
TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 1

Dependability Assessment of Web Service

Orchestrations

Salvatore Distefano, Carlo Ghezzi, Sam Guinea, Raffaela Mirandola

Abstract

In this paper, we focus on the reliability and availability analysis of Web service (WS)

compositions, orchestrated via the Business Process Execution Language (BPEL). Starting from

the failure profiles of the services being composed, which take into account multiple possible

failure modes, latent errors, and propagation effects, and from a BPEL process description,

we provide an analytical technique for evaluating the composite process’ reliability-availability

metrics. This technique also takes into account BPEL’s advanced composition features, including

fault, compensation, termination, and event handling. The method is a design-time aid that can

help users and third party providers reason, in the early stages of development, and in particular

during WS selection, about a process’ reliability and availability. A non-trivial case study in the

area of travel management is used to illustrate the applicability and effectiveness of the proposed

approach.

Index Terms

Web service, business process execution language, fault propagation, fault compensation

and termination, event handling.

F

ACRONYMS AND ABBREVIATIONS

BPEL Business Process Execution Language

CDF Cumulative Distribution Function

DTMC Discrete Time Markov Chain

• The authors are with the Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.
E-mail: {salvatore.distefano,carlo.ghezzi,sam.guinea,raffaela.mirandola}@polimi.it

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 2

FCT Fault, Compensation and Termination

HTTP HyperText Transfer Protocol

QoS Quality of Service

rv Random Variable

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description Discovery and Integration

WS Web Service

WSDL Web Services Description Language

NOTATION

γX response probability of activity X (γXU user, γXA architect)

AWS
C WS container’s availability

αWS
S WS inner service response probability

nl number of latent error inputs or outputs

nf number of faulty inputs or outputs

n number of total inputs or outputs (n = 1 + nl + nf)

PX propagation matrix of activity X (PXU user, PXA architect, architect γ-propagation

matrix PXAγ)

PX
cl correct-latent error block propagation matrix of activity X

PX
f fault block propagation matrix of activity X

InX input vector of activity X(InX
U

user, InX
A

architect)

InX normalized input vector of activity X on the nl+1 correct-latent error inputs

OX output vector of activity X

OX normalized output vector of activity X on the nl+1 correct-latent error inputs OX =

{(InX ·PX
cl)/(p

X
ok),0}

Ik k-order identity matrix

pXok probability of a non-faulty output of x, pok =
∑nl

j=0O
X [j]

CX correctness, probability that X produces a correct output given it was correctly

invoked

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 3

EX
i error probability that an execution of X with correct input returns an error mode

1 < i ≤ nl as output

GX
j fault probability that a correct invocation of X triggers the 1 < j ≤ nl + 1 fault

BX
i error robustness, probability that X , invoked with error mode 0 < i ≤ nl as input,

masks the error and returns a correct output

SEX
i error susceptibility, probability that X , invoked with error mode 0 < i ≤ nl as input,

produces a latent error output

SFX
i fault susceptibility, probability that X , invoked with error mode 0 < i ≤ nl as input,

produces a fault output

1 INTRODUCTION AND MOTIVATIONS

Service orientation has played an extremely important role in the evolution of Infor-

mation Technology in the last decade. It provides the foundations for some of today’s

most significant advancements, such as Web 2.0, Cloud computing, and the Internet

of Things. The service abstraction imposes that we rethink methods and techniques

for developing and managing both physical (i.e. hardware infrastructure) and logical

systems (i.e. software architecture). In the former case, we speak of Service Oriented

Infrastructure, while in the latter we speak of Service Oriented Architecture.

The term Service Oriented Architecture (SOA) refers to an ecosystem [1] of interacting

processes, physical nodes, and people that create, manage, and provide functionalities

as services. According to this perspective, a business process is a complex service that

combines simpler, loosely coupled, reusable Web services (WSs) using service orchestra-

tion. Service orchestrations are often implemented using workflow languages that provide

mechanisms for selecting and composing services through the definition of complex

control- and data-flows. The Web Services Business Process Execution Language (BPEL)

is the de-facto standard workflow language [2] for SOA.

In this paper, we focus on service reliability and availability, and discuss how they can

be properly addressed at design-time when composing services with the BPEL language.

The ability to perform an early assessment of these qualities, instead of waiting for the

implementation and runtime stages, is a key challenge for SOA architectures, and a key

factor when implementing dependable software.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 4

In SOA, WSs are owned by different providers, and used as black boxes. To support

service selection, providers expose WS properties in specific Web-accessible registries.

Selection is then implemented as a query to the registry that returns the services that

are known to match a specific set of requirements. This approach allows us to choose

among different alternatives, as long as the providers explicitly specify QoS information

about their WSs (e.g., reliability, availability, and performance).

However, even if QoS information is available, how the orchestration will be carried

out cannot be entirely foreseen at design time. It will depend on many different aspects,

such as the availability of the involved services, how the services respond, the status of

the network, unexpected error conditions, etc. Non-functional properties are a crucial

concern in composite process orchestration, and architectural decisions, such as WS

selection and workflow structuring, always affect the QoS of the resulting process.

We advocate that, thanks to SOA, designers can reason on BPEL process reliability

and availability at a high level of abstraction. We expect well-founded methods to be

available to compute whether the non-functional aspects of the WSs we include in a

composition satisfy the reliability and availability requirements we have for the process.

We have investigated failures in component based systems in previous work [3], [4]. In

this work, we considered multiple failure modes, as well as the emergence, propagation,

and transformation of errors in a running system’s data and control flows, and how

these can eventually lead to a failure.

BPEL processes can be affected by many different failure modes, because they orches-

trate and aggregate services that come from different providers. They mix multi-tier

and heterogeneous domains, as well as different approaches and technologies, through

the use of interoperable interfaces. The aim of this paper is, therefore, to provide a

technique for evaluating the reliability and availability of composite services, with a

complete coverage of the BPEL language. We want to understand reliability, availability,

response probability, and propagation phenomena. To gain this understanding, we take

into account the service parameter values and the definition of the process, with its

fault, compensation, termination (FCT), and event handling. To reach this goal, we have

revised and extended our previous work in light of the SOA application domain, and

we have identified, and specified, both the phenomena that we want to observe, and

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 5

the parameters that allow us to quantify them.

Several approaches have been developed in the past to model and evaluate the

reliability and availability of composite processes (as we discuss in Section 2). However,

to the best of our knowledge, none of them adequately takes into account FCT and event

handling, which are typical of BPEL composite processes, and none of them considers

these aspects in conjunction with propagation phenomena. Furthermore, our proposed

technique is lightweight and scalable. The number of computational operations grows

linearly with the number of BPEL process activities. This feature will enable us in

the future to use the technique to predict reliability and availability anomalies and

violations, and to effectively support service providers in decision making.

2 RELATED WORK

Many different aspects of Web-based systems have been studied over the last few

years, such as workload characterization, performance, availability, and reliability. Our

work proposes an approach to analyze the reliability and availability of Web service

compositions, orchestrated via the BPEL workflow language. We base our method

on the software reliability engineering approach [5], and propose an early design-

time reliability assessment, to prevent late fault discovery. In particular, we provide

an analytical evaluation that takes into account multiple possible failure modes, latent

errors, and propagation effects.

Recently, with the emergence of self-adaptive architectures, several approaches have

been proposed in literature to deal with self-healing business processes [6], [7]. Although

our approach is mainly focused on design-time evaluation, its extension to support run-

time self adaptation is currently being investigated.

In our previous work [3], [4], we addressed the stochastic evaluation of reliability

in component-based systems, and we considered multiple failure modes and failure

propagation phenomena. Other related work is presented hereafter, classified in three

main areas, described next.

Web-based availability and reliability. Discrete time Markov chains (DTMC) have

often been used in literature [8], [9], [10] as suitable models for system analysis. A

hierarchical approach for e-business systems has been proposed in [8]; [9] presented a

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 6

model of an e-commerce site in which user navigation patterns were represented; in [10]

Web user activity was modeled as an on-off process combined with a Markov process.

An empirical analysis of Web system availability from the end-user’s perspective is

presented in [11].

Related work on Web services’ availability and reliability includes several papers with

analytical models (e.g., [9], [12]), and empirical studies (e.g. [13]). The analytical models

exploit different kinds of Markov processes to define availability and reliability models

for a composite Web service. The empirical analyses consider both the workloads and the

reliability of Web servers, and distinguish between inter-session and intra-session Web

characteristics [13]. More recently, some papers have tackled the problem of composing

a service-oriented system from publicly available Web services (e.g., [14]), taking into

account different types of Web service failures.

Architecture-based reliability. Architecture-based software reliability analysis has

been dealt with in several papers, and specific surveys on this topic can be found

in [15], [16]. These papers mainly focus on evaluating the overall system reliability

by taking into account the internal failure of each component, and the probabilities of

their interactions. Interesting empirical studies, and works that deal with uncertainty

analysis of architecture-based software reliability, can be found in [17], and [18]. Among

the existing works in the area, the ones that mostly influenced our work are briefly

summarized below. In 1980, Cheung [19] proposed the so called user-oriented reliability

approach, and defined it as the probability to observe a correct output from a program,

given a representative set of input data from the external environment. Here, system

reliability is derived using a stochastic Markov process that describes the system as a set

of interacting components, expressed as a function of the component reliability, and of

utilization. In the area of self-assembly service-oriented computing, Grassi [21] proposed

an approach for automatic reliability estimation that exploits the compositional aspects

that are inherent in these applications, and their dependency on external sources. Error

propagation among components is completely neglected in these works.

The work of [22] is one of the first papers in this area. It proposes a graph theory-based

reduction approach for the evaluation of software’s non-functional properties, such as

its reliability and performance. Later, several other applications of this technique were

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 7

proposed in different contexts (DTMC [23], workflow [24], [25], etc.). [24], [25] also dealt

with WS and business processes adopting the reduction technique; however, they do

not consider different failure modes and corresponding propagation aspects.

Error propagation. In [27], error propagation probability is defined as the probability

that an error, after manifesting itself, will propagate through components, and possibly

end up visible at the user interface level. This definition is limited to a single type of

failure, and in [27] it is supported by a methodology and a tool capable of analyzing the

sensibility of each component, with respect to failure and error propagation. Different

approaches based on fault injection have been applied to estimate error propagation in

software systems during the testing phase (e.g., [28]).

