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A B S T R A C T 

We present the first application of the isosceles bispectrum to MCMC parameter inference from the cosmic 21-cm signal. We 
extend the MCMC sampler 21CMMC to use the fast bispectrum code, BIFFT , when computing the likelihood. We create 
mock 1000-h observations with SKA1-low, using PYOBS21 to account for uv-sampling and thermal noise. Assuming the spin 

temperature is much higher than that of the cosmic microwave background, we consider two different reionization histories 
for our mock observations: fiducial and late-reionization. For both models we find that bias on the inferred parameter means 
and 1 σ credible intervals can be substantially reduced by using the isosceles bispectrum (calculated for a wide range of scales 
and triangle shapes) together with the power spectrum (as opposed to just using one of the statistics). We find that making the 
simplifying assumption of a Gaussian likelihood with a diagonal covariance matrix does not notably bias parameter constraints 
for the three-parameter reionization model and basic instrumental effects considered here. This is true even if we use extreme 
(unlikely) initial conditions which would be expected to amplify biases. We also find that using the cosmic variance error 
calculated with Monte Carlo simulations using the fiducial model parameters while assuming the late-reionization model for 
the simulated data also does not strongly bias the inference. This implies we may be able to sparsely sample and interpolate 
the cosmic variance error o v er the parameter space, substantially reducing computational costs. All codes used in this work are 
publicly available. 

Key words: methods: statistical – intergalactic medium – cosmology: theory – dark ages, reionization, first stars. 
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 I N T RO D U C T I O N  

he Square Kilometre Array 1 (SKA) aims to detect the high-redshift
1-cm line of neutral hydrogen. It is projected to produce high
recision maps at a wide range of redshifts. These maps can be used
o infer the properties of early generations of stars and galaxies as
hey influence the intergalactic medium (IGM) via coupling, heating,
nd ionizations (Dewdney 2016 ). The phase change in the Universe’s
onization state induced by the latter process is called the Epoch of
eionization (EoR). 
Numerous studies have predicted great benefits from using higher-

rder statistics, such as the bispectrum in our analysis of such data
ets. F or e xample, Shimabukuro et al. ( 2016 ), Majumdar et al. ( 2017 ),
atkinson et al. ( 2019b ), Hutter et al. ( 2019 ), and Gorce & Pritchard

 2019 ) show that, due to the non-Gaussian nature of the signal,
dditional information is contained in higher-order statistics, which
nlike the power spectrum, are sensitive to non-Gaussian structure in
 data set. In particular, Shimabukuro et al. ( 2016 ) perform a Fisher
orecast and find that using the equilateral bispectrum in addition
o the power spectrum substantially shrinks the credible limits of
 E-mail: catherine.watkinson@gmail.com 
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he parameters of a three-parameter EoR model compared to those
esulting from using the power spectrum alone. 

Furthermore, it appears that the error due to instrumental noise is
ot as large as one might naively expect; see for example, Yoshiura
t al. ( 2015 ), Watkinson et al. ( 2019b ), and Trott et al. ( 2019 ). This
s because Gaussian distributed noise has zero bispectrum so that
t is only the statistical fluctuations of the noise bispectrum that
ontributes to the measured error on the bispectrum (Yoshiura et al.
015 ). 
The Fisher analysis of Shimabukuro et al. ( 2016 ), while an

mportant first step towards understanding the impro v ements gained
n performing parameter estimation with the bispectrum, likely
nderestimates the credible limits associated with each parameter.
his is because a parameter’s covariance matrix is only accurately
escribed by the inverse of the Fisher matrix if the errors on the
easured quantities are perfectly Gaussian (i.e. the likelihood surface

s Gaussian around the maximum likelihood point), which is not a
i ven for e ven the 21-cm power spectrum. It has also been shown
hat the covariance predicted by a Fisher forecast, by the Cramer–Rao
ound, provides the smallest possible attainable error, i.e. it provides
 lower limit (Fisher 1935 ; Cram ́er 1946 ; Rao 1945 ; Tegmark, Taylor
 Heavens 1997 ). In this paper, we take the work of Shimabukuro

t al. ( 2016 ), a step further by adding the isosceles bispectrum (in
hich we include a wide range of triangle configurations in addition

o the equilateral) within a Monte Carlo Markov Chain (MCMC)
© 2022 The Author(s) 
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arameter estimation framework, building on the established 21-cm 

CMC code 21CMMC (Greig & Mesinger 2015a , 2017b ; Park 
t al. 2018 ). 

Section 2 describes our bispectrum likelihood and the methods 
sed to simulate instrumental effects and measure the bispectrum. In 
ection 3, we look at an idealized case with no instrumental effects
r sample variance to see the maximal achievable impro v ement to
he parameter constraints when combining the bispectrum and power 
pectrum. In Section 4.1, we compare analytic approximations to the 
ample-variance error with the true sample-variance error calculated 
sing Monte Carlo (MC) methods. We will show in this section 
hat assuming a sample-variance error that is a fixed percentage 
f the statistics in any given bin is a very poor approximation, as
s propagating the power-spectrum sample-variance error on to the 
ispectrum assuming Gaussianity. In Section 4.2, we present our 
ain analysis that include instrumental effects ( uv sampling & noise)

nd sample variance. We will show in this section that using the
ispectrum in combination with the power spectrum reduces the bias 
and in some cases the credible intervals) on all parameters relative 
o that of the power-spectrum only analysis. This is true regardless
f how likely is the realization of the “true” universe (i.e. if the initial
onditions are outliers) or its reionization history. 

