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Abstract: Combinations of spectroscopic analysis and microscopic techniques are used across10

many disciplines of scientific research, including material science, chemistry and biology. X-ray11

spectromicroscopy, in particular, is a powerful tool used for studying chemical state distributions12

at the micro and nano scales. With the beam fixed, a specimen is typically rastered through the13

probe with continuous motion and a range of multimodal data is collected at fixed time intervals.14

The application of this technique is limited in some areas due to: long scanning times to collect15

the data, either because of the area/volume under study or the compositional properties of the16

specimen; and material degradation due to the dose absorbed during the measurement. In this17

work, we propose a novel approach for reducing the dose and scanning times by undersampling18

the raster data. This is achieved by skipping rows within scans and reconstructing the x-ray19

spectromicroscopic measurements using low-rank matrix completion. The new method is robust20

and allows for 5 to 6-fold reduction in sampling. Experimental results obtained on real data are21

illustrated.22

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement23

1. Introduction24

X-ray spectromicroscopy combines x-ray spectroscopy and x-ray microscopy to map changes25

in chemical state across a specimen on the micro and nano scales. These techniques have been26

broadly applied to problems across life and physical sciences, such as chemical engineering [1],27

material science [2], and biology [3]. A spectromicroscopy experiment involves measuring28

an 𝑛1 × 𝑛2 grid at 𝑛𝐸 energy levels across the absorption edge of an element of interest. The29

resulting 𝑛1 × 𝑛2 spectra represents a big data challenge; to extract meaningful information they30

are typically analyzed using PCA and cluster analysis to reduce to a mapping of representative31

spectra, or to a low-rank representation of the data.32

While the technique has been generally successful, the application of spectromicroscopy to33

in-situ studies and in areas of soft matter or biological materials is limited by two main factors.34

First, the total experiment time required to collect the data to a given statistical significance;35

second, the total radiation dose over the collection and any resulting damage to the object, or36

changes to the chemical state, that may occur as a result. The issue of damage due to dose and37

long collection times occurs across both x-ray and electron optical systems.38

To alleviate this issue, a variety of approaches to reduce the number of samples has been39

proposed. In electron tomography, compressed sensing schemes have been investigated to solve40

the missing wedge problem, or to reduce the number of angles used [4–6]. Random sampling41

or jittered row sampling has also been used with in-painting to reduce dose and experiment42

time [7, 8]. In the x-ray regime, sparse studies are limited, but a low-rank matrix decomposition43

approach using PCA analysis of spectrotomography datasets has also recently been demonstrated,44
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which merges the angular and energy measurements to reduce overall measurement time [9].45

Low-rank matrix completion is a well-known inverse problem that was widely used in sensor46

networks [10], computer vision [11] and medical imaging [12, 13]. See e.g. [14] for a review of47

those and further inverse problems. The classical formulation of matrix completion [15] aims to48

recover the missing elements of a low-rank matrix from an incomplete set of known entries, each49

of which is sampled independently at random (for example, uniformly).50

However, there are important differences between x-ray and electron systems that make inde-51

pendent sampling unattractive for the reduction of the acquisition time in x-ray spectromicroscopy.52

An electron beam is rapidly moved across the specimen and can be blanked electrostatically at53

high rate to control dose, and recreate random patterns. In contrast, an x-ray beam is fixed, and54

the specimen is moved mechanically instead. Moreover, a mechanical chopping of the x-ray55

beam is needed to recreate sampling patterns. The mechanical operations in the x-ray regime56

limit the translation of some of these schemes from equivalent electron experiments.57

The use of non-uniform sampling patterns in matrix completion has been widely studied, with58

the main goal of reducing the approximation error. Non-uniform sampling methods include59

adaptive cross interpolation [16], maximizing the volume of sampled submatrices [17], adaptive60

importance sampling using leverage scores [18] or application-oriented distributions [19], and61

supervised learning using a training dataset [13]. However, all of these methods still assume62

some arbitrary control over the sampling pattern rather than conventional acquisition patterns63

such as a raster scan.64

In this paper we propose a novel approach for undersampling and reconstructing low-rank65

x-ray spectromicroscopy data that uses the raster sampling pattern. Our motivation with this66

work is to deliver a solution that can be deployed routinely at spectromicroscopy facilities by67

non-experts. This requires an approach where no intervention or tuning is needed to produce68

results. The method should also work with the standard raster acquisition approaches at these69

facilities, in particular our initial experimental focus was on optimizing fast low-dose in-situ70

experiments to study the evolution of battery materials over time. Scanning along a line can71

be carried out with a faster mechanical movement, hence the time per pixel can be reduced72

compared to independent or adaptive sampling. In addition, we can lower the x-ray dose on73

the specimen without compromising the recovery of missing entries: we develop a procedure74

to generate a robust raster pattern such that each row and column of the matrix has at least one75

sampled element.76

Besides the sampling pattern, the performance of matrix completion depends on the cost77

function. In addition to the squared misfit of the sampled elements, the cost function may78

include regularization terms, promoting sparsity [13] or smoothness [20]. Alternatively, the79

entire completion problem can be turned into a Bayesian inference problem by introducing a80

prior distribution on the low-rank matrix factors, treated as random matrices, and a likelihood of81

the observed data samples [21, 22]. As a by-product, sparsity-promoting priors may provide an82

automatic selection of the rank as the number of nonzero posterior components [23]. However,83

mathematical study of spectromicroscopy is still in some infancy, and lacks well-recognised84

priors. The only regularization assumption that is generally valid is the low-rankness of the true85

absorption distribution. Therefore, we start with a simple Alternating Steepest Descent algorithm86

(ASD) [24] with the squared misfit cost only. For a reliable selection of the rank and number of87

samples, we propose an algorithm, LoopedASD, which successively increases the rank from 1 to88

some generous value (e.g. 20), taking a lower-rank result as the initial guess in each step. This89

provides a smoother convergence which allows the KNEEDLE [25] algorithm (already used in90

spectromicroscopy for the PCA analysis) to determine the final rank accurately.91

Five datasets were used in this study. The first three (labelled DS1, DS2, DS3) are full datasets92

that can be undersampled numerically after the experiment; the final two (labelled DS4, DS5) are93

measured using both full and sparse raster patterns to verify the experimental implementation.94



