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Inferring the underlying processes that drive collective behaviour in biological
and social systems is a significant statistical and computational challenge. While
simulation models have been successful in qualitatively capturing many of
the phenomena observed in these systems in a variety of domains, formally
fitting these models to data remains intractable. Recently, approximate Bayesian
computation (ABC) has been shown to be an effective approach to inference if
the likelihood function for a model is unavailable. However, a key difficulty in
successfully implementing ABC lies with the design, selection, and weighting
of appropriate summary statistics, a challenge that is especially acute when
modelling high dimensional complex systems. In this work, we combine a
Gaussian process accelerated ABC-method with the automatic learning of
summary statistics via graph neural networks. Our approach by-passes the
need to design a model-specific set of summary statistics for inference. Instead,
we encode relational inductive biases into a neural network using a graph
embedding and then extract summary statistics automatically from simulation
data. To evaluate our framework, we use a model of collective animal
movement as a test-bed and compare our method to a standard summary
statistics approach and a linear regression-based algorithm.

1. Introduction
Understanding and predicting how complex interacting systems behave is a
long-standing challenge that is relevant in a range of application contexts from
bacterial movement [1] to political unrest [2]. A useful tool in the analysis of such
systems has been individual-based modelling (IBM). However, the strength and
form of the rules of interaction in such models is the key driver of the emergent
phenomena that arise and is often difficult or impossible to measure in real
systems. Fitting these models to data is therefore challenging and there is a trade-
off between model fidelity and tractability; mechanistic, high-fidelity models are
typically highly complex making it impossible to calculate the probability of
an empirical observation for a given parameter set (the likelihood). When the
likelihood is unavailable techniques involving simulation-based inference [3] are
required.

Recently, simulation-based inference methods have focused on the use
of approximate Bayesian computation (ABC) [4, 5] to estimate posterior
distributions of model parameters when the likelihood is unavailable or too
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computationally intensive to evaluate. ABC methods are
characterised by the use of summary statistics to compare
real and simulated data via some distance metric, then
employ rejection sampling based on this distance metric to
sample from the posterior.

While ABC has been successfully applied in a wide range
of applications, including systems biology, ecology, and
climate modelling [6], a major drawback of the method is
that it requires the use of informative summary statistics [7]
in order to accurately capture posterior distributions. In
scenarios where it is not a priori clear what summary
statistics are appropriate or how they should be weighted,
several methods have been proposed both to automatically
adjust and select summary statistics [8] and to extract
summary statistics from raw data [9].

In the context of interacting systems, extracting summary
statistics is especially challenging. This is due to the
nonlinear relationship between individual and group level
behaviours [10] and the need to map high-dimensional
microstates (i.e. small scale dynamics, location, orientation)
to an informative reduced dimensional representation [11].
Hence, any method employed to automatically extract
meaningful summary statistics for these types of systems
is required to efficiently process high-dimensional data and
effectively capture the nonlinear effects of varying model
parameters.

Deep learning [12, 13] is a natural choice for this
task as it is able to model complex patterns in data and
provides a framework for the introduction of inductive
biases that regularize model training. That is, they provide
structural ways to constrain parameter space and avoid
overfitting. The most common inductive biases used in
deep learning are imposed through the use of convolutional
neural networks [14] which make assumptions of locality
and translation invariance. Convolutional neural networks
have been tremendously successful in fields such as
computer vision, however require a Euclidean, or grid-
like, structure to the data. More recently, a class of models
have been introduced that can be applied to data with a
non-Euclidean underlying structure [15]. Specifically, graph
neural networks [16] have been developed for reasoning
about systems that consist of discrete entities (nodes) and
the interactions between them (their edges).

Given that complex, interacting systems, by definition,
consist of discrete entities that interact, it is reasonable to
assume that graph neural networks (GNNs) would be an
appropriate tool for the automatic extraction of summary
statistics to be used in an ABC scheme. In this work, we
develop such a method and apply it to synthetic data
generated from a simulation of collective animal movement.
To assess the performance of our method we compare
its accuracy to a standard ABC scheme, and a scheme
that derives summary statistics automatically using linear
regression [8]. We show that a GNN-based ABC approach
outperforms both methods when applied to the study of
interacting systems.

Conceptually our method builds upon three recent
developments in Bayesian inference and machine learning.
Firstly, we employ Gaussian process (GP) emulation [17]
and sequential history matching [18] to reduce the
computational burden of ABC and enable relatively
time-intensive neural network computations for each
approximate likelihood evaluation. Secondly, we make use
of the fact that the optimal choice of summary statistics
(in the sense of minimizing the quadratic loss) can be
obtained by using the posterior mean of the parameters
as the summary statistics [8]. Even though the posterior
means of the model parameters are not known, they can be
approximated by training a deep neural network to predict
model parameters based on simulation data [9]. Finally,
we note that GNNs impose relational inductive biases that
match the underlying network structure of the microscale
data and are therefore a natural choice for inferring the
parameters of individual-based models.