 INC LUSION  O F  INSTRU MENTAL  EFFECTS  

N D  BISPECTRU M  L I K E L I H O O D  TO  21CMMC 

or the purposes of this analysis, we modify the latest version of
1CMMC : an MC sampler of 21CMFASTV3 (a PYTHON -wrapped, 
eminumerical simulation of the 21-cm signal at high redshifts; 

urray et al. 2020 ). 21CMMC can be downloaded from https:
/ github.com/21cmFAST/ 21CMMC , and is detailed in: Greig & 

esinger ( 2015a ; which describes the first implementation that used 
 three-parameter model for reionization), Greig & Mesinger ( 2017b ; 
hich extends sampling to parameters responsible for heating and 
yman- α coupling effects), and Park et al. ( 2018 ; which introduces
ass dependence to the star formation rates and escape fraction 

f ionizing radiation, as well as luminosity functions). The latest 
ersion of 21CMMC has the option of using either the EMCEE
r Multinest samplers; here we use EMCEE which is an Affine- 
nvariant, openMP-parallelized MCMC sampler (for more details see 
ttps:// emcee.readthedocs.io/en/ stable/ ) (Goodman & Weare 2010 ; 
 oreman-Macke y et al. 2013 ). 
21CMFASTV3 is a standalone code for computing 3D realizations 

f the 21-cm signal and its component fields. Sampling Gaussian 
nitial conditions, it uses Lagrangian perturbation theory to generate 
ensity and velocity fields (e.g. Bernardeau et al. 2001 ); then 
sing a combination of excursion set (Furlanetto, Zaldarriaga & 

ernquist 2004 ) and light cone integration, it generates ionization 
nd temperature fields. We refer the interested reader to Mesinger & 

urlanetto ( 2007 ) and Mesinger, Furlanetto & Cen ( 2010 ) for details,
s well as to the e xtensiv e documentation associated with the code
tself available at https:// github.com/21cmfast/ 21cmFAST . 

F or this demonstrativ e work, we use the simplest, three parameter
eionization model (as described in Greig & Mesinger 2015a ), 
nd assume the spin temperature exceeds the cosmic microwave 
ackground temperature. We also compute our summary statistics 
rom coe v al cubes, instead of light cones. 2 These choices keep the
nalysis time to a minimum facilitating the ability to experiment 
 A coe v al cube is a data cube that has been simulated using a fixed 
osmological time throughout. A light cone data set is one in which the 

s
z

ith different aspects of the analysis while still being informative. 
n future work, we will relax these assumptions. 

The parameters that we vary in our analysis are: 

(i) ζ = f esc f ∗ N γ /b (1 + n rec ) −1 which is the ionizing efficiency
f galaxies. Here, f esc is the escape fraction of ionizing photons, N γ / b 

s the number of ionizing photons produced per baryon in stars, and
 rec is the cumulative number of IGM recombinations per baryon. 
his is assumed to be a constant, and a region is deemed to be ionized

f the collapsed fraction within that region is greater than or equal to
−1 . Increasing ζ therefore speeds up the EoR. 
(ii) T vir is the minimum virial temperature needed for haloes to 

ost star-forming galaxies (determined by cooling and feedback 
echanisms that allow star formation). Smaller T vir means star 

ormation is possible in lower-mass haloes that are less biased. Thus
educing T vir results in an earlier EoR, characterized by smaller, more
niformly distributed cosmic H II regions. 
(iii) R max defines the maximum distance a photon can travel in an

onized IGM before it encounters a recombined atom. This ef fecti ve
arameter can loosely be related to a characteristic mean free path
c.f. Furlanetto & Oh 2005 and Sobacchi & Mesinger 2014 ). As R max 

s only rele v ant when it is smaller than the typical H II region size,
educing it extends the late stages of the EoR without impacting the
arly stages. 

We make the assumption that the power spectrum and bispectrum 

easurements are independent (from each other and between each 
 bin for the power spectrum or triangle configuration for the
ispectrum). We also assume independence of these statistics at each 
edshift. This allows us to approximate the total likelihood using 
 simple sum o v er χ2 values. Specifically, we take ln L ( θ | d) =∑ 

ij ( d ij − m ij ) / (2 σij ), where the indices denote redshift and
tatistical bins, i.e. each ij corresponds to the measurement of a
ingle power spectrum or bispectrum bin (from the data d ij or model
 ij ) at one of the redshift bins under consideration. For the main

esults of this paper, we pre-compute σ ij by forward simulating the 
ducial model, each time varying the initial seed of the simulation

o account for the sample variance error, and including a random
ealization of instrumental noise. The standard deviation we use in 
his study is calculated using 2000 such Monte Carlo (MC) samples
f the power spectrum and bispectrum in each bin (although it is
orth noting that the error estimate has mostly converged by 1000

terations). 
We ignore the contribution to the power spectrum and bispectrum 

or k modes that fall outside of the range 0.1 ≤ k ≤ 1.0 cMpc −1 .
he lower k cut is moti v ated by a v oiding modes that are likely to
uffer from corruption due to foreground leakage, and the upper cut
xcludes modes that will suffer from the effects of shot noise (Greig
 Mesinger 2015a ). For the bispectrum, this means that if any one

f the three k -vectors that form a given triangle configuration fall
utside of this range, then the configuration is excluded from our
ikelihood calculation. 

We set our fiducial model parameter values as ζ = 30.0, log T vir 

 4.7, and R max = 15. We also consider a late reionization model
ith ζ = 17.0, log T vir = 5, and R max = 10. We initialize the core of 
1CMMC to simulate coe v al cubes at z = [6.3, 7, 8, and 9], chosen to
ample a range of ionized fractions, with our redshifts corresponding 
o x H I = [0 . 13 , 0 . 33 , 0 . 62 , 0 . 79] for our fiducial model and x H I =
0 . 70 , 0 . 80 , 0 . 89 , 0 . 94] for our late reionization model. Note that our
imulated epoch evolves with frequency (or redshift), i.e. each slice along the 
-axis represents a different cosmological time. 