The sparse experimental measurements were conducted at a range of undersampling ratios95

(details on the different sampling approaches can be found in Section 3). The specimen were96

produced by mixing Fe2O3, Fe3O4 and FeO powders. The powders were ground in a ball mill97

and then drop cast onto a silicon nitride membrane. The dimensions of each data set can be seen98

in Table 1. The pairs (DS1, DS2) and (DS4, DS5) are data derived from the same specimen but99

at different spatial dimensions, i.e. DS2 is DS1 focused on a smaller area, as is DS4 of DS5. We100

aim to illustrate results using all 5 datasets, but where space is restrictive we only show the 3101

independent datasets: DS1, DS3, DS5.102

Table 1. Spectromicroscopy Meta Data

Dataset Data Acquisition 𝑛𝐸 𝑛1 𝑛2

DS1 Full 149 101 101

DS2 Full 150 92 79

DS3 Full 152 55 54

DS4 Full & Sparse 152 40 40

DS5 Full & Sparse 152 80 80

The paper is organised as follows. We begin in Section 2 with a description of the x-ray103

spectromicroscopy model, and derive its low rank nature. Next, we discuss general matrix104

completion and raster-aware sampling, which leads into our proposed matrix completion algorithm105

in Sections 3 & 4. Finally, in Sections 5 & 6, we discuss the results comparing the reconstructed106

sparse data against full data.107

2. Low rank model108

When the energy of a photon increases beyond the binding energy of a core electron, we see a109

sharp rise in a material’s absorption - an absorption edge. The absorption coefficient, 𝜇, will vary110

or be modulated by the local chemical environment. Measuring around the edge, x-ray near edge111

absorption spectroscopy (XANES) can be used as a fingerprinting tool to identify known standards112

or materials; investigation of the energy past the absorption edge, the Extended X-ray Absorption113

Fine Structure (EXAFS), can be used to extract information of nearest neighbour bonding and114

coordination. Further details regarding the different experimental setup and derivation of the115

following formula can be found in [26].116

The variation of 𝜇 with energy depends on how an element is chemically bonded and when117

there are more than one chemical states present the absorption coefficients sum linearly. For a118

mixture of 𝑆 materials, the measured x-ray absorption (or optical density), 𝐷 (𝐸), can be modeled119

as,120

𝐷 (𝐸) =
𝑆∑︁
𝑠=1

𝜇𝑠 (𝐸) 𝑡𝑠 , (1)

where 𝜇𝑠 (𝐸) and 𝑡𝑠 , 𝑠 = 1, ..., 𝑆 are the distinct absorption coefficients (𝑐𝑚−1), and thicknesses121

(𝑐𝑚) of the 𝑆 materials, respectively.122

With a focused x-ray beam, this experiment can be performed over 𝑛1 × 𝑛2 positions, and at123

𝑛𝐸 distinct energies. By stacking each spatial scans, the distribution of x-ray absorption spectra124

can now be represented as a 3D tensor 𝐷 ∈ R𝑛𝐸×𝑛1×𝑛2 ,125

𝐷𝑖 𝑗1 𝑗2 =

𝑆∑︁
𝑠=1

𝜇𝑠 (𝐸𝑖) (𝑡𝑠) 𝑗1 𝑗2 , (2)



where (𝑡𝑠) 𝑗1 𝑗2 is the thickness of material 𝑠 at pixel ( 𝑗1, 𝑗2), and 𝜇𝑠 (𝐸𝑖) is the absorption126

coefficient of material 𝑠 at the 𝑖 − 𝑡ℎ energy level. This dataset can be flattened by considering a127

matrix 𝐴 ∈ R𝑛𝐸×𝑁 , such that128

𝐴𝑖 𝑗 =

𝑆∑︁
𝑠=1

𝜇𝑠 (𝐸𝑖)𝑡𝑠 𝑗 + 𝜂𝑖 𝑗 , (3)

where 𝑗 = 1, ..., 𝑁, 𝑁 = 𝑛1𝑛2 indexes over all pixels, and 𝜂 ∈ N (0, 𝛿2𝐼) represents Gaussian129

noise with standard deviation 𝛿 ∈ R. With a slight abuse of notation, consider the matrices130

𝜇 ∈ R𝑛𝐸×𝑆 , 𝜇𝑖𝑠 = 𝜇𝑠 (𝐸𝑖) and 𝑡 ∈ R𝑆×𝑁 ; the columns of 𝜇 represent the absorption coefficients131

of each material within the specimen, and the rows of 𝑡 represent the thickness/presence of each132

material within each pixel. This allows us to write Eq. (3) as133

𝐴 = 𝜇𝑡 + 𝜂. (4)

This is significant, as it illustrates that for the majority of experiments, where the specimen is made134

up of only a few materials or chemical states (𝑆 is low), the corresponding spectromicroscopy135

data is inherently low rank, as rank(𝜇𝑡) = 𝑆. With the addition of noise, 𝐴 is approximately low136

rank.137

To analyse the spatial distribution of the absorption spectra, standard techniques are used to138

filter and decompose 𝐴 back to a smaller set of representative spectra; see, for instance, [27].139

First, PCA is applied to reduce the noise in the data by producing a rank-𝐿 approximation of the140

most significant components. We compute141

𝐴′ = 𝐶′𝑅′, (5)

with 𝐴′ ∈ R𝑛𝐸×𝑁 , 𝐶′ ∈ R𝑛𝐸×𝐿 , 𝑅′ ∈ R𝐿×𝑁 . The variable 𝐿 is chosen to capture as much142

variation in the data as possible with the smallest rank, and should approximate 𝑆: it is typically143

set to be the elbow point (point of maximum curvature) of the singular values of 𝐴, and can be144

selected automatically using algorithms like KNEEDLE [25].145

The decomposition in Eq. (5) is similar to the model in Eq. (3), however the columns of 𝐶′ are146

abstract spectra - linear combinations of the true spectra with no physical interpretation. Similarly,147

the rows of 𝑅′ are the corresponding abstract thickness maps. Pixels are now clustered together148

based on the similarity of the normalised mixing factors of the PCA components. This is achieved149

