic that can generate a bet-
ter quality bin-packing solution. To eliminate the arduous task of manually designing
features, Loreggia et al. (2016) proposed a deep learning approach to automatically
derive features in SAT and CSP domains assuming that any problem instance can be
expressed as a text document. Unlike previous works e.g. Smith-Miles et al. (2014),
López-Camacho et al. (2013) that derive features from features automatically using
PCA, their approach automatically derives features from a visual representation of the
problem instances (i.e. converting the text files into grey-scale square images), which
can be used to train a conventional neural network to predict the best solver for the
instance. Although their approach obtained better results than the SBS, it was not able
to outperformover the approaches that use regularmanually crafted features. Although
concerned with learning an optimisation method rather than algorithm-selection, Hu
et al. (2017) used a deep reinforcement learning (a Pointer Network), with 3D-BPP
to optimize the sequence of items to be packed into the bin by choosing the sequence,
orientation and empty maximal space to pack cuboid shaped items. They claimed
that their proposed method has obtained about 5% improvement over a well-designed
heuristic.

As mentioned in the introduction, in a recent conference paper, Seiler et al. (2020)
adopted and adapted the LSTM approach we proposed in Alissa et al. (2019) to be
applicable to the Euclidean TSP domain, also using an evolved (and balanced) dataset
(1000 instances) with twoTSP solvers. They compared a feature-based approach using
four different classical ML classifiers to a feature-free approach using deep learning
Convolutional Neural Networks (CNNs). Due to the large TSP-related feature sets,
they conducted a data analysis and automatic feature selection to choose adequate set of
15most relevant features. Their results show that the feature-based approach improved
over the SBS performance but still quite far away from the performance of the oracle-
like VBS. The feature-free approach matches the performance of the quite complex
classical ML approaches, despite being solely based on raw visual representation of
the TSP instances. Although TSP is not an online or sequential problem, the work
of Seiler et al. (2020) borrows the key concept of our proposed method, i.e. that the
raw data defining an instance can be used without modification as input to a selection
algorithm.

The approach proposed in this paper differs substantially from the previous work
just described in that it abandons the need to derive features from a dataset, circumvent-
ing the associated issues. In contrast to some previous research which extends Rice’s
diagram to encapsulate a broader agenda relating to the relative power of algorithms
(e.g. Smith-Miles et al. 2014), our proposed method shrinks Rice’s diagram through
bypassing the feature extraction block. Furthermore, as far as we are aware, it provides
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the first example of applying a recurrent-neural network as an algorithm-selector to
data which has sequential characteristics. Although such networks have demonstrated
ground-breaking performance on a variety of tasks that include image captioning, lan-
guage translation and handwriting recognition (Lipton et al. 2015), their applicability
has not been exploited within the ASP domain.

3 Online 1D-BPP: definition and heuristics

The objective of the general 1D Bin-Packing Problem (1D-BPP) is to find a pack-
ing which minimises the number of containers, b, of fixed capacity c required to
accommodate a set of n items with weights ω j : j ∈ {1, . . . , n} falling in the range
1 ≤ ω j ≤ c, ω j ∈ Z

+ whilst enforcing the constraint that the sum of weights in any
bin does not exceed the bin capacity c. The lower and upper bounds on b, (bl and
bu) respectively, are given by Equation 1. Any heuristic that does not return empty
bins will produce, for a given problem instance, p, a solution using bp bins where
bl ≤ bp ≤ bu .

bl =
⎡
⎢⎢⎢
1

c

n∑
j=1

ω j

⎤
⎥⎥⎥

, bu = n (1)

In online bin-packing, items arrive in a stream, one at a time, and must be packed
in the order that they arrive. In the specific version that we consider here, all items to
be packed are known before packing starts (i.e. they constitute a fixed length batch)
but the order that items in the batch are presented to the packing heuristics is fixed and
cannot be changed. In contrast to other types of packing problem, the sequence cannot
be re-ordered to find an ordering that provides an optimal packing with respect to a
given heuristic. The function of the algorithm-selection method is therefore to select
a heuristic to apply to pack the entire batch, considering the items in the fixed order
given.

There have been numerous studies over the decades that have investigated the
performance of simple approximation algorithms for the online variant of the BPP
(Johnson et al. 1974; Delorme et al. 2016). We select 4 simple approximation algo-
rithms from the literature specifically designed for this variation of the BPP (Garey
and Johnson 1981) in order to evaluate the proposed algorithm-selection methods:

– First fit (FF) Places each item into the first feasible bin that will accommodate it.
– Best fit (BF) Places each item into the feasible bin that minimises the residual
space.

– Worst fit (WF) Places each item into the feasible bin with the most available
space.

– Next fit (NF) Places each item into the current bin.

For all the algorithms listed, if no feasible bin is available to accommodate the next
item then it is placed into a newly opened bin. NF is different to the other 3 algorithms
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in that it only ever considers the most recently opened bin. If an item cannot fit in the
current bin that bin is closed and removed from the problem.

The performance of an algorithm A on instance I is denoted by A(I). OPT (I) is
the optimal solution for that instance. The worst-case performance ratio (WCPR) of
A is defined as the smallest real number r(A) > 1 such that A(I)

OPT (I)
≤ r(A) for all

possible instances. The WCPR of NF is known to be 2 (Delorme et al. 2016) and it
was recently concluded after many theoretical studies that the WCPR of FF and BF is
17
10 (Dósa and Sgall 2014).

4 Problem instances

We use a set of benchmark BPP instances that were first introduced in Alissa et al.
(2019). These benchmarks consists of four balanced datasets: each dataset has 4000
instances, and contains exactly 1000 instances uniquely solved best by each of the
four heuristics described in Sect. 3. The datasets were generated using an Evolutionary
Algorithmwhichmaximises the difference in a function f between the target algorithm
and the other algorithms used in the selection problem, where f is Falkenauer’s fitness
function (Falkenauer and Delchambre 1992) given in equation 2 and are described in
detail in Alissa et al. (2019).

Fitness = 1

b

b∑
i=1

(
f illi
C

)k

(2)

Each instance in each dataset is labelled with the heuristic that provides the best
result according to equation 2. This metric is commonly used to gauge the quality of
a solution produced by an bin-packing algorithm and returns a value between 0 and
1. In the original datasets described in Alissa et al. (2019), k is fixed at 2. C is the bin
capacity which is fixed at 150, f illi is the sum of the item sizes in bini and b is the
number of bins used.