MNRAS 510, 3838–3848 (2022) 
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ate reionization model is not picked as a realistic model, it is selected
omewhat arbitrarily to provide a test case that is quite different to the
ducial model. 3 We use the same prior ranges as Greig & Mesinger
 2015a ), i.e. 10 ≤ ζ ≤ 30, 4 ≤ T vir ≤ 6 and 5 ≤ R max(bubble) ≤ 20. Our
oe v al cubes are 128 3 and (256 Mpc) 3 in dimension, chosen to keep
oth sample variance and analysis time to acceptable levels (Iliev
t al. 2014 ; Kaur, Gillet & Mesinger 2020 ). 

Note, performing forward modelling of the full intended surv e y
rea for EoR science with the SKA is not possible. F or e xample, the
mallest intended surv e y footprint is ∼100 deg. 2 (Koopmans et al.
015 ) which at 150 MHz corresponds to ∼1.5 Gpc. Instead, for
arameter inference, we typically focus on simulating close to the
rimary field of view, which for the SKA is ∼3 deg ( ∼480 Mpc at
50 MHz). Nominally, we would choose our mock observation to be
f this scale, ho we ver, in this work we are interested in estimating the
rue covariance of the sample variance uncertainty, which requires

C sampling a large number of realization. As such, we restrict our
nvestigations to simulations of side length 250 Mpc. 

Importantly, this implies that our estimate of the sample variance
ill be larger than that expected from the SKA. Ho we ver, the impact
f this can simply be interpreted as our inferred constraints being
onsidered conserv ati ve estimates. Further, the primary focus of this
ork is investigating the impro v ements in our constraining power,

ollowing the inclusion of the bispectrum rather than performing a
orecast for the SKA. 

.1 BIFFT – a fast code for measuring the bispectrum 

he bispectrum is defined as the Fourier transform of the three-point
orrelation function (which measures excess probability as a function
f three points in real space). It can be written as 

2 π ) 3 B( k 1 , k 2 , k 3 ) δD ( k 1 + k 2 + k 3 ) = 〈 � ( k 1 ) � ( k 2 ) � ( k 3 ) 〉 , (1) 

here δD ( k 1 + k 2 + k 3 ) is the Dirac-delta function. Accordingly,
he bispectrum is a function of three k vectors that form a closed
riangle, often referred to (as we will from here on) as a triangle
onfiguration. It is necessary to perform some kind of averaging
hen measuring the bispectrum to beat down statistical noise. As is

ommon in bispectrum and power spectrum analysis, we choose to
erform spherical averaging, i.e. our bispectrum measurements are
unctions of triangle shape and size only, not orientation. 

The bispectrum is the lowest-order polyspectra that is sensitive
o non-Gaussian information, or structure, in a data set. For a nice
escription of the real-space structures that different k -space triangle
onfigurations are sensitive to see Lewis ( 2011 ), Watkinson et al.
 2019b ), and Hutter et al. ( 2019 ; see in particular fig. 1). 

Due to computational limitations, the bispectrum is often o v er-
ooked in forward-modelling frame works. Nai vely, it requires mul-
iple nested loops to find the k -space pixels that form closed
riangles of the desired shape and size. Ho we ver, there are methods
hat make the calculation tractable for many applications. One of
hese is to use F ast-F ourier Transforms to enforce the Dirac-delta
unction in equation (1; Scoccimarro 2015 ; Sefusatti et al. 2016 ).
IFFT is a PYTHON package that wraps a C implementation of

he Fourier-transform bispectrum method, described in Watkinson,
ajumdar & Pritchard ( 2017a ) and publicly available from https:

/ bitbucket.org/ caw11/ bifft. It is very fast, taking only a few seconds
er triangle configuration on a MacBookPro (2.3 GHz i9 intel core,
 The ionized fractions we quote are for our ‘standard’ seed, which we discuss 
n Section 4.1. 

4

s
i
c

NRAS 510, 3838–3848 (2022) 
6Gb RAM) for a data cube of size 256 3 . This method is e xtensiv ely
escribed in Watkinson et al. ( 2017a ); Watkinson, Trott & Hothi
 2021c ). 

Throughout we will normalize out the amplitude of the bispectrum
o isolate the non-Gaussian information: 

( k 1 , k 2 , k 3 ) = 

B( k 1 , k 2 , k 3 ) √ 

( k 1 k 2 k 3 ) −1 P ( k 1 ) P ( k 2 ) P ( k 3 ) 
. (2) 

quation (2) is commonly applied in signal processing, see for
xample Hinich & Clay ( 1968 ), Kim & Powers ( 1978 ), Hinich &
esser ( 1995 ), and Hinich & Wolinsky ( 2005 ). It has also been

rgued by Brillinger & Rosenblatt ( 1967 ) that equation (2) is the
referred normalization for the bispectrum. In the context of the 21-
m signal, this was explored at length by Watkinson et al. ( 2019b ).
rimarily, this preference comes from the fact that it remo v es the
orrelations with the power spectrum meaning it better isolates the
on-Gaussian information. Equally, since it is not modulated by the
ower spectrum amplitude, it is less susceptible to statistical noise
hich is preferred for parameter inference. Consequently, since this
ormalized bispectrum is not a direct function of the power spectrum,
t is easier to justify its linear combination with the power spectrum
n our likelihood function. 

.2 uv sampling and noise generation with PYOBS21 

n order to carry out our investigation we wrote PYOBS21 (which can
e used as a bolt-on module for 21CMMC or 21CMFASTV3 ) to
pply uv sampling and add Gaussian random noise (with standard
eviation based on 21CMSENSE calculations) to a 21-cm brightness-
emperature coe v al simulation. 4 

The established code 21CMSENSE outputs the noise and sample-
ariance error of the spherically averaged power spectrum as a
unction of k . PYOBS21 relies on an adapted version of calc sense.py
rom 21CMSENSE, which instead outputs a file containing the k x ,
 y , k z (in cMpc −1 ) corresponding to the instrument’s uv sampling
nd bandwidth associated with the simulation dimensions, along
ith the noise power spectrum associated with each uv sample.
1CMSENSE is described e xtensiv ely in Pober et al. ( 2013a ) and
ober et al. ( 2014b ). We assume optimistically that foregrounds
re fully remo v ed and assume a track scan mode of operation. On
he first call to PYOBS21 , a maskfile of the same dimension as the
1CMFASTV3 simulation is created containing the noise power in
ach pixel (the noise in pixels that are repeat samples are combined
oherently using inv erse-co variance weighting) and zeroed where
here are no uv -samples. Once the uv -noise maskfile is written to file,
YOBS21 accesses it each time it is called, zeroes any unsampled
ixels in the cosmological simulation, and adds a random sample
f Gaussian noise to each pixel (based on the noise power in the
orresponding uv -noise maskfile pixel). 