by clustering the columns of 𝑅′ using standard clustering algorithms such as kmeans [28] and150

lvq [29]. Taking the mean spectrum from the columns of 𝐴 for each cluster increases the signal to151

noise ratio when compared to the measurements from an individual pixel, and produces accurate152

x-ray absorption spectra for the dominant material in each cluster.153

In [27], it is noted that the first principal component from the PCA (the component with154

the greatest variation in the data) often describes the average x-ray absorption data across the155

whole specimen. In some cases the first principal component is discarded, or scaled down, and156

cluster analysis is only applied to the remaining components. This is done to emphasise the157

more subtle features and variations in the data and ensure the clustering results are determined158

by differences in materials not the thickness of the specimen. In this paper, we will refer to the159

process of discarding the first principal component as Reduction of Thickness Effect (RTE),160

which is achieved by simply removing the first row from 𝑅′ in Eq. (5) before applying kmeans to161

its columns. Generally, the comparison between reconstructed and full data are worse when RTE162

is used, and they have been applied to several tests to provide the worst-case results. Any cluster163

results that have used RTE will be noted clearly. Further details on PCA, cluster analysis and164

RTE can be found in the supplemental document.165

Figure 1 shows a schematic of the sparse spectromicroscopy process. In our proposed scheme,166

we measure only a small proportion of the data, and recover the missing entries later using low rank167



Fig. 1. Schematics of Sparse Spectromicroscopy using DS2. The original specimen
contains a mixture of two materials: FeO in the blue region and 𝐹𝑒2𝑂3 in the red
region over the background (green region). The experimental setup is as follows: (A) a
third/fourth generation synchrotron light source produces a beamline of energy 𝐸𝑖 . (B)
the intensity of the incident beam is measured. (C) the light is focused using an optic
such as a zone plate or Kirkpatrick-Baez mirror to produce a micro or nanoscale beam.
(D) The specimen is mounted on the stage, (E) which is able to move the specimen
across in the XY plane to measure at different positions; the specimen can also be
moved in the Z direction to bring the sample to the focus of the beam. Depending
on the material and it’s thickness, we measure either the transmitted flux, (F), or the
fluoresced flux, (G), by counting photons using different detectors (H). The specimen
is moved in a raster pattern; for sparse experiments we only sample 𝑝𝑛1 rows for each
energy. The processed results for each energy are stacked as seen in the diagram. The
tensor is flattened by concatenating slices of the sparse data. The missing entries are
recovered using LoopedASD - our low rank matrix completion algorithm. PCA is
applied to the completed data to produce the most significant components in the data -
the eigenspectra and (reshaped) eigenimages seen in the schematic. The results of the
cluster analysis with 5 clusters show similar results to the original specimen, with the
locations of the two materials identified, and accurate absorption coefficients for each.

matrix completion. The remaining steps are consistent with a standard x-ray spectromicroscopy168

scheme. Precise details on the sampling are discussed in Section 3, and the completion methods169

are described in Section 4. The image illustrates the data acquisition, the formatting and flattening170

of the data tensor, the reconstruction of the sparse entries, and the PCA and cluster analysis.171

3. Raster-aware sampling patterns172

To formulate the sampling and reconstruction of x-ray spectromicroscopy data, we set out the173

following notation. Let Ω ⊂ {1, ..., 𝑛𝐸} × {1, ..., 𝑁} be the set of known measurements, called174

the sampling pattern. For a matrix 𝑋 ∈ R𝑛𝐸×𝑁 , we define the sampling operator PΩ as175

PΩ (𝑋) =
{
𝑋𝑖, 𝑗 , if (𝑖, 𝑗) ∈ Ω,

0, if (𝑖, 𝑗) ∉ Ω.
(6)



Alternatively, the sampling pattern can be thought of as a binary matrix Ω ∈ {0, 1}𝑛𝐸×𝑁 with176

1s in the locations of the known entries, and 0s everywhere else. It is then easy to compute177

PΩ (𝑋) = Ω ◦ 𝑋 , where ◦ is the Hadamard product. The key parameter for matrix completion is178

the undersampling ratio, 𝑝, the proportion of known entries:179

𝑝 =
|Ω|
𝑛𝐸𝑁

. (7)

The standard matrix completion problem involves computing a matrix of minimal rank such180

that the known entries, indexed by Ω, are equal to the given values. However, this problem is181

notoriously difficult, and many algorithms will instead seek to solve easier, but provably related,182

problems; see [30–33].183

For this application, the presence of noise means the spectromicroscopy datasets are only184

approximately low rank - i.e. there is no exact low rank matrix that would perfectly match the185

subset of known entries PΩ (𝐴). A more useful and efficient approach to reconstruction is to186

fix the rank, 𝑟, then solve an optimisation problem to find the best rank-𝑟 approximation to the187

known entries. Thus, to reconstruct the sparse set of measurements, PΩ (𝐴), we seek to solve,188

min
𝑍∈R𝑛𝐸 ×𝑁

1
2
| |PΩ (𝐴) − PΩ (𝑍) | |2𝐹 subject to rank(𝑍) = 𝑟. (8)

Here, we use the frobenius norm | | · | |𝐹 , defined for 𝑋 ∈ R𝑛𝐸×𝑁 ,189

| |𝑋 | |2𝐹 =
∑︁
𝑖, 𝑗

𝑋2
𝑖 𝑗 . (9)

This approach is generally more effective (and far more computationally efficient) than attempting190

to solve the standard problem; we must, however, correctly input the completion rank 𝑟, since191

completion algorithms work best when 𝑟 is close to the approximate rank of the full dataset.192

More details on accurately setting 𝑟 can be found in the supplementary material.193