A new dataset is created by combining instances selected from all 4 datasets just
described (identified as DS5). This facilitates an investigation into whether the feature-
based and feature-free models generalise across a mixed set of instances of different
lengths with item weights drawn from different probability distributions and bounds.
DS5 contains 4000 instanceswith 1000 instances selected fromeach datasetDS1-DS4.
For each dataset, 250 instances were selected at random for each class (FF, BF, WF
and NF), resulting in a balanced dataset containing equal numbers of instances from
each class and each distribution. Table 1 provides a description of each dataset. These
datasets are available for other researchers working in the field of ASP to compare
approaches.3

3 https://github.com/Kevin-Sim/BPP.
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Table 1 Dataset parameters

Dataset nitems Lower–upper bounds Distribution D

DS1 120 [40–60] Gaussian

DS2 120 [20–100] Uniform

DS3 250 [40–60] Gaussian

DS4 250 [20–100] Uniform

DS5 (120, 250) [20–100, 40–60] (Uniform, Gaussian)

Bin capacity is fixed at 150 (Alissa et al. 2019)

5 Models: a deep learningmodel and a set of classical machine
learningmodels for algorithm-selection

We have outlined above that conventional machine learning techniques used for the
ASP tend to consider vectors of features as input to classical machine learningmodels.
Candidate features typically describe spatial or statistical characteristics, with little
consideration to ordering or sequential information describing an instance. On the
one hand, this ignores potentially valuable sequential information that could improve
algorithm-selection, while on the other, limits applicability of standard approaches on
streaming data where features need to be calculated dynamically.

We propose a model applicable to domains in which data has a fixed ordering that
explicitly considers the ordering as input to an algorithm-selection technique, that
uses a method borrowed from the deep learning literature. Deep learning has achieved
ground breaking results in applications where the input is formatted as time-series
data or in domains where sequences have specific orderings but without any explicit
notion of time (Lipton et al. 2015). Examples including video and image recognition,
natural language processing, music generation and speech recognition (Graves 2012;
Pouyanfar et al. 2018; Skansi 2018).

For comparison purposes, we compare results to conventional machine learning
techniques that use feature-based input. Out of curiosity, we additionally evaluate the
performance of two conventional machine learning models (Multi Layer Perceptron
(MLP) andRandomForest (RF)) trained using the ordered list of itemweights as input,
i.e. without knowledge-driven feature extraction. The purpose of this is to investigate
whether a conventional classifier can learn anything from feature-free input. Both
models and their results are described in the end of Sect. refsec:Accuracy.

5.1 Deep learning feature-freemodel

We select a Recurrent Neural-Network (RNN) as a deep learning method designed
to learn from sequence data. RNNs are one of the two most common architectures
described under the umbrella termDeep Learning (DL). They differ fromFeedforward
Neural Networks due to the presence of cyclic connections from each layers’ output
to the next layers input, with feedback loops returning to the previous layer (Fig. 2a)
(Wang and Raj 2017; Lipton et al. 2015). This structure prevents traditional back-
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Fig. 2 a A simple RNN and b an
example of unfolded RNN with
two time steps (Lipton et al.
2015)

propagation being applied since there is not an end point where the back-propagation
can stop. Instead, Back Propagation Through Time (BPTT) is applied: the RNN
structure is unfolded to several neural networks with certain time steps and then the
traditional back-propagation is applied to each one of them (Fig. 2b) (Wang and Raj
2017). RNNs are specifically designed to learn from sequence data where sequential
information explicit in the order of sequences is used to identify relationships between
the data and the expected outputs from the network.

In this study we use a specialised RNNs known as a Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber 1997) and Gated Recurrent Unit (GRU) (Cho
et al. 2014) that have been shown to be efficient and effective in learning long-term
dependencies from sequences of ordered data. LSTM neural networks incorporate
additional gates that can retain, retrieve and forget information (i.e. the network states)
over long periods of time (Graves 2012). These gates are simply a combination of
addition, multiplication and non-linear functions (Nielsen 2015). Three main gates are
used in the LSTMs input, output and forget gates and three main states input, hidden
and internal cell states. Basically, internal states are the ”memory” of the LSTM block,
hidden states represent values that come from the previous time step, and the input
state is the result of the linear combination between the hidden state and the input of
current time step. In the LSTM network, the classic neurons in the hidden layer are
replaced by memory blocks. Figure 3a shows that the LSTM’s input comes from the
network through the input gate and the only outputs from the LSTM to the rest of
the network emanate from the output gate multiplication. The input gate determines
how much of the new memory content is added to the memory cell, the output gate
modulates how much of the internal state would be exposed to the external network
(higher layers and the next time step), while the forget gate defines how much of the
existing memory is forgotten. GRU is a recent variation on LSTMwith only two gates,
update and reset gates which decide what information should be passed to the output.
The update gate decides how much of the past information would be passed to the
future while the reset gate determines how much to be forgotten. Also, GRU does not
use the internal state and instead uses the hidden state to transfer information through
the time steps (Chung et al. 2014). A more comprehensive description of the rapidly
expanding field of DL, which has many competing, but no prevalent architectures, is
outwith the scope of this study.
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(a) Long Short-Term Memory (b) Gated Recurrent Unit

Fig. 3 Graphical illustration of a LSTM, where i, f and o are the input, forget and output gates, respectively.
c and c∼ denote the memory cell and the new memory cell content. b Gated Recurrent Unit, where r and z
are the reset and update gates, and h and h∼ are the hidden stat and the new hidden stat, respectively (Chung
et al. 2014)

5.2 Feature-basedmachine learningmodels

We evaluate six well-known classical machine learning techniques (Shalev-Shwartz
and Ben-David 2014) from the literature: Neural Network (NN); Decision Trees (DT);
Random Forest (RF); Naive Bayes (NB); k-Nearest Neighbours (KNN) and Support
Vector Machine (SVM). Each is used in its standard form, parameterised using grid-
search and bayesian optimisation as described in Sect. 6. The success of ASPmethods
that rely on feature extraction depend critically upon the chosen features (Smith-Miles
and Lopes 2012) and on the classificationmethod used to learn the correlation between
the features and best-performing heuristic.

5.3 Definition of features

The traditional method of dealing with ASP is to hand-design features and then extract
them from the instance data.Here,weuse a set of features collated frommultiple papers
in the literature where algorithm-selection methods have been applied to bin-packing
(Cruz-Reyes et al. 2012; López-Camacho et al. 2013; Brownlee et al. 2018), discussed
in Sect. 2. The features are given below:

1. Mean item size divided by bin capacity C (Brownlee et al. 2018; López-Camacho
et al. 2013; Cruz-Reyes et al. 2012; Mao et al. 2017);

2. Standard Deviation (std) in the item sizes divided by bin capacity C (Brownlee
et al. 2018; López-Camacho et al. 2013; Cruz-Reyes et al. 2012; Mao et al. 2017);

3. Maximum item size divided by bin capacity C (Brownlee et al. 2018; Mao et al.
2017);

4. Minimum item size divided by bin capacity C (Brownlee et al. 2018; Mao et al.
2017);

5. Median item size divided by bin capacity C (Brownlee et al. 2018);
6. Maximum item size divided by minimum item size (Brownlee et al. 2018);
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7. The ratio of small items of size ω ≤ C/4 (Ross et al. 2002);
8. The ratio of medium items of size C/4 < ω ≤ C/3 (Ross et al. 2002);
9. The ratio of large items of size C/3 < ω ≤ C/2 (Ross et al. 2002);

10. The ratio of huge items of size ω > C/2 (Ross et al. 2002).

It should be clear that these features do not provide any information about the
sequential characteristics implicit in the data-stream that describes each instance (i.e.
the order of items to be packed). Rather, they describe statistical properties relating to
the distribution of the item sizes. The 10 features were extracted for each of 16,000
instances contained in DS(1-5) and used as input to the classical machine learning
models.