By working in simulation co-ordinates (i.e. cMpc) and creating the
v-noise maskfile on the first call, PYOBS21 is very quick, making
t suitable for MC calculations, including calculating instrumental
rror on any statistic (that is in itself also relatively quick to compute).
ote, this approach is an approximation as it ignores the evolution
f the uv sampling along the line of sight. It also ignores the effect of
he primary beam, ef fecti vely assuming the field size is small enough
 PYOBS21 can be used for light cone data if it is chunked into cubes, but 
ince PYOBS21 assumes a fixed redshift in translating the uv sampling of the 
nstrument to simulation co-ordinates, it is not the ideal tool for use with light 
ones. 

https://bitbucket.org/caw11/bifft
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Figure 1. Corner plot (top) for a likelihood based on the spherically averaged 
isosceles bispectrum (bispec-only; grey), power spectrum (pspec-only; red), 
and power spectrum + bispectrum (bispec + pspec; blue). The bottom plot 
shows the mean ±68 per cent credible intervals for each parameter. All 
assume a best-case scenario of no instrumental effects or foregrounds and use 
the same random seed for our models and data. In this and all the figures that 
follow, our simulations have dimensions of 128 3 pixels and (256 cMpc) 3 and 
redshifts simulated are z = [6.3, 7, 8, and 9]. For our bispectrum likelihood, we 
use the isosceles triangle configurations for 11 linearly spaced θ bins and for 
k 1 = k 2 = [0 . 12 cMpc −1 , 0 . 3 cMpc −1 , 0 . 7 cMpc −1 , 0 . 98 cMpc −1 ] (where θ
is the internal angle to k 1 + k 2 ). We see the power spectrum in such a case 
does a good job of constraining the data but constraints are impro v ed by the 
inclusion of the bispectrum. 
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o not be affected by this (which for the box sizes simulated here is
ot unreasonable) or that the primary beam has been corrected for.
he SKA noise level produced by this PYOBS21 (using the central 

egion from the current design for the SKA-Low phase 1 telescope 
odel and assuming 1000-h observation time) is consistent with that 

redicted by Mellema et al. ( 2013 ) and Koopmans et al. ( 2015 ).
he SKA1-Low details and antenna locations used for our noise 
alculations are based on the latest SKA configuration coordinates 5 

central region) and Dewdney ( 2016 ). 

 PARAMETER  R E C OV E RY  USING  T H E  

SOSCELES  BISPECTRU M  F O R  A N  IDEALI ZED  

ASE  

n this work, we only consider the isosceles configuration as a 
unction of angle between k1 and k2, and for a range of scales. Our
ange of isosceles triangles span shapes from squeezed to stretched, 
nd should therefore be able to pick up a large range of non-Gaussian
tructures in the 21-cm maps. We refer the reader to section 3 of
atkinson et al. ( 2019b ) and Lewis ( 2011 ) for discussions of the

ypes of structures that various configurations are sensitive to, as well 
s to the results of Majumdar et al. ( 2017 ) for verification that the
sosceles configuration captures key features of reionization maps. 

In this section, we compare the parameter constraints 
chieved when using the isosceles bispectrum (for k 1 = k 2 = 

0 . 12 cMpc −1 , 0 . 3 cMpc −1 , 0 . 7 cMpc −1 , 0 . 98 cMpc −1 ]) and for θ / π
 [0.01, 0.05, 0.1, 0.2, 0.33, 0.4, 0.5, 0.6, 0.7, 0.85, and 0.95]

where θ is the internal angle to k 1 + k 2 ), the power spectrum, and
 combination of the two statistics. 6 To do so, we assume a best
ase scenario of negligible instrumental effects, perfect foreground 
emo val, and ne gligible sample variance (i.e. the only source of
rror is our 15 per cent modelling uncertainty). In practice, this
nvolves a running analysis on the raw coe v al cubes produced by
1CMFASTV3 and assuming the same random seed for the data and 
odel. We also include a modelling uncertainty of 15 per cent of the
odelled statistics, as is default in 21CMMC ). 
The corresponding corner plot for the three parameter 
odel is shown in Fig. 1 . Darker/lighter shading encloses 

8 per cent/95 per cent of the credible limits. Different colors indicate
ifferent statistics used for computing the likelihood: (i) bispectrum 

s shown with grey; (ii) power spectrum is shown with red; and (iii)
ispectrum + power spectrum is shown with blue. 
Under these idealized conditions, the power spectrum only (pspec- 

nly) statistic results in tight, unbiased constraints, which can be 
een in the bottom of Fig. 1 , where we plot the marginal statistics,
.e. the marginalized posterior’s mean ± the 68 per cent upper and 
ower credible limits. As in Greig & Mesinger ( 2015a ), we see a

oderate de generac y between the ionizing efficienc y and the virial
emperature. This is because both parameters affect the timing of 
eionization; for example, both a high virial temperature and a low 

onizing efficiency will delay and slow the progress of reionization. 
he epoch of heating, ignored in this exploratory work, should break 

his de generac y (e.g. Greig & Mesinger 2017b ). 
 The SKA antenna positions we use are given by the central region antenna po- 
itions of https://astr onomer s.skatelescope.org/wp-content/ uploads/ 2016/09/ 
KA- TEL- SKO- 0000422 02 SKA1 LowConf igurationCoordinates-1.pdf 
 For all the statistics we consider, we disregard contribution from any k modes 
hat fall outside of the range k f < k < k nyq , where k f = 2 π / L is the fundamental 
 scale and L is the length of a side of the simulation, and k nyq = 1.0/2.0 ∗N ∗k f , 
here N is the resolution on a side. A consequence of these restrictions is 