3.1. Setting the sampling pattern194

In many applications of low rank matrix completion, it is impossible to predict which entries195

will be known. To model this, the known entries of the sampling pattern are typically set at196

random. Usually, Bernoulli sampling is used, where each entry is sampled i.i.d. (independent197

and identically distributed) with probability 𝑝.198

Unlike other settings, in x-ray spectromicroscopy we have complete control over the data199

acquisition and can set the scanner to implement specific patterns. However, when formulating200

the sampling selection, we must consider the physical restrictions of the experiment. For x-ray201

spectromicroscopy, the specimen is on an XY stage and moves at constant velocity through the202

beam in a raster pattern - scanning across each row in turn before switching to the next energy203

level and repeating the spatial scan. To maximise the efficiency of the modelled sparse scans, we204

must ensure the known entries of the sampling pattern are collected together into spatial rows to205

be scanned. The scanner can then move between known entries, quickly passing over the empty206

rows.207

To model the raster aligned patterns, we introduce Raster sampling, where spatial rows of208

the specimen are sampled i.i.d with probability 𝑝. Illustrations of both Bernoulli and Raster209

sampling patterns on flattened data sets can be found in Figure 2, in which the known entries are210

highlighted yellow. Notice that the raster sampling pattern groups the known entries into the211

spatial rows of the specimen, which appear as short segments after the data is flattened.212

Data that has been sampled with a Bernoulli pattern generally allows completion at lower un-213

dersampling ratios, because the known entries are spread more evenly. In practice, undersampling214



(a) Bernoulli Sampling (b) Raster Sampling

Fig. 2. Illustrations of Bernoulli and Raster sampling patterns. Patterns are shown on
flattened datasets with 𝑛𝐸 = 150, 𝑛1 = 25, 𝑛2 = 25, 𝑝 = 0.2. Yellow indicates the
point has been sampled, while purple indicates the entry is missing.

using Bernoulli sampling is possible, however it is only preferable under certain circumstances.215

Sampling patterns like these can be implemented for x-ray spectromicroscopy in two ways: either216

the specimen is moved through every position while rapidly blanking the beam, or the specimen217

is only positioned at the location of each known entry using stop-start motion. The former218

is difficult to implement and doesn’t reduce the experiment time, however may be useful for219

dose reduction. Conversely, despite the potential use of lower undersampling ratios, stop-start220

motion is generally less efficient than the continuous motion used for raster sampling, resulting in221

longer experiments. Indeed, for typical dwell times of around 0.01𝑠, the time spent accelerating,222

decelerating and stabilising the scanner outweighs the time saved by scanning fewer entries.223

Despite this, Bernoulli sampling may be applicable for specimen that require longer dwell times224

(around 1𝑠), since reducing the number of known entries has a greater impact on the experiment.225

Developing methods for such specimen is left for further research.226

One issue with Raster sampling is that the grouping of known entries increases the probability227

that certain rows are not scanned at all, especially for low undersampling ratios. Clearly, it228

is impossible to recover a row or column of the data set 𝐴 (distinct from the spatial rows and229

columns of the specimen) that contains no known entries, so we must ensure that every spatial-row230

is measured at least once. By testing different sampling patterns, we have also seen that low rank231

completion is more reliable when the known entries are more evenly spread across the data.232

To promote the spread of data, and ensure every row and column of 𝐴 contains known entries,233

we have developed Robust Raster sampling. This is a variation of Raster sampling that ensures234

every row of the specimen is sampled exactly once before any row can be sampled a second time.235

Further details on Robust Raster Sampling can be found in the supplementary document.236

4. Completion algorithm237

To reconstruct undersampled data, we have developed a low rank matrix completion algorithm238

LoopedASD. This is a rank-incremental algorithm based on Alternating Steepest Descent239

(ASD) [24]; it uses the output of one ASD-completion as the input for the next higher-240

rank completion. After testing several different options, [31–33], it was found that this241

algorithm provided more accurate and reliable results on both simulated data and raster-sampled242

spectromicroscopy data.243

ASD is an iterative method that fixes the rank, 𝑟, of its iterates by imposing the following244

decomposition:245

𝑍 = 𝑋𝑌, for 𝑍 ∈ R𝑛𝐸×𝑁 , 𝑋 ∈ R𝑛𝐸×𝑟 , 𝑌 ∈ R𝑟×𝑁 . (10)



Thus, the optimisation of the problem in Eq. (8) now becomes,246

min
𝑋,𝑌

𝑓 (𝑋,𝑌 ), where 𝑓 (𝑋,𝑌 ) = 1
2
| |PΩ (𝐴)−PΩ (𝑋𝑌 ) | |2𝐹 , 𝑋 ∈ R𝑛𝐸×𝑟 , 𝑌 ∈ R𝑟×𝑁 . (11)

We minimise the function 𝑓 by alternately optimising the components 𝑋 and 𝑌 using steepest247

descent with exact step sizes. Indeed, by fixing one component the gradient of 𝑓 can be computed248

easily. It is then possible to analytically compute the exact step size required to minimise 𝑓 along249

the gradient direction. Once the factor has been updated, we alternate the fixed component and250

repeat the process, iterating until suitable stopping conditions are satisfied.251

Let 𝑓 (𝑋,𝑌 ) be written as 𝑓𝑌 (𝑋) for fixed𝑌 and 𝑓𝑋 (𝑌 ) for fixed 𝑋; the corresponding gradients252

are written ∇ 𝑓𝑌 (𝑋) and ∇ 𝑓𝑋 (𝑌 ), and the exact step sizes are written 𝜂𝑋, 𝜂𝑌 . Beginning with253

random matrices 𝑋0 ∈ R𝑛𝐸×𝑟 , 𝑌0 ∈ R𝑟×𝑁 , we implement ASD as follows,254 
Fix 𝑌𝑖 , compute ∇ 𝑓𝑌𝑖 (𝑋𝑖) & 𝜂𝑋𝑖

𝑋𝑖+1 = 𝑋𝑖 − 𝜂𝑋𝑖
∇ 𝑓𝑌𝑖 (𝑋𝑖)

Fix 𝑋𝑖+1, compute ∇ 𝑓𝑋𝑖+1 (𝑌𝑖) & 𝜂𝑌𝑖

𝑌𝑖+1 = 𝑌𝑖 − 𝜂𝑌𝑖∇ 𝑓𝑋𝑖+1 (𝑌𝑖).