6 Methodology

We use both the Keras4 and the Sklearn5 libraries to implement the models used in
the DL and classical ML experiments. We use a Keras implementation of LSTM and
GRU in “sequence-to-one mode” where input is an ordered list of item weights and
output is a “one-hot” encoding using 4 bits to identify the best heuristic (1000 =
BF, 0100 = FF, 0010 = NF, 0001 = WF). The Sklearn library is used to implement
the classical ML models, with the exception of the NN model which is implemented
using Keras using a one-hot encoding output. All the classical models take 10 features
as input as defined in Sect. 5.3. Experiments are conducted on Google Colab6 with
Tensor ProcessingUnit (TPU) run-time used to execute the experiments.Apreliminary
empirical investigation was conducted to tune both the LSTM and NN architectures
and hyper-parameters. The “Adam” optimiser (Kingma and Ba 2014) was selected
due to its reported accuracy, speed and low memory requirements.

Due to the time limitation and the large number of hyper-parameters forLSTM/GRU
and NN, we undertook preliminary investigations to optimise the LSTM7 and NN
approaches. We used 300 learning iterations for LSTM and GRU experiments on DS1
and DS2 and 700 learning iterations for DS3, DS4 and DS5 since the longer instances
were found to require more learning iterations. On the other hand, both grid search and
bayesian optimisation are used to optimise the remaining traditional machine learning
techniques to choose the best set of hyper-parameters for each ML model. Tables 11
and 12 in the appendix show the range of hyper-parameters evaluated and the final
selected parameters for each of the LSTM, GRU, NN and ML models.

We conduct independent experiments using each of the five datasets to train and test
theLSTM,GRUand classicalMLmodels to predict the best heuristic for each instance.
Each dataset was split into training (80%) and test (20%) sets while maintaining the
balance in size of each target class (each test set has 800 instanceswhere 200 are solved
best by each heuristic). Each model was trained using 10-fold cross validation using

4 https://github.com/fchollet/keras.
5 https://github.com/scikit-learn/scikit-learn.
6 https://colab.research.google.com/notebooks/welcome.ipynb.
7 GRU has not been tuned: the best LSTM hyper-parameters are used with GRU since LSTM and GRU
are very similar.
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10% of the training instances to verify each fold and to evaluate the generalisation
error. Then the models are retrained on the whole corresponding training set and tested
on the test set comprising 800 unseen instances. Each trained model is evaluated on
an unseen test set in terms of the four following aspects ( these aspects also described
in details in the next Sect. 7),

1. Comparison of algorithm classification accuracy, i.e. the percentage of instances
classified correctly.

2. Comparison of selectors’ performance to SBS and VBS using Falkenauer’s perfor-
mance metric (Equation 2).

3. Comparison of selectors’ solution quality using the number of used bins b′ by the
predicted heuristic.

4. Evaluate the ability to generalise based on the above criteria with a wide range of
different randomly generated datasets.

In addition to evaluating accuracy, we also report the total number of bins in a
solution, summed over all instances in a dataset, when the heuristic returned by the
model for each instance is used to create the solution. As the number of bins per
instance in a given dataset can vary widely, to avoid issues that occur when summing
data that has different scales, we normalise the total number of bins according to
equation 3 and sum the normalised values.

Percentage O f Bins = b′ − b

b
,where b =

⎡
⎢⎢⎢

n∑
j=1

(ω j

C

)⎤
⎥⎥⎥

, and b ≤ b′ ≤ 2b (3)

As mentioned in Sect. 3, as the worst-case performance ratio for the heuristics con-
sidered is equal to the double the lower bound, then Equation 3 returns a value between
0 and 1. A Wilcoxon signed-rank test is used to evaluate significance in a pairwise
fashion for all comparisons of Falkenauer’s performance and bins. This statistical test
is corrected for multiple comparisons with the Bonferroni method (Weisstein 2004),
i.e. the p-values have been multiplied by the number of comparisons and then com-
pared against the confidence level 5%. A statistical testing is conducted to evaluate
three hypotheses:

– H0(1): the LSTM/GRU and best ML method produce equal results with respect
to a) Falkenauer’s fitness metric b) total bins utilised.

– H0(2): the LSTM/GRU and SBS produce equal results with respect to a) Falke-
nauer’s fitness metric b) total bins utilised.

– H0(3): the best ML method and SBS produce equal results with respect to a)
Falkenauer’s fitness metric b) total bins utilised.

7 Results

This section discusses in details the four aspects we use to evaluate each trained model
on an unseen test set.
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Table 2 Classification accuracy of the trained model in each experiment from the test set, values in italic
indicate the best ML results and values in bold the best overall result per dataset

DataSet DL ML
LSTM GRU NN DT RF SVM NB KNN

DS1 80.88∗�‡ 83.00∗�‡ 66.88• 64.38 66.50 65.75 61.75 64.38

DS2 90.63∗�‡ 91.88∗�‡ 58 55.50 58.62• 58.50 55.88 54.37

DS3 80.88∗�‡ 82.88∗�‡ 66.63 63.24 65.63 66.88• 51.37 64.50

DS4 95.50∗�‡ 96.38∗�‡ 72.88• 66.88 72.88 72.50 64.75 66.00

DS5 85.00∗�‡ 86.13∗�‡ 59.50 60.25 63.74• 55 41.13 56.75

Significance at the 5% confidence level (using paired Wilcoxon signed-rank test and corrected for multiple
comparisons with the Bonferroni method) is indicated as follows: ∗ indicates that the best DL model
performed significantly worse than the VBS; � indicates that the DL model performed significantly better
than the SBS; ‡ indicates that the DL model performed significantly better than the best ML model; •
indicates that the best ML model performed significantly better than the SBS in terms of Falkenauer’s
Performance

Table 3 The comparison between the LSTM, the GRU, the best ML technique and the SBS over the
different test sets in terms of Falkenauer’s performance using the paired Wilcoxon signed-rank test with
5% confidence level corrected for multiple comparisons with the Bonferroni method

Falkenauer’s performance
LSTM-SBS LSTM-ML GRU-SBS GRU-ML ML-SBS LSTM-GRU

DS1 � + � + � + � + � + � −
DS2 � + � + � + � + � + � −
DS3 � + � + � + � + � + � −
DS4 � + � + � + � + � + � −
DS5 � + � + � + � + � + � −
The � means the left-hand approach of the given pair has a better median; the � means the first approach’s
median is worst; + indicates significance (	5%) and − indicates no significance (
5%)