hat not all θ bins will be included for larger values of k 1 . 
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We find the pspec-only statistic generally results in tighter con- 
traints than the bispectrum only (bispec-only) statistic. This tells us 
hat even in the idealized scenario, the amplitude of the signal is more
nformative than the non-Gaussian information alone (at least for our 
ducial model). Ho we ver, the credible interv als of R max are reduced
y a factor of 0.47 relative to the pspec-only case (see also Shaw,
haradwaj & Mondal 2020 ). This is because R max (by applying a
ard limit beyond which photons from a source will cease to be
f fecti ve at ionizing the IGM) induces structural features, to which
he bispectrum is particularly sensitive. 

When we combine the bispectrum with the power spectrum, 
he additional information from the non-Gaussianities in the maps 
reatly reduces the degeneracies of the credible limits for all the
MNRAS 510, 3838–3848 (2022) 
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Figure 2. Ratio of the sample variance on the bispectrum as measured from 

brute force repeat simulation to that measured from theory assuming the 
signal is Gaussian. Solid line correspond to z = 6.3, dot–dashed to z = 7, 
dotted with triangles to z = 8, and dashed with circles to z = 9. The Gaussian 
assumption for the sample variance is unable to even qualitatively capture the 
features we see in the simulated sample variance. 
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arameters. This corresponds to a shrinkage of the credible intervals
y a factor of 0.70, 0.50, 0.60 for ζ , log( T vir ), and R max , respectively
with respect to those of pspec-only). Although we note that the
arginalized posterior mean is closer to the truth for both ζ and

og( T vir ) for the pspec-only case. This degree of impro v ement is
oughly in agreement with Shimabukuro et al. ( 2016 ), who perform
 Fisher analysis using 21CMFASTV2 , in which they consider the
ensiti vity le vels of LOFAR and MWA. Although, e ven in the best
ase scenario of a perfect observation, the degree of improvement is
ot as extreme as the Fisher analysis suggests. This is understandable,
ince the inverse of the Fisher matrix only provides an estimate of
mallest achie v able credible limit. 

 T H E  I M PAC T  O F  SAMPLE  VA R I A N C E  A N D  

NSTRU M ENTA L  EFFECTS  

.1 Modelling the sample-variance error 

 major challenge to performing parameter estimation with 21-cm
ata and simulations is correctly accounting for sample variance.
ven at the level of the power spectrum, this is difficult as the error
ue to sample variance is dependent on the 21-cm signal itself, and
herefore the model parameters. This makes it a great challenge
o model the sample-variance error using MC simulations as we
ave here. One would need to ef fecti vely sample the full model
arameter space (which for the current most complex 21CMMC
odel consists of 17 astrophysical parameters, see Qin et al. 2020 )

t each point performing at least several hundred, ideally thousands of
imulations with different initial conditions. This would realistically
equire the use of a machine-learning interpolation procedure to
ake this tractable. You would also need to decide a priori how you

re going to chop up your light cone to measure your statistics as
 function of redshift (necessary to ef fecti vely capture the evolution
f the signal with a redshift using such summary statistics), or store
ll the simulations to a v oid being locked into any such choice (not
 terribly practical option). It is therefore interesting to consider
hether we might be able to approximate the sample-variance error

or the bispectrum using a similar analytic approach to that for the
ower spectrum. 
Assuming the signal is Gaussian, an estimate for the power

pectrum sample-variance error is given by � 

2 
SV ( k) = � 

2 
21 ( k) =

 

3 / (2 π2 ) P 21 ( k ) / 
√ 

N ( k ) , where P 21 ( k ) is the 21-cm brightness-
emperature power spectrum and 

√ 

N ( k) is the number of times
 particular mode has been sampled. Similarly, we can calculate the
heoretical bispectrum sample variance error assuming it is Gaussian
istributed (as is often done in the case of Gaussian noise) as, 

[ � sv B( k 1 , k 2 , k 3 ) ] 
2 = k 3 f 

n 123 

V 123 
� sv P ( k 1 ) � sv P ( k 2 ) � sv P ( k 3 ) , (3) 

n this expression k f = 2 π/L is the fundamental k scale, V 123 ≈
 . 0 π2 k 1 k 2 k 3 ( s k f ) 3 gives the number of fundamental triangles in
nits of k 3 f , s k f is the binwidth, and n 123 = 1, 2, 6 for general,
sosceles, and equilateral triangle configurations, respectively (Scoc-
imarro et al. 1998b ; Scoccimarro, Sefusatti & Zaldarriaga 2004a ;
iguori et al. 2010 ). We assume s = 1 to obtain the maximum
ossible estimate for the theoretical sample-variance contribution to
he bispectrum using this approximation. 

Alternatively, we can estimate the true sample variance using
n MC approach in which we vary the initial-conditions (random
eeds) and random-noise realizations assuming the fiducial model
arameters. The ratio of the MC sample-variance error to that
alculated using equation (3) is plotted in Fig. 2 (where solid line
NRAS 510, 3838–3848 (2022) 
orrespond to z = 6.3, dot–dashed to z = 7, dotted with triangles
o z = 8, and dashed with circles to z = 9). It is clear that this
pproximation is orders of magnitude lower than the true sample
ariance for this box size and resolution. It is also clear that there
s no clean connection between this theoretical sample variance and
he true sample variance. 