By combining and extending these previous works
we are able to develop a GNN-based ABC method
that accurately infers the posterior distributions of the
parameters of individual-based models. We demonstrate
and evaluate our method using a model of collective
movement but the method may be applied to any domain in
which individual-based simulation models are employed.

2. Background

(a) GP-accelerated ABC
A mathematical model of collective movement, like the one
described in Section 3(a), typically depends on a parameter
vector

θ = (θ1, . . . , θD). (2.1)

Bayesian inference proceeds by obtaining or sampling from
the posterior distribution p(θ|y) given observed data y. If
the prior distribution of parameters is given by p(θ) and
the likelihood function L(θ) = p(y|θ) is available in closed
form then the posterior distribution may be calculated by
application of Bayes’ rule,

p(θ|y) = p(y|θ)p(θ)
p(y)

. (2.2)

In some situations Eq. 2.2 is tractable and a closed form
expression for the posterior obtained. When Eq. 2.2 is
available subject to a normalizing constant then stochastic
sampling schemes, such as Markov chain Monte Carlo
(MCMC), can be employed to sample from the posterior
distribution. However, in many applications it is not
possible to compute the likelihood function L(θ) meaning
both direct computation of the posterior and stochastic
sampling are impossible. In such cases simulation-based
inference [3] is a powerful tool for inferring parameters
and quantifying uncertainty that expands the domain of
Bayesian inference to include scenarios where the likelihood
is unavailable but it’s possible to draw a parameter set
θ′ from the prior p(θ) and then generate a realization
from the model, y′ ∼ p(y|θ′) using a stochastic simulator.
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Simulation-based inference can be broadly classified into
two categories: density estimation methods [5], which
recently has included the use of normalizing flows [19], and
approximate Bayesian computation (ABC) [6].

In its simplest form, ABC employs rejection sampling to
sample from the posterior. A parameter set is drawn from
the prior, then the stochastic simulator is used to generate
y′. The parameter set is then retained as a sample from
the posterior distribution if the data generated from the
simulator y′ is sufficiently close to the actual empirical data
y, i.e. if ρ(y′,y)< ϵ where ρ is a distance measure and ϵ

is a tolerance. Hence, the likelihood is approximated by
the acceptance probability and the value of ϵ controls the
trade-off between speed and accuracy of the approximation.
In the limit ϵ→∞ the posterior is approximated by the
prior. In the limit ϵ→ 0 inference is exact but for continuous
data the acceptance probability also approaches zero. The
accuracy of standard rejection ABC is therefore dependent
on selecting a tolerance value that is as small as possible
given the constraints of computational resources.

In practice, this can be improved by mapping the
typically high-dimensional vector of the original model
outputs y to a lower-dimensional space of summary
statistics

S : Rn → Rk

y → S(y) =
(
S1(y), . . . , Sk(y)

)
(2.3)

where n and k are positive integers with typically k≪ n.
The acceptance criterion is now modified based on S(y):
a parameter set is drawn from the prior, the stochastic
simulator is used to generate y′, and the corresponding
parameter set is then retained in the sample if the vector of
summary statistics of the data generated from the simulator,
y′, is sufficiently close to the vector of summary statistics of
the empirical data y, i.e. if

ρ
(
S(y′),S(y)

)
< ϵ. (2.4)

If the vector of summary statistics is sufficient, then we
have the same convergence guarantees as before, i.e. in
the limit ϵ→ 0 the sample will converge in distribution
to the true posterior distribution. However, sufficiency is
a restrictive criterion that in real applications of complex
models is hardly ever satisfied. In practice, the choice of
summary statistics is typically heuristic, and the process is
approximate even in the limiting case ϵ→ 0.

Many improvements to ABC have been developed
that focus on more efficiently exploring the parameter
space in order to relieve the computational burden of
the method and reduce the required number of expensive
forward simulations of the stochastic simulator [20, 21].
In particular, improvements have aimed to develop more
efficient proposal schemes for new parameters, using
regression-based approaches [22], a modified Metropolis-
Hastings scheme [23], or integrating a sequential Monte
Carlo (SMC) sampling strategy [24] into the ABC scheme.
In addition, improved scheduling schemes for adapting the
decision threshold parameter ϵ have been developed [25].

Of particular interest to the present article is an approach
termed Gaussian process accelerated ABC (GP-ABC) [18],
which combines the ideas of ABC and statistical emulation
[26] to improve the efficiency of ABC by taking advantage of
the continuity and smoothness of the likelihood surface via
a combination of sequential history matching and statistical
emulation.

Given θ ∈RD , the GP-ABC method begins by sampling
N points across the D-dimensional parameter space using
a space filling design. Multiple forward simulations are
then performed for each of the sample points, the summary
statistic(s) are calculated from the simulation output, and
the approximate log-likelihood is calculated based on an
acceptance kernel and a distance metric. Details will be
discussed below; see (2.6). This first set of parameters make
up the first ensemble of points in the training set and are
associated with wave 1 of the inference procedure. A D-
dimensional GP is then fit to the log-likelihood values to
create an approximation to the true log-likelihood surface.