7.1 Accuracy of algorithm-selection

Asmentioned in Sect. 6, 10-fold cross validation is used to train themodels taking 10%
of the training instances to verify each fold and to evaluate the generalisation error.
Table 13 in the appendix shows results achieved on the validation sets used during
training for the DL models (LSTM and GRU) and all 6 ML models. Table 2 shows
the results achieved on each test set with the model obtained from training on the
full training set. We report the classification accuracy as an indicator of the LSTM’s,
GRU’s and ML’s predictive abilities. Using Wilcoxon signed-rank test, significance
is calculated in a pairwise fashion and corrected for multiple comparisons with the
Bonferroni method between the DL techniques and VBS, SBS and best of the ML
techniques for each dataset, and between the best ML technique and the SBS. p-values
are shown in Table 14 in the appendix. Table 3 additionally shows the comparison
between the LSTM, GRU, the best ML technique and the SBS over the different test
sets.
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Results obtained from deep learning LSTM and GRU approaches are significantly
better than the results using classical ML techniques (i.e. H0(1) is rejected). We
observe that the DL results from the validation and test sets on DS2 and DS4 are better
than on the other datasets suggesting that the sequential correlations are easier to find
in the datasets comprised of item weights generated from a wider range of values
following a uniform distribution. It might be that the instances that are evolved with
items in the range [40-60]may have fewer distinct patterns (i.e. sequential information)
than instances generatedwith items in the range [20-100], regardless of the length of the
instances. It is well known that problemswith an averageweight of C

3 aremore difficult
to solve (Falkenauer and Delchambre 1992) and it is interesting that problems with
those characteristics are more difficult to classify using LSTM or GRU, i.e. instances
from DS(1,3) with item weights generated from a narrow range of values [40,60]
which is an average of one third of bin capacity 150. Although all the ML results
show relatively poor performance compared to the DLmethods, it does comparatively
better, in the most cases, on the two longer datasets DS3 and DS4 than the shorter ones
DS1, DS2 on the validation set, while this is true only for the comparison between
DS2 andDS4 on the test set. It might be that the longer instances result in more distinct
values for the extracted features, hence increasing the ability of the ML techniques to
classify correctly.

Although training the LSTMandGRUon the longer instances requires significantly
more learning iterations before the models converge, it is interesting to note that for
both distributions the results obtained by the LSTM and GRU on the longer instances
(e.g. DS4) exceed those reported on the datasets with smaller numbers of items (e.g.
DS2) on the validation set. We conjecture that the longer instances provide the DL
models with more sequential information, hence increasing the ability to determine
patterns in the item sequences. The ML results partially concur with the LSTM and
GRU results in this respect, i.e. results on DS3 are more accurate than DS1 (apart
from NB) and those for DS4 are more accurate than for DS2 on the validation set.
For both DL and ML models, this is true only for the comparison between DS2 and
DS4 on the test set. The results of the LSTM and GRU experiments conducted on
the combined DS5 set show intermediate results with accuracy between that achieved
on the experiments on instances with uniform distribution and those with Gaussian
distribution. These models are able to generalise over instances sampled from all
of the problem lengths and the different weight distributions investigated without any
apparent loss of precision. In contrast, theML experiments conducted on the combined
DS5 sets show worse results than most of the other experiments. This demonstrates
that the feature-based approach is weak in its ability to generalise over instances
with different characteristics and highlights its reliance on the quality of the designed
features, in contrast to the LSTM and GRU approaches.

Table 4 presents confusion matrices of the LSTM, GRU and best ML techniques
extracted from the experiments conducted on the test set DS5, the rest of the confusion
matrices are shown in Table 15 in the appendix. In most cases, the DL models were
most frequently confusedwhen attempting to classify the sequences identified as being
solved best by FF and BF. It is interesting to note that (Alissa et al. 2019) previously
showed that these two algorithms are extremely close in terms of their two largest
principal components in a space defined by a 4-d vector containing the performance
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Table 4 The confusion matrix of the LSTM, GRU and Best ML models in experiments on DS5 from the
test set

Heuristic LSTM GRU RF
BF FF NF WF BF FF NF WF BF FF NF WF

BF 164 32 0 4 163 36 0 1 137 47 0 16

FF 45 137 1 17 38 147 1 14 43 100 11 46

NF 0 0 195 5 0 0 195 5 9 26 144 21

WF 4 6 6 184 2 10 4 184 11 40 20 129

metric of each of the 4 heuristics for each instance. Similarly, instances labelled as
NF appear to be the easiest to identify and correspondingly are the most isolated in
the performance-space. As noted previously in (Alissa et al. 2019), it appears that the
patterns shown by conducting a PCA of the performance space are correlated with
the ability of LSTM to identify the best performing algorithm from the raw instance
sequences. On the other hand, the ML models are frequently confused between FF
and BF (similarly to LSTM and GRU), but the ML models are also confused between
FF and WF. In terms of the accuracy to classify NF, ML results partly concur with the
DL results, in that NF instances are easier to classify only in DS1 and 3.

Purely out of our interest, we conducted a 10-fold cross validation on DS4 using
only the item sizes information defining the original instances (i.e. without any fea-
tures) directly supplying all item sizes at once to two of the classical ML techniques:
the Multi Layer Perceptron (MLP) and the Random Forest (RF) classifiers. The ML
techniques were used directly from Weka (Eibe et al. 2016) without altering any of
the default parameters. The RF achieved 67.55% accuracy. MLP was equally suc-
cessful, achieving 67.08% accuracy. Although better than expected, we found that
a DL approach that has been designed to work with sequential data provides more
informative results.

7.2 Comparison to SBS andVBS

In terms of Falkenauer’s fitness, for all experiments the DL selectors significantly
improve on both the SBS (BF for all datasets) and the classical ML techniques (i.e.
H0(1, 2) are rejected), and are very close to the VBS. Also, the best ML techniques
improve over the SBS significantly (i.e. H0(3) is rejected), P-values are shown in
Table 14 in the appendix.

Figure 4 shows cumulative distribution plots over the test sets of 800 instances
from each DS(1-5) in terms of Falkenauer’s fitness: the plots show the percentage
of instances that are solved with an distance d p of the oracle-like VBS (the perfect
mapping) given the solver predicted by a model m. The distance d is calculated as
d p= (VBSFalkenauer ′s f i tness − SelectorFalkenauer ′s f i tness). Hence, d p ≥ 0 and d p = 0
represents the optimal.

Results show that the RNN-LSTM/GRU solves between 80.88 and 97.63% of the
instances within 5% of the VBS performance, compared to 50–62.2% using the SBS.
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Fig. 4 Cumulative distribution plots over the test sets of 800 instances of each DS(1–5) to evaluate LSTM
and GRU predictors VS classical ML techniques, SBS and VBS on performance space using Falkenauer’s
fitness metric
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This represents a 30.88–35.43% improvement on DS(1-5). The best ML technique
solves 67.13–78.63% instances with 5% performance difference in all the datasets
which is 16.43–17.13% improvement over the SBS. Using either LSTM or GRU,
between 99.63 and 100% of the instances can be solved within 30% of VBS for DS(1-
5): in contrast, using the best ML technique, this is only true on DS(1,3). From the
figure, it is clear that the best ML technique can only solve 100% of instances if we
consider a performance difference of 40% in DS(2,4,5). It is interesting to note that
although the SBS solves a lower percentage of instances than both the DL and the
best ML technique if we consider a difference of 5% of the VBS performance, it
manages to solve all the instances at 20% of the VBS in all the datasets. Although the
ML techniques improve over the SBS in the most cases, they are not as good as the
LSTM/GRU and are not as close to the VBS as the DL methods.