Qualitatively, there are two main trends represented here. First,
s reionization proceeds the non-Gaussianity increases owing to
he percolation of the ionized regions. As such, the ratio of the
ample variance estimates increases in amplitude with decreasing
edshift (as the Gaussian approximation deviates further from the
ruth). Secondly, the amplitude increases for increasing k 1 = k 2 
s the non-Gaussianity is more pre v alent on small scales due
o the bi-modality of the 21-cm signal from patchy reionization.
heoretically, we could impro v e on this approximation by adding

he trispectrum contribution to each of the individual power spectrum
ample variance terms in equation (3), where this trispectum term
ccounts for the non-Gaussianity of the 21-cm signal. Ho we ver, in
oing so, we still will not entirely account for all possible non-
aussian contributions. 
For the power spectrum, correctly accounting for this non-

aussianity in the covariance has a non-negligible effect on the
esulting parameter constraints (provided large-scale measurements
re limited by thermal noise; Mondal, Bharadwaj & Majumdar 2016 ,
haw, Bharadwaj & Mondal 2019b ; Shaw et al. 2020 ). For the
ispectrum, the sample variance dominates o v er the thermal noise
ontribution for a wider range of k values, thus it is more imperative
o include the full sample variance than the approximation abo v e.
herefore, for the rest of the paper, we will use the MC-estimated
rror estimates. 

.2 Parameter constraints using Monte Carlo-simulated error 
erm 

he initial conditions of our Universe can impact the outcome of our
arameter estimation. To quantify this, we choose a “standard” and
n “extreme” model for our mock observations used for parameter
nference. Specifically, we use two different random seeds that
xhibit minimal and maximal χ2 from the mean of the signal, selected
rom among ∼50 different realizations. In the analysis of this section,

art/stab3706_f2.eps
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Figure 3. Here, we plot with thin lines all 2000 bispectra used in estimating 
the error due to sample variance for our simulation dimensions. The plots 
from top to bottom correspond to k 1 = [0.12, 0.3, 0.7, 0.98] and z = [9.0, 8.0, 
7.0, 6.3]. We o v erplot the two random seeds used in our parameter estimation 
analysis chosen from about 50 trial runs to minimize (54321) and maximize 
(6937) the reduced χ2 between them and the mean of the distribution of the 
thin lines shown by the thin lines in the plot. 
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Figure 4. Corner plot (top) of credible intervals when using mock observed 
data generated using the fiducial model and the standard seed and the bispec- 
only (grey contours), the pspec-only (red contours), and bipsec + pspec (blue 
contours) as summary statistics in the lik elihood. The black ed-dashed lines 
indicate the parameter values used to generate the mock observed data sets 
for each model. The bottom plot shows the mean ±68 per cent credible 
intervals for each parameter. All include the effects of SKA-LOW (phase 
1) uv sampling and noise, as well as sample variance, which we model the 
associated standard deviation using MC methods and using the parameters of 
the fiducial model. While all cases contain the truth within their 95 per cent 
credible intervals, the posterior probability mass for the pspec-only case is 
concentrated in a different region of model parameter space, resulting in 
biased marginal statistics. 
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e use the MCMC-estimated noise + sample variance error, but since 
e are using 21CMFASTV3 for generating our mock observations, 
e set the modelling error factor to A = 0.0. We show the bispectrum
f these two random seeds in Fig. 3 , we also plot in thin lines the
ull range of bispectrum produced in the repeat sampling we used to
stimate the 1 σ sample-variance errors (which are the error bars on 
ach of our random seed bispectra). The plots from top to bottom
orrespond to k 1 = [0.12, 0.3, 0.7, 0.98] and z = [9.0, 8.0, 7.0, 6.3].
s can be seen from this plot, seed 6937 is our “extreme” seed and

eed 54 321 is our “standard” seed. For the interested reader, we have
ncluded the equi v alent plots for the power spectrum in Appendix A.

The top plot of Fig. 4 shows the resulting credible intervals when
e use the standard seed and assume the parameters of our fiducial
odel for our mock observed data. The forward model and mock

bserved data used for the analysis behind this plot both include
nstrumental effects (i.e. uv sampling and noise). As before, the 
argest grey contour shows the bispectrum-only case, the red contours 
he power-spectrum only case, and the blue contours the bispectrum 

 power spectrum case. For both models the true parameters values
marked with the black dashed lines) lie within the 95 per cent cred-
MNRAS 510, 3838–3848 (2022) 
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Figure 5. Corner plot (top) of credible intervals when using mock observed 
data generated using the fiducial model and the ‘extreme’ seed for the bispec- 
only (grey contours), pspec-only (red contours), and bipsec + pspec (blue 
contours) as summary statistics in the likelihood. The blacked dashed lines 
indicate the parameter values used to generate the mock observed data sets for 
each model. The bottom plot shows the mean ±68 per cent credible intervals 
for each parameter. All include SKA-LOW (phase 1) instrumental effects 
(assuming negligible primary beam effects), as well as sample variance, 
which we model the associated standard deviation using MC methods and 
using the parameters of the fiducial model. All cases contain the truth within 
their 95 per cent credible intervals, albeit in a lower probability region of the 
posterior. 
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ble intervals for all three combinations of statistic, ho we ver for the
ducial model the power spectrum posterior is bimodal. Furthermore,

here is more probability density in the mode that is centred around
if ferent parameter v alues to the truth, leading to biased marginal
tatistics (this can be seen from the marginalized statistics for this
ase, which we show in the bottom plot of Fig. 4 ). The posterior for
he bispectrum-only case has its probability-density focused around
he true parameter values for T vir and ζ , but as with the power
pectrum exhibits bias towards larger R max . All is saved by combining
he power spectrum with the bispectrum, the marginal statistics of
hich do not suffer from bias on the inferred parameter values. 
We can attribute some blame for this bias to sample variance. That

s, numerical fluctuations in the statistics measured from the mock
bservation compared to the statistics measured from the realizations
ampled within the MCMC, which use different random seeds to the
ock. Further, it is well known that the R mfp parameter causes a

