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A B S T R A C T   

With the advent of lithium-ion batteries (LIBs) and electric vehicle (EV) technology, the research on the battery 
State-of-Charge (SoC) estimation has begun to rise and develop rapidly. In order to objectively understand the 
current research status and development trends in the field of battery SoC estimation, this work uses an advanced 
search method to analyse the literature in the field of battery SoC estimation from 2004 to 2020 in the Web of 
Science (WoS) database. We employed bibliometrics analysis methods to make statistics on the publication year, 
the number of publications, discipline distribution, journal distribution, research institutions, application fields, 
test methods, analysis theories, and influencing factors in the field of battery SoC estimation. With using the 
Citespace software, a total of 2946 relevant research literature in the field of battery SoC estimation are analyzed. 
The research results show that the publication of relevant research documents keeps increasing from 2004 to 
2020 in the field of battery SoC estimation. The research topics focus on battery model, management system, LIB, 
and EV. The research contents mainly involve Kalman filtering, wavelet neural network, impedance, and model 
predictive control. The main research approaches include model simulation, charging and discharging data 
recording, algorithm improvement, and environmental test. The research direction is shown to be more and more 
closely related to computer science and even artificial intelligence (AI). Intelligence, visualization, and multi- 
method collaboration are the future research trends of battery SoC estimation.   

1. Introduction 

The environmental pollution caused by traditional energy is 
becoming more and more serious, accompanied by the issue of energy 
crisis [1]. Many countries have developed novel energy technologies to 
slow down global warming [1]. Battery technology has developed 
rapidly because of the capability of reducing carbon dioxide (CO2) 
emission to a certain extent [2–7]. The State-of-Charge (SoC) of the 
battery is an important indicator in the process of battery use [8–10]. It 
is essential to ensure the reasonable energy distribution and safety of the 
battery [11–13]. Therefore, the research on the SoC estimation of 

battery is significant for the long-term effective battery operation and 
the prevention of catastrophic accidents [14–18]. The accurate estima-
tion of SoC is important for battery safety [19,20]. As an essential index 
of the performance, the battery SoC estimation is defined as the avail-
able state of the charge remaining in the battery [8–10]. 

The battery SoC estimation has become a new research hotspot and 
continued to develop rapidly since 2004 [21,22]. The applications and 
expansion based on the battery SoC estimation are diverse and complex 
[6,23–26]. However, few existing publications show a detailed analysis 
of the current research status of battery SoC estimation from the year 
2004 to 2020. Therefore, scientometric research is needed to analyse the 
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trend and state-of-the-art research work on the battery SoC estimation. 
Chang W.Y. concluded four categories of mathematical methods for 

SoC estimation, which focused on summarizing and explaining the 
mathematical principles but ignored the influence of the battery model 
and environment [27]. Zhou et al. summarized the battery models and 
research progress of SoC estimation in which different SoC estimation 
methods were distinguished based on the battery model. Wang et al. 
introduced the details of battery model and SoC estimation method, 
while Po et al. gave a more unique summary on commercial SoC esti-
mation systems [15,28,29]. These papers intensively investigate the 
battery models for SoC estimation, however, various SoC algorithms and 
battery research are not comprehensively covered but focused too much 
on the role of SoC estimation in battery management system (BMS). 
Xiong et al. comprehensively described the SoC estimation methods and 
the classification of battery models especially on the inconsistency issue 
in battery packs and the approaches to resolve the problem [30]. The 
lack of scientific statistical methods could lead to more subjective con-
clusions, which may miss emerging research hotspots due to the huge 
amount of literature. Meng et al. provided a review and classification of 
methods for online SoC estimation only, but no comprehensive and 
systematic approach on SoC offline estimation [31]. Muhammad et al. 
mainly explained the working principle of lithium-ion battery (LIB) and 
the estimation algorithm of SoC, Rivera-Barrera et al. introduced the 
strengths and weaknesses of SoC estimation methods for online BMS, 
while Hannan et al. systematically evaluated different SoC estimation 
methods [29,32,33]. Hu et al. made a systematic analysis of state-of-the- 
art estimations for the first time but did not mention the SoC estimation 
method [34]. How et al. uniquely reviewed the strengths and weak-
nesses of SoC estimation from the model-based and data-driven per-
spectives [35], but the SoC algorithms were not well presented. Espedal 
et al. mainly described the challenges of modeling and SoC estimation 
caused by internal changes in LIBs [36]. Nevertheless, most aforemen-
tioned work only focused on the LIBs. Adaikkappa et al. presented 
various battery models and their corresponding characteristics, but the 
summary of the SoC estimation algorithm is not detailed enough [37]. 
Cui et al. reviewed the methods on the neural network estimation of SoC 
[38]. 

For the research on the battery SoC estimation, reviewing the 
research progress and the status of SoC estimation by counting all the 
literature to analyse the characteristics still needs the scientific approach 
to achieve. The scientific statistics on the literature in the field of SoC 
estimation is employed for the first time in this paper, and the relevant 
content such as literature keywords and subject distribution are used for 
realizing the development summary and trend prediction of SoC esti-
mation. Compared with the reviews published in the past, the present 
work achieves much rigorous and objective summary and accurate 
predictions for battery SoC estimation, and cover the application fields 
and descriptions of SoC estimation in a much comprehensive way 
through scientometric research and critical analysis. 

The reported work involved in this paper are scientific journals and 
conference articles of battery SoC estimation in the academic database 
Web of Science (WoS) from the year 2004 to 2020. The present work 
uses Citespace software to perform statistical analysis on trends in ac-
ademic journals, discipline distribution, journal distribution, research 
institution distribution, and research methods. It aims to review the 
publications that show the detailed analysis of battery SoC estimation 
research and provide research hotspots and development trends for re-
searchers in the field of battery SoC estimation, which could provide a 
detailed and comprehensive understanding on the current research 
status of battery SoC estimation. 

The review is organized into the following parts: Section 2 describes 
the methodology. Section 3 mainly analyzes core journals and confer-
ences from WoS, dominant source countries and organizations, core 
authors, and keywords by Citespace. Section 4 analyzes the experi-
mental methods and battery models used for SoC estimation research 
from the year 2004 to 2020. Section 5 derives the research content of 

battery SoC estimation based on the research objectives and technolo-
gies. The last Section summarizes the analytical results. 

2. Research methodology 

WoS is applied as the database in this work according to the 
authoritative and high-impact academic journals. The strategy of 
searching and analyzing relevant documents is critical due to multitu-
dinous academic publications on the battery SoC estimation. To ensure 
the quality of the searched literature and quick visualization, the search 
conditions were set as peer-reviewed English-language journals and 
conferences. The frame of the present work is shown in Fig. 1, in which 
Citespace was employed to analyse the reported work from WoS. 

3. Scientometric analysis 

3.1. Yearly quantitative analysis of academic publications 

2946 academic publications including journal articles and confer-
ence proceedings on battery SoC estimation from the year 2004 to 2020 
are analyzed as shown in Fig. 2. 

The result shows that the number of academic publications in battery 
SoC estimation has been steadily growing from 2004 to 2020, reflecting 
the genuine continuous need in the community. There are three main 
explode years of academic publications with an increment of 52.63 %, 
51.78 % and 78.82 % in 2008, 2012 and 2013, respectively. The 
launching of the world's first mass-produced plug-in hybrid vehicle 
based on lithium iron phosphate batteries in 2008 drove the develop-
ment of SoC technologies. In 2012 and 2013, the successful commer-
cialization of LIBs led to an increase in demand for battery SoC 
estimation. Since then, Kalman filter and neural network algorithms 
have started to be much widely applied to SoC estimation. 