(12)

The gradients and step sizes are given below. Full derivations can be found in the supplemental255

documents:256

∇ 𝑓𝑌 (𝑋) = −(PΩ (𝐴) − PΩ (𝑋𝑌𝑇 ))𝑌, ∇ 𝑓𝑋 (𝑌 ) = −𝑋𝑇 (PΩ (𝐴) − PΩ (𝑋𝑌𝑇 )). (13)

𝜂𝑋 =
| |∇ 𝑓𝑌 (𝑋) | |2𝐹

| |PΩ (∇ 𝑓𝑌 (𝑋)𝑌𝑇 ) | |2
𝐹

, 𝜂𝑌 =
| |∇ 𝑓𝑋 (𝑌 ) | |2𝐹

| |PΩ (𝑋 [∇ 𝑓𝑋 (𝑌 )]𝑇 ) | |2𝐹
(14)

One advantage of ASD is that the residual (PΩ (𝐴) − PΩ (𝑋𝑌 )) can be easily updated between257

iterations, removing the need to compute the matrix product 𝑋𝑌 for each iteration. Thus, the per258

iteration cost of ASD has leading order 8|Ω|𝑟 (see [24]).259

A maximum number of iterations was set as a stopping condition, as well as a tolerance on the260

relative norm of the residual at each iteration,261

| |PΩ (𝐴) − PΩ (𝑋𝑖𝑌𝑖) | |2𝐹
| |PΩ (𝐴) | |2𝐹

. (15)

Once either stopping condition is satisfied, the two factors are output by the algorithm and are262

denoted 𝑋∗ and 𝑌 ∗.263

To evaluate the success of the completion algorithms, we compute the completion error, often264

denoted 𝑒𝑐. This is simply the relative norm of the difference between the true low rank matrix265

𝐴 and the output of the ASD algorithm 𝐴∗ = 𝑋∗𝑌 ∗, defined as,266

𝑒𝑐 =
| |𝐴 − 𝐴∗ | |2

𝐹

| |𝐴| |2
𝐹

(16)

A more detailed description of the algorithm can be found in the supplemental material.267

4.1. Improving results with LoopedASD268

Following rigorous testing of ASD for raster sampling, it was found that there exists an approximate269

optimal undersample ratio, 𝑝∗, that depends linearly on, and is correlated with, the data’s rank 𝑟 .270

For 𝑝 > 𝑝∗, the probability of a successful completion was almost certain, and the completion271



errors were consistently low. For 𝑝 < 𝑝∗, the completion errors increased and the completion272

rate (the proportion of tests that successfully recover data to a certain accuracy - usually 10−4)273

decreased rapidly to zero. Intuitively, the dependence of 𝑝∗ on 𝑟 makes sense: to reconstruct274

more complex datasets (with higher ranks), more known entries are required to successfully275

recover the missing ones.276

LoopedASD was developed to take advantage of this heuristic: beginning with 𝑟 = 1, we use277

the outputs of the 𝑟 = 𝑗 completion as initial guesses for the 𝑟 = 𝑗 + 1 completion, iterating up to278

the completion rank set by the user.279

Let (𝑋0) ( 𝑗 ) ∈ R𝑛𝐸× 𝑗 , (𝑌0) ( 𝑗 ) ∈ R 𝑗×𝑁 be the initial matrices for the 𝑗 𝑡ℎ rank step, and280

(𝑋∗) ( 𝑗 ) ∈ R𝑛𝐸× 𝑗 , (𝑌 ∗) ( 𝑗 ) ∈ R 𝑗×𝑁 be the outputs of the 𝑗 𝑡ℎ iteration of ASD with completion281

rank 𝑟 = 𝑗 . In order ensure the dimensions of the factors increase with each rank increment, we282

simply concatenate the 𝑗 𝑡ℎ outputs (𝑋∗) ( 𝑗 ) , (𝑌 ∗) ( 𝑗 ) with a random column and row respectively283

to produce (𝑋0) ( 𝑗+1) , (𝑌0) ( 𝑗+1) .284

The aim of this variation is to allow the iterates to converge quickly to a rank-1 approximation285

of the sparse data, where fewer known entries are required. Once a rank- 𝑗 approximation is286

known, the distance to the rank-( 𝑗 + 1) solution should be relatively low, and again fewer known287

entries are required to converge quickly to the next one. Ensuring iterates remain close to the288

minimum should also avoid convergence to a spurious local minima of 𝑓 (which is non-convex).289

The completion results of LoopedASD confirm the validity of this heuristic, as it yields good290

reconstructions more reliably at low undersampling ratios.291

In addition to the usual stopping conditions, an early stopping procedure was required due292

to slow convergence rates when the iterates approached optimal solutions. In the case that293

the average change in the norm of the residual (Eq. (15)) over 50 iterations drops below a294

second tolerance (typically 10−5), then the early stopping condition is satisfied and will halt the295

algorithm.296

It has been noted that the completion rank must be set before implementing ASD and297

LoopedASD. This, however, is not an obvious choice since we cannot evaluate the accuracy of298

the different rank-𝑘 completions without prior knowledge of the results. To overcome this, we299

have developed a method that implements short completions over several ranks and evaluates the300

completion errors using cross validation so that we can efficiently identify the optimal completion301

rank to use. A full description and justification of the method can be found in the supplemental302

material.303

5. Validation of the algorithm with numerical undersampling304

We test the method in two distinct ways. First, we numerically sample full datasets. To produce305

these datasets, ‘unknown’ entries are set to zero according to a randomly generated robust raster306

sampling pattern. Then, in Section 6, we implement sparse scans on the beamline to determine if307

any additional issues arise and to test in a new setting outside of our test set.308

To properly evaluate the performance of the methods described in this paper, several measures309

of success must be considered. We can compare the original and reconstructed datasets directly310

by computing the average completion error. Perhaps more significantly, we evaluate the difference311

between the cluster maps and the absorption spectra themselves. Finally, we can plot and312

visually compare the clusters and absorption spectra. Due to specimen drifts (described in313

Section 6), the first two ‘computational’ approaches can only be achieved using numerically314

sampled data; visual comparisons must be used when evaluating reconstructions using the sparse315

scan data. During these tests, we use the optimal completion rank 𝑟∗ determined by the rank316

selection algorithm described in the supplemental document to produce the completed matrix317

(𝐴∗) (𝑟∗ ) = (𝑋∗) (𝑟∗ ) (𝑌 ∗) (𝑟∗ ) . 𝐴∗ is then used instead of the full data set 𝐴 in the analytic processes318

(PCA and clustering).319



(a) DS1 Original (b) DS1 Sampled (c) DS1 Completed. 𝑟 = 6,
𝑒𝑐 = 0.048, min(𝑒𝑐 ) = 0.039.