3 OVERVIEW OF THE APPROACH

Design/selection/
composition

Flattening

Synthesis/Analysis

BPEL/
WS Provider
Parameters

Flat
Workflow

Results/
Process

Parameters

Software
Architect

End User

Inputs/
Countermeasures

WS
Discovery

Tool

WS Architect
Parameters

WS
End User

Parameters

Fig. 1. The processing schema

The aim of this work is to evaluate the overall reliability and availability parameters

of a composite business process described in BPEL [2], knowing its internal control-

and data-flows, and the non-functional properties of its participating services.

As shown in Fig. 1, these systems have two main kinds of stakeholders, each with

its own interests: the end user, and the software architect. From the user’s point of view,

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 8

the goal is to select the service that best fits the requirements; from the architect’s point

of view, the goal is to implement the best possible process by composing the available

services. Specifically, the differences in the users’ and architect’s objectives impose that

the technique be flexible with respect to the parameters it will consider. This flexibility

strongly depends on how and what is considered as correct, or faulty, for each WS

interaction. For example, starting from the taxonomy of [29], WS faults or errors can be

managed internally by a process, and returned to the user as valid outputs, or they can

be directly forwarded to the user as errors.

We propose to organize the process evaluation into three steps, as shown in Fig. 1.

i) Design-selection-composition - In this step, a composite service is designed by orches-

trating external WSs. External Web services are selected for composition via specific

discovery tools (e.g. Universal Description Discovery and Integration registries, WS portals,

or WS search engines), according to their functional and non-functional properties

and to how we expect them to contribute to the properties of the composition. The

process design is usually performed by a software architect, who must be aware of the

semantics of the functional and non-functional parameters to be considered. Because

the technique we propose provides an analytical solution, it is necessary to specify an

adequate formulation of the problem, and to define appropriate metrics and parameters,

as discussed in Section 4.

ii) Flattening - The BPEL process includes nested subprocesses or activities, and man-

ages faults and events through specific FCT and event handlers. To deal with this

issue, the hierarchically structured BPEL process, and the non-functional properties of

its services and internal activities have to be transformed into a flat workflow. Unlike the

BPEL process, the flat workflow only has one termination. This step is required and is

non-trivial, as we will discuss in Section 5.

iii) Synthesis and Analysis - The overall non-functional properties of the BPEL process

are evaluated in terms of the properties of the individual services that are orchestrated

by the workflow. Aggregation-reduction rules and sensitivity analyses are applied, as

described in Section 6.

The results can be fed back to the software architect, who can then modify the original

process, either using the same services or by selecting new ones. If the results are

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 9

satisfactory, they can be published to a service registry and made available for further

selection and composition. The analysis technique can be used both at design and run

time, because it has a low complexity1. A way to use the technique could be to identify

the WSs that have a large impact on the process’ reliability metrics, using sensitivity

and importance analysis, as explained in the example discussed in Section 7, or to infer

the properties of one or more components given the requirements on the whole process.

4 WS SELECTION AND COMPOSITION: THE ANALYTICAL FRAMEWORK

To evaluate the reliability and availability of a composite BPEL process, we need to

take into account a detailed view of the overall software architecture. Fig. 2a illustrates

the four main server components involved in the deployment and execution of a BPEL

process, while Fig. 2b highlights the architecture from both the end user’s and the

architect’s perspectives.

The Web service is the basic building block of a service-oriented system. It is the

smallest composable unit, and therefore should be designed to maximize reusability.

The SOAP engine is responsible for de-serializing incoming requests, for providing them

to a service instance, and for serializing outgoing responses (e.g., Apache Axis). In

the case of composed WSs, the SOAP engine is usually part of a more sophisticated

execution environment called the BPEL engine, a centralized environment for executing

and managing composite processes. Typically, the SOAP and BPEL engines are part

of an application server (e.g. Jakarta Tomcat) that provides a place to hold applications

that must be accessed by different clients. Some application servers already include

hypertext transfer protocol (HTTP) functionality; otherwise we also need a Web server,

which is a software capable of handling HTTP messages (e.g., Apache HTTP Server).

End users are not capable of distinguishing between correct versus faulty service

responses and correct versus faulty BPEL or SOAP WS responses; their view of the

WS stack is composed of solely three layers: the HTTP server, the application server,

and the BPEL and SOAP engine-service. On the other hand, software architects are

aware of the composite service’s intended logic, and know how to distinguish service

1. It scales (sub-)linearly with respect to the number of the process elements-; see Section 6.3

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 10

SO
AP Engine

BPEL Engine

Application Server

HTTP (Web) Server

Application Server

HTTP (Web) Server

SOAP Engine

Network

Network

Application Server

HTTP (Web) Server

SOAP Engine

Serv Serv Serv

ServServServ

(a) Process

End User

App.
Server

HTTP
Server

BPEL/
SOAP

EngineService

HTTP
Server

App.
Server

BPEL/
SOAP
Engine

Web service
Software
Architect

(b) Perspectives

Fig. 2. WS stack, process WS composition (a), and response’s perspectives (b).

responses from engine responses; therefore, they are interested in composing processes

that provide adequate responses when invoked. Thus, from the architect’s perspective,

the full WS stack needs to be considered.

A WS system can be formally described as follows.

Definition 1: A WS system WS is characterized by the pair

< γWS,PWS >

where

• γWS ∈ [0, 1] ⊂ R is the WS response probability, i.e. the probability the WS system

will provide a response; and

• PWS ∈ [0, 1]n ⊂ Rn×[0, 1]n ⊂ Rn is the propagation matrix, including the probabilities

that the input of WS is propagated to the output, where n is the number of total

possible (correct, latent error, or fault) inputs and outputs.

We can further characterize the previous definition according to the two identified per-

spectives, obtaining < γWSU ,PWSU > in the case of end users (U), and < γWSA ,PWSA >

for architects (A).

A similar formalization is adopted for BPEL’s internal activities, thus representing an

internal activity Act by a pair < γAct,PAct >.

It is important to understand these parameters in terms of the architecture of Fig. 1.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 11

Response probability: Response probability can be defined as

γWS = Pr{The whole WS system provides a response}.

According to Fig. 2a, a WS system can be decomposed into two parts: the WS container

(HTTP Server, Application server, BPEL and SOAP engines), and the service itself. The

former is in charge of forwarding the request to the latter, which in turn performs

the actual processing, and returns a result. Because the container does not actually

process the request, we are mainly interested in its readiness, i.e. the capability to forward

messages to and from the service. The service, on the other hand, has to elaborate the

request, and therefore we have to quantify its capability to operate.

Avizienis et al. [29] define availability as the readiness for correct service, and relia-

bility as the continuity of correct service. Following this approach, we can identify and

characterize the WS container’s availability AWS
C as its readiness to provide access to the

actual service. This is why, when we calculate the WS response probability, we need to

consider the cumulative distribution functions (CDF) of its inner service’s i) time to failure

FWS
S (·) (or reliability RWS

S (·) = 1− FWS
S (·)), and ii) time to response TWS

S (·). Assuming

the container and the inner service time to failure are statistically independent, we can

express the WS response probability as

γWS = Pr{The WS container is available, and the inner service provides a response}.

There are three reasons why a WS container can become unavailable: i) it can suffer

from HTTP (Web) server failures and unavailability, ii) the Application Server may not

be able to dispatch service requests, or iii) there may be errors in the BPEL-SOAP Engine.

In the first two cases, the system generates and delivers an HTTP error message (e.g.

400, 404, 500, 502, 503) to the user. In the third case, a specific SOAP fault message is

delivered to the user. In composed WSs, inter-component communication problems are

detected by the innermost engine, i.e. the SOAP engine. That is why they are considered

errors in the BPEL-SOAP engine.

The service container’s availability AWS
C is therefore the probability that the HTTP

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 12

server, the Application server, and the BPEL-SOAP engines are working correctly:

AWS
C (t) = Pr{The servers and the engines are working at t}.

Assuming that availability reaches a steady state after a transient, we can characterize

these quantities using single values, i.e. the steady state availability AWS
C = lim

t→∞
AWS
C (t).

More specifically, if AWS
HTTP , AWS

AS , and AWS
BPEL−SOAP are the steady state availabilities of

the HTTP (Web) server, the Application server, and the BPEL-SOAP engine, respectively,

the container service availability is AWS
C = AWS

HTTPA
WS
AS A

WS
BPEL−SOAP .

If the WS container is available, the WS’s response probability will depend on the

inner service actually providing the response, i.e. its response probability is strongly

related to the inner service’s operation continuity or reliability. If Q is the inner service’s

lifetime, then

RWS
S (q) = Pr{The service is working in [0, q]} = Pr{Q > q} = 1− FWS

S (q)

where FWS
S (q) is the inner service failure CDF. However, we are specifically interested

in the service’s response probability αWS
S , which only refers to the inner service of a WS,

and does not take into account the WS container, thus yielding

γWS = AWS
C αWS

S . (1)

To correctly characterize αWS
S , we need to distinguish between the user’s and the

architect’s perspectives. The user is interested in the behavior of the WS stack (see Fig.

2b), up until the BPEL-SOAP engine. We consider a valid response to be one that is

received by the BPEL-SOAP engine, be it a service response or a BPEL-SOAP fault. On

the other hand, for an architect, a response is only considered valid if it arrives from the

service, be it correct or faulty. Thus, if Y is the inner service’s time-to-response random

variable (rv) with CDF FWS
Y (y), we can define the user service response probability as

αWSU

S (y) = Pr{The service provide a response or a BPEL-SOAP error occurs}

= Pr{The service provides a response}+ Pr{A BPEL-SOAP error occurs}

−Pr{The service provides a response and a BPEL-SOAP error occurs}.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 13

The inner service provides a response if it is reliable during the request processing,

i.e., during the service mission time. Thus, assuming the software is not affected by aging,

i.e. we only consider random failure causes that do not depend on the service’s age,

we have that Pr{The service provides a response} = Pr{T > y|Y ≤ y}. This way, if

the inner service time-to-failure and time-to-response random variables are statistically

independent, we have that αWSU

S (y) = RWS
S (y) + EWS

BPEL−SOAP − RWS
S (y)EWS

BPEL−SOAP ,

where EWS
BPEL−SOAP is the probability of a BPEL-SOAP error. The reader can refer to

[14], [30], [31] for insights into the evaluation of EWS
BPEL−SOAP .

From the architect’s viewpoint, the inner service’s response probability is

αWSA

S (y) = Pr{The service provides a response} = RWS
S (y).

