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A B S T R A C T

Market conditions change continuously. However, in portfolio investment strategies, it is hard to account for
this intrinsic non-stationarity. In this paper, we propose to address this issue by using the Inverse Covariance
Clustering (ICC) method to identify inherent market states and then integrate such states into a dynamic
portfolio optimization process. Extensive experiments across three different markets, NASDAQ, FTSE and
HS300, over a period of ten years, demonstrate the advantages of our proposed algorithm, termed Inverse
Covariance Clustering-Portfolio Optimization (ICC-PO). The core of the ICC-PO methodology concerns the
identification and clustering of market states from the analytics of past data and the forecasting of the future
market state. It is therefore agnostic to the specific portfolio optimization method of choice. By applying the
same portfolio optimization technique on a ICC temporal cluster, instead of the whole train period, we show
that one can generate portfolios with substantially higher Sharpe Ratios, which are statistically more robust
and resilient with great reductions in the maximum loss in extreme situations. This is shown to be consistent
across markets, periods, optimization methods and selection of portfolio assets.
1. Introduction

In the field of asset management, the problem of portfolio allocation
has gained unprecedented popularity over the past few years. Con-
structing a good portfolio combines the art and science of balancing
between trade-offs and the aim to meet long-term financial goals. The
simple core of any portfolio optimization is to assign optimal weights to
each portfolio’s component in order to minimize investment’s risk and
maximize the return. In 1952, Markowitz (1952) demonstrated that,
by assuming risk to be quantifiable by the variance of the portfolio’s
returns, the optimal weights which minimize portfolio’s variance at
a given average portfolio’s return can be computed with a simple
and exact formula. However, the Markowitz’s theoretical maximum is
attained only in-sample, on the train dataset, whereas off-sample, on
the test set where investment is made, performances of the Markowitz’s
portfolio can be largely sub-optimal.

Markowitz’s modern portfolio theory is the foundation to modern
quantitative asset management. There are however two main limitation
in the Markowitz’s assumptions. The first limitation concerns the use of
the portfolio’s variance as measure of risk. The variance (when defined)
is indeed a measure for the width of the distribution but there are other
properties that are better measure of risk (e.g. the value at risk) and
might not be reducible to the variance when the underlying probability
distribution is not a location-scale. The second limitation concerns the
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ability to estimate the (future) means and covariance of the asset’s
returns in the portfolio.

After Markowitz’s seminal work, many portfolio selection method-
ologies have been introduced to cure the first limitation concerning
the reliance on variance for risk quantification and nowadays there
are several well-established approaches that go well beyond the use of
variance as sole risk measure and yield superior results (Dymova et al.,
2021; Hult et al., 2012; Kaczmarek et al., 2020). Furthermore, with the
enormous development of machine learning optimization techniques
there are presently virtually no limitations in constructing optimal
portfolios based on any kind of risk measure (Ban et al., 2018; Paiva
et al., 2019; Samo & Vervuurt, 2016).

Addressing the second limitation is harder. Indeed, normally, one
does not have information from the future that would allow to set
the future properties of the asset’s multivariate distribution. Several
literature contributions have been focusing on estimating expected
return and covariance. Specifically, for expected return estimation,
various pricing models have been proposed over last decades in the
traditional finance domain (see, for instance, Jensen et al., 1972;
Merton, 1973) and factor models (Fama & French, 1992; Fama &
MacBeth, 1973). However, those models suffers from high variance,
which reduces the step-ahead prediction ability beyond a simple bench-
mark (Simin, 2008). Currently, modern signal processing and machine
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learning community have also applied data-driven modelling to return
and volatility prediction (Briola et al., 2020, 2021; Glosten et al., 1993;
Zhong & Enke, 2019). However, it is well understood that these models
tend to be prone to overfitting and large noise in the low signal-to-
noise ratio financial environment. On the other hand for covariance
estimation, research has been addressing the issues related with noise
using covariance sparsification. Two algorithms e.g., Graphical Lasso
(Friedman et al., 2008), Triangulated Maximally Filtered Graph (Mas-
sara et al., 2017) and etc. are discussed in Section 2.5. Nevertheless,
the reliance on past observations and the assumption that they will
significantly represent also the future, is hard to avoid. Nonetheless,
markets are not stationary, it is common knowledge that they cyclically
pass through bull and bear states and occasionally deepen into crisis
periods. For each of these periods the market prices’ returns have
different statistical properties and they are not describable by means
of a unique multivariate probability distribution. This is especially
relevant for factors that matter most to the management of portfolio
risk. Indeed, crisis periods have distribution with fatter tails and they
tend to be more asymmetrical with the left tail having larger probability
for large losses than the right tail for equivalent gains. Portfolio con-
structions must take into account these differences and device different
investment strategies for each market condition. This is indeed the
ground basis for any dynamic asset allocation. However, such a wise
allocation would imply the knowledge of the future market state and
forecasting it from past observations is not an easy task (Ma et al., 2021;
Soleymani & Paquet, 2021). In the literature there have been several
contributions exploring dynamical portfolio optimization. Let us here
mention a few such as Ang and Bekaert (2003), Guo and Ching (2021),
Hansen (1992) and Ramchand and Susmel (1998), who leveraged on
Hidden Markov Model (HMM). However, HMM suffers heavily from
the curse of dimensionality, and this is highly problematic in this
domain of application because the number of assets is usually large
in portfolio management. Others researchers, such as Buckley et al.
(2008), Delany (2007), Ketter et al. (2009), Kumar et al. (2018), Nayak
et al. (2015) and Reynolds (2009), employ clustering methods, e.g.,
Gaussian Mixture, and K-Nearest Neighbours (KNN). However, these
methods rely on strong assumptions and are not originally designed for
time-series, e.g., Gaussian Mixture assumes Gaussian nature in all the
base distributions, and KNN overlooks temporal consistency between
single data point.

In this paper, we provide an algorithm termed Inverse Covari-
ance Clustering-Portfolio Optimization (ICC-PO) to address the non-
stationarity problem, by identifying the inherent market states and
forecast the most likely future state. The Inverse Covariance Clustering
(ICC) (Procacci & Aste, 2018) is a novel temporal clustering method
for market states clustering. In this paper we propose to make use of
this temporal clustering classification, constructing different optimal
portfolios associated with two ICC market state clusters. By incorporat-
ing this method, we avoid many of the aforementioned caveats, as the
sparse inverse covariance of the portfolio is robust and efficient, and
the ICC impose temporal consistency during clustering. The clusters
are constructed in the in-sample training set (the past) and then are
used separately to train the portfolio optimizer of choice which is then
tested on an off-sample period following the training set (the future).
For the optimization we used two approached based on the classical
Markowitz’s approach but devised to have only positive weights (no
short-sellings). They are the Sequential Least Square Quadratic Pro-
gramming (SLS) and the Critical Line Algorithm (CLA). Let us note,
that the ICC-PO approach allows the use of any optimization method
of choice.

We tested the approach with three extensive experiments with daily
data, from 2010 to 2020, from three different markets: NASDAQ, FTSE
and HS300. For each market, we selected 100 largest market capitaliza-
tion constituent stocks and quantified the off-sample performances of
portfolios constructed from in-sample training data using separately the
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two ICC-market states. We demonstrate that the difference in returns
and risks (computed on the testing set) between the two optimal
portfolios, constructed from the two ICC-market states (on the training
set), is very large with Sharpe Ratios that more than double and with
very large differences in the likelihoods of large negative returns that
can have up to three time smaller quantiles (i.e. value at risk). We
provide a simple criteria to forecast the best performing out of sample
market state which we named ‘State 0’. Our results also show that
sparsification of the inverse covariance matrix through information
filtering networks (Barfuss et al., 2016; Massara et al., 2017) is im-
proving the results, this is a confirmation of a previous result (Procacci
& Aste, 2021) extended however in this paper to a different dataset,
different portfolio optimizers and different markets. The robustness of
the method is tested by gathering statistics over 100 re-sampling of
consecutive train-test sets randomly selected across the 10 years period
2010 to 2020. Furthermore, reliance on portfolio basket choices is
tested by doing the same experiments with random selection of 100
stocks instead of the 100 most capitalized.

The main contribution of this paper consist in the demonstration
that market observations at different times can be classified into dif-
ferent states. Such states have distinct statistical properties, and they
continue to be separable in log-likelihood after the in-sample training
period showing temporal persistence. Such persistence enables us to
predict the best performing state with higher log-likelihood in the off-
sample investment period. Moreover, in this paper we confirm the
intuitive argument by Procacci and Aste (2021) that a model with
larger log-likelihood must perform better for portfolio optimization
with respect to one with lower log-likelihood’

The remaining of the paper is organized as follows: in Section 2, we
review literature on market states clustering, dynamic portfolio opti-
mization, and information filtering network applied in the experiments;
in Section 3, we outline experimental methodologies and implemen-
tations. The final results are presented in Section 4 and discussed in
Section 5.

2. Background literature

2.1. Mean–variance optimization

Despite the unquestionable merits and pioneering status of
Markowitz’s mean–variance optimization (MVO) approach, there are
some major assumptions, and several bad applications, that reduce its
efficacy for practical implementations (Kalayci et al., 2019). Firstly,
MVO assumes that asset returns follow a finite-variance distribution
and higher moments are monotonic with variance. Many financial
theories simplify this assumption adopting a normal distribution, and
consequently the models that utilize such theories do not account
for extreme market situations. Moreover, the variance of a normal
distribution as a risk measure does not distinguish between upside
and downside moves in the market. Secondly, the MVO rely on the
inversion of a covariance matrix and this operation makes the method
highly sensitive to estimation error especially when the covariance is
estimated on a relatively short time-period and when such a past period
is not representative of the future. Indeed, historical financial market
data is never a good representation of the true underlying distribution
as the observations are often partial. Furthermore, most MVO imple-
mentations are assuming market stationarity, which is that the mean
and variance are assumed constant in each asset, while the correlation
is static between assets. MVO is designed to avoid unsystematic risks by
optimizing diversification. However, the systematic risks from market
movements are not addressed by the MVO methodology and this is
usually the most significant factor for investment decisions. Lastly, a
single-period investment will almost never work in reality. A constant

re-allocation is vital to respond to the rapidly changing environment.
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2.2. Fat-tailed and asymmetric return distributions

Normal distributions do not represent well the observed probability
distribution of financial market’s assets prices returns. Indeed, they
instead have a larger number of small returns than what expected
from normal statistics, but also a larger number of very large positive
and negative returns of sizes that would be impossible with normal
statistics (Küchler et al., 1999; Limpert & Stahel, 2011; Officer, 1972).
They also have often asymmetric distributions with larger negative
returns (losses) more likely than large positive ones (gains). Several
alternative probability distributions have been used in the literature,
namely, Student-t (Peiró, 1994; Platen & Rendek, 2008; Student, 1908),
Laplace (Eltoft et al., 2006; Norton, 1984; Wilson, 1923) and Pareto-
Levy (Coronel-Brizio & Hernández-Montoya, 2005; Mandelbrot, 1960)
distributions. In addition, alternative approaches to account for asym-
metry have been taken into account, with early works by Markowitz
himself which in 1959 (Stuart & Markowitz, 1959) employed semi-
covariance (the covariance from negative returns only) as a better risk
measure to better describe the downside market moves. Furthermore,
limited sample size is a critical contributing factor to estimation errors.
Yet, simply extending the sample size introduces data from events
happened far in the past which are likely to be less representative
of present market conditions. Hence, methods ranging from shrink-
age (Ledoit & Wolf, 2003), to LASSO regularization (Friedman et al.,
2008; Tibshirani, 1996), and Monte Carlo based re-sampling (Carsey &
Harden, 2013; Manly, 2020) have been used to reduce this issue.