Wave 2 proceeds by continuing to sample using the
space-filling design and sampling a further N points from
the parameter space. Before running forward simulations
the plausibility of each point is assessed by using the GP
model from the previous wave. The GP model is employed
to predict the log-likelihood surface at the newly sampled
points and each point is only retained if it exceeds an
implausibility threshold given by,

m+ 3σ <LMAX − T, (2.5)

where m and σ2 represent the mean and the variance of
the prediction of the modelled log likelihood at the point
under consideration, LMAX is the maximum predicted log-
likelihood at the sample locations of the previous wave,
while T is a pre-specified threshold which determines how
stringently points are excluded from further consideration.

Sample points that do no meet the plausibility criterion
are discarded while remaining points are retained as the
sample locations for wave 2. As before, the simulator is
then employed to run multiple simulations for each sample.
The approximate log-likelihood values from these points are
then used as the basis for the wave 2 GP and the process is
repeated.

As each wave of the inference procedure is executed,
more training points are available for the GP regression
model. This leads to a more accurate GP model with
lower uncertainty which is then able to effectively rule
out regions of parameter space as implausible. Simulation
effort is therefore focused in regions of high likelihood.
Once a sufficient number of waves have been completed,
the GP model from the final wave is used to emulate
the approximate log-likelihood surface and becomes the
objective function for a standard MCMC sampling scheme.
MCMC sampling is rapid since no new forward simulations
are required at this point, instead the proposals are accepted
or rejected solely based on the GP model predictions.

As mentioned previously, calculating the approximate
log-likelihood values from forward simulation output is
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based on an acceptance kernel and a distance metric. As
in [27], here we employ a multivariate Gaussian acceptance
kernel and a distance metric based on derived summary
statistics. Hence, the approximate log-likelihood value
is given by an unbiased Monte Carlo estimate of the
acceptance probability for the parameter set,

L(θ′) = 1

M

M∑
i=1

π(S(y)− S(y′
i)), (2.6)

where π(.) is a multivariate Gaussian acceptance kernel, S(.)
is the projection of the full high dimensional data onto a
lower-dimensional vector of summary statistics, as defined
in (2.3), y is the empirical data, and y′

i is the simulation
output of the ith model simulation from M total replicates at
the parameter value θ′. These replicates reflect the stochastic
nature of the underlying model and formally constitute a
Monte Carlo approximation of the path integral over the
latent (stochastic) degrees of freedom.

We employ a Gaussian acceptance kernelN (0, ϵ), with a
diagonal covariance matrix where the width of the kernel ϵ
is set according to the standard deviation of the summary
statistics within the observed empirical data [28].

As mentioned above, the choice of summary statistics
S is mainly heuristic, and various schemes have been
proposed to improve their selection and weighting. In
what follows, we summarize the semi-automatic method
proposed in [8] and describe how we have integrated it into
our GP-ABC scheme. Starting from our initial space-filling
design, using e.g. a Saltelli sampler [29]

Ψ = {θ(1), . . . ,θ(N)} (2.7)

we run, for each of the parameter vectors θ(n) in turn,
n∈ {1, . . . , N}, a forward simulation from our model
to obtain a sample of model outputs {y′

1, . . . ,y
′
N}. We

map these model outputs into our summary statistics
{S(y′

1), . . . ,S(y
′
N )} and fit, for each of the parameters

θ1, . . . , θD from (2.1) in turn, the linear regression model

θi = ci + βT
i S(y) + ξi (2.8)

using least-squares, where ξi is some zero-mean noise, βi is
a parameter vector, ci is an intercept, and the superscript
T denotes matrix transposition. The intercept ci can be
neglected in practice as ABC only uses the difference in
summary statistics. This leads to the new vector of summary
statistics

S̃ = (S̃1, . . . , S̃D) =
(
βT
1 S(y), . . . ,βT

DS(y)
)

(2.9)

which replaces the original summary statistics S. Note that
(2.8) is not used as a direct parameter estimator, as the
corresponding function is not guaranteed to be injective.
Moreover, directly estimating the parameters based on (2.8)
would not allow the estimation uncertainty to be quantified.
As a final comment, it is straightforward to replace the
linear regression model of (2.8) by a more flexible non-
linear regression model, like a Gaussian process. See [30] for
details.

(b) Graph neural networks
Graph neural networks (GNNs) are a recent development
in the field of deep learning that can be used for
the analysis of data with a non-Euclidean underlying
structure [16, 31]. GNNs are a generalization of other types
of neural networks, such as convolutional or recurrent
neural networks, that relax the assumption of a Euclidean
structure to the data and can be applied to any data that can
be described as a graph.

By explicitly encoding a graph structure into the neural
network, a GNN imposes relational inductive biases into
the learning process [16] (that is, they impose constraints
on the possible relationships and interactions among the
entities in the system), and as a result these models are
significantly more efficient and less prone to over-fitting
than other approaches for processing graph-structured data
such as fully-connected networks. GNNs are therefore able
to learn the behaviour of more complex systems [32–34]
than would be achievable with other approaches.