knee’ feature in the power spectrum, meaning it is sensitive to one
r a small number of k -bins in the power spectrum (as well as how
ide or narrow the bins are in Fourier space). Numerical fluctuations
ue to different seeds can cause the amplitude of the ‘knee’ to differ or
ppear in neighbouring k -bins. These differences will be measurable
y our likelihood function resulting in biases in the inferred param-
ters. Once we combine the statistics, in some sense we average
ut o v er this variance resulting in an impro v ed ability to infer our
ducial values. We could additionally mitigate this by removing

he R mfp parameter in fa v our of a more self-consistent treatment in
1CMFASTV3 using inhomogeneous recombinations (e.g. Sobacchi
 Mesinger 2014 ). Ho we ver, we defer this to future work. 
If we now consider the results when we use the ‘extreme’ seed

or generating our mock observed data sets, then we see that the
5 per cent credible intervals for all combinations of summary
tatistic still contain the true model parameters for all parameters.
o we v er, the y are in a lower probability region of the posterior than

hey were for the case of the more standard seed. This can be seen in
ig. 5 , where the top plot shows the corner plot for the fiducial model
ith extreme seed. We see that for the case of the ‘extreme’ seed,

he weight is more evenly spread across the two posterior modes
esulting in marginal statistics (which are summarized in the bottom
lot of Fig. 5 ) that are less biased than one might imagine from
xamining the credible intervals by eye. The bias of the marginal
osterior’s mean is even reduced for the pspec-only case relative to
he results using the more standard seed for the mock observed data
et. Combining the bispectrum still impro v es the robustness of the
esults; ho we ver, the bias on the marginal statistics of R max is not as
educed when the bispectrum and power spectrum are combined as
t is for the more standard seed. 

As can be seen in the corner plot of Fig. 6 (top), there is much less
f an issue with bi-modality in the posterior for mock observed data
enerated with the parameters of our late reionization model; clearly
his region of parameter space is less generic (i.e. the model statistics
re very distinct from those of other models). The marginal statistics
or this model are summarized in the bottom plot of 6 . We see that
or our late reionization model, using the bispectrum in combination
ith the power spectrum still o v erall reduces bias on the marginal

tatistics (although at the cost of introducing a small bias on the
arginal statistics of ζ ) and shrinks the credible intervals relative to

hose of either statistic alone. We found that even in test runs where
e fixed the modelled initial conditions, using the standard seed and

he extreme seeds for the data that the results for our late reionization
odel were still robust with no serious issue with biased results. 
Fig. 7 shows the results for our late reionization model when the

xtreme seed is used to generate the mock observed data. As with
NRAS 510, 3838–3848 (2022) 
he standard seed, the results for our late reionization model are
ess biased than they are for the fiducial model with the 95 per cent
redible intervals of all combinations of statistic containing the true
odel and with the combining of the bispectrum and power spectrum

mproving the quality of the constraints. As we will discuss further
n the following paragraph, this is because this model is at a much
arly stage of the reionization process for which differences between
eeds are suppressed relative to that of the fiducial model. 

What is potentially important about the results of the our late reion-
zation model analysis is that we have used the standard deviation
ue to sample variance as calculated for the fiducial model, rather
han calculating it for the our late reionization model parameters,
.e. we have seen no serious negative impact from assuming sample
ariance is the same in both regions of model parameter space, despite

art/stab3706_f5.eps
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Figure 6. Corner plot (top) of credible intervals when using mock observed 
data generated using our late reionization model and the standard seed for the 
bispec-only (grey contours), the pspec-only (red contours), and bipsec + pspec 
(blue contours) as summary statistics in the likelihood. The blacked dashed 
lines indicate the parameter values used to generate the mock observed 
data sets for each model. The bottom plot shows the mean ±68 per cent 
credible intervals for each parameter. All include SKA-LOW (phase 1) 
instrumental effects (assuming negligible primary beam effects), as well as 
sample variance, which we model the associated standard deviation using 
MC methods and using the parameters of the fiducial model. While all cases 
contain the truth within their 95 per cent credible intervals, the posterior 
probability mass for the pspec-only case is concentrated in a different region 
of model parameter space, resulting in biased marginal statistics. 
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Figure 7. Corner plot (top) of credible intervals when using mock observed 
data generated using our late reionization model and the ‘extreme’ seed for 
the bispec-only (grey contours), pspec-only (red contours), and bipsec + pspec 
(blue contours) as summary statistics in the likelihood. The blacked dashed 
lines indicate the parameter values used to generate the mock observed 
data sets for each model. The bottom plot shows the mean ±68 per cent 
credible intervals for each parameter. All include SKA-LOW (phase 1) 
instrumental effects (assuming negligible primary beam effects), as well as 
sample variance, which we model the associated standard deviation using MC 

methods and using the parameters of the fiducial model. Here, the combining 
the bispectrum with the power spectrum still helps less in relieving bias 
in the credible intervals, although the marginal statistics are seen to return 
reasonable predictions of the true parameters. 
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hem being very different models. This is likely because the sample- 

ariance error for the later-reionization model is smaller or similar 
o that of the fiducial model because as the process of reionization is
ess advanced (the late-reionizaton’s ionized fraction is only 0.7 at the 
owest redshift we consider as opposed to 0.3 in the fiducial model).
n the later stages of reionization (in the regime of sparse neutral
slands), the amplitude varies more between realizations, as can be 
een by the trend further away from the theoretical sample-variance 
ith decreasing redshift in Fig. 2 . This result implies that one could
se the sample-variance from a single well-chosen model for all re-
ions in parameter space. A better, and still tractable, option would be
o sparsely sample the sample-variance error in parameter space and 
se some form of interpolation to approximate the sample-variance 
rror in other regions of parameter space. Whether or not, this would
e a sufficient approximation, and whether this finding extends to 
he full covariance matrix should be addressed in future work. 