Considering the mean time-to-response y =
∫∞
0
yTWS

Y (y)dy, we define αWSU

S , and αWSA

S

as αWSU

S = αWSU

S (y) = RWS
S (y) + EWS

BPEL−SOAP − RWS
S (y)EWS

BPEL−SOAP , and αWSA

S =

αWSA

S (y) = RWS
S (y). Thus, the WS’s response probability γWS , defined by (1), is γWSU =

AWS
C αWSU

S for the user’s perspective, and γWSA = AWS
C αWSA

S for the architect’s perspec-

tive.

Propagation matrix: The second means we use to characterize our WS system is

the process’ propagation matrix, which is the matrix containing the probabilities that

certain inputs will be propagated to certain outputs.

The main difference between an abstract workflow and a WS is that a workflow only

has two possible outputs: it can be either correct, or erroneous. A WS, on the other

hand, can distinguish between correct and faulty outputs, and discriminate amongst

faults by returning fault messages. These faults correspond to errors that are detected

during elaboration, and managed by the process through specific handlers. There are

however cases in which a process can generate an error that is not detected. Thus,

following the taxonomy presented in [29], an error can also be undetected or latent.

Some examples of undetected-latent service errors are QoS violations, errors related to

functional correctness (e.g., wrong currency in payments, truncated names or strings,

valid but wrong credit numbers or credentials, etc.), and errors in the WS stack (e.g.,

data corruption without consequences on the format, default parameters or responses

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 14

or both, etc.). Moreover, a process can also terminate before reaching the end of the

workflow by invoking specific BPEL exit activities, which we characterize as early exits.

We specify the propagation probability matrix as

PWS =
[
PWS[i, j] = Pr{Output = j| Input = i and the inner service provides a response}

]
where i, j = 0, .., n specify the input and output types (i = 0 identifies the correct input,

j = 0 identifies the desired output, 0 < i, j ≤ n identify erroneous inputs and outputs).

PWS[i, j] therefore represents the probability that a given input of type i is modified by

the WS processing into an output of type j. This probability value could be statistically

obtained by observing and classifying the WS output assuming the input is always of

type i, for example by adopting fault propagation analysis techniques [32]. It is thus

necessary to compare the actual output to the desired one, to detect the processing

flaw, and to identify and classify, if possible, the output type. This action requires a

clear, unambiguous input-output type classification, i.e. it should not occur that two

inputs (or two outputs) of a specific WS are undistinguishable or similar.

If nl is the number of latent errors, and nf is the number of explicit errors or faults

and early exits, then n is equal to nl + nf + 1 (1 is for the correct input-output), and

matrix PWS can be represented as a block matrix

PWS =

 PWS
cl PWS

f

0nf×nl+1 Inf

 (2)

where PWS
cl (nl+1×nl+1) and PWS

f (nl+1×nf) are the matrices that probabilistically

represent the propagation of a correct-latent error input to the output. PWS
cl contains

the correct-latent error propagation probabilities, while PWS
f expresses the fault or early

exit ones. Assuming an incoming fault can be forwarded by the service as it is, 0 is

a (nf × nl + 1)-dimension matrix of 0s representing the probability that a faulty input

is propagated to a correct or latent error output. Inf is the identity matrix of order nf ,

meaning that an incoming fault is propagated as it is to the output, with probability 1.

The structure of the propagation matrix differs according to the perspective. From the

end user’s perspective the BPEL-SOAP fault is still considered to be a valid response. It

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 15

is a kind of error that returns the control to the users, i.e. it can be viewed in the model

as a further fault. In algebraic terms, to obtain the user propagation matrix PWSU , we

need to add a row and a column to PWS of (2). This action leads us to the n+1×n+1

matrix

PWSU =

 αWSU

S PWS
cl αWSU

S PWS
f (1− αWSU

S)1nl+1×1

0nf+1×nl+1 Inf+1


where 11×nl+1 is a (1× nl + 1)−vector of 1s, and Inf+1 is the nf + 1-identity matrix.

As discussed in [19], the reliability of a component strictly depends on its usage. In

our framework, a process or WS usage profile has to be characterized with respect to

the set of failure modes. The usage profile or input vector InWS of a process or WS is an

n-element stochastic vector. Its ith element InWS[i] represents the probability that the

input of WS carries the (correct or erred) response mode i. Because the WS manages

faults, it is not possible to have faults as inputs. As a result, InWS[i] = 0 ∀i = nl+1, .., n

or InWS = {InWS,0}, where InWS is a stochastic vector of nl + 1 elements, and 0 is a

vector of nf 0.

Furthermore, InWSA = InWS (, and PWSA = PWS), InWSU = {InWS, 0} because, from

the user’s point of view, we need to include an input for the BPEL-SOAP fault.

Aggregated Parameters: Starting from γX and PX , we can derive the aggregated

properties for a generic activity X , which could be either a WS WS or an internal

activity Act, as reported in Table I.

Because
∑n

j=0P
X [i, j] = 1, from BX

i , SEX
i , and SFX

i formulae, we have that ∀i| 0 <

i ≤ nl B
X
i + SEX

i + SFX
i = γX .

In case of a WS WS, the above metrics are valid both from the user and the architect

perspectives. Corresponding formulae can be obtained by just substituting the related

parameters (γWSU , PWSU , InWSU or γWSA , PWSA , InWSA , respectively) into the formulae

of Table I.

Assumptions: The overall approach relies on the following key assumptions.

i) Container and inner service time-to-failure are statistically independent.

ii) Inner service time-to-response and time-to-failure are statistically independent.

iii) All branching activities, i.e. any activity with inner conditions (branches and

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 16

TABLE I
Aggregated parameter definitions.

Par. Formula Description

CX - Correctness PX [0, 0]γX = PX
cl [0, 0]γ

X probability that X produces a correct output given it was
invoked providing a correct input

EXi - ith error proba-
bility PX [0, i]γX = PX

cl [0, i]γ
X probability that a correct invocation/execution of X returns

with an error mode i with 0 < i ≤ nl
GXj - jth fault proba-
bility

PX [0, nl + j]γX =
PX
f [0, j]γX

the probability that a correct invocation triggers the jth fault on
X with 0 < j ≤ nf

BXi - ith error robust-
ness PX [i, 0]γX = PX

cl [i, 0]γ
X the probability that X , invoked with an error mode i, 0 < i ≤ nl,

masks the error and returns a correct output
SEXi - ith error sus-
ceptibility

γX ·
∑nl
j=1 P

X [i, j] =

γX
∑nl
j=1 P

X
cl [i, j]

probability that X , invoked with an error mode i, 0 < i ≤ nl,
produces an erroneous output

SFXi - ith fault sus-
ceptibility

γX ·
∑nf
j=1 P

X [i, nl + j] =

γX
∑nf
j=1 P

X
f [i, j]

probability that X , invoked with an error mode i, 0 < i ≤ nl,
produces a fault output

LXi - ith proclivity γX
∑n
h=0 In

X [h]PX [h, i]

probability that X produces the ith error mode (0 < i ≤ nl)
or fault output (nl < i ≤ nf) given InX . In the former case
(0 < i ≤ nl), we refer to error proclivity, while in the latter case
(nl < i ≤ nf) we refer to fault proclivity.

loops), can be probabilistically represented.

iv) Input and output types need to be distinguishable. Given an input or output

activity of type i (In[i]orO[i]), ∀j ∈ [1, n]|i 6= j it is true that In[i] 6= In[j] or O[i] 6= O[j].

The absence of this assumption would make it impossible to define the propagation

matrix.

v) To deal with loops, we assume that the input of the loop body is the same for all

the iteration steps (InL). The assumption is that, at each iteration, the same input will

be processed, and not the output of the previous iteration. This assumption is quite

realistic in composite processes, because loops often process the same input until the

required results are obtained (e.g. a reservation or a payment is iterated until success),

or the input is provided to the loop as aggregated data and processed one block at a

time.

vi) Due to the fact that the model should be finite, we fix the maximum number of

events that can be handled at the same time by an event handler. Thus, at most ne > 0

events can be handled together by the system. Even if this is an approximation, it is

important to remark that ne can be fixed arbitrarily large to best tune the tolerance,

without any significant impact on the algorithm complexity.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 17

5 FLATTENING BPEL PROCESSES

In this section, we detail the second step of our evaluation technique, and explain

how we obtain a flat workflow starting from the original BPEL composition. This

transformation is necessary for two reasons. The first reason is that it allows us to

provide unambiguous semantics for BPEL activities, and to clarify the complex control-

and data-flows that emerge when various compensation-, fault-, and event-handlers are

attached to nested scopes. The second reason is that the flat workflow is self-contained;

it includes all the information required to achieve the analysis, can be used with no

further elaboration, and is suitable for an automatic tool.

The following discussion is exemplified using a travel management application as a

running example.

5.1 A BPEL Primer

BPEL 2.0’s main constructs (called activities) can be classified as basic or structured. A

compact explanation is reported in Table II. It also highlights the graphical notation

adopted in the rest of the article to represent BPEL processes. Basic activities imple-

ment elementary steps of a process workflow. More specifically, <invoke>, <receive>,

and <reply> activities manage service interactions, while the <assign>, <validate>,

<wait>, <empty>, and <exit> activities are self-explanatory. Structured activities repre-

sent control-flow logic structures. <sequence>, <if–elseif–else>, <while>, <repeatUntil>,

and <forEach> are self-explanatory. The <pick> activity forces the process to wait for

the delivery of a message (<onMessage> construct) or a timeout expiration (<onAlarm>

construct) to perform the activities associated with the corresponding branch. Finally,

the <flow> construct introduces activities that have to be performed concurrently. The

designer can use a <scope> construct to define nested activities.

BPEL also provides designers with mechanisms, called handlers, for capturing and

dealing with special kinds of events, which we can classify as faults, needs for com-

pensation, or concurrent events. Fault handlers can be used to capture and deal with

runtime faults. They are defined through <catch> and <catchAll> constructs that are

associated to a <scope>. When a fault is caught, the <scope> is terminated, and the

corresponding handler is launched. If a fault is not caught by an appropriate handler,

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 18

TABLE II
BPEL 2.0 basic (a) and structured (b) activities.