It is noticeable from the evolved instances inAlissa et al. (2019) that the performance
of the heuristics is skewed towards FF and BF, i.e. these heuristics are either the best
or second best choice for all instances. This means that even if the selector mis-
classified most of the NF and WF instances by choosing FF or BF, it will still achieve
high performance. Therefore, as well as comparing the two approaches based on the
performancemetric and classification accuracy,we additionally compare them in terms
of the number of bins used to pack a set of items to get a clearer understanding of their
relative performance.

7.3 Evaluation of solution quality

The overall objective of the BPP is to minimise the number of bins used to pack a
set of items. Ultimately, the number of containers defines the cost of any real-world
solution. Table 5 shows the number of bins required to pack all 800 test instances for
each DS(1-5) and contrasts this against the lowest possible number of bins used by the
VBS and the number of bins needed using the algorithms predicted by LSTM, GRU
and traditional ML selectors. The LSTM and GRU use between 1.32 and 2.39% fewer
bins than the SBS and between 0.21 and 1.52% more than the VBS. On DS4, GRU
uses over 1150 bins fewer than the SBS and only 176 (0.21%) more than the VBS
which uses 83,823 bins. While the ML techniques use between 1.85% more bins and
up to 0.92% fewer bins than the SBS and 1.87–4.74% more than the VBS.

After normalising the number of bins b′ used by the predicted algorithm (described
in Sect. 6), a Wilcoxon signed-rank test is used to evaluate significance in a pairwise
fashion for all comparisons of bins and corrected for multiple comparisons with the
Bonferroni method. Table 14 in the appendices shows the p-values of b′ in a pairwise
fashion to the bins used by the SBS and the VBS. Based on these p-values, Table 6
shows the comparison between the LSTM, GRU the best ML technique and the SBS
over the different test sets in terms of bins. For all experiments the DL selectors
significantly improve on both the SBS (BF for all datasets) and the classical ML
techniques (i.e. H0(1, 2) are rejected), and are very close to the VBS. While the best
ML techniques improve over the SBS significantly (i.e. H0(3) is rejected) only on
DS(1,3).
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Figure 5 shows the cumulative distribution plots over the test sets of 800
instances from each DS(1-5) in terms of number of bins, where the difference
db=(Selectorusedbins −VBSusedbins)≥ 0 and db=0 is the best. In terms of the percent-
age of instances that are solved by each method, LSTM/GRU solves 82.13–98.75%
within 5%VBSwhile the bestML technique solves 69.5–84.63% and 53–89%by SBS
for DS(1-5). For higher values of differences from the VBS, the results depend on the
dataset used. On DS(1,3), 99.13–100% of the instances are solved by LSTM/GRU
compared to 93.25–93.38% solved by ML within 10% of VBS and both techniques
solve all the instances within 20% VBS. On DS(2,4,5), 99.88–100% instances solved
by LSTM/GRU while 98.13–100% by best ML technique within 30% VBS. The SBS
manages to solve 99.6% to all instances within 10% VBS on DS(1,3) and within 20%
VBS on DS(2,4,5).

In summary, the results presented indicate that a deep learning method is clearly
superior to using a classical prediction method trained with extracted features. Fur-
thermore, as shown in the last column in Tables 3 and 6, we infer that the choice of
deep method itself has minimal significant effect, i.e. it is the switch to a learning
method that captures sequential information that provides the gain in performance.

8 A systematic analysis across multiple datasets

In the previous section we compared the novel feature-free and the traditional feature-
based approaches of ASP using datasets in which in the instances were known to be
discriminatory with respect to the four heuristics used as solvers. We suggest that
the reason that each heuristic favours one subset of instances over another is that each
heuristic is able to exploit some implicit structure within the instances in a subset. Thus
a model that is able to detect this structure within the instance data can successfully act
as an algorithm-selector. In contrast, we suggest that algorithm-selection techniques
are likely to perform poorly on instances that do not exhibit exploitable structure.

To illustrate this concept,wegenerate four newdatasets: in each, 1000new instances
are generated by selecting item-sizes at randomly from the distributions defined in
Table 1. Table 7 shows how many of the randomly generated instances are best solved
by each of the 4 heuristics. It is immediately clear that (a) The BF heuristic wins the
majority of instances in all datasets (73% of the instances are best solved by BF);
(b) the FF heuristic is the second best heuristic wining approximately the rest of the
instances. (c) The WF heuristic only wins few instances in two datasets RDS(1,3); (d)
the NF heuristic fails to win a single instance in any dataset. The table also highlights
that on the same datasets, the BF and FF heuristic tie as winners on large numbers of
instances. Furthermore, even in cases where one heuristic outperforms another, there
is very little difference in the performance metric: Fig. 6 plots the Falkenauer fitness
obtained by the two dominant heuristics (BF, FF) on each instances as a scatter-plot.
It is immediately clear that most random instances lie on or very close to the diagonal.
We suggest therefore that these randomly generated instances contain non exploitable
structure and hence there is little benefit to be gained from algorithm selection. The
same Fig. 6b clearly shows however that the original evolved instances clearly benefit
from a selection method.
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Fig. 5 Cumulative distribution plots over the test sets of 800 instances of each DS(1–5) to evaluate LSTM
and GRU predictors VS classical ML techniques, SBS and VBS on performance space using number of
bins metric
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Table 6 The comparison between the LSTM, theGRU, the bestML technique and the SBSover the different
test sets in terms of number of bins using the paired Wilcoxon signed-rank test with 5% confidence level
corrected for multiple comparisons with the Bonferroni method

Bins
LSTM-SBS LSTM-ML GRU-SBS GRU-ML ML-SBS LSTM-GRU

DS1 � + � + � + � + � + ⇐⇒ −
DS2 � + � + � + � + � − ⇐⇒ −
DS3 � + � + � + � + � + ⇐⇒ −
DS4 � + � + � + � + � − � −
DS5 � + � + � + � + � − � −
For each given pair, the �means the first approach’s median is better,+means there is significance, �means
the first approach’s median is worst and − means there is no significance and ⇐⇒ means both approaches
have same median

Table 7 Number of instances
are best solved by each
heuristics for RDS(1–4)

FF BF NF WF BF=FF

RDS1 216 587 0 45 152

RDS2 265 735 0 0 0

RDS3 327 643 0 10 20

RDS4 178 822 0 0 0

However, the combinatorial optimisation literature suggests that for many domains,
real-world instances of problems commonly exhibit structure that is not captured by
uniform generation of random problems. Examples of this are described in the TSP
domain (Hains et al. 2011, 2012) and SAT domain (Kroc et al. 2009; Qasem and
Prügel-Bennett 2009) where the authors show that it is important to tailor optimisation
methods towards the structured instances in order to obtain good performance rather
than relying on ‘generic’ methods. Thus, if algorithm-selector methods are likely to
prove beneficial on real-world datasets, this raises a question ‘how much structure is
required?’. In order to shed further light on the relationship between instance structure
and algorithm-selection and on the characteristics of datasets on which our proposed
technique is likely to work, we conduct a systematic analysis over multiple datasets
containing varying levels of structure, as described in the next section.