Given a graph G= (V,E) where |V |=Nv is the number
of nodes (or vertices) in the graph, and |E|=Ne is the
number of edges, a GNN takes as input the graph G and
an associated set of node, edge and potentially graph-level
features. The GNN is trained to learn a sequence of message-
passing [35] steps, where information is passed between
nodes via the edges and the features of the graph are
updated. A layer implementing a single message-passing
step updates a node’s features x according to the update
rule,

x′
i = γ

(
xi,Fj∈Ni

ϕ
(
xi,xj , eji

))
(2.10)

where γ is a differentiable update function, ϕ is a
differentiable message processing function, F is some
aggregation function that combines the messages from
multiple neighbours (e.g. sum or mean), Ni is the
neighbourhood of node i, i.e. the set of nodes that share an
edge with node i, and eij is the feature vector associated
with the edge connecting nodes i and j.

The message passing framework may also be extended to
update edge features [34] and to incorporate and/or update
global, graph-level features via pooling [36] or broadcasting.
GNNs may be trained to perform node-level tasks, edge-
level tasks, or make graph-level predictions. In this work,
we focus on graph-level predictions and train a GNN to
predict the underlying parameters that created a given
microstate configuration.

3. Methods
Our methodology builds upon a combination of
Approximate Bayesian Computation (ABC) and statistical
emulation with Gaussian processes [18], using sequential
history matching to increasingly focus on the parameters
that achieve the best match with the data. An illustration
of the methodological framework is provided in Fig. 1.
Our work focuses on the key challenge of extracting
summary statistics from high-dimensional data (indicated
in Fig. 1 by dashed arrows). We automate the process of
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Summary statistics
S(y∗)

Simulation output
y∗

Empirical data
y

IBM
simulator Discrepancy

quantification
Summary statistics

S(y)

Model parameters
θ

Objective function
for inference

Figure 1. Conceptual illustration of the inference scheme. The collective movement model, defined in equations (3.1-3.5), and its parameters define an

individual-based model (IBM) simulator for generating microscale data y∗. We apply a pattern recognition operator to extract summary statistics from

these data. The same summary statistics are extracted from empirical data. A discrepancy operator quantifies the mismatch between summary statistics

from real and simulated data, which leads to the parameter dependent objective function (2.6) that is used for inference. There are various additional

methodological details that are not included in the figure. For inference we use a Gaussian process emulator, which in several waves of sequential history

matching increasingly focuses on the parameters that achieve the closest match. Summary statistics may be chosen in advance, based on domain

knowledge or the user’s intuition, and combined and weighted using linear regression. However, we propose a method for learning these summary

statistics directly from simulation data using a machine learning approach based on graph neural networks.

calculating summary statistics by employing a pre-trained
GNN thereby eliminating the need to handcraft reduced
dimensional representations of the data based on domain
knowledge or experimentation.

Our method therefore proceeds in three stages, firstly
we train the GNN on simulation data to obtain an
optimal encoder for ABC. We then use GP-based statistical
emulation and sequential history matching to create a
surrogate log-likelihood surface following the approach
of [18], as briefly outlined in Section 2(a) but using the
GNN to compute summary statistics. Finally, we sample
from the posterior distributions using a standard MCMC
sampler and the inexpensive surrogate log-likelihood.
Further details of the inference method and the synthetic
data generation process we use as a test bed for our method
are given in the following subsections.

(a) Simulation model
To assess the accuracy of the proposed inference framework
described in more detail in the next section, we use
the well established zonal interaction model from the
collective movement literature [37]. While our methodology
is not restricted to this application domain, collective
movement models are canonical examples of individual-
based models [38] that consist of multiple parameters and
display complex nonlinear behaviour as parameter values
are varied [39]. Hence, this represents an ideal test bed for
assessing our method.

The model simulates the movement of interacting
individuals moving at constant speed within a periodic,
two-dimensional domain. The model explicitly includes
three interaction zones: repulsion, alignment, and attraction,

with respective radii lr , lal and lat, and lr < lal < lat,
and a visual interaction angle va. We define three sets of
neighbours of a focal individual i,

nr
i = {j : |rj(t)− ri(t)|< lr,−va/2<∠ij < va/2}

nal
i = {j : |rj(t)− ri(t)|< lal,−va/2<∠ij < va/2}

nat
i = {j : |rj(t)− ri(t)|< lat,−va/2<∠ij < va/2} (3.1)

where ri(t) is the spatial location of individual i at time t,
and ∠ij is the relative angle of individual j calculated with
respect to the heading of individual i. The sets of neighbours
each give rise to a social direction vector, defined as

ur
i =−

∑
j∈nr

i

rj(t)− ri(t)

ual
i =

∑
j∈nal

i

dj(t)

uat
i =

∑
j∈nat

i

rj(t)− ri(t) (3.2)

where dj(t) is the direction vector of indvidual j. Next, a
desired heading vector ui is calculated for individual i using

ui =
ur
i

|ur
i |

(3.3)

if nr
i ̸= ∅, otherwise

ui =
ual
i

|ual
i |

+
uat
i

|uat
i |

. (3.4)