BPEL ac-
tivity Symbol Description

<assign> <Var. Name> assign values to variables

<validate>
Validate

<Var Name> validate the state of variables

<wait>
Wait
<sec.>

wait for the specified amount of
time

<invoke>
<WS Name>

<WS Name> synchronously (up) or
asynchronously (down) call a
partner WS

<receive> <WS Name> wait for a message

<reply> <WS Name> send a response message

<throw> Throw! raise a fault

<rethrow> Rethrow! re-throw a fault to the upper level
scope

<empty> do nothing

<exit> Exit immediately terminate the busi-
ness process

(a)

BPEL ac-
tivity Symbol Description

<sequence> sequence of activities

<if>
<COND>

...b1
b2

bn
select exactly one activity from a
set of choices

<while>
<COND>
While
Body

loop structure

<repeat-
Until>

<COND>
RU
Body

loop structure

<pick>
<COND>

...b1
b2

bn
wait for one of several messages
to arrive or for a timeout to occur

<flow> ...b1
b2

bn concurrent execution of activities

<forEach>
<COND>
forEach
Body

loop structure

<scope>
FH
CH
TH

EH
<Scope Name>

define an execution scope

<compen-
sateScope>

Compensate
<WS Name>

start compensation on an inner
scope

<compen-
sate>

Compensate start compensation on all inner
scopes

(b)

it is re-thrown to an upper level. If the handler completes successfully, the control flow

returns to the activity that immediately follows the <scope>. Faults can also be thrown

using the <throw> construct. Compensation handlers are used to define compensation

logic, and they can only be activated for scopes that have completed successfully. They

are explicitly initiated using the <compensate> or <compensateScope> activities.

Finally, event handlers consist of business logic that can be activated concurrently

to the process’ main logic. The activities within a handler are triggered either by the

arrival of an inbound event message, or by a timed alarm.

Fig. 3 shows the BPEL process of a travel management service example. Once a request

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 19

Receive

getUserInfo getFlightOptions

requestFlightChoice

requestFlightChoice

reserveFlightChoice

getHotelOptions

requestHotelChoice

requestHotelChoice

reserveHotelChoice

getAutoOptions

requestAutoChoice

requestAutoChoice

reserveAutoChoice

prepareFlightSea
rch

prepareFlightPro
posals

prepare
FlightReservation

prepare
FlightReservation

prepare
FlightReservation

prepare
FlightReservation

prepare
FlightReservation

prepare
FlightReservation

prepare
FlightReservation

prepare
UserInfoRequest

prepare
ShippingRequest

requestShipping

addPaymentsTo
Summary

prepare
Summary

provideSummary

addNoCarTo
ShippingRequest

addAutoInformation
To ShippingRequest

prepare
PaymentRequest

addNoCarTo
PaymentRequest

addAutoInformation
To PaymentRequest

makePayments

P_Flight P_Hotel P_Auto

Payment

Shipping
CH CH FH

CH

Ignore

EL1 EL2

EL3

F4

EL3 F4

EL3

F4

FH
CH

F1 F2 F3

F5

F5

F5

FH

AssignNone
ToShipping

F1

FH
CH

Process

requestAuto == false requestAuto == true requestAuto == false requestAuto == true

 KEY
EL1: Erroneous-Truncated
 Address
EL2: Erroneous-Truncated
 Name
EL3: Erroneous Currency

F1: Non-valid Data
F2: Currency Error
F3: Insufficient Credit
F4: Reservation Fault
F5: Mismatch Data
F*: All Remaining

EH
Booking

Fig. 3. The running example BPEL process model.

is received from the user and assigned to a local variable, a query on the user DB is

performed to retrieve user data. In the case of faults, the process immediately exits and

returns a fault code. Otherwise, the user request is processed by invoking a three-way

<flow>, in which the process concurrently elaborates the flight, hotel, and (optional) car

booking. The booking status can be checked by invoking the event handler specified by

the Booking <scope>. Each service involved in the processing can fail, thus each branch

is isolated from the others through a specific <scope>. The fault handlers associated with

the first two <flow> branches compensate the activities of the <scope> that are already

complete, and forward the fault to the upper layer. The third branch defines a fault

handler that masks faults so that they are not forwarded to the process, thus totally

isolating the branch from the process.

When the three subprocesses finish, the makePayments service is invoked. If there

are problems in the Payment, the fault handler associated with its <scope> tries to

recover the fault by nesting three levels of fault handlers, and by canceling the car

reservation in the case of wrong currency or insufficient credit. Finally, in the case of

successful payment, the shipping service is invoked (requestShipping) within its

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 20

own <scope>, to isolate it and to mask faults that should not reach the process. Details

on the fault, compensation, and event handling can be found in [33].

5.2 BPEL Process to Flat Workflow

In this section, we will clarify how we flatten a BPEL process to a workflow that only

uses the three basic patterns of structured programming: (sequence, branch and loop), and

concurrency (fork-join). To explain the BPEL to workflow mapping, we can identify two

steps. First we detail how to map single BPEL activities into corresponding workflows.

Second, we describe how the whole workflow can be obtained by composing the single

activity workflows. The mapping rules and the algorithms that we obtain are then

applied to the running example.

5.2.1 Mapping BPEL Activities

BPEL flattening can be performed by extending and hierarchically applying the flatten-

ing rules that deal with single BPEL activities.

As shown in Table II, BPEL activities are split into two main classes: basic, and

structured. Basic activities such as <wait>, <invoke>, <receive>, <reply>, and <empty>

do not modify the process workflow so they can be considered as internal activities

that do not affect a process’ reliability. On the other hand, <assign> and <validate>

can trigger internal errors such as datatype mismatches, and therefore they need to be

considered as faulty activities.

Similarly, <throw> and <rethrow> activities are used in fault handling to manage

faults, and thus they can change the process workflow and its reliability; the same is

true for <compensate> and <compensateScope> activities.

The <exit> activity forces the process termination, thus impacting on the process

workflow. This effect implies that a BPEL process may have different possible outputs,

and therefore it is necessary to evaluate the probability of each of them.

Structured activities mainly implement control flow operations. Most of them (<sequence>,

<if>, <while>, <repeatUntil>, <forEach> , <pick>, and <flow>) do not specifically in-

volve any flattening operation, while further investigation is required for the <compensate>

and <scope> BPEL structured activities.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 21

TABLE III
BPEL 2.0 activities, and corresponding flat workflows.

<assign>, <validate>, <invoke>, <receive><wait>,
<empty>

<throw>,
<rethrow>,
<compen-
sateScope>

<reply>,
<exit> <sequence> <if>, <pick>

Act

Out?
p1

FH F1 FH F2 FH Fn FH F*

p2 pn p*

pok

Act
Act

Handler

A B

A

B

c

1-c

<while>,
<repeatUntil>,
<forEach>

<flow> <compen-
sate> <scope>

1-c
c

A

T1

Tm

compensate

CH1

CHn

Scope
Pattern

Event1?

EH1

pe1

End?

1-pe1

pl

1-pl

Wait()

Eventm?

EHm

pem

End?

1-pem

1-pl

Wait()

pl

<Scope> is a powerful BPEL construct, through which one can specify a context

influencing the execution behavior of its enclosed activities. Such contexts or <scope>s

can be nested hierarchically, while the root context is provided by the <process> itself.

In particular, a behavioral context includes variables, partner links, message exchanges,

correlation sets, event handlers, fault handlers, a compensation handler, and a termina-

tion handler.

Table III shows the flattened workflows that correspond to the BPEL 2.0 activities

we have discussed. Basic activities are represented by rounded rectangles, while thick

squared boxes represent subprocesses that are composed of the other activities, which

in turn can also be subprocesses. As for basic activities, we mainly characterize non-

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 22

faulty activities (<wait>, <empty>) through a simple one input to one output activity.

Because they do not affect the BPEL workflow’s reliability, they are usually not reported

in the process workflow. Faulty activities (<assign>, <validate>, <invoke>,<receive>),

on the other hand, can generate faults due to internal errors (<assign>, <validate>) or

to external faults triggered by WS invocations. What we do in the flattening process

is to merge the WS behavior with the process’ interaction, i.e, we represent the WS as

embedded inside an <invoke> (in case of synchronous WS interactions) or a <receive> (in

case of asynchronous WS interactions). Thus, we can argue that <invoke> and <receive>

are intrinsically not faulty activities, but that they reflect the associated WS behavior.

The probabilities p1, p2, ..., pn, and pok shown in the faulty activity workflow are

related to the occurrence of a specific fault, or to the probability of a correct or latent

error output. To obtain these probabilities, we need to know the user profile input

probability vector, as we will see in Section 6.

<Throw>, <rethrow>, and <compensate> activities are considered as explicit invoca-

tions of specific FCT handlers, and therefore are represented accordingly. The <reply>

and <exit> activities are instead mapped as final activities that close the process. Struc-

tured activities are considered as specific patterns to be applied to basic activities, and

the corresponding flattened out workflows are reported in Table III. More specifically,

the <compensate> activity is mapped into a sequence of compensation handlers that

compensate the behavior of all the successfully completed scopes that are immediately

enclosed inside the scope associated with the FCT-handler. Finally, a <scope> is mapped

as a parallel activity with m+1 branches: the first m branches describe the event handling

and management of the corresponding events e1, .., em, while the last branch is related

to the <scope> subprocess mapping.

5.2.2 Obtaining the Workflow

Once the mapping of the BPEL elements has been completed, they are combined into

the flat workflow. The algorithms shown in Fig. 4 describe the actions that need to be

taken to obtain this workflow. Let us start by explaining the algorithm that deals with

the whole process, which is shown in Fig. 4a.

Each activity Act of a process or subprocess is elaborated through the Map(Act, ScopeHP)

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 23

Act MapBasAct(Act,ScopeHP)

IsScope
N

Null

Basic +
<compensate>

Structured

ApplyPattern(Act)

Y Update(ScopeHP)

Map(Act,ScopeHP)

Map(a.Act,ScopeHP) Map(ev.Act,ScopeHP)

a=Dequeue
(Act.List)

a==Null
a!=Null

ev==Null

ev!=Null

ev=Dequeue
(Act.EvList)

(a) Process

ApplyPattern(Act)

MapBasAct(Act,ScopeHP)

fcth=Dequeue
(Act.FCTH)

fcth==Null

Map(a,ScopeHP)

Link(Id) Id=QueryFCTH(
fcth.id, ScopeHP)

Id==Null

Id!=Null

fcth!=Null

a=Dequeue
(fcth.ActList)

a==Nulla!=Null

ScopeHP=
ScopeHP.parent

Act.type?
Throw/
Rethrow

Otherwise
Faulty? NY

(b) Activity

Fig. 4. The mapping algorithms.

function, according to whether it is basic or structured. ScopeHP is the scope hierarchy

path, i.e., the path in the scope hierarchy of the considered activity Act, which allows us

to determine the FCT handler workflows. In the case of basic or <compensate> activities,

the MapBasAct function of Fig. 4b is performed. If the structured Act is a <scope>, the

ScopeHP has to be updated with the addition of the new scope; if the scope has handlers

they too need to be recursively mapped using the Map function. If the structured Act

is not a <scope>, or if the <scope> event handler mapping loop is completed, a loop is

performed to map all the activities that are nested in the Act. Finally, the corresponding

workflow pattern, among those reported in Table III, is applied to the activities enclosed

within Act (as well as to the <scope> handler). This step completes the process workflow.