8.1 Generating increasingly structured instances

Based on the analysis above, we consider only BF and FF as potential heuristic solvers.
We generate using datasets with that are increasingly discriminatory with respect
to these heuristics, using the magnitude of the performance gap between the two
heuristics applied to the same instance as a proxy for quantifying implicit structure
within the instance that is exploited by one heuristic or the other. Specifically, we
generate instances at random from a given distribution, measure the Falkenauer fitness
BFi , FFi on each, then discard instances where |BFi − FFi | < τ , for 0 ≤ τ ≤ 0.06.
Thus, higher values of τ should lead to more structured instances. 1750 instances are
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0.22

Fig. 6 Scatter plot of Falkenauer performance for (a) 1000 randomly generated instances and (b) 800
evolved instances with 0.1 ≤ Threshold ≤ 0.22 from the distribution that define datasets DS2

generated in this manner from the distributions in Table 1 corresponding to DS1 and
DS2. In each data set, we accumulate 1000 instances best solved by BF and 750 best
solved by FF, to reflect the performance distribution as described in the next section.

8.2 Training and evaluation

From each dataset of 1750 instances, we create a balanced dataset for training but
evaluate performance on a test-set whose composition is reflective of the distribution
of instances. The training set thus contains 500 instances best solved by each BF
and FF, while the test set includes 750 instances, 500 instances best solved by BF
and 250 for FF to reflect the imbalance performance distribution. Similarly to the
previous experiments, 10-fold cross validation is used to train the GRU, NN and RF
models taking 10% of the training instances to verify each fold and to evaluate the
generalisation error. Table 16 in the appendix shows results achieved on the validation
sets used during training for the GRU, NN and RF models on RDSτ (1,2). Table 8
shows the results achieved on each threshold test set with the models obtained from
training on the full training set. We report the classification accuracy as an indicator of
the GRU’s, NN’s and RF’s predictive abilities. For RDSτ1, where item-sizes are drawn
from a Gaussian distribution, we do not observe any obvious trend as the ‘structure’
in the instances increases for both the feature-free and features-based approaches. As
mentioned in Sect. 7.1, the instances generated using this range of values [40, 60] and
Gaussian distribution are more difficult to classify even with the evolved instances (i.e.
they have maximum ‘structure’ threshold). In contrast, in RDSτ2 where the item-sizes
are drawn from a uniform-random distribution, there is a general trend of feature-
free approach performance increasing as τ increases, with high-level of classification
accuracy (>75%) exhibited when τ ≥ 0.05. While this trend is much less obvious
with the feature-based approaches with classification accuracy at its best is 67.87%.

123



Automated algorithm selection: from feature-based to…

Table 8 Classification accuracy of the GRU, NN and ML models in each experiment from the test set for
RDSτ (1,2) per threshold

0 0.01 0.02 0.03 0.04 0.05 0.06

RDSτ 1

GRU 51.60 51.07 53.73 54.13 50.27 52.67 50.93

NN 53.86 52.93 51.73 57.59 54.40 47.59 44.66

RF 49.73 51.73 52.53 55.47 53.87 54.00 50.00

RDSτ 2

GRU 54.27 53.2 52.13 55.47 63.33 78.13 75.46

NN 50.53 51.33 61.19 52.66 66.26 58.53 65.06

RF 52.93 50.80 56.27 54.13 64.80 67.87 62.80

Figures in bold indicate that the model performed significantly better than the SBS in terms of Falkenauer’s
performance

Fig. 7. shows scatter Falkenauer’s fitness plots with range of different thresholds for
test set of RDSτ2 (500 BF and 250 FF)

Table 9 shows the number of bins required to pack all 750 test instances for each
RDSτ (1,2) per threshold and contrasts this against the number of bins used by the
SBS and the number of bins needed using the algorithms predicted by each of GRU,
NN and RF selectors. In general, the feature-free approach wastes less and saves more
bins than the feature-based approaches. On RDSτ1, the GRU uses between 0.18 and
0.72% more bins than the SBS, while NN uses between 0.14 and 1.00%; RF uses
0.20% and 0.76% more bins than the SBS. Although both approaches fail to save
bins with thresholds less than 0.04 on RDSτ2, the GRU uses 0.33% and 0.43% fewer
bins than the SBS for thresholds 0.06 and 0.05 respectively, NN fails to save any
bin and RF saves only 0.04% using 0.05 threshold. On RDSτ2 with threshold 0.05,
GRU uses 170 bins fewer than the SBS while RF saves only 16 bins. Using Wilcoxon
signed-rank test, significance is calculated in a pairwise fashion and corrected for
multiple comparisons with the Bonferroni method between the GRU, ML techniques
and SBS for each threshold of dataset RDSτ (1,2). p-values are shown in Table 17
in the appendix. Table 10 additionally shows the comparison between the GRU, ML
techniques and the SBS over the different thresholds test sets.

8.3 Analysis and discussion

As widely recognised in the literature, developing an understanding of the region(s)
of an instance-space in which an algorithm performs well (Smith-Miles et al. 2010)
is essential for performing algorithm-selection. This enables training datasets to be
collected that include representative instances from the regions of strength of each
algorithm considered. The task for the algorithm-selection designer is then to find a
mapping between instances and algorithms: either by extracting informative features
from the dataset (’feature-based’) or using the raw-instance data as input (’feature-
free’).
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Table 9 Total bins required to pack instances in the test set for the GRU, NN and RF predictors and the
SBS (BF) for RDSτ (1,2) per threshold

0 0.01 0.02 0.03 0.04 0.05 0.06

RDSτ 1

BF 33305 33257 33229 33090 32700 33037 33001

GRU 33366 33323 33326 33184 32833 33239 33237

NN 33352 33316 33342 33157 32794 33311 33331

RF 33373 33339 33334 33173 32795 33218 33251

RDSτ 2

BF 38783 38814 38718 38642 38228 39370 38998

GRU 38879 38900 38837 38733 38268 39200 38868

NN 38905 38907 38761 38751 38245 39494 39024

RF 38886 38917 38804 38739 38257 39354 39058

Figures in bold indicate the GRU results that are better than the SBS results in terms of the number of bins
used

Table 10 The comparison between the feature-free approach usingGRU, feature-based approach usingML
techniques and the SBS over datasets RDSτ (1,2) per threshold in terms of performance and number of bins
using the paired Wilcoxon signed-rank test with 5% confidence level corrected for multiple comparisons
with the Bonferroni method

Falkenauer’s Performance Bins
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.00 0.01 0.02 0.03 0.04 0.05 0.06