(d) DS3 Original (e) DS3 Sampled (f) DS3 Completed. 𝑟 = 4,
𝑒𝑐 = 0.052, min(𝑒𝑐 ) = 0.037.

(g) DS5 Original (h) DS5 Sampled (i) DS5 Completed. 𝑟 = 5,
𝑒𝑐 = 0.021, min(𝑒𝑐 ) = 0.014.

Fig. 3. Reconstructions of the three independent datasets, using LoopedASD as the
completion algorithm. Each figure is a scaled colour image of the flattened dataset,
with energy levels across the vertical axis, and all pixels across the horizontal axis. The
left column shows the original datasets. The middle column shows the sampled data at
𝑝 = 0.20. The right column shows the reconstructed data. Below each reconstruction
is the completion rank, 𝑟, the completion error 𝑒𝑐 (see Eq. (16)), and the minimum
approximation error (see Eq. (17)) for that completion rank.

5.1. Completion errors of LoopedASD320

We first examine the norm of the difference between data sets. When conducting experiments321

such as this, it is important to consider the constraints on the completion error, 𝑒𝑐 (Eq. (16)), for322

a rank-𝑟 completion.323

Consider a rank-𝑟 approximation of a matrix 𝐴, denoted 𝐴(𝑟 ) . We can compute the minimum324

approximation error of 𝐴(𝑟 ) in the Frobenius norm using the Eckart-Young-Mirsky (EYM)325

Theorem [34]. We shall refer to this value as the minimal rank-𝑟 approximation error, and it is326

given by:327

min
rank(𝐴(𝑟 ) )=𝑟

| |𝐴 − 𝐴(𝑟 ) | |𝐹 =

√︃
𝜎2
𝑟+1 + 𝜎2

𝑟+2 + ... + 𝜎2
𝑛 , (17)

where 𝜎1, ... , 𝜎𝑛 are the singular values (SVs) of 𝐴. Since any completion result with a328



(a) DS2 Original
a

(b) DS2 Completed, 𝑟 = 5,
𝑒𝑐 = 0.52, min(𝑒𝑐 ) = 0.026

Fig. 4. Completion result following intentional sampling of the artifact in DS2 (dark
spot towards the right). Note that the corrupted points are contained to the column of
the initial artefact.

completion rank of 𝑟 is just an example of a rank-𝑟 approximation, the corresponding minimum329

approximation errors are lower bounds for the corresponding completion errors. Thus the success330

of any completion should be evaluated by comparing back to the corresponding minimum error.331

LoopedASD produces successful completions for all datasets, and for undersampling ratios as332

low as 𝑝 = 0.15. By examining the mean completion errors, 𝑒𝑐, one can identify the optimal333

undersampling ratio, 𝑝∗. As before, for 𝑝 < 𝑝∗ average completion errors rise quickly, and334

for 𝑝 > 𝑝∗ average completion errors decrease slowly, reducing the benefit of taking further335

measurements. It was found that LoopedASD produces lower completion errors more reliably336

than ASD, in particular for undersampling ratios around 𝑝∗.337

To help with the visualization of the completion, we plot the flattened data sets themselves as338

colourmap images. Purple points indicate a value of zero, while bright yellow points indicate339

higher measured values. In Figure 3 we provide a visual representation of the sampling and340

reconstruction process at the optimal rank, 𝑟∗, and with a consistent undersampling ratio of341

𝑝 = 0.20. Note that completions often appear smoother than the original data - since it is low342

rank, it will have filtered out much of the noise.343

One advantage of ASD and LoopedASD is that the impact of any artifacts that have been344

sampled remain contained in their rows/columns in the dataset. In Figure 4 we illustrate this345

by intentionally sampling a corrupted entry in DS2. We can see that the majority of the image346

remains accurate and it is just the row and column that contained the original artefact that are347

affected. Indeed, it is very easy to identify the corrupted regions, which can be cut from the348

dataset. The example in Figure 4 initially had a completion error of 0.052, compared to the mean349

0.33 (the corresponding minimum approximation error is 0.026). Once the affected entries are350

removed, 𝑒𝑐 is computed as 0.047 providing a much stronger result. In practice this property is351

very useful, since it implies the process is robust against artefacts found in the data.352

5.2. Impact of completion on cluster analysis353

We now compare the results of the cluster analysis from the full data and the sparse data. In some354

sense, this comparison is more relevant than simply comparing the completion errors because the355

success of the new methods will be determined by the quality of the cluster maps produced by356

the reconstructions, not necessarily the abstract difference between the two datasets.357

We can evaluate the similarity of clusters using the Adjusted Rand Index (ARI) [35]. This is358

a symmetric score, with values between −1 and 1. An ARI score of 1 indicates clusters are a359

perfect match, while a score of 0 implies classifications have effectively been assigned at random.360



Generally we use the inverted score of (1 − ARI) to evaluate cluster quality so that 0 indicates a361

perfect match, and smaller scores are generally better.362

On the other hand, we can compare individual absorption coefficients using the Euclidean363

2-norm, but we must ensure that we are taking the difference between coefficients for equivalent364

materials/clusters. Suppose we have performed cluster analysis on both the full data set and the365

completed data with 𝑁cluster many cluster centres. Let 𝜇 𝑓 ∈ R𝑛𝐸×𝑁cluster denote the absorption366

coefficients of the full data and 𝜇𝑐 ∈ R𝑛𝐸×𝑁cluster denote those from the completed data. In367

both cases, the 𝑖𝑡ℎ columns, (𝜇 𝑓 )𝑖 , (𝜇𝑐)𝑖 respectively, represent the absorption coefficient368

corresponding to the 𝑖𝑡ℎ cluster. Note that the 𝑖𝑡ℎ clusters from the full data may not correspond to369

the 𝑖𝑡ℎ cluster from the completed data. We now align the clusters by taking each full-data cluster370

and finding the completed cluster that best fits it (minimises (1 − ARI)); using this permutation371

index, we rearrange the columns of 𝜇𝑐 to get the aligned absorption coefficients, 𝜇𝑎 ∈ R𝑛𝐸×𝑁cluster .372