2.3. Non-stationarity and dynamic portfolio allocation

Assumptions regarding market stationarity and portfolio
re-allocation are often considered together, since multi-period invest-
ment is proven to be an effective solution to mitigate the effect of
Market turmoil. Several contributions have shown that dynamic re-
allocation brings improvements in the resilience to market volatility
with respect to the original single-period portfolio diversification meth-
ods (Berger & Ofek, 1995; DeMiguel et al., 2009; Schmitt, 2016).
Nonetheless, such methods still fail to address structured market move-
ments. Indeed, accounting for such changes requires to forecast the
future market state. Further studies on market states has been proposed
to model and predict the intrinsic properties of these dynamics, and two
main streams are discussed below. The first one uses Markov decision
process to model the transition probability between different market
regimes. Currently, Hidden Markov Model (HMM) has demonstrated
great efficiency and validity (Guo & Ching, 2021; Hamilton, 1989).
However, it often encounters problems mainly associated with the curse
of dimensionality, as the dimensionality of hidden states is linear to
the number of assets considered (Ang & Bekaert, 2003; Ramchand &
Susmel, 1998). On the other stream, researchers believe that market
comprises mixed multivariate distributions, and each state effectively
corresponds to a distribution. Hence, temporal clustering methods such
as Gaussian Mixture (Buckley et al., 2008; Ketter et al., 2009; Reynolds,
2009), K-Nearest Neighbours (KNN) (Delany, 2007; Kumar et al., 2018;
Nayak et al., 2015) have been applied for this purpose. Then, portfolios
can be re-adjusted according to the predicted state with a selected re-
allocation period. Yet, these methods often based on strong assumptions
and they are not originally designed for time-series, which results
issues e.g., Gaussian Mixture assumes Gaussian nature in all the base
distributions, and KNN overlooks temporal consistency between single
data point. This is also to some extent the approach of the decision-
theoretic Bayesian methods (Berry et al., 2010; Hee et al., 2016; Reyes
& Ghosh, 2013), such as the Black–Litterman model (Black & Litterman,
1991, 1992), which includes in the optimization a Bayesian prior on the
future state. The ICC-PO approach introduced in the present paper is in
the same line of temporal clustering methods just mentioned. However,
in our case the temporal clustering is the ICC method and we make no
3

use of Gaussian Mixtures.
The traditional Markowitz model optimizes on a single-period only,
and it relies heavily on the assumption of constant asset mean vec-
tors and covariance matrix. Therefore, this static and long investment
horizon is inadequate in a dynamic market place. Yet, the mean–
variance criteria inspires the development in multi-period dynamic
portfolio construction. The dynamic portfolio optimization field cur-
rently follows two main streams. A discrete-time model was proposed
by Samuelson in 1969 (Samuelson, 1969) and developed since by
Hakansson, Grauer and others (Grauer & Hakansson, 1993; Hakansson,
1971; Pliska, 1997). It separates an investment horizon into discrete
periods, and the portfolio can be reallocated at the end of each pe-
riod. In contrast, a continuous-time model was introduced by Merton
(1969a) in the same year, and together with further studies described
the continuous rebalancing of securities for a fixed planning hori-
zon (Bajeux-Besnainou et al., 2001; Karatzas et al., 1987; Merton,
1971).

The two alternative assumptions that are often made in dynamic
portfolio optimization problems are market completeness and invest-
ment horizon. A complete market is an approximation to the real
market where friction, transaction costs and asset liquidity exist, and
dynamic portfolio has to consider those real world factors (Björk, 1999;
Cox & Huang, 1989; Jiao & Pham, 2011; Merton, 1969b). A more ideal
scenario is instead the incomplete market where some conditions are
waived so that research can only focus on dynamic asset selection pro-
cess and ignore some practical issues (Bielecki & Jang, 2006; Brennan &
Xia, 2000; Jiao et al., 2013; Karatzas, 1989). Similarly, infinite horizon
is a naive assumption to finite horizon where investors will withdraw
investment with an exit time. The earlier pioneers (Cox & Huang, 1989;
Hakansson, 1971; Karatzas et al., 1987) in this field, such as Samuelson
(1969) and Merton (1969a, 1971), began with the infinite horizon
assumption, while later researchers in the 90s and the beginning of
the millennium (Castañeda-Leyva & Hernández-Hernández, 2005; Jiao
et al., 2013; Jiao & Pham, 2011; Zariphopoulou, 2001) led by He and
Pearson (1991) and Karatzas et al. (1991) started to introduce the finite
horizon into the problem.

2.4. Market states clustering

After the initial pitfall of Markov-Model-based methods (Ang &
Bekaert, 2003; Hamilton, 1989; Ramchand & Susmel, 1998), mainly
due to the curse of dimensionality, literature has started to look for
alternative methods to cluster similar temporal data points into a
same group based on certain comparison criteria (Khedmati & Azin,
2020). Such temporal clustering methods can mostly be divided into
two approaches: subsequent clustering and point clustering. Subsequent
clustering uses a sliding window to capture a period of data points
and analyse for recurrent patterns (Aghabozorgi et al., 2015; Zol-
havarieh et al., 2014). The four main methods of subsequent clustering
are: (i) hierarchical (Bhattacharjee et al., 2019; Navarro et al., 1997;
Zeitsch, 2019); (ii) partitioning (Dolnicar, 2002; Madhulatha, 2012);
(iii) density-based (Campello et al., 2013; Liu & Cao, 2020; Tigani et al.,
2019) and; (iv) pattern discovery (Ahn et al., 2005; Aitken et al., 1995;
Li et al., 2002). These method have all shown applicability to financial
data analysis and portfolio construction. An alternative approach is
point clustering that, instead of measuring spatial similarity between
two slices of time-series, it looks at each temporal point individually,
and assigns this multivariate observation to an appropriate cluster
based on distance metrics (Alkhatib et al., 2013; Cheng, 1995; Kanungo
et al., 2002). Hence, in point clustering, the choice of distance is core.
In macroeconomics, the market states are not the representation of
solely upward or downward trends of the market, but also the relative
dynamics of equity prices, which naturally makes correlations a conve-
nient choice of collective dynamics. A stationary correlation structure
was assumed as the common approach in the industry in the 90s (Black
& Litterman, 1992; Duffie & Pan, 1997a), which was, however, later

shown to be overly presumptive (Ang & Bekaert, 2002; Lin et al., 1994;
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Musmeci et al., 2016). Consequently, research has been devoted to
study time-varying correlations. Models, such as Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH) (Bollerslev, 1990)
and the Dynamic Conditional Correlation (DCC) (Engle, 2002) have
been proposed for simulating and predicting this dynamical correlation.
However, most of these models suffer from the curse of dimensionality
and can only be applied to a limited number of assets, as numbers of
parameters increases super-linearly with the number of variables.

In 2017, Hallac et al. proposed the Toeplitz Inverse Covariance
Clustering (TICC) (Hallac et al., 2018) algorithm, originally devised
for electric vehicles action sensor. It classifies states based on the
likelihood measures of short subsequences of observations and corre-
sponding sparse precision matrix. After clustering, the precision matrix
of each state is estimated under a Toeplitz constraint. Inspired by TICC,
Procacci and Aste in 2020 (Procacci & Aste, 2018) proposed a closed
related methodology names Inverse Covariance Clustering (ICC). This
approach provides a point clustering of observations also enforcing
temporal consistency by penalizing switching between states. The ICC
method also uses sparse precision matrices but sparsification is attained
via information filtering networks (see next Subsection). One main
advantage of ICC, compared to TICC, is its flexibility in the selection
of similarity measures. It was also stated in their original paper that
different clustering distances separate market states differently. For
example, likelihood distance distinguishes better with pre- and post-
crisis period, Euclidean distance discriminates well between bull and
bear states, and Mahalanobis distance is a mixture of the above.

2.5. Information filtering networks

Many computational methods employ sparse approximation tech-
niques to estimate the inverse covariance matrix. The sparsification
is effective because the least significant components in a covariance
matrix are often largely prone to small changes and can lead to insta-
bility. Sparsified models filters out these insignificant components, and
thus improve the model resilience to noise. A widely used approach
for inverse covariance sparsification is GLASSO (Friedman et al., 2008)
that uses 𝐿1 norm regularization. An alternative approach that uses
information filtering networks was shown to deliver better results with
lower computational burden and larger interpretability (Barfuss et al.,
2016). Information filtering network analysis of complex system data
has advanced significantly in the past few years. Its aim is to model
interactions in a complex system as a network structure of elements
(vertices) and interactions (edges). The first and best know approach
is the Minimum Spanning Tree (MST) that was firstly introduced by
Boruvka in 1926 (Nešetřil et al., 2001) and it can be solved exactly
(see Kruskal (1956) and Prim (1957) for two common approaches). The
MST reduces the structure to a connected tree which retains the larger
correlations. To better extract useful information, Aste and Matteo
(2017) and Tumminello et al. (2005) introduced the use of planar
graphs in the Planar Maximally Filtered Graph (PMFG) algorithm.
Recent studies have extended the approach to chordal graphs of flexible
sparsity (Massara & Aste, 2019; Massara et al., 2017). Research fields
ranging from finance (Barfuss et al., 2016) to neural systems (Teles-
ford et al., 2011) have applied this approach as a powerful tool to
understand high dimensional dependency and construct a sparse repre-
sentation. It was shown that, for chordal information filtering networks,
such as the Triangulated Maximally Filtered Graph (TMFG) (Massara
et al., 2017), one can obtain a sparse precision matrix that is positively
definite and has the structure of the network paving the way for a
proper 𝐿0-norm topological regularization (Aste, 2020). This approach
has been proved to be computationally more efficient and stable than
GLASSO (Friedman et al., 2008), especially when few data points are
4

available (Aste & Matteo, 2017; Barfuss et al., 2016).
2.6. Sparse inverse covariance for portfolio construction and market state
prediction

The application of sparse inverse covariance for portfolio construc-
tion has been recently introduced in the literature (Lee & Seregina,
2020; Millington & Niranjan, 2017; Yuan et al., 2020). The gen-
eral approach has been to make use of 𝐿1-norm regularization via
GLASSO (Friedman et al., 2008). In a recent paper the sparsification
methodology via information filtering networks, was applied to the
identification of inherent market states via ICC (Procacci & Aste,
2018). In a following paper, the sparsification with TMFG information
filtering networks was applied to the portfolio construction problem
revealing several advantages with respect to traditional mean–variance
methods (Procacci & Aste, 2021).

3. Methodologies

In the present paper we combine ICC clustering with market state
forecasting to be used for portfolio optimization. Let us list in this
Section the main methods we use in our approach.