The MapBasAct(Act, ScopeHP) of Fig. 4b maps basic or <compensate> activities into

the corresponding workflow. It starts by checking whether the considered activity Act

is faulty or not. Non-faulty activities that do not modify the input, i.e., with identi-

cal propagation matrices (internal activities such as <assign> and <validate>), except

<throw>, <rethrow>, <compensate>, and <compensatescope>, are immediately skipped.

The others are forwarded and processed as faulty activities.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 24

Thus, the workflow pattern associated with Act in Table III is applied, and the Act

handlers are mapped into the corresponding workflows. Because faults occurring to

activities within the same <scope>, or within the same ScopeHP , invoke the same

fault handlers, the fault handlers are mapped into the corresponding workflow the first

time they are invoked. The invocations on these fault handlers return the workflow

identifiers as pointers to the corresponding workloads. In case a fault handler in the

specific ScopeHP has not yet been invoked, the mapping is performed by considering

all the activities enclosed in the fault handler. This is why the two functions implement

a mutual recursion.

We have applied these algorithms to the running example shown in Fig. 3. Internal

errors and faults are usually much less frequent than WS errors and faults; therefore,

we assumed internal activities were error and fault-free. Thus, <assign> and <validate>

activities are not considered as faulty, and are not taken into account in the example.

This way, fault F5, which is related to a data mismatch and affects <assign> activities,

can be neglected, as it has a very low probability of occurring. The workflow only

includes the synchronous invokes, and the corresponding WS faults. By flattening the

running example’s BPEL, we obtain the workflow shown in Fig. 5. Because the main

process fault handlers ignore inner faults, they are represented as exit activities that

bypass the compensation handlers. Furthermore, event handling is considered to be

a request to check the Booking status at a certain time. Handling the faults trig-

gered by the makePayments service is more complex, because they also have nested

scopes and fault handlers. Their workflows are highlighted in Fig. 5. Specifically, the

makePayments invocation can throw 4 different faults: F1, F2, F3, and the generic

F ∗. The most complex one to manage is F1, as it may throw F2, F3, F ∗ (handled by

the makePayments calling <scope>), and F1 (handled by the process <scope>) faults.

Also, the F3 handler is nested because it may cause a generic fault F ∗ to be thrown to

the upper makePayments <scope>. Finally, F2 and F ∗ have simple fault forwarding

handlers that notify the fault to the end user. This example allows us to show how

we transform a complex, hierarchical, nested BPEL process into a flat workflow that is

ready to be evaluated.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 25

Assign

Invoke
getUserInfo

Invoke
getFlightOptions

Assign

Invoke
requestFlightChoice

Invoke
reserveFlightChoice

Assign

Assign

Assign

Invoke
makePayments

Assign

pauto
AssignAssign

Invoke
requestShipping

reply
giveSummary

Assign

Assign

EL1

EL2

EL3

Payment

Compensate -
P_Auto

Compensate -
P_Hotel

Compensate -
P_Flight

Assign

p1+p*

Invoke
getHotelOptions

Assign

Invoke
requestHotelChoice

Invoke
reserveHotelChoice

AssignEL3

Assign

Invoke
getAutoOptions

Assign

Invoke
requestAutoChoice

Invoke
reserveAutoChoice

Assign
EL3

pauto

Assign

Assign

Assign

p1

p1+p*

p2

Invoke
verifyBillingAddress

Assign

p1

p3

p2+p*

Invoke
getCredit

Assign

Assign

Invoke
makePayments

Compensate -
Undo Auto

Assign

pauto

p*

p*

p*

pCok

p1
p3

Assign p1

pauto
AssignAssign

Compensate -
P_Auto

Assign
error msg

Reply

Compensate -
P_Hotel

Compensate -
P_Flight

p1+p*

p1+p*

p1+p4+p*

p1+p*

p1+p4+p*

p1+p*

p1+p*

Reply

Assign
Env Var
Status

p1+p*

Wait

pe

pel

P_Flight P_Hotel P_Auto

EH Check Status
Process F1-4-* FH

Assign
error msg

Reply

Payment F1 FH

Payment F2-* FH

Payment F3 FH

Invoke
makePayments

Invoke
verifyBillingAddress

Fig. 5. Running Example process workflow.

6 SYNTHESIS AND ANALYSIS

Once we have obtained a flat workflow, we are ready to analyze it, taking into con-

sideration any faults and fault handlers, from both the end user’s and the architect’s

perspectives.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 26

6.1 Fault Handling

In BPEL processes, faults can be managed by ad-hoc handlers, which can therefore be

used to stop fault propagation. Fault handlers can be broadly categorized into forwarders,

and processors. The former simply manage the termination of the process, and send

the user a message containing the details of the fault. The latter implement some

specific recovery actions that can either be successful or require further fault handling.

A fault handler can be viewed as a subprocess that elaborates on the main workflow’s

information to recover from a fault. In terms of propagation effects, this approach results

in a feedback of the process input into the main workflow, after the fault has been

handled.

Thus, assuming In ∈ Rn is the input probability vector of the process, i.e. the usage

profile of Section 4, and that O ∈ Rn is its output probability vector, we can algebraically

express the process propagation as an input-output relationship by the function F (·)

O = F (In,P1, ..,Pm) (3)

where P1 , .., Pm are the propagation matrices of the m > 0 process activities, identified

by i = 1, ..,m. F : Rn ×Rn,n × ...×Rn,n︸ ︷︷ ︸
m

→ Rn returns an n-probability vector to obtain

output j ≤ n from input i ≤ n given that a response is provided, as stated in Section 4.

Because fault forwarders simply forward faults, they avoid input feedback. So, if all

the fault handlers in the process are fault forwarders, the function of (3) becomes

O = In · Feq(P1, ..,Pm) (4)

where Feq : Rn,n × ...×Rn,n︸ ︷︷ ︸
m

→ Rn,n returns the system equivalent matrix Peq = Feq(P
1, ..,Pm).

The output is therefore linear with respect to the input. Hence, it could be obtained

through simple algebraic operations on the workflow, as shown in Section 6.2.

On the other hand, if there are one or more fault processors in the process, we have

input feedback, meaning that the relationship between input and output is not linear. In

other terms, in the case of fault forwarding, correct response or latent error flows and

faults are separated. Indeed, they are forwarded by the main workflow to the output

without being mixed. In the case of fault processing, some faults can be processed and

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 27

recovered, so becoming correct responses or latent errors. This policy leads to fault and

correct or latent error flows being mixed in the propagation.

To adequately investigate and characterize the problem, let us start by considering a

generic faulty activity X = 1, ..,m−1, and its fault management. As stated above, we can

express the activity output probabilities as functions of the input OX = FX(InX ,PX) =

{pOX0 , pOX1 , ..., pOXnl , pOXnl+1
, ..., pOXnl+nf+1

}. Table III shows that this characterization specif-

ically regards faulty activities, both internal (<assign>, <validate>), and external (syn-

chronous <invoke>, <receive>), where probabilities pF1 , pF2 , ..., pFnf correspond to pOXnl+1
,

pOXnl+2
, ..., pOXnl+nf+1

, respectively, and pok =
∑nl

j=0 pOXj . To obtain the (X + 1)th activity

input (InX+1), following the Xth one, we have to know the X normalized output OX .

InX+1 = OX = {pOX0 /p
X
ok, pOX1 /p

X
ok, ..., pOXnl

/pXok, 0, ..., 0} = {
InX ·PX

cl

pXok
,0} = {InX+1,0} (5)

where InX+1 =
InX ·PXcl
pXok

∈ Rnl+1, and therefore
∑nl

j=0 In
X+1[j] = 1.

Out?
pF1

Faulty Activity Pattern

FH F1 FH F2
pF2

pFn

pok

Out?
pFH1F1 pFH1F2

pFH1FnpFH1ok
Out?

pFH2F1

pFH2F2
pFH2Fn

pFH2ok

FH Fn

Out?
pFHnF1

pFHnF2 pFHnFn

pFHnok

pF1eq pF2eq pokeqpFneq

(a) Original (processing)

Out?
pF1

Faulty Activity Pattern

pF2 pFnf

pok

(b) Equivalent (forwarding)

Fig. 6. Fault handler workflow pattern.

Fig. 6a shows a generic fault processing workflow, in which each fault is managed by

an explicit fault handler. Notice that inner faults and their handlers are collapsed into

the main fault handler. Nevertheless, the proposed solution can be inductively applied

to nested fault handlers, as we shall see. Our aim here is to obtain a simpler model, like

the one shown in Fig. 6b, which is equivalent to the one shown in Fig. 6a. To this end,

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 28

we have to identify the pF1eq, .., pFnf eq, and pokeq probabilities of the equivalent model,

given the original model’s probabilities of faulty activity output (pFi for the generic

ith output), and of all output for each of the fault handlers, i.e. pFHjFk for the generic

kth output of the jth fault handler with i, j, k = 0, .., nf (conventionally, pF0 = pok,

pFHjF0 = pFHjok, and pFH0Fk = pokIn · P · In[k]). In other words, considering a generic

faulty activity X with propagation matrix PX , we want to obtain the equivalent model

characterized by PX
eq, so that the output OX = F (InX ,PX) of (3) is expressed as

OX = InX ·PX
eq(In

X),

just like in the case of fault forwarding.

There is a strong difference between this relationship and the one seen in (4), i.e.

PX
eq(In

X) = FX
eq (P

FH0, ..,PFHnf , InX), where PFH1, ..,PFHnf are associated to the fault

handlers of faults 1, .., nf , and PFH0 = In is the matrix that describes a fictitious handler

that manages a correct response, by just forwarding it. This way the aggregation-

reduction rules are still valid, and can be applied.