3.2. Leading journals and conference proceedings 

The leading journals and conference proceedings could give a rapid 
understanding of the domain research. Table 1 and Table 2 show the 
leading journals and conference proceedings on the SoC estimation 
aspect from 2004 to 2021, respectively. The top three journals are 
JOURNAL OF POWER SOURCES, ENERGIES, and APPLIED ENERGY, 
while the top three conference proceedings are IEEE INDUSTRIAL 
ELECTRONICS SOCIETY, PROCEEDINGS OF THE AMERICAN CON-
TROL CONFERENCE, and ENERGY PROCEDIA. The results show that 
the publications of the battery SoC estimation research were mostly 
related to the power, energy, and control system. The lack of research 
content in this subsection will be supplemented later by keyword 
analysis. 

3.3. Timeline 

In the long history of battery SoC estimation, many scientists and 
researchers have contributed to the development of methods, models 
and algorithms. Some parts with important contributions to SoC esti-
mation are described as follows. 

In 1992, Aylor et al. introduced a lead-acid battery SoC indicator on 
electric wheelchairs, which combined the Open-Circuit-Voltage (OCV) 
method and the coulometric technique [13]. The study pointed out the 
direction in which SoC is needed to integrate into the battery monitoring 
system as a core part. 

In 2001, Pang et al. proposed the lead-acid SoC estimation algorithm 
based on an accurate battery model, minimizing undesired errors in SoC 
estimation when the current changes [11]. Besides, the estimation 
method for battery internal parameters was described in detail [11]. 
This was the first comprehensive introduction to the combination of 
model estimation and battery SoC algorithm. 

In 2003, Cai et al. proposed to integrate the artificial neural network 
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(ANN) and the fuzzy logic for the first time, presenting an adaptive 
neuro-fuzzy inference system (ANFIS) model to estimate the SoC of a 
high-power Ni-MH rechargeable battery. The study showed that the 
results were better than those acquired using the ANN when interpo-
lating [39]. 

In 2004, Plett et al. introduced that extended Kalman filtering (EKF) 
could fill the algorithmic requirements of a BMS for a hybrid-electric- 
vehicle (HEV) [40,41]. The principle of EKF for state and parameter 
estimations was interpreted and verified [40,41]. 

In 2005, Plett et al. also proposed the dual and joint EKF for esti-
mating SoC and State-of-Health (SoH) simultaneously, which proved 
that the capacity estimation can be well achieved by the dual EKF 
method [42]. 

In 2008, Lee et al. combined the dual EKF with the modified OCV 
method for SoC and capacity estimations for the first time, which 
overcame the variations in the conventional OCV method [10]. 

In 2009, Han et al. proposed an adaptive Kalman filter (AKF) for the 
SoC estimation of lead-acid batteries, which could reduce the SoC esti-
mation error compared the EKF method [43]. Then, Wang et al. proved 
that the AEKF for SoC estimation of a Ni/MH battery pack was effective, 
which could correct the initial SoC value by Ampere-hour (Ah) method 

and avoid filtering divergence [44]. 
In 2010, Hu et al. proposed an adaptive Luenberger observer for SoC 

estimation of a lithium-ion battery pack for EVs, which could converge 
the SoC estimation error into a favorable range such as within 2.5 % 
[45]. 

In 2011, He et al. proposed an adaptive extended Kalman filter 
(AEKF) based on an improved Thevenin model for battery SoC estima-
tion. The proposed method reduced the maximum SoC estimation error 
from 14.96 % to 2.54 %, and the mean SoC estimation error from 3.19 % 
to 1.06 % [46]. 

In 2012, Dai et al. proposed a dual time-scale Kalman filtering al-
gorithm to estimate the SoC of each cell of lithium-ion battery packs in a 
series-connected battery system, which could perform well even without 
the requirements of large-memory and high-quality CPU for the BMS 
[47]. 

In 2013, He et al. applied an unscented particle filter to the new 
working model for SoC estimation of LIBs, which provided better 
robustness with the considerations of temperature, charge-discharge 
rate, and running mileage [48]. 

In 2014, Kang et al. proposed a new model based on the radial basis 
function neural network (RBFNN) and cycle life model to estimate the 
SoC of an 6-Ah LIB, which controlled the mean absolute error (MAE) of 
SoC estimation to be under 5 % at different temperatures [20]. 

In 2015, Chen et al. integrated the robust sliding mode observer 
(RSMO) with the online parameter identification for a battery equiva-
lent circuit model (BECM) via applying the forgetting factor recursive 
least square (FFRLS) algorithm and the learning capability of RBFNN, in 
which the proposed RSMO is superior to conventional SMO for the SoC 
estimation in terms of accuracy and tracking capability [49]. 

In 2016, Sun et al. proposed a systematic SoC estimation framework 
for a multi-cell series-connected battery pack of EVs using the bias 
correction technique, which reduced the maximum absolute SoC esti-
mation error of all cells in the battery pack to be less than 2 % [50]. 

In 2018, Chen et al. found that multi-scale dual H infinity filters have 
better robustness and higher estimation accuracy than single/multi- 
scale dual Kalman filters [51]. 

In 2019, they proposed an improved neural battery model in which 
the SoC estimation errors could be maintained below 2 % after 
convergence by the EKF method [52]. 

In 2020, Deng et al. proposed that the data-driven methods were 
much superior to estimate the SoC of the battery pack. The estimation 
error based on the data-driven methods under different dynamic cycles, 
temperatures, aging conditions, and even extreme conditions could be 
lower than 3.9 % [53]. 

Fig. 1. Research approach for the battery SoC estimation.  
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Fig. 2. Variation of number of publication in battery SoC estimation from 2004 
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The timeline summary of landmark research on battery SoC esti-
mation shows that the accuracy has kept enhanced via developing novel 
methods and models throughout the years. As the chronological sum-
mary is lack of objective statistics of important research content, the 
analysis of keywords will be performed to demonstrate the details in the 

next Section. 

3.4. Keywords 

To have more comprehensive and accurate understanding on the key 
points and trends of research and development of battery SoC estima-
tion, keywords are analyzed as shown in Fig. 3. It is found that “model”, 
“management system”, “pack” and “lithium-ion battery” are with the 
highest co-occurrence frequency, which means that those keywords 
have strong correlations with the study of battery SoC estimation. 
Among those 4 keywords, “model” appears most frequently, which was 
the earliest research area in the community. The study of the model is 
classified into the construction of battery model and the determination 
of system model. The battery model is mainly constructed for “lithium- 
ion batteries”, “LiFePo4 batteries”, etc. The system model is mainly 
determined using “the extended Kalman filter method”, “neural network 
algorithm”, “genetic algorithm”, etc. It shows that “model predictive 

Table 1 
Journals publications in battery SoC estimation from 2004 to 2021.  