3.1. Inverse covariance temporal clustering for portfolio optimization (ICC-
PO)

Let us consider a set of 𝑛 assets with 𝐫𝑡 ∈ R1×𝑛 the vector of returns at
time 𝑡. The corresponding vector of their expected values is 𝝁 = E(𝐫𝑡) ∈
R1×𝑛 and their covariance matrix is 𝜮 = E((𝐫𝑡 −𝝁)⊤(𝐫𝑡 −𝝁)) ∈ R𝑛×𝑛. The
CC clustering method depends on the choice of a gain function, 𝐺𝑡,𝑘,
hich is a measure which qualifies the gain when the time 𝑡 returns, 𝐫𝑡,

are associated with cluster 𝑘. Indeed, the ICC approach gathers together
in cluster 𝑘 observations that have the largest gain in such a cluster
with respect to any other cluster: 𝐺𝑡,𝑘 > 𝐺𝑡,ℎ for all ℎ ≠ 𝑘. For instance,
in Procacci and Aste (2018) it was used

𝐺𝐸𝑢
𝑡,𝑘 = −(𝐫𝑡 − �̂�𝑘)(𝐫𝑡 − �̂�𝑘)⊤ (1)

where �̂�𝑘 is the sample mean return computed form the observations
n cluster 𝑘. This gain is minus the square of the euclidean distance
etween the observation and the centroid of cluster 𝑘. A distance
ssociated with the likelihood for multivariate normal distributions is
nstead

𝑁𝑜
𝑡,𝑘 = 1

2
ln |Σ̂−1

𝑘 | − 𝑛
𝑑2𝑡,𝑘
2

, (2)

with

𝑑2𝑡,𝑘 = (𝐫𝑡 − �̂�𝑘)⊤Σ̂−1
𝑘 (𝐫𝑡 − �̂�𝑘) (3)

the Mahalanobis distance where Σ̂𝑘 is the sample covariance computed
orm the observations in cluster 𝑘. While for the multivariate Student-t

one has

𝐺𝑆𝑡
𝑡,𝑘 = 1

2
ln |Σ̂−1

𝑘 | − 𝜈 + 𝑛
2

ln(1 +
𝑑2𝑡,𝑘
𝜈

) (4)

where, in this case, Σ−1
𝑘 is the scale matrix, which is 1 − 2∕𝜈 times the

sample covariance when 𝜈 > 2 and the covariance is defined (note that
also Σ̂𝑘 in the expression for 𝑑2𝑡,𝑘 is the scale matrix, in this case).

We extensively tested all these gain functions observing that 𝐺𝐸𝑢
𝑡,𝑘 is

particularly efficient is selecting clusters with prevalence of positive or
negative returns but it is performing poorly in the portfolio optimiza-
tion problem. The normal and Student-t likelihood related gains have
similar performances, but 𝐺𝑆𝑡

𝑡,𝑘 turns out to be in average superior and
we adopted it for the experiments we present in this paper. We also
tested an hybrid distance 𝐺𝑡,𝑘 = 𝑐1 ln |Σ̂−1

𝑘 |−𝑐2𝑑2𝑡,𝑘 with the two arbitrary
constants, 𝑐1 and 𝑐2, that allow to gauge between the effects of the
determinant of the covariance (an entropic term) and the Mahalanobis
distance term. The measure of the determinant of a covariance is an

equivalent estimation of the differential entropy of the multivariate
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system, while Mahalanobis distance measures distance between points
and distributions.

ICC approach uses sparse inverse covariance that was shown to
improve considerably results over the full covariance. As sparsification
technique we used the sparse inverse constructed with TMFG infor-
mation filtering graphs (Massara et al., 2017) using the local–global
(LoGo) inversion procedure described in Barfuss et al. (2016), where
the elements of the inverse are computed by inverting local sample
covariance matrices from only four variables at the time and adding
them up. The result is a sparse inverse covariance with 3𝑛−6 non-zero
entries in the upper diagonal (instead of 𝑛(𝑛 − 1)∕2 in the full matrix).
Such a matrix is positively defined, if the number of observations is
larger than four, independently on the size of the whole matrix (𝑛× 𝑛).
Sparse portfolios are simply obtained by applying a portfolio optimiza-
tion method (see next subsection) with a sparse inverse covariance
instead of a full covariance as input.

A final key element of the ICC methodology is the temporal con-
sistency of the cluster that is imposed by penalizing frequent switches
between clusters. In this paper the penalizer parameter 𝛾 is estimated
n the train set through a grid search so that the average cluster
ersistence is of a given length (30 days in this paper).

The assignment of the temporal instance 𝑡 to a cluster number,
𝑡, is performed iteratively starting from an initial random cluster
ssignment. Specifically we evaluate the penalized gain

̃ 𝑡,𝑘𝑡 = 𝐺𝑡,𝑘𝑡 − 𝛾𝛿𝑘𝑡−1 ,𝑘𝑡 , (5)

nd assign observation 𝑡 to the cluster with largest penalized gain. In
he previous expression, 𝛿𝑘𝑡−1 ,𝑘𝑡 is the Kronecker delta returning one
f 𝑘𝑡−1 = 𝑘𝑡 and zero otherwise. After the assignment of the time-𝑡
bservation to a given cluster 𝑘𝑡, all cluster parameters (means and
ovariances) are recomputed with the new cluster assignments.

We then performed a mean variance portfolio optimization method
ndependently for each ICC state. Obtaining optimal weights associated
ith each temporal cluster. To apply effectively such optimized weights

o the portfolio problem we have to forecast the state that is most
ikely to be predominant in the future test set where the investment is
erformed. For this purpose we made use of the short term persistence
f such states and we assigned as most likely future state the one that is
redominant in the last part of the train set. In this paper we consider
wo clusters only.

.2. Portfolio optimization methods

Our proposed methodology is made of three main stages. First, we
se ICC for temporal clustering the train dataset into two market states.
econd, we forecast which of the two states will be predominant in the
uture, test dataset, where the investment is made. Third, we perform
ortfolio optimization using train data from the forecasted predominant
CC state. Our approach is, to large extent, agnostic to the kind of
ptimization adopted. In this paper, for the experiments, we used two,
ean–variance optimizations methods: 1. the Sequential Least Square
uadratic Programming approach and; 2. the Critical Line Algorithm
ethod. Let us briefly recall the basic elements of these two portfolio

ptimization methods.
For the experiments in this paper Markowitz’s optimal weights

an be computed with the python package ‘Numpy’ for direct matrix
ultiplication. The exact solution is shown in Appendix E. In the

iterature, this solution is referred to as ‘unconstrained’ because, beside
he normalization and average conditions, the weights have no other
onstraints. On the other hand, in some practical cases, one might want
o add further conditions to the weights. For instance, many real world
ituations do not allow short selling, which hence makes necessary to
mpose only positive weights in the range 𝑤𝑖 ∈ [0, 1]. This constrained
ptimization problem cannot be any longer analytically solved and
umerical optimization methods must be adopted.
5

a

Two numerical optimization methods have been adopted in the
xperiment. The sequential least square quadratic programming
SLS) (Boggs & Tolle, 1996; Kraft, 1988; Nocedal & Wright, 2006)
s considered to be one of the most efficient computational method
o solve general nonlinear constrained optimization problems. Jackson
t al. and Cesarone et al. demonstrate its effectiveness in finance (Ce-
arone et al., 2015; Jackson & Staunton, 1999). There is an easy-to-use
ackage implemented in Python’s SciPy.optimize library which we

applied in our experiments. The Critical Line Algorithm (CLA) is
an efficient alternative to the quadratic optimizer for mean–variance
model, as it is specifically designed for inequality portfolio optimiza-
tion. It was already originally introduced in the Markowitz Portfolio
Selection paper (Markowitz, 1952), and its computational implemen-
tation has become increasingly popular (Markowitz et al., 2020; Singh
et al., 2016). CLA also solves constrained problems with conditions in
inequalities, but unlike SLS, it divides a constrained problem into series
of unconstrained sub-problems. In our experiment, to compute CLA
optimization for portfolio selection, we leveraged the implementation
from the open-source portfoliolab Python library from Hudson and
Thames (Bailey & de Prado, 2013). A key drawback of CLA is called
the Curse of Markowitz, which is that a small change can lead to a
very unstable inverse covariance matrix calculation. Our employment
of sparse inverse covariance matrices via information filtering network
produces more robust results that are more resilient to noise produced
by small changes, and the overall model deliver better performances
with respect to the model with full inverse covariances. Mathematical
and algorithmic details of SLS and CLA are included in Appendix E for
reference.

In summary, these two portfolio optimization methodologies output
optimal portfolio weights 𝐖 from an input constituted of: (i) a set
of observations 𝐫𝑡; (ii) a vector of mean returns 𝝁; (iii) a covariance
Σ. As we shall see shortly, in our implementation these inputs are
provided in various combinations including selecting from ICC states
and sparsifying.

4. Implementation

4.1. Data

We carried out several experiments using historical financial time-
series data from three major capital markets: NASDAQ, FTSE and
HS300. We selected 100 stocks from each of these three markets during
the trading period between 01/01/2010 and 01/01/2020. For each
stock, we calculated the daily log-return, 𝑟𝑖(𝑡) = log(𝑃𝑖(𝑡))−log(𝑃𝑖(𝑡−1)),
using closing prices. For the 100 stocks, in the main paper, we selected
the largest market capitalization constituents but in the appendix we
repeat the experiments with random selection obtaining comparable
results.

We have performed sensitivity analysis on the number of stocks in
each case. The result suggests that the effectiveness of our proposed
method is consistent when the number of stocks is larger than 25.
The market state clustering algorithm, ICC, is a high dimensional
multivariate method, which is usually applied on a dataset with high
dimensionality. Therefore, the choice of 100 stocks in our experiment
is well justified.

4.2. Experiments

The optimal portfolio weights are obtained from the data in the train
set and performances are measured over the test set where portfolio
weights are left unchanged. As performance indicators, we compute
portfolio return, portfolio standard deviation (i.e. volatility) and Sharpe
ratio over the investment horizon (test period). We report the annual-
ized value of these quantities, estimated as the daily values multiplied
by

√

252. For statistical robustness, for each market, we compute the
bove portfolio performance indicators over 100 randomly chosen
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Fig. 1. The workflow schematics of ICC-PO, where S0 represents ‘Sparse 0’ state and
S1 represents ‘Sparse 1’ state. S0 is defined by the most abundant state among the
last 20 days of observations at the end of the train period. The optimal portfolio is
obtained by training the optimizer solely on concatenated S0 data from sub periods,
e.g., the two black-coloured sub periods labelled ‘S0’, and the performance is evaluated
in the testing period immediate after the training period.

consecutive train-test periods within the ten years dataset. Results are
reported for the mean performances and the 5%–95% quantile ranges
over such re-sampling.

The test set length (investment horizon) was established at 30 days
which is a reasonable value for practical applications, we however also
report in appendix results for horizons of 10, 20 and 100 days finding
consistent results. The train set length was established by performing
experiments with train sets of 𝐿 = 0.5, 1, 2, 3, 4 years. Fig. 2 reports the
annualized average Sharpe Ratio computed on the test set as function of
the train set length. One can observe from the top figure that the lengths
between one and two years yields to consistent good performances.
We adopted the period of 2 years as optimal compromise between
statistical robustness and best performances.

In the experiments outlined by Fig. 1, we first compute, on the
training set, the ICC time clusters assuming two states and Student-
t log-likelihood, Eq. (4) as gain function. The choice of two states is
for the seek of simplicity, we tested also 3 states obtaining inferior
but comparable results. We verified that Student-t likelihood is best
performing among the tested gain functions, in Appendix we report
results also for Normal log-likelihoods (Eq. (2)). The switching penalty
parameter 𝛾 in ICC was set so that the average cluster size is around 30
days, i.e. consistent with the 30-day investment horizon. This selection
of average cluster size and investment horizon is a somehow arbitrary
choice based on the effective threshold of the portfolio performance
measured by the Sharpe Ratio. We then labelled ‘Sparse 0’ the state
that is most abundant among the last 20 days of observations at the
end of the train period. Conversely, we labelled ‘Sparse 1’ the other.
The term Sparse is used to indicate that this portfolio uses sparse
inverse covariance. To set such a ‘prevalence period’ of 20 days we first
performed a grid search over the combination of training duration 𝐿 =
0.5, 1, 2, 3, 4 years, and using prevalence periods of 10, 20, 30, 100, 𝐿∕2, 𝐿
days. This search confirmed that small values of prevalence periods,
of 10, 20, 30 days, provide better results than larger prevalence periods.
We therefore set a prevalence period of 20 days as it provides the most
consistent results across the grid search and it is also consistent with
the length of the test set.