RDSτ 1

GRU-SBS � + � + � + � + � + � + � + ⇐⇒ + ⇐⇒ + ⇐⇒ + ⇐⇒ + � + ⇐⇒ + ⇐⇒ +
NN-SBS � + � + � + � − � + � + � + ⇐⇒ + ⇐⇒ + ⇐⇒ + ⇐⇒ + ⇐⇒ + ⇐⇒ + � +
RF-SBS � + � + � + � + � + � + � + ⇐⇒ + ⇐⇒ + ⇐⇒ + ⇐⇒ + ⇐⇒ + ⇐⇒ + ⇐⇒ +
GRU-NN � − � − � − � − � − � − � − ⇐⇒ − ⇐⇒ − ⇐⇒ − ⇐⇒ − � − ⇐⇒ − � −
GRU-RF � − � − � − � − � − � − � − ⇐⇒ − ⇐⇒ − ⇐⇒ − ⇐⇒ − � − ⇐⇒ − ⇐⇒ −
NN-RF � − � − � − � − � − � + � − ⇐⇒ − ⇐⇒ − ⇐⇒ − ⇐⇒ − ⇐⇒ − ⇐⇒ − � −

RDSτ 2

GRU-SBS � + � + � + � + � − � + � + ⇐⇒ + ⇐⇒ + � + � + ⇐⇒ − � + ⇐⇒ +
NN-SBS � + � + � + � + ⇐⇒ − � − � − ⇐⇒ + ⇐⇒ + � + � + ⇐⇒ − ⇐⇒ + ⇐⇒ −
RF-SBS � + � + � + � + � − � + � − ⇐⇒ + ⇐⇒ + � + � + ⇐⇒ − ⇐⇒ − ⇐⇒ −
GRU-NN � − � − � + � − � − � + � + ⇐⇒ − ⇐⇒ − ⇐⇒ + ⇐⇒ − ⇐⇒ − � + ⇐⇒ +
GRU-RF � − � − � − � − � − � + � + ⇐⇒ − ⇐⇒ − ⇐⇒ − ⇐⇒ − ⇐⇒ − � + ⇐⇒ +
NN-RF � − � − � + � − � − � + � − ⇐⇒ − ⇐⇒ − ⇐⇒ + ⇐⇒ − ⇐⇒ − ⇐⇒ + ⇐⇒ −

For a given pair of tests, the � means the first approach’s median is better, + means there is significance,
� means the first approach’s median is worst, − means there is no significance and ⇐⇒ means both
approaches have same median
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Fig. 7 Scatter Falkenauer’s fitness plots with range of different thresholds for test set of RDSτ 2 (500 BF
and 250 FF)

In Fig. 6 we demonstrated that two of the best performing heuristics for bin-packing
(FF and BF) perform very similarly on a large set randomly generated instances, i.e.
the instances are not discriminatory with respect to the heuristics we consider: this is
line with results that have previously been reported in multiple domains (Cho et al.
2008; Smith-Miles and van Hemert 2011) concerning randomly generated bench-
marks. This motivated our decision to evolve instances that specifically maximised
the performance-gap between heuristics (Fig. 6b). We hypothesised that the evolved
instances contain some implicit structure that is exploited by a particular heuristic
that enables it to perform well. Furthermore, we suggested that increasing levels of
discrimination between algorithms on an instance corresponds to increasing levels of
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‘structure’ within the instance-data. We therefore created fourteen further datasets
in which control the level of structure in randomly generated instance using the
performance-gap between two heuristics as a proxy for structure. We then evaluated
the performance of both feature-free and feature-based approaches on these datasets.

A systematic analysis showed that in the case of instances generated at uniform-
random, increasing the structure dramatically improved the performance of the GRU
model in terms of classification accuracy while this is less obvious using the feature-
based NN and RF models. However, there is no discernible trend from instances
generated from a Gaussian distribution. One explanation for this is that the combined
effect of drawing from aGaussian distribution and restricting the item-sizes to a narrow
range (40-60 in this case) results in instances which are very similar, i.e. in which it is
difficult to find unique structure. The number of ties observed between BF and FF on
this dataset (see Table 7 lends someweight to this). Alternatively, a different method of
creating structure could be considered, for example, in relation to one or more features
of the datasets described in Sect. 5.3.

The results reported in Sect. 7 on DS1-4 and in Table 8 suggest that the proposed
GRUmodel that uses only the sequence of item-sizes as input performswell on datasets
in which some structure exists within the data (τ ≥ 0.05). Given that is well-known
that real-world instances are structured, this adds weight to the case for developing
good algorithm selectors for structured instances, and for using structured datasets
as benchmarks to both compare selection methods and develop new ones. It also
suggests that there is likely to be benefit gained from focusing attention on developing
new instances that reflect all areas of the instance-space inwhich an algorithmperforms
well, and specifically in filling the gaps in an instance-space where we do not currently
have data in order to improve selection methods. For feature-based approaches, once
such data is generated, an additional task of developing informative features from this
data still remains.

Conclusion

We have described a novel approach to algorithm-selection for sequential optimisation
problems that exhibit an ordering with respect to the elements of the problem and how
they should be dealt with. Unlike most ASP techniques, the approach does not require
the design and selection of features to describe an instance. Two deep-neural networks
(RNN-LSTSM and RNN-GRU) were trained using the sequence of items representing
an instance directly as input to predict the best algorithm to solve the instance. We
have compared this feature-free approach with traditional feature-based approaches
using ten hand-designed features and six classical ML techniques. Both the novel and
the traditional approaches were thoroughly evaluated on 5 different large datasets,
exhibiting different numbers of items and different distributions of item-sizes. All
classifiers were trained using a large database of instances in which each instance has
a distinct best-solver, previously described in Alissa et al. (2019).

The accuracy of the LSTM and the GRU models ranges from 80 to 96% while
the ML models ranges from 41 to 72%, depending on the dataset used. In terms of
the percentage of the instances that are solved using DL predictors within a small
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difference of the VBS Falkenauer’s performance (≤5%), we show between 30 and
35% improvement over the Single Best Solver (SBS), depending on the dataset used.
On the other hand, the best ML predictor ranges from 16 to 17% improvement over
the SBS. As far we aware, this is the first time that such an approach has been used,
and represents a significant step forward in algorithm-selection for problems with
sequence information, where the difficulties associated with defining suitable features
and selecting from large sets of potential features are well understood.

We suggested that the method is able to perform well on datasets that exhibit
structure—a characteristic that is common in many real-world problems. To under-
stand the extent to which structure plays a role, we developed fourteen new datasets in
which the structure in the dataset was gradually increased, despite generating instances
at random.We showed that for instanceswith no structure (according to our proxymea-
sure), algorithm-selection is likely to delivermuch benefit, given that several heuristics
give identical or very similar performance. On the other hand, our analysis revealed
that the DL selector is able to exceed both ML selectors and SBS on random instances
generated from a uniform-random distribution using a threshold ≥5% difference of
Falkenauer performance between BF and FF heuristics.