Journal title Number of 
articles 

%Total 
publications 

JOURNAL OF POWER SOURCES  215 12.04 % 
ENERGIES  186 10.41 % 
APPLIED ENERGY  105 5.88 % 
JOURNAL OF ENERGY STORAGE  91 5.10 % 
ENERGY  79 4.42 % 
IEEE ACCESS  76 4.26 % 
IEEE TRANSACTIONS ON VEHICULAR 

TECHNOLOGY  
56 3.14 % 

INTERNATIONAL JOURNAL OF ENERGY 
RESEARCH  

56 3.14 % 

IEEE TRANSACTIONS ON INDUSTRIAL 
ELECTRONICS  51 2.86 % 

IEEE TRANSACTIONS ON POWER 
ELECTRONICS  

37 2.07 % 

ELECTROCHIMICA ACTA  35 1.96 % 
IEEE TRANSACTIONS ON CONTROL SYSTEM 

TECHNOLOGY  
32 1.80 % 

JOURNAL OF THE ELECTROCHEMICAL 
SOCIETY  32 1.80 % 

APPLIED SCIENCES BASEL  25 1.40 % 
INTERNATIONAL JOURNAL OF 

ELECTROCHEMICAL SCIENCE  
25 1.40 % 

JOURNAL OF POWER ELECTRONICS  24 1.18 % 
IEEE TRANSACTIONS ON INDUSTRY 

APPLICATIONS  
21 1.00 % 

JOURNAL OF RENEWABLE AND SUSTAINABLE 
ENERGY  18 0.95 % 

BATTERIES BASEL  17 0.95 % 
ELECTRONICS  17 0.95 % 
IEEE TRANSACTIONS ON ENERGY 

CONVERSION  
17 0.95 % 

ENERGY CONVERSION AND MANAGEMENT  15 0.84 % 
IEEE TRANSACTIONS ON TRANSPORTATION 

ELECTRIFICATION  15 0.84 % 

INTERNATIONAL JOURNAL OF ELECTRICAL 
POWER ENERGY SYSTEMS  15 0.84 % 

JOURNAL OF CLEANER PRODUCTION  14 0.78 % 
MATHEMATICAL PROBLEMS IN ENGINEERING  14 0.78 % 
CONTROL ENGINEERING PRACTICE  12 0.67 % 
IET POWER ELECTRONICS  12 0.67 % 
IEEE TRANSACTIONS ON INDUSTRIAL 

INFORMATICS  11 0.62 % 

IEEE TRANSACTIONS ON SMART GRID  10 0.56 % 
IET ELECTRICAL SYSTEMS IN 

TRANSPORTATION  
9 0.50 % 

JOURNAL OF DYNAMIC SYSTEMS 
MEASUREMENT AND CONTROL 
TRANSACTIONS OF THE ASME  

9 0.50 % 

JOURNAL OF ELECTRICAL ENGINEERING 
TECHNOLOGY  8 0.45 % 

INTERNATIONAL JOURNAL OF HYDROGEN 
ENERGY  7 0.39 % 

MICROELECTRONICS RELIABILITY  7 0.39 % 
SUSTAINABILITY  7 0.39 % 
ELECTRIC POWER SYSTEMS RESEARCH  6 0.34 % 
ELECTRICAL ENGINEERING  6 0.34 % 
ENERGY STORAGE  6 0.34 % 
IONICS  6 0.34 % 
CHINESE JOURNAL OF MECHANICAL 

ENGINEERING  
5 0.28 % 

ELECTRONICS LETTERS  5 0.28 % 
ENERGY SCIENCE ENGINEERING  5 0.28 % 
IEEE TRANSACTIONS ON SUSTAINABLE 

ENERGY  
5 0.28 % 

INTERNATIONAL JOURNAL OF AUTOMOTIVE 
TECHNOLOGY  5 0.28 % 

JOURNAL OF ENGINEERING JOE  5 0.28 %  

Table 2 
Conference proceedings in battery SoC estimation from 2004 to 2021.  

Conference title Number of 
articles 

%Total 
publications 

IEEE INDUSTRIAL ELECTRONICS SOCIETY  52 4.20 % 
PROCEEDINGS OF THE AMERICAN CONTROL 

CONFERENCE  50 4.04 % 

ENERGY PROCEDIA  40 3.23 % 
IEEE VEHICLE POWER AND PROPULSION 

CONFERENCE  
37 2.99 % 

IEEE ENERGY CONVERSION CONGRESS AND 
EXPOSITION  

35 2.82 % 

IEEE CONFERENCE ON INDUSTRIAL 
ELECTRONICS AND APPLICATIONS  

27 2.18 % 

IEEE TRANSPORTATION ELECTRIFICATION 
CONFERENCE AND EXPO  26 2.10 % 

IFAC PAPERSONLINE  24 1.94 % 
ANNUAL IEEE APPLIED POWER ELECTRONICS 

CONFERENCE AND EXPOSITION APEC  
20 1.61 % 

CHINESE AUTOMATION CONGRESS  20 1.61 % 
CHINESE CONTROL CONFERENCE  20 1.61 % 
ADVANCED MATERIALS RESEARCH  19 1.53 % 
IEEE TRANSATIONS ON INDUSTRY APPLICATIONS  16 1.29 % 
APPLIED ENERGY  15 1.21 % 
APPLIED MECHANICS AND MATERIALS  14 1.13 % 
ASIA PACIFIC POWER AND ENERGY 

ENGINEERING CONFERENCE  
14 1.13 % 

IEEE TRANSPORTATION ELECTRIFICATION 
CONFERENCE AND EXPO ASIA PACIFIC  

14 1.13 % 

PROCEEDINGS OF THE IEEE INTERNATIONAL 
SYMPOSIUM ON INDUSTRAL ELECTRONICS  13 1.05 % 

2014 IEEE TRANSPORTATION ELECTRIFICATION 
CONFERENCE AND EXPO ASIA PACIFIC 2014  11 0.89 % 

8TH INTERNATIONAL CONFERENCE ON APPLIED 
ENERGY ICAE 2016  

11 0.89 % 

DESTECH TRANSACTIONS ON ENVIRONMENT 
ENERGY AND EARTH SCIENCES  

11 0.89 % 

IEEE CONFERENCE ON DECISION AND CONTROL  11 0.89 % 
INTERNATIONAL TELECOMMUNICATIONS 

ENERGY CONFERENCE INTELEC  11 0.89 % 

2017 CHINESE AUTOMATION CONGRESS CAC  10 0.81 % 
CHINESE CONTROL AND DECISION CONFERENCE  10 0.81 % 
2016 AMERICAN CONTROL CONFERENCE ACC  9 0.73 % 
EUROPEAN CONFERENCE ON POWER 

ELECTRONICS AND APPLICATIONS  
9 0.73 % 

JOINT INTERNATIONAL CONFERENCE ON 
ENERGY ECOLOGY AND ENVIRONMENT ICEE 
2018 AND ELECTRIC AND INTELLIGENT 
VEHICLES ICEIV 2018  

9 0.73 % 

JOURNAL OF POWER SOURCES  9 0.73 % 
2020 IEEE TRANSPORTATION ELECTRIFICATION 

CONFERENCE EXPO ITEC  
8 0.65 % 

IECON 2015 41ST ANNUAL CONFERENCE OF THE 
IEEE INDUSTRIAL ELECTRONICS SOCIETY  8 0.65 % 

IECON 2020 THE 46TH ANNUAL CONFERENCE OF 
THE IEEE INDUSTRIAL ELECTRONICS SOCIETY  8 0.65 %  
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Fig. 3. Scientific distribution map for keywords.  