The bottom plot in Fig. 2 reveals that Sparse 0 has consistent better
performances over Full with, best results for training periods of one
year. Let us notice that, having a ICC average cluster size of 30 days,
it makes hard to cluster well a small training period of six months, and
often unbalanced clusters where one cluster dominates the period are
obtained. On the contrary, a large training duration (4 years) makes
the model prone to unnecessary patterns and noise, and in turn reduces
performance. Thus we chose 1 year as best compromise for the length
of the training set. In Appendices A and C we see that similar results
are obtained for the other two markets (FTSE, HS300).
6

We compute optimal portfolios using the two (SLS and CLA) opti-
mization methods. We trained each optimization method both on the
whole train dataset and, separately, on the two Sparse 0 and Sparse
1 states. We used the sample means for each of the respective sets
and either the ‘full’ sample covariances (Pearson’s estimate) or the
‘sparse’ sample covariances (TMFG-LoGo estimate Barfuss et al., 2016;
Massara et al., 2017). Therefore, for each optimization method we
have four optimized portfolios: two computed on the whole training set
and with full or sparse inverse covariance (named ‘Full’ and ‘Sparse’
respectively); two computed on the two ICC market states and with
sparse inverse covariance (named ‘Sparse 0’ and ‘Sparse 1’). For bench-
marking, these portfolios are also compared to a portfolio with equal
weights, 𝑤𝑖 = 1∕𝑛 named ‘Naive’. Overall, we have therefore 4 × 2 plus
1 differently optimized portfolios that are recomputed 100 times over
randomly sampled time-periods. Such optimized portfolio weights are
applied, for each of the three markets, to 100 most capitalized stocks.
In appendix we repeat the experiments for randomly selected stocks.

5. Results

5.1. Log-likelihood

We computed the daily Student-t log-likelihood, using Eq. (4), for
each of the 30-day investment horizon. Fig. 3, reports for the averages
of the differences for each day between the log-likelihood of Sparse 0
and full and also between Sparse 1 and full. The average is taken over
the 100 random re-sampling.

Fig. 3, shows mostly positive gains for Sparse 0 indicating that, for
most days across the investment horizon, it has larger log-likelihoods
than Full. Sparse 1 gain instead reveals mostly negative results against
full. This therefore indicates that while Sparse 0 is, in average, a better
model to describe the multivariate nature of the log-returns in the test
set with respect to Full; instead, Sparse 1 is in average worst. Since both
Sparse 0 and 1 were sparsified using TMFG, the difference between
them must therefore be a consequence of clustering. One might note
that, even though some Sparse 1 log-likelihoods gains are in the positive
domain, they anyway have smaller magnitudes than their Sparse 0
counterparts. This result clearly shows the effectiveness and importance
of considering market states.

Let us note that the two ICC clusters gather together observa-
tions that maximize in-sample log-likelihood in the respective clustered
periods. The fact that these models (i.e. in-sample means and covari-
ance) from these clusters still correspond to different log-likelihood
performances in the off-sample test set indicates that the states are
still relevant off-sample. Further, the better off-sample performances
of Sparse 0 state indicates predictability; i.e. if one state outperforms
another during the training period, it will remain better performing
throughout the test period. Furthermore, to illustrate the universality
of the log-likelihood results, we have included similar Student-t log-
likelihood (Appendix A) as well as Normal log-likelihood (Appendix C)
plots for random 100 stocks selections for all three major indices
(NASDAQ, FTSE, HS300), where similar patterns are observed.

5.2. Portfolio performance

We tested portfolio performances over 30-day investment horizon
for 100 largest market capitalization constituent stocks of NASDAQ
Composite computed with the four portfolio optimization methods, SLS
and CLA and using as inputs Full, Sparse, Sparse 0 and Sparse 1. We
also report the 1∕𝑛 Naive construction for benchmark. Tables 1 and
2 reports portfolio performances for the combination of portfolio con-
structions (column ‘Solver’) and inputs (column ‘State’). Performances
are quantified in terms of annualized portfolio return, annualized port-
folio standard deviation (volatility) and the annualized Sharpe ratio
over 30-day investment horizon. We report the 5% and 95% quan-
tiles and the means computed from the 100 random resampling of
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Fig. 2. Sharpe Ratio for portfolios with 100 largest market capitalization constituent stocks of NASDAQ Composite optimized using different training set durations. The top subplot
reports the average Sharpe Ratios (𝑆𝑅) with error bars reporting 1 standard deviation, for Full, Sparse, Sparse 0 and 1, statistics is on 100 training–testing periods chosen at
random within the 10 years dataset. The bottom subplot report instead the relative Sharpe Ratios between Sparse 0 and Full, 𝑆𝑅𝑆𝑝𝑎𝑟𝑠𝑒0∕𝑆𝑅𝐹𝑢𝑙𝑙 .
Fig. 3. Student-t log-likelihood for 100 largest market capitalization constituent stocks of NASDAQ Composite v.s. number of days in the test period after training. Each bar
represents the average gain of the Sparse 0 (green) or 1 (red) with respect to the Full in each day. Averages are over 100 re-samplings.
consecutive training-investment periods chosen at random within the
10 years dataset. The maximum returns and Sharpe Ratios, as well as
the minimum volatility, are highlighted in bold. Thus showing the best
performer in each market-solver combination. In addition, we highlight
the minimum 5th percentile returns to depict the state suffering the
least loss, and the maximum 95th percentile volatility to showcase the
most stable state in extreme market situations.

From the mean values reported in Tables 1 (Student-t log-
likelihood), we observe that Sparse 0 outperforms Full, and this
supremacy dominates for the two solvers. More specifically, Sparse 0
is on average 29.3%, 19.5% and 53.1% and 25.1% better in return,
volatility and Sharpe Ratio and Sortino Ratio than Full across all two
solvers. We observe instead that Sparse 1 is considerably worst than
Full indicating therefore that the significant gain of State 0 come
from filtering out the ‘disadvantageous’ Sparse 1 state rather than
sparsification. This is indeed confirmed by the small observed gains of
Sparse over Full. these results are confirmed by the analysis of the 5th
7

and 95th quantiles where we notice that Sparse 0 consistently achieves
the least minimum extreme loss and the least maximum extreme risk.
Specifically, Sparse 0 on average loses 66.0% less and is 13.6% less
volatile than Full on 5th percentile return and 95th percentile volatil-
ity respectively. In other words, the integrated clustering portfolio
optimization algorithm, ICC-PO, that we proposed can boost returns
with less risk than the traditional benchmark, as well as provide extra
resilience in extreme market situations.

To test the sensitivity of this method to the specific ICC clus-
tering gain function, we performed the same analysis using normal
log-likelihood gain function for ICC clustering. Results are reported
in Table 2. Consistently with the previous results, we observe 28.6%,
18.8% and 42.0% and 44.0% improvements in return, volatility and
Sharpe Ratio, with 73.1% and 10.2% gains in 5th percentile return
and 95th percentile volatility. The comparison illustrates a 11.1%
Sharpe Ratio improvement in Student-t log-likelihood and a 7.1% 5th
percentile return advance in Normal log-likelihood. In other words,
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Table 1
Portfolio performances obtained by using Student-t log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 30 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 30-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are 100 largest market
capitalization constituent stocks of NASDAQ Composite. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination,
while highlights in 5th return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio
and it is reported as benchmark.

Solver State Return (%) (5,95)th percentile Volatility (%) (5,95)th percentile Sharpe (5,95)th percentile Sortino (5,95)th percentile

1∕𝑛 Naive 14.46 (−36,55) 17.4 (14,28) 1.536 (−1.4,4.3) 2.379 (−1.3,4.6)

SLS Full 22.71 (−28,96) 19.5 (14,28) 1.627 (−1.4,5.4) 2.413 (−1.2,6.1)
SLS Sparse 21.81 (−23,74) 17.5 (14,26) 1.764 (−1.0,6.2) 2.506 (−1.4,6.8)
SLS Sparse 0 29.04 (−6,66) 16.0 (12,25) 2.478 (−0.3,6.9) 2.933 (−0.7,8.4)
SLS Sparse 1 5.35 (−49,57) 19.8 (14,34) 0.978 (−2.3,4.6) 1.299 (−2.7,4.7)

CLA Full 21.97 (−69,97) 19.5 (14,31) 1.541 (−2.1,6.5) 2.378 (−2.4,7.3)
CLA Sparse 22.27 (−32,85) 17.0 (12,27) 1.758 (−1.9,6.5) 2.521 (−1.4,6.3)
CLA Sparse 0 28.73 (−27,76) 15.8 (11,26) 2.372 (−1.5,7.6) 3.057 (−1.0,8.8)
CLA Sparse 1 12.48 (−57,86) 18.7 (12,32) 0.964 (−2.9,6.6) 1.533 (−2.6,6.3)
Table 2
Portfolio performances obtained by using Normal log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 30 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 30-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are 100 largest market
capitalization constituent stocks of NASDAQ Composite. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination,
while highlights in 5th return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio
and it is reported as benchmark.

Solver State Return (%) (5,95)th percentile Volatility (%) (5,95)th percentile Sharpe (5,95)th percentile Sortino (5,95)th percentile

1∕𝑛 Naive 14.46 (−36,55) 17.4 (14,28) 1.536 (−1.4,4.3) 2.268 (−1.1,4.6)

SLS Full 22.98 (−28,96) 19.3 (14,28) 1.667 (−1.4,5.4) 2.240 (−0.6,5.3)
SLS Sparse 21.96 (−23,74) 17.3 (14,26) 1.787 (−1.0,6.2) 2.346 (−0.4,6.3)
SLS Sparse 0 29.00 (−14,66) 15.9 (12,23) 2.260 (−0.8,4.6) 2.860 (−0.4,6.6)
SLS Sparse 1 6.84 (−43,63) 19.5 (14,30) 0.845 (−1.8,4.6) 1.536 (−1.6,3.7)

CLA Full 20.63 (−76,97) 19.5 (14,31) 1.456 (−3.0,6.5) 1.932 (−2.4,6.3)
CLA Sparse 21.15 (−53,85) 17.0 (12,27) 1.678 (−2.1,6.5) 1.958 (−2.4,6.3)
CLA Sparse 0 27.08 (−14,79) 15.6 (10,30) 2.175 (−0.7,6.6) 3.099 (−0.2,7.6)
CLA Sparse 1 11.54 (−69,77) 18.6 (14,36) 1.028 (−2.6,5.6) 1.136 (−2.9,5.3)
Student-t is a better model to the market and boosts portfolio perfor-
mance. However, Normal log-likelihood generates a higher resilience
to extreme loss. Since the average gain in return and volatility are
similar in the two cases, the performance difference should mainly
come from general upward-shifted ranges in the Student-t Sharpe Ratio.
Moreover, we also observe a higher improvement in Normal Sortino
Ratio than Student-t Sortino Ratio, which might be due to that the
downside deviation captured by Sortino Ratio reduces.