Once this socially-informed desired direction vector has
been calculated for individual i, the following update rule
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Figure 2. Panels (A)-(D): Four behaviours arising from different combinations of the zonal interaction model parameters, for different parameter

combinations of the alignment range, lal, and the attraction range, lal. Panel (A): swarm (lal = 0, lat = 15). Panel (B): toroidal (lal = 3, lat = 15). Panel

(C): dynamic parallel (lal = 10, lat = 10). Panel (D): concentrated parallel (lal = 20, lat = 10). All other parameters are fixed at vs = 3, va = 1.5π,

η= 0.9, lr = 1. Panels (E)-(G): The summary statistics in the lal − lat parameter space. Panel (E): order parameter. Panel (F): rotation parameter.

Panel (G):nearest neighbour distance.

is implemented to update its position and heading,

ri(t+∆t) = ri(t) + vsdi(t)∆t

di(t+∆t) = (1− η)
ui

|ui|
+ ηdi(t) (3.5)

where vs is the fixed speed of the individuals and η is
a directional persistence parameter which determines how
quickly individuals respond to social cues.

Simulations are run using N = 100 individuals with a
timestep of ∆t= 0.1. Sample configurations for different
values of the parameters can be found in Fig. 2.

For comparison with standard ABC methods, we extract
summary statistics manually from simulation output using
well known macroscale quantities [10, 39]. Firstly, we
use the order parameter, which is a metric of the global
alignment of individuals and is defined as,

1

N

∣∣∣∣∣
N∑
i=1

di(t)

∣∣∣∣∣ . (3.6)

The order parameter is equal to 1 for a fully-ordered system
and 0 for a completely disordered system. Our second
summary statistic is the group angular momentum [39, 40],

1

N

∣∣∣∣∣
N∑
i=1

ci(t)× di(t)

∣∣∣∣∣ , (3.7)

where ci(t) is a unit vector that points in the direction of the
group centroid c(t) given by,

c(t) =
1

N

N∑
i=1

ri(t). (3.8)

As our final summary statistic, we use the average nearest
neighbour distance [41] defined as,

1

N

N∑
i=1

min
j,j ̸=i

(
|ri(t)− rj(t)|

)
. (3.9)

Summary statistic values for a range of attraction and
alignment values can be found in Fig. 2. The emergent
group behaviour exhibited by the model can switch between
swarm, torus, dynamic parallel and highly parallel groups,
depending on the parameter values, as shown in Fig.2(a-
d). These behaviours are not equally spread across the
parameter space, for example, the toroidal behaviour is
confined to a small region where the attraction radius is
large and the alignment radius is low. This can be seen in the
summary statistic scans over the lat − lal parameter space,
shown in Fig.2(e-g).

(b) Inference framework
We implement our GNN-ABC approach within the GP-
accelerated inference framework proposed by [18]. For
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Simulation output
y∗

Optimization

IBM
simulator

Graph Neural
Network

GNN predictions
θ′

Model parameters
θ

Loss
calculation

Figure 3. Training the GNN model. To create a pattern recognition operator for the automatic calculation of ABC summary statistics, we train a GNN on

simulated data. The simulator generates microscale data for a given parameter set θ, the GNN then predicts the parameter θ′ based on the microscale

data. The predictions and the true values are compared using a mean squared loss function, and the weights and biases of the GNN are then updated

to minimize this loss using gradient descent.

comparison, we also perform inference using manually
derived summary statistics and semi-automatic summary
statistics [8]. An overview of the framework can be found in
Algorithm 1 and we outline specific implementation details
below.

As a test bed for our method, we use synthetic data
generated from the zonal interaction model defined above.
We simulate the zonal model for 2000 time steps and then
record the positions and orientations of each individual. For
each run, we have 100 individuals, each initialised with a
random orientation and a random position within a 10x10
unit square in the centre of the domain (the individuals
are started together to speed up reaching the equilibrium
state). This is repeated 100 times to provide a set of synthetic
empirical data observations from which we attempt to infer
the interaction parameters that generated the microscale
configuration. This simulated data-set exemplifies the
case where several "snapshots" of a group of interacting
individuals are available showing the relative position and
heading of the individuals.

The first stage in the inference process is to determine the
summary statistics to be used within the ABC framework.
When employing manually derived summary statistics
this process involves computing the values defined by
Eqns. 3.6, 3.7 and 3.9. When using the GNN to automatically
extract summary statistics this first phase is achieved via a
process of simulation and model training described in detail
the next section.