Fig. 4. Keyword clustering analysis.  
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control” is the recent research hotspot, which indicates the future trend 
in model research. 

To further investigate the keywords in the research of SoC estima-
tion, top 10 of 26 clusters in total with the highest frequency are dis-
played in areas of different colors as shown in Fig. 4. The clustering is 
capable of analyzing research directions and hotspots in the field 
accurately. The algorithm for cluster analysis is Log-Likelihood Rate 
(LLR). 

The modularity and silhouette are two indicators to judge the 
effectiveness of cluster analysis. The structure of cluster analysis is 
considered as reasonable when the index exceeds 0.3. The modularity 
and silhouette are 0.6183 and 0.8211 in Fig. 4, respectively, showing the 
high reliability of cluster analysis. The first 10 categories are State of 
charge, State, Dual extended Kalman filter, Range estimation, Battery 
energy storage system, Fuel cell, EVs, Ni-MH battery, Wavelet neural 
network, and EKF. The number #0 - #9 represent that the number of 
keywords ranked from high to low. The Cluster #0 State of charge is the 
core research component and the year of starting this research is 1992, 
which belongs to the early research stage. It mainly focuses on the topics 
of EV, pack, management system, and parameter estimation. The Cluster 
#1 State includes the topics about the state of charge, state of health, 
impedance, and simulation. The Cluster #2 Dual extended Kalman filter 
involves the topics of OCV, degradation, capacity fade, and estimation. 
There is also the latest trend to combine the artificial neural network 
with this Cluster. The Cluster #3 Range estimation mainly focuses on the 
equivalent circuit, online estimation, and time constant. The equivalent 
circuit establishment is crucial to provide the battery parameters for SoC 
estimation. The online estimation takes into account the impact of 
temperature changes on the battery, while the time constant is the 
important indicator of the internal characteristics of battery. The Cluster 
#4 Battery energy storage system includes renewable energy, cycle life, 
and estimation algorithm, in which the average year is mainly in 2016. 
The Cluster #5 Fuel cell research involves optimization, strategy, and 
prognostics. The average year is 2015, which is the early stage. The 
Cluster #6 Electric vehicles (EVs) mainly includes filter research, elec-
trochemical model, energy, and observer. The filter is mainly used to 
better estimate the state of the EV such as position, SoC, etc., while the 
observer is mainly used to estimate the SoC. The Cluster #7 Ni-MH 
battery research mainly focuses on parameter identification, equiva-
lent circuit model, and diagnosis, in which the parameter identification 
is used to build accurate battery models. The Cluster #8 Wavelet neural 
network is the recent research hotspot, which contains particle filter, 
sliding mode observer, polymer battery, and health estimation. Particle 
filter is a generalized method of Kalman filter, which is mainly used to 
estimate the battery SoC in this field. The wavelet neural method is 
mainly used to estimate the state of the polymer battery. The Cluster #9 
EKF is an algorithm for the battery SoC estimation, which includes an 
unscented Kalman filter, adaptive Kalman filter, and the combination of 
the neural network. The frequency of the neural network reaches 67, 
which is the highest one in the EKF research, showing the research trend 
in this area. 

The cluster naming in Citespace is determined by the nominal terms 
extracted from the cited publications, which can be regarded as the 
future trend of the research. Research frontier is embodied in the doc-
uments forming the co-citation matrix and the clustering of keywords 
emerging in the cited documents. Therefore, the emerging clustering of 
research keywords is applied to determine the research frontiers in the 
field of battery SoC estimation. In order to identify and predict the latest 
evolution and development trend of battery SoC estimation research, the 
keywords with the strongest citation bursts are selected for analysis. 
Compared with high-frequency keywords in safe evacuation, keywords 
with the strongest citation bursts are much suitable for detecting 
emerging trends and sudden changes in the development of battery SoC 
estimation. Table 3 shows the top 30 keywords with the strongest cita-
tion bursts detected by the burst detection algorithm. 

Table 3 shows the keywords burst from 2004 to 2021, and the order 

of arrangement is sorted by the strength of the burst. Lead-acid battery, 
EV, Pack, Online state, Degradation, Management system, Sliding mode 
observer, Optimization, Particle filter, Lead-acid, and Capacity estima-
tion are the top 10 keywords with the strongest burst indicator. In the 
early stage, the research on the battery SoC estimation was mainly for 
lead-acid batteries, in which the burst is from 2004 to 2014. In the 
future, optimization, degradation, and unscented Kalman filter will be 
the new trend for battery SoC estimation because those keywords burst 
in recent three years. The online state is also an interesting topic with 
high burst in 2018 and 2019, in which the online state estimation could 
be useful for considering the environmental parameters in the field of 

Table 3 
Top 30 keywords with the strongest citation bursts (Red boxes represent the 
burst time from the beginning into the end while blue ones represent the time 
without burst). 

 

Keywords Year Burst 
Strength 

Begin End 2004-2021 

Lead acid 
battery  

2004  16.93  2004  2014  

  

Electric 
vehicle  

2004  15.51  2017  2018  

  

Pack  2004  11.31  2013  2014  

  

Online state  2004  8.91  2018  2019  

  

Degradation  2004  8.52  2019  2021  

  

Management 
system  

2004  7.06  2013  2015  

  

Sliding mode 
observer  

2004  6.98  2017  2018  

  

Optimization  2004  6.59  2019  2021  

  

Particle filter  2004  6.48  2016  2018  

  

Lead acid  2004  6.38  2010  2015  

  

Capacity 
Estimation  

2004  6.17  2012  2017  

  

Parameter 
estimation  

2004  5.86  2010  2018  

  

Polymer 
battery  

2004  5.76  2014  2016  

  

Battery 
management 
system  

2004  5.37  2006  2015  

  

Framework  2004  5.01  2017  2018  

  

LiFeO4 
battery  

2004  4.83  2016  2018  

  

Impedance  2004  4.64  2007  2016  

  

Li-ion battery  2004  4.6  2016  2017  

  

Predicting 
state  

2004  4.15  2010  2013  

  

Nickel metal 
hydride  

2004  4.07  2006  2013  

  

Cycle life  2004  3.94  2015  2016  

  

Intercalation  2004  3.91  2014  2015  

  

Capacity fade  2004  3.65  2006  2014  

  

Unscented 
kalman filter  

2004  3.62  2018  2021  

  

Vehicle  2004  3.49  2015  2017  

  

Equivalent 
circuit  

2004  3.41  2014  2017  

  

Adaptive 
state  

2004  3.37  2014  2016  

  

Electrode  2004  3.19  2009  2014  

  

Discharge  2004  3.17  2004  2010  

  

Behavior  2004  2.96  2015  2016  
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battery SoC estimation. In 2013, the research about the pack had a burst, 
which indicates that the SoC estimation of the battery pack has become a 
new research trend based on its high capacity, low cost, and other ad-
vantages. Besides, the impedance and parameter identification had long 
burst periods of 9 and 8 years from 2007 to 2016, and from 2010 to 
2018, respectively, which means that both are always the Research 
frontier. Based on the aforementioned analysis, the optimization, 
degradation, and unscented Kalman filter would become the future 
research frontier of battery SoC estimation, while the capacity estima-
tion and parameter identification would be the research focus of the 
unscented Kalman filter, and the impedance would be the focus of 
optimization and degradation. 