We can now be sure the absorption coefficients represent the same area and the same material.373

We now wish to combine the relative differences of each cluster such that each cluster is weighted374

equally (not all absorption spectra are of the same magnitude) and is normalised for the number375

of clusters used. Thus, we compute the spectral difference, 𝑑spec, as:376

𝑑spec =
1

√
𝑁clusters

√√√
𝑁clusters∑︁
𝑖=1

( | | (𝜇 𝑓 )𝑖 − (𝜇𝑎)𝑖 | |2
| | (𝜇𝑎)𝑖 | |2

)2
. (18)

One complication is that cluster analysis is not deterministic, since there is some randomness in377

the starting vectors of the cluster centres. Because of this, we often find several common cluster378

maps resulting from the same dataset. This is true for both the full datasets and the reconstructed379

datasets, which can produce false ARI scores and spectral differences when opposing outputs are380

compared. To overcome this, we apply a clustering process to the clusters themselves - grouping381

similar maps together into ‘Super Clusters’. Taking the mode within each super cluster produces a382

series of representative cluster maps that are produced by the original data. We can now compare383

the reconstructed cluster against each representative in turn, recording the highest score as the384

most appropriate comparison.385

The spectromicroscopy datasets were sampled numerically, their optimal ranks were computed,386

and the data reconstructed using LoopedASD with early stopping. The completion ranks were387

set to be the optimal rank, 𝑟∗, using the method described in the supplementary document.388

PCA is used to decompose the data into its most significant components (we set the number389

of components used 𝐿 = 𝑟∗, so the rank is consistent). Finally, we perform the cluster analysis390

using kmeans with 5 clusters and compute the associated absorption spectra. For DS1, DS2,391

DS3 we used RTE (dropping the first principal component before applying kmeans) to provide392

the worst-case results. Note that if RTE had not been used, both the ARI scores and the spectral393

difference would improve. For DS4 and DS5, we avoided using RTE due to the poorer quality394

of the clustering results for both the full and reconstructed data. When using RTE on DS4 and395

DS5, the clusters are not smooth, the images and spectra were noisy, and the outcomes were not396

representative of typical results.397

Averaging over many iterations, we plot the clustering results for each dataset and for various398

undersampling ratios in Figure 5. In Figure 5a we plot log10 (1−ARI) against the undersampling399

ratio, and in Figure 5b we plot the log of the spectral difference, 𝑙𝑜𝑔10 (𝑑spec), against the400

undersampling ratio. The purpose of the plots is to illustrate the qualitative behaviour of the401

results, so have translated the individual plots vertically to improve clarity. The quantitative402

results can be found in Table 2. Here we see that, as we increase the undersampling ratio, the403

(1 − ARI) scores and spectral differences behave similarly to the completion error, 𝑒𝑐 (Eq. (16)).404

Indeed, by plotting the logs of these scores we see the similarly shaped curves - a faster decline405

for lower 𝑝 that flattens for higher 𝑝. Once again, we identify the optimal undersampling ratio,406



(a) log10 (1 − 𝐴𝑅𝐼 ) against undersampling ratio, 𝑝 (b) log10 (𝑑spec ) against undersample ratio, 𝑝

Fig. 5. Comparing log10 of the cluster results against undersampling ratio using
the optimal completion rank. In each figure, lower scores are better. Note that the
individual plots have been translated vertically to improve the clarity of the image.

𝑝∗, at the elbow of the plots - the points of maximum curvature. It is clear from the plot where407

the majority of the optimal undersampling ratios lie, however for DS2 and DS4 the elbows occur408

at different points across the two plots (𝑝 = 0.16 for Figure 5a and 𝑝 = 0.18 for Figure 5b). In409

these cases, we take the higher value to ensure enough entries are known for better reliability.410

For DS4 and DS5, the pattern in Figure 5b is less clear and appears more as a constant value.411

This is simply because the variation in spectral difference over this range of undersample ratios is412

much smaller than for the other datasets, and by appropriately scaling these plots one can see the413

same curve as before.414

In Table 2, we record the optimal completion rank, the corresponding optimal undersampling415

ratio (found at the elbow of the results in Figure 5), the completion errors, 𝑒𝑐, and the cluster416

results produced by these parameters.417

Table 2. Optimal Clustering Results for numerically sampled Spectromicroscopy
datasets. For the metrics used (𝑒𝑐 , 1 − ARI, 𝑑spec), lower scores are better.

dataset
Optimal

Completion
Rank, 𝑟∗

Optimal
undersampling

ratio, 𝑝∗

Mean
Completion
Error (16)

RTE
used

Mean
(1-ARI)

Mean Spectral
Difference

(18)
DS1 6 0.18 0.0483 Yes 0.106 0.082

DS2 5 0.18 0.0326 Yes 0.108 0.115

DS3 4 0.20 0.0515 Yes 0.207 0.509

DS4 7 0.18 0.025 No 0.009 0.096

DS5 5 0.18 0.027 No 0.006 0.152

In Figures 6 & 7, we visually compare the cluster maps and absorption spectra of the full418

data and the reconstructed data for DS1, DS2 and DS3 (DS4 and DS5 are used in Section 6 to419

illustrate the sparse scans). The data sets are sampled numerically with 𝑝 = 0.20, the optimal420

completion rank was used, and each of these results uses RTE. These images were produced by421

Mantis X-ray [36], an open source software package used for analysing x-ray spectromicroscopy422

data.423



(a) DS1 (b) DS2 (c) DS3

Fig. 6. Cluster and spectral results from full datasets using RTE. Results computed
using Mantis-xray [36].

(a) DS1 (b) DS2 (c) DS3

Fig. 7. Cluster and spectral results from reconstructions of sampled data, with 𝑝 = 0.20,
using RTE. Results computed using Mantis-xray [36]. Please note that for DS1 and
DS2 there is a sharp downward going discontinuity at around 7270𝑒𝑉 in both the full
and completed results. This feature is present in the original data, and can be seen in
the absorption spectra of many of the pixels with stronger signals. It is likely due to an
error in the calibration of the energy stepping, which requires coordinated motion of an
insertion device and monochromator, resulting in a strong variation in the intensity of
the beam which was not normalised correctly.