Once summary statistics are defined, we specify a
uniform prior over the parameter values, using estimates
of plausible minimum and maximum values, and then
sample from the parameter space using a Halton sequence
([42], Chapter 7). For each wave we take 25 points from
the sequence and then run forward simulations for each
parameter set. Forward simulations are run in parallel on
a GPU with 500 independent repeats performed for each
parameter set. A single repeat corresponds to running
the simulator for 2000 timesteps and then recording the

positions and headings of all individuals, with randomised
initial conditions as described above. After the simulation
output has been obtained, we calculate the approximate
log likelihood using Eqn. 2.6 and the relevant summary
statistic mapping depending on the method being used
(either manual, semi-automatic, or fully-automatic GNN).
The log likelihood values for each wave are passed into
a Gaussian process regression model with a radial basis
function kernel [43] using the package GPy [44] in order to
emulate the likelihood surface.

The next wave begins with a further 25 points sampled
from the Halton sequence. New sample points are ruled
as implausible based on their predicted log likelihood
obtained from the GP models from previous waves and
the implausibility criterion of Eqn. 2.5 with a threshold
T = 3. To be classed a plausible, a point needs to pass the
implausibility test based on the predictions from GP models
from all previous waves.

Algorithm 1 GP-ABC inference
Initialise prior space, Θ0

Create set X1 using n= 25 Halton points from Θ0

Run simulations and calculate approx. log-likelihood per
point L1 =L(X1)

for w← 1 to 10 do
Fit GP model, Mw to log likelihood values Xw,Lw

Create set Xw+1 with next n= 25 points from Θ0

Remove implausible points using M≤w to give Xw+1 =

Xw+1/XIMP

Run simulations and calculate approx. log-likelihood
per point Lw+1 =L(Xw+1)

Combine parameters and likelihood values
from previous wave: Xw+1 = {Xw+1,Xw},
Lw+1 = {Lw+1,Lw}

end for
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We run 10 waves of GP-ABC inference, with each
wave refining the log likelihood surface and increasing
the number of forward simulations in regions of high
posterior probability. After the tenth wave, the final GP
model acts as an emulator for the log likelihood and is used
as the objective function of an adaptive Metropolis Hastings
sampler [45]. The sampler bases its acceptance probabilities
on samples from the GP model to account for uncertainty
in the surface and will reject a proposal that is deemed
implausible by any of the GP models associated with the
multiple waves of inference. The proposal distribution is
tuned throughout the burn-in phase to optimise sampling
efficiency [45].

(c) GNN-based ABC
One of the great advantages of deep learning is its ability
to learn directly from data without any manual feature
design or engineering [12]. Here we apply this facet of deep
learning to automatically extract summary statistics directly
from simulations of an individual-based model. We employ
GNNs as they are ideally suited to modelling data that can
be structured as a collection of discrete entities that interact
via an interaction network as is the case with most models
of complex systems.

In order to connect GNNs with statistical inference,
we make use of the fact that an ideal set of summary
statistics for ABC corresponds to the posterior means of
the parameters to be inferred [8]. Hence, we can train our
neural network on simulation data to predict the underlying
model parameters as an approximation to the true posterior
mean [9].

To process simulation output by the GNN, we formulate
the data as a graph where each node corresponds to an
individual in the zonal model and each directed edge
corresponds to a potential interaction with a neighbour.
There are two features associated with each node that are
used to encode the two-dimensional heading vector of the
individual and five features associated with edges between
nodes that encode the distance between the nodes, the
distance in x and y coordinates, and the neighbour velocity
relative to the source node for the edge. Once the simulation
data is in a graphical format it is passed into the GNN.
We base the design of our GNN on the XENet architecture
proposed in [34]. We select this architecture as a basis for
our approach as firstly it explicitly processes both node and
edge attributes, and secondly it is applicable to symmetric
directed graphs with asymmetric edge attributes. The need
for this second property arises due to the visual interaction
angle of the zonal model which creates asymmetric edge
attributes between two connected nodes.

Since our architecture follows closely that used in [34]
we only briefly summarise the design here and include a
visualisation of the neural network in Fig S1. Our network
begins with a dense layer for both node and edge features,
followed by 2 XENetConv layers and an additional dense
layer. As we are predicting graph-level features, i.e. the
model parameters shared by all individuals, we next use

a combined maximum pooling and average pooling layer
to aggregate node features. Finally, aggregated features are
passed through two additional dense layers, with the output
layer employing a softplus activation function to ensure
parameter predictions are positive. We implement our GNN
using the Spektral library for graph deep learning [46].

The GNN is trained using the microscale data taken
from the IBM simulator using the Adam optimizer [47]. The
model loss is taken to be the mean squared error between
the predicted model parameters and the true parameters.
Training continues until the validation loss, as calculated
using a separate validation data set (10% of the data set),
stops improving.

Preparing the automatic summary statistics therefore
follows an approach of IBM simulation and GNN training
as illustrated in Fig. 3. Note, as we are training the GNN on
simulated data we are free to train the network for as long as
needed and we are not constrained by training data set size.
Instead, we may continue to generate training data from
the forward simulator and repeat the training loop until an
accurate GNN model is obtained.