3.5. Countries 

Fig. 5 shows the distribution of published literature on battery SoC 
estimation research in various countries. There are 84 nodes in the 
graph, representing 84 countries, and the circular radius of the nodes 
represents the number of publications. In terms of the number of pub-
lications, China ranks the first globally with 890 articles in total. The 
USA (300 articles), South Korea (103 articles), and England (79 articles) 
also made a significant contribution to the field of battery SoC 
estimation. 

The burst index of citations indicates the frequency of publications in 
a particular country during a specific period, which could provide a 
reference for the trends and changes of countries/institutions/keywords 
in the field of battery SoC estimation. The top 25 countries with the 
strongest citation bursts are shown in Table 4. 

The top 10 countries with the strongest citation burst index would 
affect the direction of battery SoC research based on the high-frequency 
published articles. 

Taiwan, Iran, and South Korea have been working on battery SoC 
estimation research for longer time compared to other countries. The 
USA has the strongest citation burst index (17.83), showing that the 
research has been highly recognized by other countries. Since 2018, 
Pakistan, Algeria, Jordan, U Arab Emirates, and Sweden have begun to 
participate in the field of battery SoC estimation. Sweden ranks 8th with 
a citation burst index of 3, showing its strong competitiveness and great 
research potential in the field of battery SoC estimation. The country- 
wise analysis of the SoC estimation research combined with the infor-
mation of timeline and burst strength is conducive to academic 
communication and cooperation among researchers. 

4. Research approaches for battery SoC estimation 

Many experimental studies focus on the battery SoC estimation 
because the accurate prediction could allocate battery energy effectively 
and ensure battery safety [54–58]. The research approaches for inves-
tigating the battery SoC estimation mainly include battery model, al-
gorithm improvement, and experimental verification. The purpose of 
building a battery model is to simulate and predict the characteristics of 
the battery during the charging and discharging processes. Various al-
gorithms are developed to accurately calculate the SoC at a specific time 
through the external characteristics of the battery, such as current and 
voltage. The experimental method could verify and improve the devel-
oped battery model and algorithm, which is usually verified by dynamic 
charging and discharging tests. 

4.1. Battery models 

There are many approaches to classify the battery models. Here, the 
battery models are classified into 3 types: Equivalent circuit models 
[59–69], Black-box models [70–72], and Electrochemical models 
[73–82]. 

The Equivalent circuit models mainly include the internal resistance 
battery model (Rint), the resistance-capacitance battery model (RC), the 
Thevenin model, and the Partnership for a new generation of vehicles 
(PNGV model) [61,83]. The feature of the equivalent circuit models is to 
estimate battery SoC through the resistance, capacitance, and voltage 
characteristics. For example, Fig. 6 is a schematic diagram of the Rint 
model in which the voltage and current can be calculated by Eq. (1). 
Although the equivalent circuit model only simply simulates the internal 
changes of the battery through the parameters such as current, voltage 
and resistance, it is still widely used in SoC estimation due to its 
simplicity and accuracy. 

UL = UOC − ILR0 (1) 

Fuller et al. developed an electrochemical model for LIBs, which is 
based on the chemical processes that take place in the battery [84]. The 
models describe the chemical processes of battery with great details, 
however, the user has to set many battery-related parameters such as the 
electrodes thickness and the initial salt concentration in the overall heat 
capacity [81]. It is not user-friendly due to the complexity of parameter 
setting. Electrochemical impedance spectroscopy (EIS) is a non- 
destructive effective method to measure the parameters and dynamic 

Fig. 5. The network of countries.  
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behavior of battery [85]. At present, research on EIS mainly focuses on 
SoC prediction, electrode material analysis, lithium-ion deintercalation 
process, and solid electrolyte interphase (SEI) research, etc. [78,85]. 

Black-box models are developed with the advancement of computer 

software technology, which can be treated as data-driven approaches to 
estimate the battery parameters [20,86]. The techniques for black-box 
modeling can be divided into fuzzy-based estimation, fuzzy-based neu-
ral network, bio-inspired algorithm, and support vector machines. The 
input variables of the model can be selected from the elements that 
affect the battery performance, while the model output variables are the 
state characteristics such as SoC, capacity, etc. [14,87]. Fig. 7 shows the 
process for black-box modeling. The Black-box model can accurately 
describe the changes inside the battery in real-time through data 
training. Although there are still issues in the data acquisition and the 
fusion of algorithms, the black-box model is still the popular battery 
model in the research community. Its goal is to accurately reflect the 
changes inside the battery in real-time regardless of the type of battery 
and the level of battery power. 

The process of building the battery model is mainly divided into two 
types: offline and online. The main difference between them is the 
capability of reflecting the changes of battery internal parameters 
caused by the environmental factors to the model in real-time. It is 
tedious and costly to calibrate the parameters at every moment during 
the use of the battery [88–96]. Besides the high cost of online parameter 
identification and the high identification failure rate, the results of on-
line parameter identification are required to verify and compare with 
offline parameters [97–100]. Therefore, it is widely accepted to estab-
lish a battery model offline to simulate the behavior of the battery before 
charging and discharging [97,101–104]. Fotouhi et al. aimed at the issue 
of online parameter identification and focused on the cost and proper 
trade-offs between different methods and models with a unique 
perspective, and the proposed framework validated the key role of speed 
during the online parameter identification process [105]. A promising 
battery model could simulate changes of the internal characteristics in 
the battery to estimate the battery SoC [106–108], while the combina-
tion of simulation and battery model could simplify the process of 
investigation [109,110]. 

There are some software available to investigate and establish the 
battery models. ANSYS is good at performing module thermal simula-
tion and analysis of modules in battery packs. Zview is usually used to 
analyse and study the impedance of the battery to build an equivalent 
circuit model. Matlab Simulink is generally used to study the input 
current and output voltage of the circuit model. 

4.2. Algorithm and experimental verification 

It is necessary to combine algorithms with the developed battery 
model to estimate the SoC of the battery [111–113]. Currently, the ap-
proaches for estimating the SoC of batteries mainly include the OCV 
method, Coulomb counting method, Kalman filtering method, and 
neural network algorithm [113–115]. 

The OCV method is capable of estimating the SoC value from the 
measured OCV of the battery [26,114,116–120]. Since a long period of 
time is required to obtain a stable OCV value, the OCV method is not 
suitable for the SoC estimation when the battery current changes dras-
tically [121,122]. Nowadays, the Coulomb counting method is 
commonly used to estimate the SoC by integrating the load current 
against time [123–126]. However, the drawback origins from the diffi-
culty of automatic determination of the initial value of SoC, resulting in 
a large cumulative error [127]. The Kalman filtering method obtains the 
minimum variance estimation by a recursive algorithm according to the 
collected voltage and current [47,128–133]. Thus, this method exhibits 
the merits of avoiding the inaccurate estimation of the initial value of 
SoC and eliminating the cumulative error [129]. At present, the main 
trend of the Kalman filter algorithm is the in-depth study of unscented 
Kalman filters and the combination of the neural network model and the 
EKF method. [134–137]. 