To obtain the simplified activity model of Fig. 6b, we have to express its probabilities

pF1e, ..., pFne, poke in terms of the original model probabilities and matrices. In the fault

processing we assume that the output of the faulty activity, before handling OX′ =

InX · PX , is forwarded to the fault handlers so that they can perform recovery, thus

propagating and reprocessing the normalized output OX′ , as in the normal workflow.

It follows that, given OFHj = OX′ · PFHj = {InX · PX
cl · P

FHj
cl , InX · PX

cl · P
FHj
f }, the

output of the whole faulty activity, including the fault processing, is OX = InX ·PX
eq =∑nf

i=0 pFiIn
X ·PX ·PFHi = pokIn

X ·PX · In+pF1In
X ·PX ·PFH1+ ..+pFnf In

X ·PX ·PFHnf .

The first term (pokInX ·PX ·In) represents the WS output (InX ·PX), which is forwarded

to the workflow in case of correct response (pF0 = pok) through a fictitious fault handler

(PFH0 = In). This way the equivalent propagation matrix Peq can be expressed as

PX
eq(In

X) = PX ·
(
pXokIn + pXF1P

FH1 + ..+ pXFnfP
FHnf

)
(6)

where pXok =
∑nl

i=0 In
X ·PX [i], pXFj = InX ·PX [j], and thus its dependence on InX .

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 29

6.2 Aggregation/Reduction Rules

Once the BPEL process activities have been mapped to equivalent activities, we can

evaluate process parameters (< γP (In),PP (In) >) by applying the reduction algorithm

proposed in [25], which we have adapted for SOA and WS compositions, and specifically

for dealing with FCT and event handling, taking into account the fault processing

input feedback and its propagation on the main process workflow. In the following,

we provide reduction rules for all the BPEL structured activity workflow patterns,

considering just 2 sub-activities (A, and B) described, as specified in Section 4, by the

2-tuples < γA(In),PA(InA) >, and < γB(In),PB(InB) >, respectively. The formulae we

obtain can be easily generalized to n-sub-activity patterns by iteratively applying the

rules to reduced sub-activity couples, until we obtain a single equivalent component.

Both the user and the architect perspectives need to be considered to obtain the PPU ∈

Rn+1×n+1 and PPA ∈ Rn×n process propagation matrices based on those representing

the activities. Furthermore, from the architect’s perspective, the response probability

γP
A also depends on the process workflow, and requires further investigation. Indeed,

the probability of a specific workflow path has to take into account propagation effects,

and can therefore be expressed as a function of the WS fault probabilities, as discussed

in Section 6.1. The workflow equivalent is similar to the one shown in Fig. 7, where

pnext is the probability to continue the workflow, while pout is the probability to exit

due to a fault, where pnext + pout = 1, and therefore pout = 1 − pnext. Moreover, if γPA

represents the response probability of the equivalent system, it has to be expressed in

terms of the related parameters (γAA , and γB
A in the case of two activities A, and B).

To this end, considering a generic process structured activity X , it is possible to

express γXA in algebraic terms by manipulating the propagation matrix PXA
(InX)

PXAγ

(InX) =

 γX
A
PXA

cl (InX) γX
A
PXA

f (InX)

0nf×nl+1 Inf


thus obtaining the architect γ-propagation matrix PXAγ

(InX). Note that PXAγ
(InX) is a

non-stochastic matrix because the sum by row elements of rows 1, .., nl is equal to γX
A .

Hence, to obtain parameter γPA for the whole process, given the process input InP , we

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 30

Generic
Wflow

Equivalent

pnext

pout

Previous
Workflow

Next
Workflow

Previous
Workflow

Next
Workflow

Out?
p1F1

Act1

p1Fnf p1ok

Out?
pkF1

Actk

pkFnf pkok

Generic
Wflow

Fig. 7. A generic workflow equivalent.

have to evaluate its γ-propagation matrix PPAγ (InP), and output vector so that

γP
A

=
n∑
i=0

InP ·PPAγ (InP). (7)

Also, this parameter, from the architect’s perspective, depends on InP , i.e. γPA(InP).

TABLE IV
Aggregation rules.

Pattern PP PP
Aγ

pnext

Seq PA ·PB PA
Aγ ·PBaγ pSnext = pAokp

B
ok

If No exit branch pcPA + (1− pc)PB
(1− pl)(In − plPA

Aγ
(InL))−1 pCnext = pcpAok + (1− pc)pBokExit branch PA(InC) ·PBeq

Loop While (1− pl)(In − plPA)−1 (1− pl)(In − plPA
Aγ

)−1

pLnext =
pAok

1−plpAokRU (1− pl)PA · (In − plPA)−1 (1− pl)PA
Aγ · (In − plPA

Aγ
)−1

Concurrent PF = 1
2
(PA(InF) +PB(InF)) 1

2
(PA

Aγ ·PBAγ) + 1
2
(PB

Aγ ·PAAγ) pFnext = pAokp
B
ok

Table IV shows the aggregation-reduction rules for the workflow patterns identified

in Section 5. These have been obtained by algebraic manipulations similar to those of

[4], [25]. Details can be found in [33].

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 31

6.3 Solution Algorithm

O=EvaluateOut
(wf,In)

Synthesis(wf,In)

act=Dequeue
(wf.list)

act!=Nullact==Null

wf pattern
basic structured

act.P,act.γ,In=
Synthesis(act,In)

wf.P,wf.γ,O=
ApplyPattern

(wf,wf.list.(P,γ))
P,γ=Evaluate
Pars(wf,O)

Return
P, γ, O

wf.type

act.P,act.γ,O=
Synthesis(act,In)

Seq !Seq

Fig. 8. BPEL parameter evaluation algorithm.

The main synthesis algorithm for evaluating a BPEL process’ response probability

and propagation effects is shown in Fig. 8. It receives the flat workflow wf , and the

usage profile In as inputs; and returns γ, P representing the process from the required

perspective, and the corresponding output O. As discussed in Section 5, wf has to

include all the BPEL process’ activities and fault handlers. With regards to fault handlers,

they are considered by the algorithm as sequences containing the faulty activity and

the fault handler activities, as depicted in Fig. 6.

The algorithm starts by processing the input workflow, to evaluate if it is composed

of just a single basic activity, or if it is structured. In the latter case, we need to consider

the nested activities; the function is therefore recursively invoked on all of them. In

particular, if we have sequence patterns, the output of an activity becomes the input

to the next activity; otherwise, if we have a loop, fork-join or flow construct, the same

input is used for all the nested workflows and activities.

When all the nested workflows have been analyzed, ApplyPattern uses the above

specified formulae to compute the parameters and the output, starting from the param-

eters of the nested workflows. On the other hand, the outputs and parameters of basic

activities are evaluated by EvaluateOut and EvaluatePars, respectively. Finally, the

basic and structured algorithm branches are merged, and the results of the evaluation are

returned. Regarding the algorithm’s complexity, if a is the number of process activities,

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 32

and n is the number of possible responses for an activity (correct, latent errors and

faults), it is easy to demonstrate that the asymptotic complexity of the Synthesis

algorithm is O(n2 ∗ a). In fact, EvaluateOut, EvaluatePars, and ApplyPatterns

are O(n2), because they implement just simple matrix operations. Synthesis, on the

other hand, implements a visit on the workflow, and has a linear complexity with respect

to the number of activities in the workflow O(a). Thus the algorithm is scalable on the

number of activities.

6.4 Sensitivity Analysis

Sensitivity analysis techniques have proven to be important tools for understanding and

identifying the critical components of a process. These techniques investigate how the

uncertainty in the output of a model can be apportioned to different sources of uncer-

tainty in the model’s inputs. In our specific context, an architect is primarily interested

in identifying the components or the WSs that have a high impact on the overall

process reliability or availability, or both. More specifically, the architect is interested

in understanding and quantifying the impact that each input (correct or erroneous) has

on the process.

One of the most powerful and effective sensitivity analysis techniques is differenti-

ation. It tells us how sensitive a given quantity, which can be expressed as a function

of some specific parameters F (x1, ..., xk, ...), is to these parameters. This technique is

achieved by differentiating the quantity function on the considered parameter xk

Sk =
δF (x1, ..., xk, ...)

δxk
.

Once we have obtained the process’ result parameters, we can apply sensitivity

analysis to investigate specific aspects and contributions. Starting from the Birnbaum

importance index [34], and considering a generic property function Y P , which can be

one among CP , EP
j , GP

j , and BP
j as defined in Table I, the sensitivity of the Y P property

on the ith activity can be specified as

SiY =
δY P

δY i
.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 33

Applying pivotal decomposition, we can express the ith activity sensitivity on the Y

property as

SiY =
δY P

δY i
=
δ
(
Y iY P (1i) + (1− Y i)Y P (0i)

)
δY i

= Y P (1i)− Y P (0i).

We can therefore evaluate the above formula considering, for the ith component,

γi = 1 and Pi = In in case Y P (1i), and γi = 0 for Y P (0i).

7 DEPENDABILITY ASSESSMENT IN ACTION

How can we use the proposed technique to obtain valid information from both the

user’s and the architect’s perspectives? The users are mainly interested in selecting the

service that implements the needed functionalities, and that best fits their reliability

and availability requirements. They want to quantify these parameters, and this can

be done using < γP
U , PPU >, as specified above. The architect’s goal is to select the

WSs to orchestrate based on their reliability and availability. We want to provide useful

information, such as the parameters < γP
U , PPU >, and < γP

A , PPA > that, in the case

of the architect, can be manipulated to investigate the impact that each component and

each response has on the process. To better clarify how to use the proposed technique,

we apply it to the example described in Section 5.

In the workflow of Fig. 5, we identified 3 latent errors, and 5 possible faults. Thus,

we represent a generic X process activity using the couple < γX ,PX >, where the

propagation matrix PX is a 9×9 square block matrix. This way, by applying the proposed

approach, we get the overall process formulae detailed in [33].

Once we have obtained the flat workflow, it is analyzed applying the rules and formu-

lae of Section 6. In the evaluation, we base the model parameters that characterize the

response probability on real values, which are taken from literature [31], [35] whenever

possible. In some cases (e.g., requestFlightChoice and makePayments) we used

real values taken from the experiments performed in [35]. Otherwise, we based these

parameters on the statistics presented in [31], which were related to generic WSs, thus

characterizing all the other WSs with the same value of γ.