We can see that both the cluster maps and absorption spectra are very similar between full and424

reconstructed data, with only some small (mostly insignificant) differences in each. The general425

outline of the reconstructions’ clusters are very clear and are consistent with the full data results.426

The boundaries of the completion clusters lose some of their smoothness, but only a few isolated427



Table 3. Time and efficiency (ratio of sparse and full scan times) of implementing
sparse scans during experiments.

𝑝
𝑇 (ℎ𝑟𝑠 : 𝑚𝑖𝑛 : 𝑠)

- DS4
𝑇 (ℎ𝑟𝑠 : 𝑚𝑖𝑛 : 𝑠)

- DS5
Efficiency

- DS4
Efficiency

- DS5

1.00 1:22:05.5 4:10:36.7 1.00 1.00

0.35 0:38:57.6 1:39:31.6 0.47 0.40

0.25 0:33:29.8 1:21:33.8 0.41 0.33

0.15 0:26:02.3 0:50:37.9 0.32 0.20

pixels have been misclassified with minimal impact to the overall image. Similarly the most428

important features of the absorption spectra have been preserved in the completions for DS1 and429

DS2, including the pre-edges, the peaks, and in particular the shifts in the absorption edges for430

each material. There are a few examples of noise affecting the data: DS3 is particular noisy,431

where for some clusters we see the sharp spikes indicative of noise. Despite this, the general432

outline is still consistent.433

Overall, the similarity of the clusters ensures the sparse data would be interpreted in the same434

way as the original data, and the absorption spectra are sufficiently clear to be able to identify the435

materials within each cluster.436

6. Practical sparse scanning experiments437

We now bring all of the above material together to implement sparse scanning in practice. Instead438

of numerically sampling a full dataset, we physically implemented a sparse robust raster sampling439

pattern. This was done on the same specimen, with the same pixel sizes and dwell times for440

𝑝 ∈ {0.15, 0.25, 0.35, 1}.441

Unfortunately, it is not possible to numerically compare the results of the data due to442

experimental variations between the known entries in each dataset. Small changes in the ambient443

temperature can cause the specimen to drift very small distances between each spatial scan444

during the experiment. Since measurements are being taken on the micro/nano-scopic scale, this445

effect can create pixel level change from start to end. This is usually compensated for during the446

stacking process, but sparse scans have a much shorter experimental time, and registration to447

correct drifts cannot be performed in the same way as full datasets. The intensity of the incident448

beam will also vary with time and, although this can be normalized, some variation can still occur.449

Because of these potential spatial discrepancies and changes in intensity and background noise,450

the same known entries across different scans will show different values. Thus, it is impossible451

to know whether the difference between the full and reconstructed data is because of differences452

in the measurements or due to the limitations of the completion algorithm.453

Despite this, we can still visually compare the results. For each of our sparse scans (DS4 and454

DS5) and at each undersampling ratio, we use LoopedASD to reconstruct the data. We equip455

the algorithm with the optimal completion rank for the data set, described in the supplementary456

documents. We use Mantis X-ray to perform the cluster analysis, setting 𝐿 = 𝑟∗ and using 5457

clusters. Recall that RTE was not used for these results. In Figures 8 and 9, we plot these results.458

Once again, despite a slight loss of smoothness around cluster boundaries and some individual459

miss-classified pixels, the overall structure of the cluster maps is near identical and clearly shows460

the same variations across the scans. Similarly, there are a few sharp discontinuities in the461

reconstructed absorption spectra, especially for lower undersample ratios, but each materials’462

XANES are still clearly identifiable.463



(a) p = 0.15 (b) p = 0.25 (c) p = 0.35 (d) p = 1.00

Fig. 8. Cluster and spectral results of sparse scanning for DS4. Measurements were
taken at 15%, 25%, 35%, and 100% respectively. Cluster results computed using
Mantis-xray [36]

(a) p = 0.15 (b) p = 0.25 (c) p = 0.35 (d) p = 1.00

Fig. 9. Cluster and spectral results of sparse scanning for DS5. Measurements
were taken at 15%, 25%, 35%, and 100% respectively. Cluster results computed by
Mantis-xray [36].

After extracting the timestamps from the files’ meta data, we can compare the run time for464

each sparse experiment, which have been summarised in Table 3.465

The true time efficiency will never exactly match the undersampling ratio used due to ‘dead466

time’ as the scanner resets and for critical machine processes. Despite this, we see huge gains for467

the lowest undersample ratios, and a significant increase in experimental efficiency. In particular,468

we see greater improvements for the larger region of DS5, due to the higher measurement to469

dead time ratio. Another benefit for scanning larger regions is that the completion algorithms470

become more efficient. Because it is approximately low rank, the total number of entries grows471

much faster than the number of degrees of freedom - i.e. larger datasets are recoverable at lower472

undersampling ratios. Thus, it is in the interest of researchers using this approach to scan larger473

areas to improve both the scanning efficiency, and the quality of reconstruction.474



7. Conclusion475

We have demonstrated a new undersampling approach for spectromicroscopy data acquisition. By476

taking advantage of the inherent low rank structure of the datasets, we have produced algorithms477

that can accurately recover unknown entries from as little as 15% of the measurements when478

raster sampling. We have illustrated the robustness of these algorithms to machine artefacts, and479

how to derive parameters like the completion rank from the sparse data itself.480

Finally, we showed the minimal impact reconstructing sparse data has on the cluster analysis481

that is currently used to interpret the spectromicroscopy data. By implementing these methods, we482

can conduct experiments at a much faster rate, over larger areas, and with lower dose on the sample:483

the method consistently produces near-identical results using 20% of the measurements, with484

potential improvements to 15% for larger samples. Alternate sampling schemes, compatible with485

continuous motion scans, may be able to produce further reductions. These improvements will486

help in the development of in-situ spectro-microscopy measurements and future developments487

will reduce times in areas such as XANES nano-tomography and nano-EXAFS, which are488

currently limited in their application by long acquisition times.489
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