The neural network method relies on a large number of samples for 
data training to achieve high accuracy [128,138–140]. With the 
advanced development of computing power and artificial intelligence, 

Table 4 
Top 25 Countries with the strongest citation bursts. 
Countries Year Strength Begin End 2004 - 2021 

USA 2004 17.83 2010 2015 

TAIWAN 2004 6.43 2005 2013 

FRANCE 2004 5.93 2016 2017 

JAPAN 2004 5.58 2014 2015 

SOUTH KOREA 2004 5.48 2007 2012 

SINGAPORE 2004 4.06 2014 2018 

IRAN 2004 3.75 2007 2013 

SWEDEN 2004 3 2018 2019 

AUSTRIA 2004 2.51 2012 2015 

EGYPT 2004 2.05 2015 2017 

PEOPLES R 

CHINA 
2004 2.04 2005 2007 

TURKEY 2004 2.03 2004 2007 

BELGIUM 2004 2.01 2011 2012 

DENMARK 2004 2 2019 2021 

SOUTH KOREA 2004 1.99 2006 2010 

BANGLADESH 2004 1.85 2017 2018 

JORDAN 2004 1.69 2018 2019 

NETHERLAND 2004 1.42 2015 2016 

FRANCE 2004 1.36 2006 2007 

JAPAN 2004 1.36 2006 2007 

U ARAB 

EMIRATES
2004 1.3 2016 2019 

ARGENTINA 2004 1.2 2009 2012 

PAKISTAN 2004 1.03 2018 2019 

ALGERIA 2004 1 2018 2019 

U ARAB 

EMIRATES 
2004 0.9 2018 2020 

Fig. 6. Equivalent circuit of Rint model.  
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the shortcoming of neural network algorithms has been resolved. At the 
same time, the neural network algorithm can reduce the battery model 
error to a certain extent with strong fault tolerance [87,141]. The 
integration of neural network algorithms with other algorithms will 
become a new trend in the future research of battery SoC estimation. 

At present, the experimental verification of battery SoC estimation is 
mainly realized by emulating the actual conditions of charging and 
discharging processes of the battery. In the research field of high-power 
batteries of EVs, according to road conditions of the country, it can be 
divided into New European Driving Cycle (NEDC), China Automotive 
Test Cycle (CATC), Urban Dynamometer Driving Schedule (UDDS), etc. 
There are no standardized conditions for the low-power battery SoC 
experimental verification, which is only divided into constant current 
charging and discharging and non-constant current charging and dis-
charging. The goal of performing the experiments is to verify the accu-
racy and stability of SoC estimation under different conditions. 

5. Research contents of battery SoC estimation 

5.1. Research objects 

The types of battery can be divided into primary battery and 
rechargeable battery. The research of battery SoC estimation are mainly 
based on rechargeable type that is roughly classified into lead-acid 
batteries [43,142,143], nickel-metal hydride batteries [144,145], 
lithium cobalt-acid batteries [146,147], lithium manganate batteries 
[148], lithium iron phosphate batteries [149], lithium‑sulfur (Li–S) 
batteries [150–152], ternary LIBs (nickel cobalt manganese lithium-ion 
batteries) [153–155], etc. 

In addition to the type of battery, there is a certain difference be-
tween the SoC estimation of the battery pack and the battery cell. The 
battery parameters of different batteries vary, which is called battery 
inconsistency. This would cause the modeling of the battery pack 
different from that of the battery cell, resulting in the derivation of ca-
pacity and SoC estimations [156,157]. As the SoC estimation is based on 
the accurate estimation of the battery capacity, the battery capacity 
estimation is also a key research content of the SoC estimation. 

5.2. Environments 

The main environmental factor affecting the battery SoC estimation 
is temperature [158]. In the battery management systems on mobile 
devices, EVs, and other devices, overheating or low temperature would 
cause adverse impacts on battery SoC estimation, resulting in serious 
security risks. 

The electrochemical reaction at the electrode/electrolyte interface is 
dependent of the ambient temperature [148]. For LIBs, the reaction rate 
of the electrode decreases along with the temperature [159]. This is 
because the viscosity of electrolytes increases and even partially solid-
ifies at low temperatures, leading to the increase of the charge transfer 
impedance and the decrease of the electrical conductivity of LIBs 
[159,160]. Provided that the battery voltage remains constant, the 
discharge current and the power output would reduce. The chain re-
actions would lead to the change in battery capacity at low tempera-
tures, making the battery SoC estimation much difficult. 

The high-temperature effect on the capacity is relatively complex, 
which depends on the types of batteries [161]. For example, lithium-ion 

migration speeds up at high temperatures such that the capacity of LIBs 
is slightly higher than that at the normal temperature [161]. For nickel- 
metal hydride batteries, the charging efficiency and battery life would 
greatly reduce as hydrogen storage electrodes decompose at high tem-
peratures [162]. No matter how the battery changes at high tempera-
tures, the estimation of battery SoC would be affected. The thermal 
runaway also leads to battery explosion. 

In light of the thermal effect, the influence of temperature on the 
battery is needed to consider in the process of battery SoC estimation. 
Currently, there are two main approaches: (1) Set the temperature as a 
regulating factor on the estimation of battery capacity because the ac-
curate battery capacity is a prerequisite for accurate estimation of SoC 
[148]; (2) add the influence of temperature into the process of battery 
model establishment, while the influence of temperature on the battery 
can also be involved through the online parameter identification [110]. 
In the future, the influence of temperature on battery SoC estimation will 
tend to be adjusted and simplified online. 

6. Conclusion 

The battery SoC estimation is of great significance for rationally 
distributing battery energy and ensuring battery safety. For example, 
with the rise of EVs, as a core component of the BMS, accurate and stable 
estimation of battery SoC ensure the safety of vehicles and drivers. This 
paper analyzes the knowledge base, research frontiers, and application 
trends of battery SoC estimation based on the WoS database. The 
research method is to conduct correlation analysis and processing of the 
literature using the Citespace. The research hotspots of battery SoC 
estimation is analyzed through co-citation theory and burst detection 
analysis. Through the visualization of research and analysis, the devel-
opment path and research trend of battery SoC estimation can be clearly 
and intuitively observed.  

1) The model, the model predictive control, and the neural network 
model are the research hotspot in the future. The management sys-
tem is the next popular topic, in which the core algorithm is the 
Kalman filter.  

2) In the battery SoC research field, the optimization, degradation, and 
unscented Kalman filter will be the future research frontier based on 
the burst detection analysis. For the unscented Kalman filter, ca-
pacity estimation and online parameter identification are the 
research focus. For the optimization and degradation, the impedance 
of the battery is critical for the model optimization and battery 
degradation.  

3) As shown in Fig. 4, dual EKF and EKF rank second and ninth among 
top 10 clusters, which indicates that EKF is critical in the battery SoC 
estimation. The future trend of the Kalman filter will be with mul-
tiple algorithms.  

4) The experimental verification of the battery SoC is divided into 
battery model verification and SoC estimation algorithm verification. 
The verification of the battery model tends to be intelligent by 
inputting the charging and discharging data into the simulation 
software. The verification of the battery SoC estimation algorithm 
depends on the type of battery, but the overall trend would be 
intelligent charging and discharging verifications combined with 
environmental factors. 