Similar tables of optimization results using 10, 20, 30 and 100-
day investment horizons, can be found in Appendix B for Student-t
log-likelihood and Appendix D for Normal log-likelihood. These experi-
ments were carried over randomly selected 100 stocks baskets (instead
of the 100 most capitalized ones); the set of 100 random stocks was
re-chosen for each of the 100 re-sampling. Most of the general patterns
found earlier still hold regardless of the length of the testing period and
underlying assets. The relative difference, namely, the gain between
Sparse 0 and Full remains roughly the same. This consistency further
confirms the generality of our ICC-PO model. In this case we report only
the percentiles of the performance measures because being re-sampled
on different constituents, mean values might be misleading.

6. Discussion

The results presented in Section 5.1 quantitatively demonstrate an
effective gain in log-likelihood after applying temporal ICC clustering
and computing the optimized sparse portfolio associated to the most
persistent ICC cluster in the last 20 days of training (the Sparse 0
portfolio). We highlighted that the additional gain in the ICC-PO con-
struction is mainly a consequence of the market states clustering and
only partially consequence of sparsification. These results are extremely
robust showing comparable patterns across experiments conducted for
three major capital markets, using two different solving methodologies,
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adopting four investment horizons and using both Student-t and normal
log-likelihoods gain functions (Appendices B and D). The results in
Appendices B and D obtained for 100 random stocks in the US, the UK
and the Chinese markets show a broader variability but overall well
aligned results. Our results also confirm the observation, by Procacci
and Aste (2021), that models with larger likelihood better solve the
portfolio optimization problem.

As for the analysis on the 100 NASDAQ’s most capitalized stocks,
also for the random selection and the three markets we observe that
the Normal log-likelihood, Sparse 0 is 33.8% less than Full in the 5th
percentile Return, whereas the Student-t log-likelihood is only 20.4%,
which illustrates that the Normal statistically loses less money in ex-
treme situations. Namely, it results that there are general advantages
in using Student-t over Normal log-likelihood, yet, the latter performs
a better at limiting risks. The edge in three main performance matrices
depicts the Student-t’s better market modelling property as suggested in
the literature, especially for limited sample daily log-return. In contrast,
the mere pitfall in risk measures may probably come from the fat-tail
nature of the Student-t distribution.

It is difficult to assess the efficiency of ICC-PO by direct comparison
to the literature, since our focused result is the relative difference
between Sparse 0 from Full. The most informative measurements to the
general performance used widely in the field of portfolio management
are Sharpe Ratio (the risk adjusted return), Jensen’s Alpha (the abnor-
mal return over the theoretical expectation), Treynor Ratio (the risk
adjusted excess return from a risk-free asset) and Roy Ratio (the risk ad-
justed excess return from the market index) (Narsoo, 2017). Literature
identifies that Sharpe Ratio at values around 1 is commonly considered
as the boundary between a good and bad investment strategy, while
Sharpe Ratio at values around 2 represents an excellent standard, and
3 and above are more likely to be achieved in a High Frequency Trad-

ing (HFT) strategy (Lo, 2002; Sharpe, 1994). During the 10-year we
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investigated the annualized Sharpe Ratio for NASDAQ-100, FTSE-250
and HS300 have been respectively equal to 1.77, 0.42 and 1.07 (Fiance,
0000a, 0000b; Zhang, 2020). While our results for the various portfolio
construction combinations generally lie in a reasonable range around
these values, we note that the average Sharpe Ratio of the Sparse 0
based on the 100 largest market capitalization stocks from NASDAQ
is 2.425, as well as 100 random stocks from NASDAQ is 2.132, from
FTSE is 1.682 and from HS300 is 1.814 greatly exceeding the index’s
performances.

In addition, we also report Sortino Ratio (Sortino & Price, 1994),
which is a variation of the Sharpe Ratio, as a risk-adjusted return
indicator. It uses asset’s downside deviation as opposed to the total
standard deviation of a portfolio in the Sharpe Ratio. It is obvious that
in all table, the Sortino Ratio of Sparse 0 is superior than others. Apart
from Sharpe Ratio for general performance assessment, risk is often a
critical consideration in portfolio investment due to the risk aversion
nature of investors and the quadratic utility function assumption. Two
widely used risk measures are value at risk (VaR) (Duffie & Pan, 1997b)
and probable maximum loss (PML) (Ramsey & Goodwin, 2019), which
are interpreted as the minimum and the maximum loss expected in
a portfolio over a time period. As a proxy combination of VaR and
PML, we reported the 5th percentile Return in the random re-sampling.
The observed general 66.0%, 49.8%, 21.6% and 32.4% reductions in
loss respectively for largest-market-capitalization NASDAQ, NASDAQ,
FTSE and HS300 are a highly significant result indicating likely large
improvements of both VaR and PML.

Lastly, as ICC-PO is computationally very efficient, it can be easily
re-run for every allocation window making dynamic portfolio alloca-
tion easy.

7. Conclusions

Portfolio optimization lays at the core of quantitative investment.
Automation in the dynamic allocation process is a challenging goal
with a large community of academics and practitioners dedicated to
this task which requires a precise and accurate modelling of the past
market performance and a predictive inference of the future market
state. However, it is never an easy task to predict the future, not to
mention doing so constantly. Explanatory as they are, only certain
signals possess the forecasting ability and normally only for a limited
period of time. Hence, the results of our proposed algorithm ICC-PO
are worth to be mentioned. Indeed, we improve the equal weight
benchmark by over 50% in Sharpe Ratio, obtaining a statistically more
robust and resilient investment performance especially in the extreme
market situations with large reductions in losses.

In this paper we demonstrated that markets can be classified in
different states with distinct statistical properties. By using two states,
classified and clustered using log-likelihood as gain function and sparse
inverse covariance estimation, we have shown that the two clustered
states continue to be distinguishable in log-likelihood after the train
(in-sample) period, with one having systematically larger log-likelihood
than the one computed from the whole, unclustered, training sample.
We have shown that the state with larger log-likelihood tends to be the
one also with largest likelihood in the last period of training, indicating
temporal persistence and providing a way for predictability of the
best performing state in the off-sample investment period. Portfolios
optimized with data from the best performing state’s cluster give signif-
icantly better results than portfolios constructed from the full dataset or
the other state. This also confirm the intuitive argument (see Procacci
& Aste, 2021) that a model with larger likelihood must perform better
for portfolio optimization purposes than a model with lower likelihood.
These results were tested extensively across a period of ten years, across
three different markets, with portfolios from two different optimizers,
with clustering from two different log-likelihoods, and both by using a
9

selected group of most capitalized stocks as well as by random picking t
a stock basket, given the number of stocks is relatively large as the
underlying ICC is most suitable in a high-dimensional space.

The choice of using two market states has been dictated by sim-
plicity. Future work will investigate the effect of the number of ICC
clusters on the results. Our results are based on a naive selection of
stocks from major indices. Hence, with a carefully designed portfolio
basket, as commonly done in industrial practices, we expect further
improvement of the results. Also a wider application in asset classes
is a straightforward extension of the method.
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ppendix A. Off sample log-likelihood and performances for
tudent-t log-likelihood construction

In this appendix we investigate the effect of the length of the train
et on the Sharpe Ratio performance and off-sample (test set) log-
ikelihood using 100 randomly selected stocks drawn from NASDAQ,
TSE and HS300. They are in the similar format as Figs. 2 and 3 and
emonstrate that identical patterns exist regardless underlying assets
nd capital markets. In Fig. 5, it is noticeable that the green bars in
eneral sit above 0 and the red are below 0, which indicates the Sparse
has better off-sample log-likelihood than the Full, as illustrated in

ig. 3. In this appendix we compute Student-t likelihoods (see Fig. 4).

ppendix B. Portfolio performances

In this appendix we extend the results in the main paper including
0, 20, 30 and 100-day investment horizons based on Student-t log-
ikelihood. Differently from the main text, portfolio are constructed
ith 100 random stocks drawn from NASDAQ, FTSE and HS300. They

erve as complement and comparison for Table 1. It is noticeable that
lthough shorter testing period yields numerically larger Sharpe Ratio
ue to a possible low Volatility and a overestimation of annualized Re-
urn on small sample, the relative difference, namely, the gain between
he Sparse 0 and the Full remains roughly the same. This consistency
urther confirms the generality of our model. Besides, the patterns in
hree tables are generally consistent to the findings in Section 5.2 (see
ables 3–10).

ppendix C. Normal log-likelihood: training duration and off-
ample log-likelihood

This Appendix C section includes Sharpe ratio against training du-
ation plots and off-sample Normal log-likelihood plots of 100 random
tocks drawn from NASDAQ, FTSE and HS300. They are in the similar
ormat as Figs. 2 and 3 and demonstrate that identical patterns exist
egardless underlying assets and capital markets. In Fig. 7, it is notice-
ble that the green bars in general sit above 0 and the red are below 0,
hich indicates the Sparse 0 has better off-sample log-likelihood than
he Full, as illustrated in Fig. 3 (see Fig. 6).
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Fig. 4. Sharpe Ratio for portfolios with constituent stocks of three indices optimized using different training set durations by using Student-t log-likelihood for ICC clustering.
The right subplot reports the average Sharpe Ratios (𝑆𝑅) with 1 standard deviation for states, statistics is on 100 training–testing periods chosen at random within the 10 years
dataset. The left subplot report instead the relative Sharpe Ratios between Sparse 0 and Full, 𝑆𝑅𝑆𝑝𝑎𝑟𝑠𝑒0∕𝑆𝑅𝐹𝑢𝑙𝑙 .
Fig. 5. Student-t log-likelihood for constituent stocks of (a) NASDAQ, (b) FTSE and (c) HS300 Composite v.s. number of days in the test period after training. Each bar represents
the average gain of the Sparse 0 (green) or 1 (red) with respect to the Full in each day. Averages are over 100 re-samplings.
Appendix D. Off sample log-likelihood and performances for Nor-
mal log-likelihood construction

In this appendix we perform the same kind of investigations as in the
previous appendix but ICC is computed using Normal log-likelihood.
We notice similar patterns but the Student-t log-likelihood result are
10
more significant. However, the Normal log-likelihood performs better
in risk matrices.

Appendix E. Portfolio optimization

In the original Markowitz’s mean variance optimization ap-
proach, the portfolio weights 𝐖 = (𝑤 ,… , 𝑤 ) ∈ R1×𝑛 are chosen in
1 𝑛
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Table 3
Portfolio performances obtained by using Student-t log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 10 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 10-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are constituent stocks
of NASDAQ, FTSE and HS300. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination, while highlights in 5th
return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio and it is reported as
benchmark.

Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile Sortino (5, 95) percentile

NASDAQ 1∕𝑛 Naive (−171,206) (14.0,40.0) (−8.7,12.5) (−9.2,13.3)

NASDAQ SLS Full (−210,138) (13.0,69.0) (−7.2,9.1) (−7.9,9.0)
NASDAQ SLS Sparse (−213,122) (12.0,59.0) (−7.6,9.1) (−7.7,10.1)
NASDAQ SLS Sparse 0 (−157,125) (9.0,52.0) (−5.1,10.4) (−7.1,11.0)
NASDAQ SLS Sparse 1 (−352,153) (13.0,49.0) (−7.1,7.6) (−8.0,8.1)

NASDAQ CLA Full (−198,190) (13.0,57.0) (−6.6,10.1) (−7.1,10.5)
NASDAQ CLA Sparse (−172,223) (13.0,51.0) (−8.4,10.3) (−7.9,9.7)
NASDAQ CLA Sparse 0 (−181,185) (10.0,49.0) (−5.2,13.4) (−6.0,13.9)
NASDAQ CLA Sparse 1 (−198,200) (13.0,66.0) (−8.3,7.4) (−9.2,7.4)

FTSE 1∕𝑛 Naive (−125,140) (9.0,28.0) (−9.0,17.0) (−9.8,16.1)

FTSE SLS Full (−91,147) (7.0,27.0) (−8.1,20.5) (−8.2,19.5)
FTSE SLS Sparse (−89,125) (7.0,26.0) (−8.8,15.5) (−9.2,16.1)
FTSE SLS Sparse 0 (−64,150) (8.0,22.0) (−5.9,18.8) (−7.2,19.2)
FTSE SLS Sparse 1 (−113,116) (9.0,26.0) (−8.9,11.6) (−9.8,12.9)

FTSE CLA Full (−147,137) (8.0,22.0) (−6.9,17.6) (−7.6,17.1)
FTSE CLA Sparse (−138,122) (7.0,25.0) (−9.0,18.0) (−9.2,18.0)
FTSE CLA Sparse 0 (−119,129) (7.0,23.0) (−6.4,21.5) (−7.4,22.9)
FTSE CLA Sparse 1 (−171,149) (9.0,22.0) (−10.5,16.3) (−11.2,15.0)

HS300 1∕𝑛 Naive (−228,198) (10.0,60.0) (−7.7,10.8) (−8.2,10.1)

HS300 SLS Full (−250,216) (12.0,42.0) (−8.3,15.8) (−9.5,16.1)
HS300 SLS Sparse (−283,252) (11.0,44.0) (−8.1,15.3) (−9.4,16.1)
HS300 SLS Sparse 0 (−181,284) (11.0,46.0) (−6.0,16.0) (−7.2,17.3)
HS300 SLS Sparse 1 (−317,192) (13.0,58.0) (−7.9,9.9) (−7.9,8.3)

HS300 CLA Full (−250,216) (12.0,42.0) (−8.3,15.8) (−8.2,14.1)
HS300 CLA Sparse (−283,252) (11.0,44.0) (−8.1,15.3) (−7.2,14.1)
HS300 CLA Sparse 0 (−194,284) (11.0,41.0) (−4.9,14.2) (−4.2,15.5)
HS300 CLA Sparse 1 (−277,223) (13.0,53.0) (−9.2,8.6) (−9.0,8.9)
Table 4
Portfolio performances obtained by using Student-t log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 20 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 20-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are constituent stocks
of NASDAQ, FTSE and HS300. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination, while highlights in 5th
return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio and it is reported as
benchmark.

Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile Sortino (5, 95) percentile

NASDAQ 1∕𝑛 Naive (−112,180) (14.0,84.0) (−4.7,5.9) (−5.7,5.3)

NASDAQ SLS Full (−126,131) (14.0,85.0) (−4.4,6.5) (−5.5,6.5)
NASDAQ SLS Sparse (−133,127) (13.0,53.0) (−5.1,6.5) (−5.1,6.5)
NASDAQ SLS Sparse 0 (−124,120) (12.0,83.0) (−4.4,7.5) (−4.7,7.9)
NASDAQ SLS Sparse 1 (−198,78) (15.0,50.0) (−6.1,4.5) (−4.9,4.8)

NASDAQ CLA Full (−147,127) (13.0,84.0) (−4.7,5.4) (−4.9,6.9)
NASDAQ CLA Sparse (−149,135) (13.0,53.0) (−4.6,6.4) (−5.3,5.1)
NASDAQ CLA Sparse 0 (−101,144) (12.0,46.0) (−2.8,7.9) (−3.9,8.8)
NASDAQ CLA Sparse 1 (−187,88) (15.0,62.0) (−5.4,4.1) (−5.7,4.9)

FTSE 1∕𝑛 Naive (−77,111) (11.0,26.0) (−4.7,8.1) (−4.9,7.9)

FTSE SLS Full (−58,94) (9.0,26.0) (−4.5,11.4) (−5.7,11.3)
FTSE SLS Sparse (−59,95) (10.0,25.0) (−4.9,10.6) (−5.5,10.7)
FTSE SLS Sparse 0 (−39,96) (9.0,17.0) (−3.4,11.4) (−4.3,12.9)
FTSE SLS Sparse 1 (−72,75) (9.0,22.0) (−5.4,7.5) (−4.8,6.9)

FTSE CLA Full (−82,84) (10.0,25.0) (−5.6,10.3) (−4.1,11.9)
FTSE CLA Sparse (−62,81) (10.0,20.0) (−6.2,10.1) (−4.8,11.9)
FTSE CLA Sparse 0 (−59,79) (9.0,22.0) (−4.3,11.7) (−4.7,12.7)
FTSE CLA Sparse 1 (−100,80) (10.0,23.0) (−6.0,9.0) (−5.7,8.6))

HS300 1∕𝑛 Naive (−102,236) (11.0,44.0) (−4.4,9.3) (−5.7,8.9)

HS300 SLS Full (−133,246) (15.0,42.0) (−5.1,10.7) (−5.7,10.2)
HS300 SLS Sparse (−125,234) (14.0,42.0) (−5.0,10.3) (−5.6,10.5)
HS300 SLS Sparse 0 (−101,218) (13.0,40.0) (−2.8,11.3) (−2.7,13.9)
HS300 SLS Sparse 1 (−142,202) (13.0,46.0) (−5.2,7.9) (−5.7,7.8)

HS300 CLA Full (−133,246) (15.0,42.0) (−5.1,10.7) (−5.7,11.7)
HS300 CLA Sparse (−125,234) (14.0,42.0) (−5.0,10.3) (−5.7,11.4)
HS300 CLA Sparse 0 (−62,247) (12.0,41.0) (−2.8,10.2) (−3.6,12.1)
HS300 CLA Sparse 1 (−131,187) (14.0,48.0) (−5.0,8.2) (−5.6,9.9)
11
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Table 5
Portfolio performances obtained by using Student-t log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 30 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 30-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are constituent stocks
of NASDAQ, FTSE and HS300. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination, while highlights in 5th
return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio and it is reported as
benchmark.

Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile Sortino (5, 95) percentile

NASDAQ 1∕𝑛 Naive (−110,62) (13.0,35.0) (−4.5,5.7) (−4.9,6.5)

NASDAQ SLS Sparse (−133,115) (14.0,73.0) (−4.7,4.7) (−4.5,4.9)
NASDAQ SLS Sparse 0 (−99,112) (14.0,71.0) (−2.9,6.4) (−3.3,6.6)
NASDAQ SLS Sparse 1 (−128,72) (14.0,63.0) (−4.4,4.4) (−4.1,4.7)

NASDAQ CLA Full (−87,121) (16.0,69.0) (−3.0,5.8) (−3.2,5.6)
NASDAQ CLA Sparse (−86,130) (15.0,72.0) (−2.6,6.2) (−3.5,7.7)
NASDAQ CLA Sparse 0 (−40,134) (14.0,74.0) (−2.5,6.5) (−3.1,7.9)
NASDAQ CLA Sparse 1 (−101,86) (15.0,73.0) (−3.3,4.0) (−2.5,4.7)

FTSE 1∕𝑛 Naive (−69,90) (11.0,28.0) (−3.0,6.6) (−3.5,6.8)

FTSE SLS Full (−63,80) (10.0,26.0) (−4.7,8.0) (−4.5,7.7)
FTSE SLS Sparse (−56,73) (10.0,22.0) (−4.8,8.3) (−4.5,8.1)
FTSE SLS Sparse 0 (−52,87) (9.0,20.0) (−3.5,7.3) (−3.7,8.7)
FTSE SLS Sparse 1 (−68,62) (11.0,22.0) (−4.5,6.3) (−4.9,5.1)

FTSE CLA Full (−56,79) (10.0,24.0) (−4.8,8.0) (−4.4,9.7)
FTSE CLA Sparse (−53,73) (10.0,20.0) (−4.6,9.1) (−4.5,8.3)
FTSE CLA Sparse 0 (−47,72) (9.0,20.0) (−4.2,9.0) (−4.3,10.1)
FTSE CLA Sparse 1 (−81,64) (11.0,24.0) (−5.8,7.1) (−4.8,8.9)

HS300 1∕𝑛 Naive (−90,172) (11.0,38.0) (−3.3,7.1) (−4.4,6.9)

HS300 SLS Full (−127,173) (16.0,40.0) (−4.0,6.3) (−5.1,7.2)
HS300 SLS Sparse (−98,160) (15.0,36.0) (−4.1,7.2) (−4.5,7.7)
HS300 SLS Sparse 0 (−65,172) (13.0,43.0) (−2.9,7.3) (−3.2,7.7)
HS300 SLS Sparse 1 (−118,142) (15.0,45.0) (−3.8,5.7) (−4.6,6.9)

HS300 CLA Full (−127,173) (16.0,40.0) (−4.0,6.2) (−5.1,6.3)
HS300 CLA Sparse (−98,160) (15.0,36.0) (−4.1,7.2) (−5.0,6.7)
HS300 CLA Sparse 0 (−64,173) (13.0,38.0) (−2.7,7.4) (−4.5,6.9)
HS300 CLA Sparse 1 (−98,142) (15.0,36.0) (−4.2,5.4) (−4.9,6.0)
Table 6
Portfolio performances obtained by using Student-t log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 100 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 100-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are constituent stocks
of NASDAQ, FTSE and HS300. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination, while highlights in 5th
return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio and it is reported as
benchmark.

Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile Sortino (5, 95) percentile

NASDAQ 1∕𝑛 Naive (−167,172) (11.0,48.0) (−7.6,8.4) (−8.6,7.3)

NASDAQ SLS Full (−210,138) (13.0,69.0) (−7.2,9.1) (−6.6,8.2)
NASDAQ SLS Sparse (−213,122) (12.0,59.0) (−7.6,9.1) (−7.6,10.2)
NASDAQ SLS Sparse 0 (−189,160) (11.0,41.0) (−5.4,8.4) (−6.6,10.0)
NASDAQ SLS Sparse 1 (−290,114) (13.0,66.0) (−8.5,5.6) (−7.9,6.3)

NASDAQ Full (−198,190) (13.0,57.0) (−6.6,10.1) (−7.6,10.4)
NASDAQ CLA Sparse (−172,223) (13.0,51.0) (−8.4,10.3) (−7.6,10.4)
NASDAQ CLA Sparse 0 (−165,187) (11.0,46.0) (−6.1,14.2) (−6.9,15.4)
NASDAQ CLA Sparse 1 (−257,166) (13.0,62.0) (−6.8,6.6) (−7.5,8.4)

FTSE 1∕𝑛 Naive (−186,140) (8.0,22.0) (−10.3,23.0) (−9.6,20.4)

FTSE SLS Full (−91,147) (7.0,27.0) (−8.1,20.5) (−7.6,19.0)
FTSE SLS Sparse (−89,125) (7.0,26.0) (−8.8,15.5) (−10.6,16.4)
FTSE SLS Sparse 0 (−75,161) (7.0,21.0) (−7.4,29.2) (−8.6,28.4)
FTSE SLS Sparse 1 (−110,123) (9.0,27.0) (−9.5,13.6) (−9.6,14.4)