The PPU and PPA that we obtained from our evaluation are reported in Table V; they

only differ in the dimensions, as discussed in Section 6.2. Although the model could be

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 34

considered to be quite realistic, we are conscious that, to show the effectiveness of the

approach, it is better to assess the method in a real-world environment, and conduct

a series of comprehensive experiments. This effort is the first objective of our future

work: a full case study experimentation on a real process, in which we identify the

process and its WS components, measure and benchmark its reliability and availability

properties, and then apply the proposed technique to verify and validate the results.

TABLE V
< γP ,PP > of the BPEL example process.

Per-
spec-
tive

γP PP

Architect 0.925



0.584711 0.003217 0.00214947 0.0219415 0.131942 0.0434513 0.139091 0.0503504 0.0231472
0.201549 0.0234032 0.000983154 0.007376 0.507493 0.0181956 0.0553862 0.0274546 0.158159
0.201798 0.00147353 0.0230995 0.00738442 0.508207 0.0182301 0.0554871 0.0275532 0.156768
0.256276 0.00218176 0.00145807 0.0260913 0.249526 0.11463 0.079134 0.0573242 0.213379

0. 0. 0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 0. 0. 1. 0.
0. 0. 0. 0. 0. 0. 0. 0. 1.


User 0.99

[
PP

A
01×n

0n×1 1

]

TABLE VI
Running example process aggregated parameters.

Error — Fault Id CP |EPj GPj BPj SEPj SFPj LEPj LFPj
0 0.540631 0.0252493 0.358733 0.530511
1 0.00297448 0.121995 0.186355 0.0293679 0.708891 0.00313543 0.130034
2 0.00198743 0.0401756 0.186585 0.0295483 0.70848 0.00216396 0.040367
3 0.0202874 0.128605 0.236957 0.0274898 0.660167 0.0200565 0.126504
4 0.0465546 0.0461966
5 0.0214022 0.0256449

An architect is mainly interested in investigating the process responses, using the

metrics of Table I, the example values for which are reported in Table VI. These responses

highlight a low process correctness (CP ∼ 0.54) that gets worse if we also consider the

input (LEP
0 ∼ 0.53). We can also see that there is a high susceptibility to faults, not only

in the case of latent errors (SF P
j from about 0.66 of error 3 to 0.708 of errors 1 and

2), but also in the case of correct inputs (0.359). To identify which WS has the highest

impact on the process, we perform sensitivity analysis, as discussed in Section 6.4. We

focus on the two main parameters γP and CP . Table VII shows the importance indexes

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 35

we obtained.

TABLE VII
Running example WS importance indexes.

WS — Par gUI gFO gHO gAO rFC rHC rAC bFC
γP 0.930523 0.756366 0.756366 0.354908 0.717285 0.717285 0.319374 0.679512
CP 0.571764 0.451097 0.451097 0.211154 0.428246 0.428246 0.190475 0.416454

WS — Par bHC bAC mP vBA gC CUA rS
γP 0.679512 0.287409 0.521171 0.00555751 0.0428233 0.0209602 0.392564
CP 0.416454 0.17666 0.509917 0.00378136 0.0311699 0.0122643 0.229536

These values tell us that the getUserInfo WS is the one with the highest impact

on the process. Other important WSs are makePayments, and the ones in the <flow>

concurrent workflow. Some of them have the same sensitivity because they are charac-

terized by the same γ and P values, as reported in [33].

Following the algorithm of Fig. 1, to improve γP and CP , the architect can decide to

modify the workflow, select alternative WSs, or both. We assume the architect decides

to select alternative WSs. Thus, following the directions provided by the sensitivity

analysis, the software architect replaces the getUserInfo and makePayments WSs

with two functionally-equivalent services that are characterized by higher response and

lower fault propagation probabilities.

TABLE VIII
< γP ,PP > of the BPEL example process in the new configuration.

Per-
spec-
tive

γP PP

Architect 0.935



0.741565 0.00361244 0.00242493 0.0411729 0.0968937 0.00973072 0.0319764 0.0524615 0.0201621
0.326115 0.0258343 0.00154305 0.0175611 0.407045 0.00738891 0.0221701 0.0327325 0.15961
0.326446 0.00193981 0.0253975 0.0171725 0.407705 0.00824158 0.0222164 0.0328311 0.15805
0.403161 0.00270911 0.00181959 0.038958 0.217619 0.0822477 0.0362229 0.0626021 0.154661

0. 0. 0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 0. 0. 1. 0.
0. 0. 0. 0. 0. 0. 0. 0. 1.


User 0.99

[
PPP

A
01×n

0n×1 1

]

The new configuration is thus evaluated to quantify the impact the new WSs have

on the process’ parameters, as reported in Table VIII. Now γP = 0.934822, and CP =

0.693232; both parameters have been improved. If the architect is satisfied, the process

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 36

is deployed; otherwise, the algorithm is reiterated until a satisfactory configuration is

identified.

8 DISCUSSION

After presenting the approach and experimenting with it, we discuss its limitations and

threats to validity.

Limitations - In Section 4, we presented six basic assumptions that we make in our

work. Here we will identify and evaluate the impact that these assumptions may have

on our proposed methodology.

The first three assumptions have to do with how we model the business process. They

state that container and inner service time-to-failures are statistically independent, that

the inner service time-to-response and time-to-failure are statistically independent, and

that branching activities can be probabilistically represented. These are quite typical

assumptions, and they are very common in literature [3], [4], [20], [21], [24], [25], [35].

The probabilities of executing conditional and loop constructs can be estimated by

applying program analysis techniques [36], [37], and by statically inspecting the BPEL

source code. Moreover, our experience with real systems [11], [13], [17], [18], [35] have

allowed us to assess that these assumptions are acceptable, and do not undermine the

quality of our model.

The fourth assumption regards the fact that input and output types should always

be distinguishable. Once again, this assumption is not about the business process itself,

but about how we create the business process’ model, and specifically about how to

characterize and classify inputs and outputs. Indeed, we need to be able to uniquely

assign each and every input and output type to a specific type category. In other words,

the latent errors and faults that can be taken into account by the proposed technique

should be univocally detectable from the output they produce. Therefore, it is impossible

for two different latent errors or faults to produce the same output.

The fifth assumption states that a BPEL loop should adopt the same input in each

iteration. For example, we can have a data structure that aggregates multiple sub-data,

and then have each iteration of the loop’s body be responsible for manipulating one of

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 37

the sub-data. We cannot have a loop in which the outputs of an iteration i become the

inputs of iteration i+ 1.

Although this assumption is about the business process’s control- and data-flows,

it is actually quite realistic. Having such a loop construct would be quite common if

our goal were to develop an iterative algorithm. However, this condition is usually not

the case in business processes, given their high-level of abstraction. Instead, business

processes mostly use loops to perform a certain task multiple times on different data,

which can easily be aggregated to form a single input [38].

Finally, the sixth assumption regarded the fact that the number of parallel activations

of an event handler needed to be finite. Once again, this is an approximation we make

on the model. Should the software architect find that the fixed limit is undermining

the analysis, she can easily increase the limit, knowing that this will not impact the

algorithm’s performance.

Threats to Validity - Here we follow [39], where four kinds of threats to validity are

mentioned: construct, internal, conclusion, and external.

Regarding construct and internal validity, our goal is to define an approach for the

reliability-availability analysis of Web service compositions, orchestrated via the BPEL

workflow language. In this type of research, a frequent problem is the accuracy with

which the model represents the system. To this end, we used a workflow model, which is

the common way to reason about software qualities in Web services [25]. Some problems

that are shared with all architectural approaches are, for example, the possible lack

of knowledge about the real execution environment, and consequently the difficulty

in defining architecture parameters [40], [41]. Some methods have been defined in

the literature, mainly based on estimations backed up by measures taken from actual

software or from similar applications, and on estimations backed up by experience [26],

[40], [41], [42]. In our work, we used as much data as possible from real systems, to

defend our underlying assumptions and the values that the factor levels can take.

Regarding conclusion and external validity, instead of using a real system, which would

have been needed to support the latter, we have considered a non-trivial example. How-

ever, to make the approach as general as possible we based most of our assumptions

on real data.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 38

9 CONCLUSIONS

We have presented a method to analyze the reliability and availability of BPEL processes

that need to compose third-party services, which are characterized by multiple failure

modes, latent errors, and propagation effects. The approach also fully takes into account

the more advanced tools that the BPEL standard gives us to build reliable processes,

such as fault, compensation, termination, and event handlers. The method can be seen

as a tool that both architects and users can adopt, the former to reason about a process’

reliability and availability, especially in the early development stages, and the latter as

support for WS selection. We also fully developed a non-trivial case study in the area

of travel management, to illustrate the applicability and effectiveness of our approach.

The proposed technique can be improved along several directions. As we observed,

parallel compositions can have a variety of application-dependent semantics. We intend

to explore current industrial practices to identify the composition patterns that are

relevant in practice, and to provide a formal specification of their reliability attributes.

Furthermore, we plan to explore the impact of embedding time dependency in the

response probability function, relaxing the assumptions of Section 4. This development

would help us deal with timeouts, and allow us to automatically synthesize join syn-

chronization points that depend on the parallel branches’ response times. Finally, we

are currently improving the implementation of our methodology in the context of a

real-world testbed, to assess its effectiveness through a more comprehensive set of

experiments.

ACKNOWLEDGEMENT

This research has been partially funded by the European Commission, Programme

IDEAS-ERC, Project 227077-SMScom (http://www.erc-smscom.org).

REFERENCES

[1] OASIS Committee Specification 01, Reference Architecture Foundation for Service Oriented Architecture Version 1.0,

OASIS, http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html, December 2012.

[2] A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, Sterling, D. König, V. Mehta, S. Thatte,

D. van der Rijn, P. Yendluri, and A. Yiu, “Web services business process execution language version 2.0,” OASIS

Committee Draft, May 2006.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 39

[3] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola, “Reliability analysis of component-based systems with multiple

failure modes,” in Component-Based Software Engineering, ser. LNCS, L. Grunske, R. Reussner, and F. Plasil, Eds.

Springer Berlin / Heidelberg, 2010, vol. 6092, pp. 1–20.

[4] S. Distefano, A. Filieri, C. Ghezzi, and R. Mirandola, “A compositional method for reliability analysis of

workflows affected by multiple failure modes,” in Proc. of the 14th Int. ACM Sigsoft Symp. on Component Based

Software Engineering, CBSE 2011, Comparch ’11, Boulder, CO, USA, June 20-24. ACM, 2011, pp. 149–158.