Fig. 7. Process flow of black-box modeling.  
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Though various models and algorithms have been developed, the 
online status of the battery is still required to further investigate with 
effective and accurate ways. Besides, the errors induced by current and 
voltage measurements and estimations, and the variation of capacity are 
still high, which could be further reduced by optimizing the data-driven 
method with machine learning involving data training and algorithm 
fusion. Improving the speed and accuracy of online parameter identifi-
cation based on artificial intelligence algorithms would also definitely 
become a research hotspot of battery modeling. Regarding the algorithm 
level of SoC estimation, the unscented Kalman filter, the dual Kalman 
filter, and the extended Kalman filter combined with the artificial in-
telligence (AI) neural network would be the other research hotspot. 
Improving and modifying the Kalman filter algorithms and combining 
them with AI neural networks are expected to improve the robustness 
and accuracy in the battery SoC estimation. Besides, a joint estimation 
algorithm for the battery status will be one of the future directions. Less 
research focus should be put on the SoC estimation for lead-acid batte-
ries and discharging conditions of batteries. 

Research on the SoC estimation will remain promising with high 
demands in the future. The challenge comes from the difficulty of the 
battery model describing the internal changes of the battery accurately 
and timely, which could be alleviated by combining the machine 
learning model with the online parameter identification. The combina-
tion of SoC estimation with other disciplines should also be an alterna-
tive promising pathway, such as the emerging ultrasonic detection of 
SoC of LIBs, which would be beneficial to developing sensor-based BMS. 
Overall, there are still rooms for further improvement on the research in 
the SoC estimation especially the real-time performance, accuracy, and 
burden of algorithm on the computer. 
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[29] J.P. Rivera-Barrera, N. Muñoz-Galeano, H.O.J.E. Sarmiento-Maldonado, SoC 
estimation for lithium-ion batteries: review and future challenges, Electronics 6 
(4) (2017), https://doi.org/10.3390/electronics6040102. 

[30] R. Xiong, et al., Critical review on the battery state of charge estimation methods 
for electric vehicles, IEEE Access 6 (2017) 1832–1843, https://doi.org/10.1109/ 
ACCESS.2017.2780258. 

[31] J. Meng, et al., An overview and comparison of online implementable SOC 
estimation methods for lithium-ion battery, IEEE Trans. Ind. Appl. 54 (2) (2017) 
1583–1591, https://doi.org/10.1109/TIA.2017.2775179. 

[32] M.U. Ali, et al., Towards a smarter battery management system for electric 
vehicle applications: a critical review of lithium-ion battery state of charge 
estimation, Energies 12 (3) (2019) 446, https://doi.org/10.3390/en12030446. 

[33] M.A. Hannan, et al., A review of lithium-ion battery state of charge estimation 
and management system in electric vehicle applications: challenges and 
recommendations, Renew. Sust. Energ. Rev. 78 (2017) 834–854, https://doi.org/ 
10.1016/j.rser.2017.05.001. 

[34] X. Hu, et al., State estimation for advanced battery management: key challenges 
and future trends, Renew. Sust. Energ. Rev. 114 (2019), 109334, https://doi.org/ 
10.1016/j.rser.2019.109334. 

[35] D.N. How, M.A. Hannan, M.H. Lipu, P.J. Ker, State of charge estimation for 
lithium-ion batteries using model-based and data-driven methods: a review, IEEE 

F. Yang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1007/s10098-014-0793-9
https://doi.org/10.1016/0378-7753(93)80132-9
https://doi.org/10.1063/1.3220701
https://doi.org/10.1016/S0378-7753(98)00210-9
https://doi.org/10.1016/S0378-7753(98)00210-9
https://doi.org/10.1016/j.enbuild.2018.09.026
https://doi.org/10.1016/j.enbuild.2018.09.026
https://doi.org/10.1109/PES.2011.6039733
https://doi.org/10.1007/s10008-017-3814-x
https://doi.org/10.1007/s10008-017-3814-x
https://doi.org/10.1016/S0378-7753(01)00560-2
https://doi.org/10.1016/S0378-7753(01)00560-2
https://doi.org/10.1109/TCST.2004.839571
https://doi.org/10.1109/TCST.2004.839571
https://doi.org/10.1016/j.jpowsour.2008.08.103
https://doi.org/10.1109/ACC.2001.945964
https://doi.org/10.1016/j.apenergy.2008.11.021
https://doi.org/10.1109/41.161471
https://doi.org/10.1109/41.161471
https://doi.org/10.1109/TIE.2010.2043035
https://doi.org/10.1088/0957-0233/16/12/R01
https://doi.org/10.1088/0957-0233/16/12/R01
https://doi.org/10.1016/j.jpowsour.2006.04.146
https://doi.org/10.1016/j.jpowsour.2006.04.146
https://doi.org/10.1016/j.jpowsour.2004.09.020
https://doi.org/10.1016/j.jpowsour.2004.09.020
https://doi.org/10.1149/1.2335951
https://doi.org/10.1149/1.2335951
https://doi.org/10.1016/S0378-7753(99)00079-8
https://doi.org/10.1016/j.apenergy.2014.01.066
https://doi.org/10.1109/JAS.2016.7508803
https://doi.org/10.1109/JAS.2016.7508803
https://doi.org/10.1109/ISIE.2012.6237284
https://doi.org/10.1016/j.applthermaleng.2020.115679
https://doi.org/10.1016/j.applthermaleng.2020.115679
https://doi.org/10.1016/j.simpat.2013.01.001
https://doi.org/10.1016/j.energy.2018.10.133
https://doi.org/10.3390/en9110900
https://doi.org/10.3390/en9110900
https://doi.org/10.1155/2013/953792
https://doi.org/10.1016/j.rser.2020.110015
https://doi.org/10.1016/j.rser.2020.110015
https://doi.org/10.3390/electronics6040102
https://doi.org/10.1109/ACCESS.2017.2780258
https://doi.org/10.1109/ACCESS.2017.2780258
https://doi.org/10.1109/TIA.2017.2775179
https://doi.org/10.3390/en12030446
https://doi.org/10.1016/j.rser.2017.05.001
https://doi.org/10.1016/j.rser.2017.05.001
https://doi.org/10.1016/j.rser.2019.109334
https://doi.org/10.1016/j.rser.2019.109334


Journal of Energy Storage 58 (2023) 106283

11

Access 7 (2019) 136116–136136, https://doi.org/10.1109/ 
ACCESS.2019.2942213. 

[36] I.B. Espedal, et al., Current trends for state-of-charge (SoC) estimation in lithium- 
ion battery electric vehicles, Energies 14 (11) (2021) 3284, https://doi.org/ 
10.3390/en14113284. 

[37] M. Adaikkappan, N. Sathiyamoorthy, Modeling, state of charge estimation, and 
charging of lithium-ion battery in electric vehicle: a review, Int. J. Energy Res. 46 
(3) (2022) 2141–2165, https://doi.org/10.1002/er.7339. 

[38] Z. Cui, et al., A comprehensive review on the state of charge estimation for 
lithium-ion battery based on neural network, Int. J. Energy Res. 46 (5) (2022) 
5423–5440, https://doi.org/10.1002/er.7545. 

[39] C. Cai, D. Du, Z. Liu, Battery state-of-charge (SOC) estimation using adaptive 
neuro-fuzzy inference system (ANFIS), in: The 12th IEEE International 
Conference on Fuzzy Systems 2, IEEE, 2003, pp. 1068–1073, https://doi.org/ 
10.1109/FUZZ.2003.1206580. FUZZ’03, IEEE, 2 (2003). 

[40] G.L. Plett, Extended Kalman filtering for battery management systems of LiPB- 
based HEV battery packs, J. Power Sources 134 (2) (2004) 277–292, https://doi. 
org/10.1016/j.jpowsour.2004.02.033. 