FTSE CLA Full (−147,137) (8.0,22.0) (−6.9,17.6) (−7.6,16.5)
FTSE CLA Sparse (−138,122) (7.0,25.0) (−9.0,18.0) (−9.5,17.2)
FTSE CLA Sparse 0 (−80,145) (8.0,23.0) (−5.7,24.2) (−7.2,23.5)
FTSE CLA Sparse 1 (−194,138) (9.0,25.0) (−12.0,16.3) (−11.5,17.3)

HS300 1∕𝑛 Naive (−228,198) (10.0,60.0) (−7.7,10.7) (−7.8,11.4)

HS300 SLS Full (−250,216) (12.0,42.0) (−8.3,15.8) (−6.9,15.5)
HS300 SLS Sparse (−283,252) (11.0,44.0) (−8.1,15.3) (−8.6,15.3)
HS300 SLS Sparse 0 (−237,249) (11.0,50.0) (−5.6,16.5) (−4.6,18.1)
HS300 SLS Sparse 1 (−237,193) (14.0,45.0) (−8.4,9.3) (−7.7,10.8)

HS300 CLA Full (−250,216) (12.0,42.0) (−8.3,15.8) (−8.1,15.5)
HS300 CLA Sparse (−283,252) (11.0,44.0) (−8.1,15.3) (−8.6,15.3)
HS300 CLA Sparse 0 (−186,298) (10.0,44.0) (−7.6,13.9) (−7.6,15.3)
HS300 CLA Sparse 1 (−302,186) (13.0,56.0) (−7.5,9.5) (−7.6,19.2)
12
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Fig. 6. Sharpe Ratio for portfolios with constituent stocks of three indices optimized using different training set durations by using Normal log-likelihood for ICC clustering. The
right subplot reports the average Sharpe Ratios (𝑆𝑅) with 1 standard deviation for states, statistics is on 100 training–testing periods chosen at random within the 10 years dataset.
The left subplot report instead the relative Sharpe Ratios between Sparse 0 and Full, 𝑆𝑅𝑆𝑝𝑎𝑟𝑠𝑒0∕𝑆𝑅𝐹𝑢𝑙𝑙 .
Fig. 7. Normal log-likelihood for constituent stocks of (a) NASDAQ, (b) FTSE and (c) HS300 Composite v.s. number of days in the test period after training. Each bar represents
the average gain of the Sparse 0 (green) or 1 (red) with respect to the Full in each day. Averages are over 100 re-samplings.
order to minimize portfolio’s variance 𝜎2𝑝 = 𝐖𝚺𝐖⊤ for a given value,
of the portfolio’s expected return 𝝁𝐖⊤ = �̄�𝑝. Specifically,

𝐖∗ = min
𝐖

𝐖𝚺𝐖⊤

s.t 1𝑊 ⊤ = 1,

and 𝝁𝐖⊤ = �̄�𝑝,

(6)

The exact solution can be obtained analytically by setting to zero the
derivatives with respect to 𝐖, using the Lagrange multiplier technique
13
to account for the constraints. Namely the minimum of the following
Lagrangian is computed

𝐿(𝐖, 𝜆) = 𝐖𝚺𝐖⊤ + 𝜆1𝝁𝐖⊤ + 𝜆21𝑊
⊤, (7)

and the solution is

𝐖∗ = 𝚺−1(𝜆1𝝁 + 𝜆21)⊤, (8)

where 𝜆 and 𝜆 are the Lagrange multipliers.
1 2
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Table 7
Portfolio performances obtained by using Normal log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 10 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 10-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are constituent stocks
of NASDAQ, FTSE and HS300. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination, while highlights in 5th
return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio and it is reported as
benchmark.

Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile Sortino (5, 95) percentile

NASDAQ 1∕𝑛 Naive (−171,206) (14.0,40.0) (−8.7,12.5) (−7.6,11.9)

NASDAQ SLS Full (−192,190) (13.0,57.0) (−5.4,10.1) (−5.7,10.3)
NASDAQ SLS Sparse (−160,223) (13.0,51.0) (−7.4,10.3) (−7.3,10.2)
NASDAQ SLS Sparse 0 (−144,174) (11.0,49.0) (−5.0,12.6) (−4.7,13.6)
NASDAQ SLS Sparse 1 (−181,218) (14.0,59.0) (−8.7,7.8) (−7.7,6.9)

NASDAQ CLA Full (−192,198) (13.0,57.0) (−5.4,10.1) (−4.7,10.1)
NASDAQ CLA Sparse (−160,223) (13.0,51.0) (−7.4,10.3) (−6.7,12.2)
NASDAQ CLA Sparse 0 (−169,171) (12.0,36.0) (−5.0,14.2) (−4.2,15.2)
NASDAQ CLA Sparse 1 (−256,144) (14.0,67.0) (−6.5,6.5) (−5.4,6.9)

FTSE 1∕𝑛 Naive (−161,117) (7.0,34.0) (−9.2,15.4) (−9.7,15.1)

FTSE SLS Full (−163,116) (8.0,28.0) (−8.7,14.1) (−9.7,15.6)
FTSE SLS Sparse (−148,108) (8.0,33.0) (−8.9,14.2) (−9.5,15.5)
FTSE SLS Sparse 0 (−111,138) (7.0,22.0) (−7.1,18.8) (−8.0,18.0)
FTSE SLS Sparse 1 (−199,118) (9.0,40.0) (−12.1,13.0) (−10.9,12.3)

FTSE CLA Full (−163,116) (8.0,28.0) (−8.7,14.1) (−6.9,14.5)
FTSE CLA Sparse (−148,108) (8.0,33.0) (−8.9,14.2) (−9.7,13.9)
FTSE CLA Sparse 0 (−111,146) (7.0,21.0) (−8.3,18.0) (−6.3,20.1)
FTSE CLA Sparse 1 (−176,123) (8.0,36.0) (−11.0,13.7) (−11.5,14.5)

HS300 1∕𝑛 Naive (−228,198) (10.0,60.0) (−7.7,10.8) (−8.2,11.9)

HS300 SLS Full (−250,216) (12.0,42.0) (−8.3,15.8) (−8.7,16.5)
HS300 SLS Sparse (−283,252) (11.0,44.0) (−8.1,15.3) (−8.1,16.5)
HS300 SLS Sparse 0 (−165,276) (11.0,42.0) (−5.6,15.2) (−6.3,16.5)
HS300 SLS Sparse 1 (−289,176) (13.0,44.0) (−8.3,7.9) (−8.7,9.5)

HS300 CLA Full (−250,216) (12.0,42.0) (−8.3,15.8) (−8.5,14.5)
HS300 CLA Sparse (−283,252) (11.0,44.0) (−8.1,15.3) (−9.1,16.2)
HS300 CLA Sparse 0 (−131,250) (11.0,45.0) (−5.3,18.8) (−5.7,19.8)
HS300 CLA Sparse 1 (−331,218) (12.0,58.0) (−8.9,9.9) (−7.9,10.0)
Table 8
Portfolio performances obtained by using Normal log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 20 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 20-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are constituent stocks
of NASDAQ, FTSE and HS300. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination, while highlights in 5th
return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio and it is reported as
benchmark.

Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile Sortino (5, 95) percentile

NASDAQ 1∕𝑛 Naive (−129,147) (14.0,36.0) (−4.9,7.8) (−4.5,8.1)

NASDAQ SLS Full (−147,124) (13.0,84.0) (−4.7,5.4) (−4.9,6.3)
NASDAQ SLS Sparse (−149,135) (13.0,53.0) (−4.6,6.4) (−5.1,7.4)
NASDAQ SLS Sparse 0 (−98,133) (12.0,64.0) (−3.7,8.4) (−4.2,9.8)
NASDAQ SLS Sparse 1 (−147,101) (14.0,71.0) (−5.6,5.3) (−5.9,6.8)

NASDAQ CLA Full (−147,127) (13.0,84.0) (−4.7,5.4) (−3.9,5.8)
NASDAQ CLA Sparse (−149,135) (13.0,53.0) (−4.6,6.4) (−5.2,6.8)
NASDAQ CLA Sparse 0 (−95,127) (11.0,51.0) (−3.1,7.8) (−3.9,89)
NASDAQ CLA Sparse 1 (−149,111) (14.0,69.0) (−4.8,5.5) (−4.2,5.8)

FTSE 1∕𝑛 Naive (−83,104) (10.0,32.0) (−6.9,9.1) (−5.4,8.8)

FTSE SLS Full (−79,100) (9.0,30.0) (−5.5,9.5) (−5.2,9.8)
FTSE SLS Sparse (−63,84) (9.0,27.0) (−5.6,9.6) (−5.4,9.8)
FTSE SLS Sparse 0 (−49,82) (9.0,27.0) (−5.7,11.7) (−5.9,12.8)
FTSE SLS Sparse 1 (−92,94) (11.0,34.0) (−5.6,8.0) (−5.9,9.8)

FTSE CLA Full (−79,100) (9.0,30.0) (−5.5,9.5) (−5.9,9.9)
FTSE CLA Sparse (−63,84) (9.0,27.0) (−5.6,9.6) (−4.6,10.0)
FTSE CLA Sparse 0 (−68,82) (9.0,23.0) (−5.2,10.7) (−5.8,11.8)
FTSE CLA Sparse 1 (−110,101) (9.0,29.0) (−7.3,8.3) (−8.1,8.9)

HS300 1∕𝑛 Naive (−102,236) (11.0,44.0) (−4.4,9.3) (−3.8,9.9)

HS300 SLS Full (−133,246) (15.0,42.0) (−5.1,10.7) (−5.1,10.2)
HS300 SLS Sparse (−125,234) (14.0,42.0) (−5.0,10.3) (−4.4,10.4)
HS300 SLS Sparse 0 (−92,231) (13.0,45.0) (−3.8,11.4) (−4.0,12.8)
HS300 SLS Sparse 1 (−143,204) (14.0,43.0) (−5.6,7.4) (−5.9,8.1)

HS300 CLA Full (−133,246) (15.0,42.0) (−5.1,10.7) (−5.9,9.9)
HS300 CLA Sparse (−125,234) (14.0,42.0) (−5.0,10.3) (−5.3,9.8)
HS300 CLA Sparse 0 (−94,223) (12.0,46.0) (−3.0,10.0) (−4.0,9.8)
HS300 CLA Sparse 1 (−146,209) (12.0,39.0) (−5.5,8.0) (−4.9,7.8)
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Table 9
Portfolio performances obtained by using Normal log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 30 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 30-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are constituent stocks
of NASDAQ, FTSE and HS300. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination, while highlights in 5th
return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio and it is reported as
benchmark.

Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile Sortino (5, 95) percentile

NASDAQ 1∕𝑛 Naive (−112,137) (15.0,41.0) (−3.3,7.0) (−3.0,7.9)

NASDAQ SLS Full (−105,113) (16.0,71.0) (−3.0,5.0) (−2.4,5.8)
NASDAQ SLS Sparse (−135,120) (15.0,73.0) (−3.2,5.5) (−3.0,6.0)
NASDAQ SLS Sparse 0 (−52,116) (12.0,78.0) (−2.6,5.6) (−2.3,6.6)
NASDAQ SLS Sparse 1 (−169,86) (16.0,74.0) (−3.9,3.3) (−3.0,4.0)

NASDAQ CLA Full (−105,113) (16.0,71.0) (−3.0,5.0) (−3.1,5.7)
NASDAQ CLA Sparse (−135,120) (15.0,73.0) (−3.2,5.5) (−3.3,6.2)
NASDAQ CLA Sparse 0 (−61,116) (14.0,71.0) (−2.5,6.2) (−3.0,7.5)
NASDAQ CLA Sparse 1 (−146,78) (15.0,79.0) (−4.1,3.7) (−4.3,4.0)

FTSE 1∕𝑛 Naive (−46,68) (11.0,31.0) (−3.0,5.7) (−3.1,7.1)

FTSE SLS Full (−45,75) (11.0,26.0) (−2.9,6.8) (−2.5,8.0)
FTSE SLS Sparse (−48,69) (11.0,24.0) (−3.3,7.7) (−3.9,7.3)
FTSE SLS Sparse 0 (−32,68) (11.0,21.0) (−2.6,8.2) (−2.3,9.2)
FTSE SLS Sparse 1 (−69,67) (11.0,29.0) (−3.8,6.6) (−3.0,6.4)

FTSE CLA Full (−45,75) (11.0,26.0) (−3.0,6.8) (−2.4,7.3)
FTSE CLA Sparse (−48,69) (11.0,24.0) (−3.3,7.7) (−2.3,8.0)
FTSE CLA Sparse 0 (−43,67) (11.0,22.0) (−3.0,7.6) (−4.3,10.0)
FTSE CLA Sparse 1 (−56,58) (12.0,29.0) (−3.2,5.3) (−4.3,6.0)

HS300 1∕𝑛 Naive (−91,165) (11.0,51.0) (−3.3,6.0) (−3.1,7.4)

HS300 SLS Full (−127,168) (16.0,42.0) (−4.0,6.3) (−3.8,7.6)
HS300 SLS Sparse (−94,163) (15.0,38.0) (−4.1,7.1) (−3.5,7.9)
HS300 SLS Sparse 0 (−78,182) (12.0,38.0) (−3.0,6.5) (−2.4,7.8)
HS300 SLS Sparse 1 (−121,135) (14.0,55.0) (−3.9,5.5) (−4.5,6.1)

HS300 CLA Full (−127,168) (16.0,42.0) (−4.0,6.3) (−4.2,8.0)
HS300 CLA Sparse (−94,163) (15.0,38.0) (−4.1,7.1) (−4.3,8.0)
HS300 CLA Sparse 0 (−54,165) (12.0,51.0) (−2.3,7.8) (−2.3,9.3)
HS300 CLA Sparse 1 (−110,138) (14.0,43.0) (−4.2,6.0) (−4.3,6.5)
Table 10
Portfolio performances obtained by using Normal log-likelihood for ICC clustering. We report annualized return, annualized volatility, annualized Sharpe Ratio and annualized
Sortino Ratio computed on 100 days investment period after the 1 year training set. The values are averages and 5th and 95th percentiles computed over 100-day investment
horizon from obtained from 100 re-sampling of consecutive training-investment periods chosen at random within the 10 years dataset. The underlying assets are constituent stocks
of NASDAQ, FTSE and HS300. Highlight in bold are return, volatility and Sharpe Ratio indicating the optimal state in each market solver combination, while highlights in 5th
return and 95th volatility showcase the extreme behaviours (excluding the state Market). The state 1∕𝑛 Naive is the equally weighted un-optimized portfolio and it is reported as
benchmark.

Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile Sortino (5, 95) percentile

NASDAQ 1∕𝑛 Naive (−25,42) (15.0,33.0) (−1.3,2.6) (−1.0,3.5)

NASDAQ SLS Full (−33,52) (17.0,53.0) (−1.4,2.8) (−1.5,3.9)
NASDAQ SLS Sparse (−24,56) (16.0,36.0) (−1.2,3.1) (−1.0,4.4)
NASDAQ SLS Sparse 0 (−17,38) (14.0,37.0) (−0.8,2.3) (−0.9,4.2)
NASDAQ SLS Sparse 1 (−41,51) (17.0,51.0) (−1.9,2.1) (−1.0,1.9)

NASDAQ CLA Full (−33,52) (17.0,53.0) (−1.4,2.8) (−1.5,3.9)
NASDAQ CLA Sparse (−24,56) (16.0,36.0) (−1.2,3.1) (−1.0,4.1)
NASDAQ CLA Sparse 0 (−24,52) (15.0,36.0) (−1.2,2.4) (−1.1,2.8)
NASDAQ CLA Sparse 1 (−34,34) (16.0,49.0) (−1.7,1.7) (−0.9,2.0)

FTSE 1∕𝑛 Naive (−37,49) (11.0,30.0) (−2.3,5.3) (−3.3,6.4)

FTSE SLS Full (−34,55) (11.0,26.0) (−2.2,5.0) (−2.4,5.6)
FTSE SLS Sparse (−38,55) (11.0,26.0) (−2.1,5.0) (−1.8,5.6)
FTSE SLS Sparse 0 (−27,44) (10.0,18.0) (−1.9,6.3) (−1.0,7.9)
FTSE SLS Sparse 1 (−39,59) (12.0,30.0) (−2.3,5.1) (−2.5,5.2)

FTSE CLA Full (−34,55) (11.0,26.0) (−2.2,5.0) (−2.3,6.3)
FTSE CLA Sparse (−38,55) (11.0,26.0) (−2.1,5.0) (−2.3,5.5)
FTSE CLA Sparse 0 (−28,57) (11.0,18.0) (−1.9,7.2) (−2.8,8.6)
FTSE CLA Sparse 1 (−45,44) (11.0,34.0) (−2.6,4.5) (−0.9,5.6)

HS300 1∕𝑛 Naive (−47,112) (15.0,51.0) (−1.9,5.0) (−2.8,6.9)

HS300 SLS Full (−68,77) (17.0,52.0) (−2.0,3.8) (−2.3,4.8)
HS300 SLS Sparse (−50,96) (16.0,43.0) (−1.8,4.9) (−2.4,5.6)
HS300 SLS Sparse 0 (−60,109) (15.0,46.0) (−1.8,5.5) (−1.0,7.0)
HS300 SLS Sparse 1 (−74,114) (17.0,48.0) (−2.0,4.1) (−2.3,4.6)

HS300 CLA Full (−68,77) (17.0,52.0) (−2.0,3.8) (−2.2,3.9)
HS300 CLA Sparse (−50,96) (16.0,43.0) (−1.8,4.9) (−2.3,5.3)
HS300 CLA Sparse 0 (−54,86) (15.0,51.0) (−1.4,5.3) (−2.1,5.8)
HS300 CLA Sparse 1 (−71,91) (17.0,46.0) (−2.0,4.3) (−2.5,4.9)
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The sequential least square quadratic programming (SLS)
(Boggs & Tolle, 1996; Kraft, 1988; Nocedal & Wright, 2006) is con-
sidered to be one of the most efficient computational method to solve
general nonlinear constrained optimization problems. Jackson et al.
and Cesarone et al. demonstrate its effectiveness in finance (Cesarone
et al., 2015; Jackson & Staunton, 1999). SLS solves the optimization
problem iteratively with a gradient descent strategy starting with an
initial setting 𝐖0, and updating 𝐖𝑘+1 from 𝐖𝑘 by:

𝐖𝑘+1 = 𝐖𝑘 + 𝛼𝑘𝐝𝑘 (9)

where 𝐝𝑘 is the search direction at the 𝑘th step and 𝛼𝑘 is the asso-
ciated step size. In each iteration, the descent search direction, 𝐝, is
determined by the solution of a sub-problem. Given the loss function

𝑓 (𝐖) = 𝐖𝚺𝐖⊤ (10)

that we want to minimize under a set of non-linear constraints 𝑔𝑗 (𝐖) =
0 for 𝑗 ∈ [1, 𝑚𝑒] and 𝑔𝑗 (𝐖) ≥ 0 for 𝑗 ∈ [𝑚𝑒 + 1, 𝑚], at each iteration,
the problem of finding the optimal descent direction can be addressed
by solving the standard quadratic programming sub-problem (Wilson,
1963):

𝐝𝑘+1 = min
𝐝

1
2
𝐝∇2𝐿(𝐖𝑘,𝝀)𝐝⊤ + ∇𝑓 (𝐖𝑘)𝐝⊤

s.t ∇𝑔𝑗 (𝐖𝑘)𝐝⊤ + 𝑔𝑗 (𝐖𝑘) = 0, 𝑗 = 1,… , 𝑚𝑒

∇𝑔𝑗 (𝐖𝑘)𝐝⊤ + 𝑔𝑗 (𝐖𝑘) ≥ 0, 𝑗 = 𝑚𝑒 + 1,… , 𝑚

(11)

where 𝐿(𝐖,𝝀) is the associated Lagrangian

𝐿(𝐖,𝝀) = 𝑓 (𝐖) −
𝑚
∑

𝑗=1
𝜆𝑗𝑔𝑗 (𝐖). (12)

A step size 𝛼 = 1 is optimal near a local optimum, but when far
from the optimum, the step size will need to be modified to guarantee a
global convergence. Han (1997), Hock and Schittkowski (1980), Powell
(1978) and Rockafellar (1973) have introduced the use of penalty
functions in the nonlinear programming to control the step size.

The Critical Line Algorithm (CLA) is an efficient alternative to
the quadratic optimizer for mean–variance model, as it is specifically
designed for inequality portfolio optimization. It was already originally
introduced in the Markowitz Portfolio Selection paper (Markowitz,
1952), and its computational implementation has become increasingly
popular (Markowitz et al., 2020; Singh et al., 2016). CLA also solves
constrained problems with conditions in inequalities, but unlike SLS,
it divides a constrained problem into series of unconstrained sub-
problems by invoking the concept of turning point. A turning point is a
constrained minimum variance portfolio whose vicinity contains other
constrained minimum variance portfolios of different free assets.

Similar to quadratic programming, an initial solution is required
on the constrained minimum variance frontier. To construct the initial
solution, assets are ranked with respect to their expected returns. Then,
one increases the weight of the first asset of the highest expected
returns, 𝑤1, from a defined lower bound 𝑙1 = 0 to an upper bound 𝑢1 if
𝑤1 ≤ 1. Subsequently, the following assets have their weights increased
until ∑

𝑖 𝑤𝑖 = 1. Typically, the weights of the first and the last few
assets are set to the upper and lower bound which are called bounded
assets, while only one in the middle has its weight between bounds and
referred as the free asset. The free weight is expressed as:

𝑤𝑓 = 1 −
∑

𝑖∈U
𝑤𝑖 −

∑

𝑖∈L
𝑤𝑖 (13)

where U and L represents two sets of upper and lower bounded
weights. Then in the following iterations, by decreasing the Lagrange
multiplier for the constraint on expected portfolio return, 𝜆 to move
to the next lower turning point, two cases need to be considered to
compute 𝐖. A formally free asset moves to its bound, or vice versa, a
bounded asset wants to become free. In both situations, the maximum
threshold 𝜆𝑖𝑛𝑠𝑖𝑑𝑒 and 𝜆𝑜𝑢𝑡𝑠𝑖𝑑𝑒 for the former and the later will be found.
16

Subsequently, the larger one characterizes the new turning point, and
the asset is moved accordingly, and weights are re-assigned. As the
free and bounded assets do not interchange between turning points, the
constrained solution between two turning points is in fact the solution
of unconstrained optimization on only the free assets. Therefore, the
constrained problem reduces to solving the unconstrained problem on
the free assets. When no new threshold can be found, the lowest turning
point is said to be reached and the algorithm is terminated for the
optimized 𝐖.
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