(d) Semi-automatic summary statistics
Selecting and weighting informative summary statistics
is key to the success of the GP-ABC inference scheme;
however, finding a good choice can be challenging and is
often unique to the particular form of the simulation model.
For comparison with the GNN-based method described
in the previous subsection, we have adapted the semi-
automatic weighting method proposed in [8], as reviewed
briefly at the end of Subsection 2(a), to the sequential history
matching GP-ABC scheme with its several waves. This is
naturally accomplished by replacing the set of parameters
from the original design Ψ , given in equation (2.7), by
the set of parameters obtained from the previous wave,
and then refitting the linear regression model (2.9). This
scheme is iterated all the way through to the final wave.
Intuitively, the initially uninformative space-filling design
of the a priori plausible parameter space is thus iteratively
shrunk to be increasingly focused on the posterior mode.
In the present work, we start with our three raw summary
statistics: the order parameter, the rotation parameter and
the minimum nearest neighbour distance. These parameters
are then transformed by application of (2.8), and we have
a separate equation with different regression parameters
for each original model parameter to be inferred. The first
regression at the lowest wave is based on a standard space-
filling design of the parameter space, covering the entire
compact support of the prior distribution with a Saltelli
sampler [29]. For each subsequent wave, the regression
model of (2.8) is re-fitted, replacing the original domain in
parameter space by the new domain that has not yet been
ruled out. In our simulations, we have used 10 waves by
default. However, when the regression coefficients in (2.8)
between successive waves did not change significantly, this
was taken as indication of sufficient convergence, and no
further waves were considered.
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Figure 4. Emulated log-likelihood surface for each method. (A-C) Waves 1, 4, and 7 for the standard summary statistic approach. (D-F) Waves 1, 4, and

7 for the semi-automatic method. (G-I) Waves 1, 4, and 7 for the GNN method. All results generated with implausibility threshold T = 3, and IBM model

parameters lrep = 1, η= 0.9, va = 1.5π. x indicates the true parameter value used to create the synthetic data. Empty regions indicate regions that

have been classed as implausible.

4. Results
To evaluate the performance of our framework, we test
the method on synthetic data generated with an array of
different parameters. This allows for the quantification of
performance based on a known ground truth, which would
not be available for real data, and a comparison of the
different methods.

In Fig.4, we show three example waves of GP-ABC using
the different approaches to calculating summary statistics.
We infer two parameters, the attraction radius and the
alignment radius, and assume all other parameters are
known. We see an improvement throughout the waves

(waves 1, 4, and 7 are pictured for each method) as more
simulations are performed however the GNN method is
the most effective. The emulated log-likelihood surface is
peaked at the true value for the GNN method and we
observe a greater ability to distinguish between interactions
over longer distances, whereas both the standard approach
and the semi-automatic approach result in a ridge-like
structure to the likelihood surface where the likelihood
effectively plateaus for a range of parameter values.

Following this qualitative comparison of the methods,
we next evaluate each method for four different parameter
combinations, representing different behaviours across the
parameter space, with ten replicas of synthetic data for each



10

royalsocietypublishing.org/journal/rsif
J

R
S

oc
Interface

0000000
..................................................................

Figure 5. Comparing inferred and true values for two-parameter inference. Inference for four different parameter combinations are shown: {lal =
0, lat = 14}, {lal = 2, lat = 12}, {lal = 9, lat = 5}, {lal = 14, lat = 0}, with lr = 1 and va = 1.5π. 10 replicas are performed for each parameter

set where each replica involves creating synthetic data and inferring model parameters. (A) Combined violin plot for centred MCMC samples of the

alignment radius lal for each method. A value closer to zero indicates better performance, and a smaller distribution represents reduced uncertainty.

(B) Combined violin plot for centred MCMC samples of the attraction radius lat for each method. (C) The log probability of the true parameter value

given the posterior distribution, calculated using a kernel density estimator. A value of each replica is shown with shapes indicating the parameter

set, circles: {lal = 0, lat = 14}; triangles: {lal = 2, lat = 12}; +-symbols: {lal = 9, lat = 5}; squares: {lal = 14, lat = 0}. Larger values of log

probability indicate the best performance.

parameter value. In this comparison, we run the GP-ABC
waves and then sample from the posterior distribution of
the parameter values using MCMC sampling.

Fig. 5 shows the results when we try to infer only two
parameters of the model and assume other parameters are
known. To illustrate the combined results across multiple
parameter values and replicas, we centre the MCMC
samples at the true parameter value for the replica and then
combine all samples into a single violin plot for each method
shown in Figs. 5A and 5B. Hence, a posterior distribution
strongly peaked at zero equates to an accurate method
across all parameter values and replicas.

To further quantify performance, we fit a kernel density
estimator to the MCMC samples, to get an approximate
posterior distribution, and then calculate the log-probability
of the true parameter values given this approximate
posterior probability distribution. Results from this analysis
are shown in Fig. 5C. These results show that the
GNN approach presents a significant improvement over
both the standard ABC approach and the semi-automatic
method. While it is clear that some parameter values
are more difficult to accurately infer for all methods, the
GNN approach gives consistently more accurate posterior
probabilities for the parameters.