[41] G.L. Plett, Extended Kalman filtering for battery management systems of LiPB- 
based HEV battery packs, J. Power Sources 134 (2) (2004) 252–261, https://doi. 
org/10.1016/j.jpowsour.2004.02.033. 

[42] G.L. Plett, Dual and joint EKF for simultaneous SOC and SOH estimation, in: 
Proceedings of the 21st Electric Vehicle Symposium, Monaco, 2005, pp. 1–2. 

[43] J. Han, D. Kim, M. Sunwoo, State-of-charge estimation of lead-acid batteries using 
an adaptive extended Kalman filter, J. Power Sources 188 (2) (2009) 606–612, 
https://doi.org/10.1016/j.jpowsour.2008.11.143. 

[44] W. Junping, G. Jingang, D. Lei, An adaptive Kalman filtering based state of charge 
combined estimator for electric vehicle battery pack, Energy Convers. Manag. 50 
(12) (2009) 3182–3186, https://doi.org/10.1016/j.enconman.2009.08.015. 

[45] X. Hu, F. Sun, Y. Zou, Estimation of state of charge of a lithium-ion battery pack 
for electric vehicles using an adaptive Luenberger observer, Energies 3 (9) (2010) 
1586–1603, https://doi.org/10.3390/en3091586. 

[46] H. Hongwen, et al., State-of-charge estimation of the lithium-ion battery using an 
adaptive extended Kalman filter based on an improved Thevenin model, IEEE 
Trans. Veh. Technol. 60 (4) (2011) 1461–1469, https://doi.org/10.1109/ 
TVT.2011.2132812. 

[47] H. Dai, et al., Online cell SOC estimation of Li-ion battery packs using a dual time- 
scale Kalman filtering for EV applications, Appl. Energy 95 (2012) 227–237, 
https://doi.org/10.1016/j.apenergy.2012.02.044. 

[48] Y. He, et al., A new model for state-of-charge (SOC) estimation for high-power Li- 
ion batteries, Appl. Energy 101 (2013) 808–814, https://doi.org/10.1016/j. 
apenergy.2012.08.031. 

[49] X. Chen, et al., Robust adaptive sliding-mode observer using RBF neural network 
for lithium-ion battery state of charge estimation in electric vehicles, IEEE Trans. 
Veh. Technol. 65 (4) (2016) 1936–1947, https://doi.org/10.1109/ 
TVT.2015.2427659. 

[50] F. Sun, R. Xiong, H. He, A systematic state-of-charge estimation framework for 
multi-cell battery pack in electric vehicles using bias correction technique, Appl. 
Energy 162 (2016) 1399–1409, https://doi.org/10.1016/j. 
apenergy.2014.12.021. 

[51] C. Chen, R. Xiong, W. Shen, A lithium-ion battery-in-the-loop approach to test 
and validate multiscale dual H infinity filters for state-of-charge and capacity 
estimation, IEEE Trans. Power Electron. 33 (1) (2018) 332–342, https://doi.org/ 
10.1109/TPEL.2017.2670081. 

[52] C. Chen, et al., State-of-charge estimation of lithium-ion battery using an 
improved neural network model and extended Kalman filter, J. Clean. Prod. 234 
(2019) 1153–1164, https://doi.org/10.1016/j.jclepro.2019.06.273. 

[53] Z. Deng, et al., Data-driven state of charge estimation for lithium-ion battery 
packs based on gaussian process regression, Energy 205 (2020), 118000, https:// 
doi.org/10.1016/j.energy.2020.118000. 

[54] S.M. Rezvanizaniani, et al., Review and recent advances in battery health 
monitoring and prognostics technologies for electric vehicle (EV) safety and 
mobility, J. Power Sources 256 (2014) 110–124, https://doi.org/10.1016/j. 
jpowsour.2014.01.085. 

[55] L. Wang, Y. Cheng, X. Zhao, A LiFePO4 battery pack capacity estimation 
approach considering in-parallel cell safety in electric vehicles, Appl. Energy 142 
(2015) 293–302, https://doi.org/10.1016/j.apenergy.2014.12.081. 

[56] A. Jossen, et al., Reliable battery operation — a challenge for the battery 
management system, J. Power Sources 84 (2) (1999) 283–286, https://doi.org/ 
10.1016/S0378-7753(99)00329-8. 

[57] P.V. Chombo, Y. Laoonual, A review of safety strategies of a Li-ion battery, 
J. Power Sources 478 (2020), 228649, https://doi.org/10.1016/j. 
jpowsour.2020.228649. 

[58] S. Wang, et al., A novel safety anticipation estimation method for the aerial 
lithium-ion battery pack based on the real-time detection and filtering, J. Clean. 
Prod. 185 (2018) 187–197, https://doi.org/10.1016/j.jclepro.2018.01.236. 

[59] L. Zhang, et al., Comparative research on RC equivalent circuit models for 
lithium-ion batteries of electric vehicles, Appl. Sci. 7 (10) (2017) 1002, https:// 
doi.org/10.3390/app7101002. 

[60] X. Lai, et al., A comparative study of global optimization methods for parameter 
identification of different equivalent circuit models for Li-ion batteries, 
Electrochim. Acta 295 (2019) 1057–1066, https://doi.org/10.1016/j. 
electacta.2018.11.134. 

[61] H. He, R. Xiong, J. Fan, Evaluation of lithium-ion battery equivalent circuit 
models for state of charge estimation by an experimental approach, Energies 4 (4) 
(2011) 582–598, https://doi.org/10.3390/en4040582. 

[62] L. Zhang, et al., A comparative study of equivalent circuit models of 
ultracapacitors for electric vehicles, J. Power Sources 274 (2015) 899–906, 
https://doi.org/10.1016/j.jpowsour.2014.10.170. 

[63] G. Liu, et al., A comparative study of equivalent circuit models and enhanced 
equivalent circuit models of lithium-ion batteries with different model structures, 
ITEC Asia-Pac (2014) 1–6, https://doi.org/10.1109/ITEC-AP.2014.6940946. 

[64] X. Zhang, W. Zhang, G. Lei, A review of Li-ion battery equivalent circuit models, 
Trans. Electr. Electron. Mater. 17 (6) (2016) 311–316, https://doi.org/10.4313/ 
TEEM.2016.17.6.311. 

[65] S. Nejad, D.T. Gladwin, D.A. Stone, A systematic review of lumped-parameter 
equivalent circuit models for real-time estimation of lithium-ion battery states, 
J. Power Sources 316 (2016) 183–196, https://doi.org/10.1016/j. 
jpowsour.2016.03.042. 

[66] A. Seaman, T.-S. Dao, J. McPhee, A survey of mathematics-based equivalent- 
circuit and electrochemical battery models for hybrid and electric vehicle 
simulation, J. Power Sources 256 (2014) 410–423, https://doi.org/10.1016/j. 
jpowsour.2016.03.042. 

[67] X. Hu, et al., Charging time and loss optimization for LiNMC and LiFePO4 
batteries based on equivalent circuit models, J. Power Sources 239 (2013) 
449–457, https://doi.org/10.1016/j.jpowsour.2013.03.157. 

[68] A. Hentunen, T. Lehmuspelto, J. Suomela, Time-domain parameter extraction 
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