[5] M. R. Lyu, Handbook of Software Reliability Engineering. IEEE Computer Society Press and McGraw-Hill Book

Company, 1999.

[6] R. Hamadi, B. Benatallah, and B. Medjahed, “Self-adapting recovery nets for policy-driven exception handling

in business processes,” Distrib. Parallel Databases, vol. 23, no. 1, pp. 1–44, Feb. 2008.

[7] S. Modafferi, E. Mussi, and B. Pernici, “Sh-bpel: a self-healing plug-in for ws-bpel engines,” in Proceedings of

the 1st workshop on Middleware for Service Oriented Computing (MW4SOC 2006), ser. MW4SOC ’06. ACM, 2006,

pp. 48–53.

[8] M. Kaniche, K. Kanoun, and M. Martinello, “A user-perceived availability evaluation of a web based travel

agency,” in Dependable Systems and Networks, 2003. Proceedings. 2003 International Conference on, june 2003, pp.

709 – 718.

[9] S. Gokhale and J. Lu, “Performance and availability analysis of an e-commerce site,” in Computer Software and

Applications Conference, 2006. COMPSAC ’06. 30th Annual International, vol. 1, sept. 2006, pp. 495 –502.

[10] D. Wang and K. S. Trivedi, “Modeling user-perceived service availability,” in Proceedings of the Second

international conference on Service Availability, ser. ISAS’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp.

107–122. [Online]. Available: http://dx.doi.org/10.1007/11560333 10

[11] M. Merzbacher and D. Patterson, “Measuring end-user availability on the web: practical experience,” in

Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, 2002, pp. 473 – 477.

[12] N. Sato and K. Trivedi, “Accurate and efficient stochastic reliability analysis of composite services using their

compact markov reward model representations,” in IEEE Int. Conf. on Services Computing, 2007. SCC 2007., july

2007, pp. 114 –121.

[13] K. Goseva-Popstojanova, A. D. Singh, S. Mazimdar, and F. Li, “Empirical characterization of session-based

workload and reliability for web servers,” Empirical Software Engineering, vol. 11, no. 1, pp. 71–117, 2006.

[14] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of service-oriented systems,” in Proc. of the 32nd

ACM/IEEE Int. Conf. on Software Engineering, ser. ICSE ’10, vol. 1. New York, NY, USA: ACM, 2010, pp. 35–44.

[15] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-based approach to reliability assessment of software

systems,” Perform. Eval., vol. 45, no. 2-3, pp. 179–204, 2001.

[16] A. Immonen and E. Niemel, “Survey of reliability and availability prediction methods from the viewpoint of

software architecture,” Software and Systems Modeling, vol. 7, no. 1, pp. 49–65, 2008.

[17] K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli, “Large empirical case study of architecture-based

software reliability,” in ISSRE. IEEE Computer Society, 2005, pp. 43–52.

[18] K. Goseva-Popstojanova, M. Hamill, and X. Wang, “Adequacy, accuracy, scalability, and uncertainty of

architecture-based software reliability: Lessons learned from large empirical case studies,” in ISSRE. IEEE

Computer Society, 2006, pp. 197–203.

[19] R. C. Cheung, “A user-oriented software reliability model,” IEEE Tr. Sw. Eng., vol. 6, no. 2, pp. 118–125, 1980.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 40

[20] R. Reussner, H. W. Schmidt, and I. Poernomo, “Reliability prediction for component-based software architec-

tures,” Journal of Systems and Software, vol. 66, no. 3, pp. 241–252, 2003.

[21] V. Grassi, “Architecture-based reliability prediction for service-oriented computing,” in Architecting Dependable

Systems III, ser. Lecture Notes in Computer Science, R. de Lemos, C. Gacek, and A. Romanovsky,

Eds. Springer Berlin / Heidelberg, 2005, vol. 3549, pp. 279–299, 10.1007/11556169 13. [Online]. Available:

http://dx.doi.org/10.1007/11556169\ 13

[22] B. Beizer, Micro-Analysis of Computer System Performance. New York, NY, USA: John Wiley & Sons, Inc., 1978.

[23] E. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reachability for parametric markov models,”

in Model Checking Software, ser. Lecture Notes in Computer Science, C. Pasareanu, Ed. Springer

Berlin / Heidelberg, 2009, vol. 5578, pp. 88–106, 10.1007/978-3-642-02652-2 10. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-02652-2\ 10

[24] A. Cardoso, “Quality of service and semantic composition of workflows,” Ph.D. dissertation, Graduate School

of the University of Georgia, Athens, Georgia, August 2002.

[25] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, “Quality of service for workflows and web service

processes,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 1, no. 3, pp. 281 – 308, 2004.

[26] S. S. Gokhale and K. S. Trivedi, “Reliability prediction and sensitivity analysis based on software architecture,”

in ISSRE. IEEE Computer Society, 2002, pp. 64–78.

[27] V. Cortellessa and V. Grassi, “A modeling approach to analyze the impact of error propagation on reliability of

component-based systems,” LNCS, vol. 4608, p. 140, 2007.

[28] J. M. Voas, “Pie: A dynamic failure-based technique,” IEEE Trans. Software Eng., vol. 18, no. 8, pp. 717–727, 1992.

[29] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of dependable and secure

computing,” IEEE Trans. Dependable Secure Comput., vol. 1, pp. 11–33, January 2004.

[30] Z. Zheng, Y. Zhang, and M. Lyu, “Distributed qos evaluation for real-world web services,” in Web Services

(ICWS), 2010 IEEE International Conference on, july 2010, pp. 83 –90.

[31] Z. Zheng and M. R. Lyu, QoS Management of Web Services, ser. Advanced Topics in Science and Technology in

China. Springer, 2013.

[32] H. A. Gabbar, “Improved qualitative fault propagation analysis,” Journal of Loss Prevention in the Process

Industries, vol. 20, no. 3, pp. 260 – 270, 2007. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0950423007000411

[33] S. Distefano, C. Ghezzi, S. Guinea, and R. Mirandola, “Dependability assessment of web service orchestrations

- full version with appendices,” Politecnico di Milano, Available on request, 2013.

[34] F. Hwang, “A hierarchy of importance indices,” Reliability, IEEE Trans. on, vol. 54, no. 1, pp. 169 – 172, 2005.

[35] D. Bruneo, S. Distefano, F. Longo, and M. Scarpa, “Stochastic evaluation of qos in service-based systems,” IEEE

Trans. Parallel Distrib. Syst., vol. 24, no. 10, pp. 2090–2099, 2013.

[36] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel, “A fast and precise static loop analysis based on

abstract interpretation, program slicing and polytope models,” in Code Generation and Optimization, 2009. CGO

2009. International Symposium on, 2009, pp. 136–146.

[37] F. Nielson, H. Nielson, and C. Hankin, Principles of Program Analysis, 2nd edn. Berlin, Heidelberg: Springer-

Verlag, 2005.

[38] R. Khalaf and F. Leymann, “Coordination for fragmented loops and scopes in a distributed business

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 41

process,” Information Systems, vol. 37, no. 6, pp. 593 – 610, 2012, bPM 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0306437911001104

[39] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in software engineering,”

Empirical Software Engineering, vol. 14, no. 2, pp. 131–164, Apr. 2009.

[40] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early prediction of software component reliability,”

in ICSE. ACM, 2008, pp. 111–120.

[41] C. U. Smith and L. G. Williams, Performance solutions: a practical guide to creating responsive, scalable software.

Addison Wesley, 2002.

[42] K. Goseva-Popstojanova, A. Mathur, and K. Trivedi, “Comparison of architecture-based software reliability

models,” in Software Reliability Engineering, 2001. ISSRE 2001. Proceedings. 12th International Symposium on, 2001,

pp. 22 – 31.

Salvatore Distefano is an Assistant Professor at Politecnico di Milano. His main research interests include non-

Markovian modelling, performance and reliability evaluation, dependability, Parallel and Distributed Computing, Cloud,

Autonomic, Volunteer, Crowd Computing, Big Data, and Software and Service Engineering. During his research activity,

he has contributed in the development of several tools such as WebSPN, ArgoPerformance, and GS3. He has been

involved in several national and international research projects. He is an author or co-author of more than 100 scientific

papers. He is member of international conference committees, and he is in the editorial boards of several international

journals.

Carlo Ghezzi is a Professor and Chair of Software Engineering at Politecnico di Milano, and an Adjunct Professor at the

University of Lugano. He is a Fellow of the ACM, Fellow of the IEEE, Member of the Academy of Europe, and Member

of the Italian Academy of Sciences. He has been awarded the ACM SIGSOFT Distinguished Service Award. He has

been the Editor in Chief of the ACM Trans. on Software Engineering and Methodology, and is currently an Associate

Editor of Communications of the ACM, IEEE Trans. on Software Engineering, Science of Computer Programming,

Service Oriented Computing and Applications, and Computing. His research has been focusing on software engineering

and programming languages. Currently, he is especially interested in methods and tools to improve dependability of

adaptable and evolvable distributed applications, such as service-oriented architectures and ubiquitous and pervasive

computer applications. He has co-authored over 180 papers, and 8 books; and coordinated several national and

international (EU funded) research projects. He has been awarded an Advanced Grant from the European Research

Council.

April 1, 2014 DRAFT

TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JUNE 2014 42

Sam Guinea is an Assistant Professor at Politecnico di Milano. His research mainly focuses on establishing novel

techniques and tools for the development of modern autonomic software systems. He is known in the Software Engi-

neering and Service Oriented Architectures research communities for his work on Self-supervising BPEL processes,

and the development of the Dynamo BPEL execution framework. More recently, he has shifted his attention to the

runtime management of Internet and Cloud-based applications. Sam’s research has cumulatively produced more than

50 publications in top-class international journals, conferences, workshops, and books; and his work is highly cited. He

has been a member of various program committees for international conferences and workshops.

Raffaela Mirandola is an Associate Professor in the Dipartimento di Elettronica, Informazione e Bioingegneria at

Politecnico di Milano. Raffaela’s research interests are in the areas of performance and reliability modeling and analysis

of software-hardware systems with special emphasis on methods for the automatic generation of performance and

reliability models for component based and service based systems, and methods to develop software that is dependable

and can easily evolve, possibly self-adapting its behavior. She has published over 90 journal and conference articles

on these topics. She served and is currently serving in the program committees of conferences in the research areas,

and she is a member of the Editorial Board of the Journal of System and Software, Elsevier. She has been involved in

several national and European research projects.

April 1, 2014 DRAFT