It is worth mentioning that our approach can also be applied to domains that do
not naturally have sequence information through artificially transforming them into
sequences. For example, in the TSP domain, an instance is defined by a set of coor-
dinates while a solution is a sequence (ordered series of visits). In order to use our
approach, a TSPmap could be scanned in a fixed pattern providing a sequence of coor-
dinates representing the order of the cities appear on a map, implicitly encapsulating
spatial information. Sequences produced in this manner could then be used to train an
LSTM or GRU.

Future work will focus on extending the approach to include larger and more com-
plex sets of algorithms with the portfolio to be chosen from such as meta-heuristics,
and to applying themethod to other domains that have a sequential nature such as flow-
shop/job-shop scheduling. We also intend to investigate if the method can be adapted
to online problems where continuous streams of items are presented. By using a mov-
ing window, only examining the next n items to be packed, our method may be able to
adapt to a continuously changing environment. Another line of future work will be to
consider hand-crafted features that account for the patterns observed in the sequential
data, i.e borrowing ideas from time-series analysis. Ultimately, the goal is to extract
knowledge from the trained models in order to gain new insight into the correlation
between orderings and predicted results.
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Appendix

See Tables 11, 12, 13, 14, 15, 16 and 17.

Table 11 Range of values that are used in the LSTM and NN hyper-parameters tuning; the table also shows
the final selected values

LSTM/GRU # Epoch Batch size # Layer #Units

Range [100–700] [8–128] [1–4]LSTM/GRU –

Best DS(1,2) 300 32 2LSTM/GRU (tanh) + FC (softmax) 32,32,4

Best DS(3–5) 700 32 2LSTM/GRU (tanh)+ FC (softmax) 32,32,4

NN Hyper-parameters

Range [50–3500] – [3–4] [6–64]

Best 3000 32 2(relu) + 1(softmax) 10,15,4

All the models LSTM, GRU and NN use “adam” Optimizer and “CategoricalCrossentropy” as loss function

Table 12 Range of values over which grid-search was conducted to optimised the hyper-parameters for
the ML experiments; the table also shows the final selected values

DT, RF max _depth max_features min_leaf min_split n_estimators

Range [5–100] [1–10] [2–100] [2–100] [32–200]

Best DT 30 5 10 100 –

Best RF 50 3 2 50 64

SVM kernel gamma C degree decision_function

Sets {’linear’, ’rbf’, ’poly’} {’auto’,’scale’} [0.1-1000] [0-6] {’ovo’,’ovr’}

Best poly scale 1000 6 ovo

KNN n_neighbors weights algorithm leaf_size P

Sets [1–30] {’uniform’, ’distance’} auto [30,50,100] [1–5]

Best 26 distance auto 30 1

NB var_smoothing

Set [1e−09, 1e−01]

Best 1e−09
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Table 15 The confusion matrix of the LSTM, GRU and best ML models in experiments on DS(1–4) from
the test set

Heuristic LSTM GRU NN

BF FF NF WF BF FF NF WF BF FF NF WF

DS1

BF 132 67 0 1 141 57 0 2 134 33 0 33

FF 64 131 0 5 55 135 0 10 72 71 0 57

NF 0 0 200 0 0 0 199 1 0 2 193 5

WF 4 11 1 184 2 6 3 189 24 37 2 137

Heuristic LSTM GRU RF

BF FF NF WF BF FF NF WF BF FF NF WF

DS2

BF 192 7 0 1 193 6 1 0 162 23 9 6

FF 10 179 0 11 12 175 0 13 24 110 24 42

NF 0 2 184 14 0 4 185 11 23 39 68 70

WF 2 17 11 170 1 12 5 182 2 40 29 129

Table 15 continued

Heuristic LSTM GRU RF

BF FF NF WF BF FF NF WF BF FF NF WF

Heuristic LSTM GRU SVM

BF FF NF WF BF FF NF WF BF FF NF WF

DS3

BF 123 77 0 0 132 68 0 0 116 55 0 29

FF 72 127 0 1 65 134 0 1 69 75 0 56

NF 0 0 199 1 0 1 199 0 0 0 198 2

WF 1 1 0 198 0 2 0 198 19 35 0 146

Heuristic LSTM GRU NN

BF FF NF WF BF FF NF WF BF FF NF WF

DS4

BF 192 7 0 1 195 5 0 0 149 40 0 11

FF 4 190 1 5 5 189 1 5 33 122 6 39

NF 0 0 197 3 0 0 199 1 0 9 176 15

WF 2 11 2 185 0 11 1 188 8 35 21 136
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Table 17 P-values between GRU, ML techniques and SBS for the test set (750 instances) from RDSτ (1,2)
in terms of Falkenauer’s performance and number of bins achieved by GRU, ML techniques and SBS using
paired Wilcoxon signed-rank test corrected for multiple comparisons with the Bonferroni method

0 0.01 0.02 0.03 0.04 0.05 0.06

RDSτ 1 Falkenauer’s performance

GRU-SBS 0.0044 0.0018 0.0027 0.0007 10−07 10−05 10−08

NN-SBS 0.0136 0.0005 0.0002 0.0698 0.0001 10−08 10−09

RF-SBS 10−05 0.0004 0.0036 0.0163 0.0006 0.0005 10−07

GRU-NN 1.0000 1.0000 1.0000 0.8086 0.6112 0.0854 0.7340

GRU-RF 1.0000 1.0000 1.0000 1.0000 0.4460 1.0000 1.0000

NN-RF 0.3129 1.0000 0.9933 1.0000 1.0000 0.0019 0.0584

RDSτ 1 bins

GRU-SBS 0.0022 0.0004 10−06 10−05 10−10 10−06 10−08

NN-SBS 0.0077 0.0002 10−08 0.0007 10−06 10−10 10−12

RF-SBS 10−05 10−06 10−08 10−05 10−05 10−05 10−10

GRU-NN 1.0000 1.0000 1.0000 1.0000 0.3457 0.3458 0.0963

GRU-RF 1.0000 1.0000 1.0000 1.0000 0.4333 1.0000 1.0000

NN-RF 0.6745 0.7310 1.0000 1.0000 1.0000 0.0588 0.0501

RDSτ 2 Falkenauer’s performance

GRU-SBS 10−09 10−08 10−12 10−08 0.0921 10−07 0.0001

NN-SBS 10−10 10−09 0.0006 10−08 0.3837 1 1

RF-SBS 10−10 10−11 10−08 10−08 0.4030 0.0212 1

GRU-NN 1 1 10−05 1 1 10−08 0.0002

GRU-RF 1 0.7018 0.8429 1 1 0.0017 10−05

NN-RF 1 1 10−05 1 1 0.0031 1

RDSτ 2 bins

GRU-SBS 10−07 10−06 10−08 10−05 0.2596 10−06 0.0024

NN-SBS 10−09 10−06 0.0094 10−06 1 0.0304 1

RF-SBS 10−08 10−08 10−05 10−05 0.8495 1 0.7293

GRU-NN 0.8254 1 0.0006 1 1 10−18 10−05

GRU-RF 1 1 0.6180 1 1 10−06 10−08

NN-RF 0.7694 1 0.0164 1 1 10−08 0.5059
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