We next repeat this analysis in the scenario where four
model parameters are unknown. As before we attempt to
infer attraction and alignment radii but now also attempt
to infer the visual angle and the repulsion radius of the
individuals. We again run 10 waves of GP-ABC inference
followed by running an MCMC sampler with the emulated
log-likelihood surface as the objective function.

To evaluate the performance of the methods in the four-
dimensional inference we again centre the posterior samples
and produce violin plots of the posterior distributions
centred on the true parameter value. Results from this

analysis are shown in Fig. 6 where we observe that the GNN
method is significantly more accurate at inferring model
parameters for three of the four parameters, with a notable
improvement observed in the visual angle and the repulsion
radius parameters. As for the two-dimensional inference
case, we use a kernel density estimator to calculate the log-
probability of the true parameter values given the inferred
posterior distributions and this analysis is shown in Fig. 6C.
Again we observe that the GNN approach represents a
significant improvement over the previous methods.

5. Conclusions
We have presented a novel approach to parameter inference
using graph neural networks to automate the selection and
weighting of summary statistics traditionally required for
state-of-the-art Approximate Bayesian inference methods.
We compare this method to two standard ABC approaches
[8, 27] and note an improvement in performance, showing
both an increased accuracy and reduced uncertainty. These
findings were even more pronounced when the difficulty of
inference was increased by expanding the inference to cover
four parameters simultaneously.

Approximate Bayesian computation makes it possible
to perform inference in models whose likelihood function
is unavailable or very expensive. However, the successful
implementation of ABC usually depends strongly on the
selection and weighting of appropriate summary statistics.
The neural network-based method proposed here bypasses
these steps making ABC inference easier to implement
and possible to expand to more complex problems,
where formulating the correct statistics requires extensive
experimentation and domain knowledge. An improvement
was noted when the weighting of the summary statistics
was automated through linear regression, but this method
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Figure 6. Comparing inferred and true values for four-parameter inference. Inference for four different parameter combinations are shown: {lr =

0.5, lal = 1, lat = 9, va = 1.5π}, {lr = 2, lal = 3, lat = 12, va = π}, {lr = 3, lal = 10, lat = 10, va = 0.5π}, {lr = 1, lal = 10, lat = 5, va =

1.75π}. 10 replicas are performed for each parameter set where each replica involves creating synthetic data and inferring model parameters. (A)

Combined violin plot for centred MCMC samples of the repulsion radius lr for each method. A value closer to zero indicates better performance, and a

smaller distribution represents reduced uncertainty. (B) Combined violin plot for centred MCMC samples of the alignment radius lal for each method.

(C) The log probability of the true parameter value given the posterior distribution, calculated using a kernel density estimator. A value of each replica

is shown with shapes indicating the parameter set, with circles, triangles, +-symbols, and squares corresponding to each parameter set listed above

respectively. Larger values of log probability indicate the best performance. (D) Combined violin plot for centred MCMC samples of the attraction radius

lat for each method. (E) Combined violin plot for centred MCMC samples of the visual angle va for each method.

still depended upon effective potential summary statistics
being designed a priori.

The neural network method performed well in areas
where all other methods suffered. These areas of parameter
space were difficult due to either the unidentifiability of
parameters given the summary statistics or the non-linear
relationship between model parameters and macroscale
behaviour. The graph neural network allowed for a more
flexible approach to these situations and was able to capture
the non-linear effects of varying parameters as well as
complex dynamics such as fission-fusion processes.

Previous work has shown how neural networks can
be employed to automatically extract summary statistics.
In [9] a deep fully-connected neural network was shown
to outperform a linear regression approach. The use of
neural networks was later extended to take advantage of
data structure through the use of convolutional neural
networks [48], and partially exchangeable networks [49] in
the case of Markovian data, as well as incorporating model
prediction uncertainty via the use of Bayesian convolutional
networks [50]. However, these neural network architectures
are unable to take advantage of the complex structure
present in data associated with interacting systems. Graph
neural networks (GNNs) are naturally an excellent tool

for representing complex systems composed of multiple
constituent components as they capture the interactions
between individuals, treated as nodes, by encoding
information into edge features [34]. Thus, our approach
takes advantage of the known capacity of deep neural
networks to deal with nonlinearity [51], and the ability of
GNNs to faithfully represent interactions among entities.
Once the GNN is trained, inference can be performed
rapidly with low computational expense.

The GNN-based ABC method presented here can be
applied to a wide range of systems, particularly in
biology, across collective cell movement, cancer modelling,
embryogenesis and morphogenesis, as well as collective
animal movement. The increased performance of the
GNN-based method is expected to become even more
pronounced as model complexity or the number of
parameters for inference increases, thus expanding the
domain of applicability of simulation-based approximate
inference. Finally, the use of GNNs is not restricted to
the GP-accelerated ABC scheme we employ here but may
be applied to any simulation-based inference scheme that
employs the use of summary statistics such as ABC-SMC
methods or density estimation.
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