It is clear that using a diagonal covariance matrix and assuming
ndependence between statistical bins are not disastrous assumptions 
n that the true parameters are constrained by the resulting parameter
stimation analysis, even if we consider outlier data. However, it will
ive stronger and more robust results to not make such assumptions
nd to use a fully multi v ariate Gaussian likelihood that includes all
orrelations between the statistical bins, statistics, and redshifts. We 
ave discussed the difficulty of accurately accounting for sample 
ariance errors, it will equally be challenging to capture correlations 
etween redshifts, which can be seen in Fig. 8 , where we plot the
MNRAS 510, 3838–3848 (2022) 
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Figure 8. Covariance matrix for the power spectrum for all bins and redshifts 
considered here. We see that there are correlations between statistical bins in 
different redshifts, most notably between z = 8 and z = 9. 
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ovariance matrix for the power spectrum. 7 To a v oid correlations
cross redshift due to each independent realization sampling from
he same initial conditions, we split our 2000 realizations into four
istinct samples, each containing 500 realizations. This ensures that
o two distinct redshift samples contain power spectra obtained from
he same initial conditions. These correlations would likely be less
evere if we were working with chunks of light cones, which is the
ore correct thing to consider; ho we ver, it is unlikely that there would

e no correlations whatsoever. It is also likely that as the complexity
f our forward model increases (necessary if we are to fully char-
cterize the instrumental effects, foreground residuals, ionospheric
ffects, unresolved RFI, and polarization leakage) the assumption of
 multi v ariate Gaussian form for the likelihood will be insuf ficient. 

A method to bypass all these issues would be to use likelihood-free
nference, which bypasses the need to ever pre-calculate a covariance

atrix since the likelihood (or posterior depending on the type of
ikelihood-free inference) is estimated using forward simulations
uring the inference process. It also means one does not ever need
o explicitly write down a likelihood function. This approach will
lso be able to deal with cross-correlations of the cosmological
ignal with the noise and foregrounds biasing parameter-inference
esults, as seen in Nasirudin et al. ( 2020 ) who perform far more
ccurate and detailed forward-modelling than that attempted here
they also use a fully multi v ariate Gaussian likelihood). We will
iscuss the application of likelihood-free methods as applied to 21-
m observations in Watkinson, Alsing, Greig & Mesinger (in prep). 

 C O N C L U S I O N  

n this work, we have added an isosceles bispectrum likelihood
odule to the established 21CMMC code that assumes indepen-

ence between all statistical bins and redshifts. We are able to make
 We do not plot the correlations between the power spectrum and bispectrum, 
ecause the amplitude contribution has been normalized out of our bispectrum 

nalysis; we therefore expect correlations between the two statistics to be 
egligible. 
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his assumption by using a normalized version of the bispectrum
n which the contribution of the power spectrum to the bispectrum
as been remo v ed. In order to perform our analysis, we use two
ew publicly available codes BIFFT (to measure the bispectrum with
ufficient speed) and PYOBS21 (to simulate uv sampling and random
nstrumental noise for coe v al cubes). 

We generate various mock observations by varying astrophysical
arameters, as well as the random seed for initial conditions. We
onsider two sets of astrophysical parameters, which result in dif-
erent reionization histories: a fiducial model and a late reionization
odel. We also consider two different random seeds – one chosen

o produce relatively standard bispectra (in terms of its χ2 compared
o the mean) and another to produce more extreme outlier bispectra
ata. 
Various approaches for handling the bispectrum sample-variance

rror term have also been considered. We find that the bispectrum
ample-variance error cannot be effectively described by propagating
he power spectrum sample-variance error on to the bispectrum under
he assumption of Gaussianity. We find that using the 1 σ error
enerated using MC methods for a simple 1D Gaussian likelihood is
ufficient to constrain the parameters of the three parameter model
f reionization considered here. We also find that using the sample-
ariance error generated under our fiducial model while assuming
imulated data from a late-reionization model has no serious ne gativ e
mpact on our results. This is important as it implies that we may be
ble to get away with a sparse sampling of the bispectrum sample-
ariance error as a function of parameter space combined with some
orm of interpolation to estimate the error term at the unsampled
oints of parameter space. 
We find that combining the power spectra and the bispectrum

n the likelihood can significantly reduce the bias away from the
nput reionization parameters, for all of the mock observations and

odels considered here (see also Gazagnes, Koopmans & Wilkinson
021 ). For the late-reionization model, we also see a reduction in the
redible limits. These findings hold true even if we consider outlier
ock observations. 
Further work is needed to establish the impro v ements from using

he bispectrum in more complex models for reionization, such
s the mass-dependent paramtrization including spin temperature
uctuations 21CMFASTV3 model. It will also be important for
uture works that consider the issue of modelling the bispectrum
ample variance, to better understand its dependence on simulation
esolution and dimensions. It will also be necessary to get a better
nderstanding of how these results will be impacted by the inclusion
f more levels of observational realism, as there has already been
n indication that foreground residuals and observational effects
ill be more problematic for the bispectrum (Watkinson et al. 
021c ). 

C K N OW L E D G E M E N T S  

AW’s research is currently supported by a UK Research and
nnovation Future Leaders Fellowship, grant number MR/S016066/1
PI Alkistis Pourtsidou). CAW also thanks Jonathan Pritchard
or financial support during the early stages of this project via
he European Research Council (ERC) grant number 638743-
IRSTDAWN, as well as the ARC Centre for Excellence in All-
ky Astrophysics in 3D Visitor Fund. This research utilized Queen
ary’s Apocrita HPC facility, supported by QMUL ITS Research.

ttp:// doi.org/ 10.5281/ zenodo.438045 . Parts of this research were
upported by the Australian Research Council Centre of Excellence
or All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through

art/stab3706_f8.eps
http://doi.org/10.5281/zenodo.438045


EoR parameter estimation with the bispectrum 3847 

p
t
i
h  

u

D

T  

l  

a
a

R

B  

B  

C

D

F
F  

F
F
G
G
G
G
G
H
H
H
H  

I  

K
K
K

L

L  

M  

M
M
M
M
M  

N  

P
P
P
Q  

R
S
S  

S
S  

S
S
S  

S
T
T
W
W
W
Y  

A
T

I  

t  

r  

t
a  

b

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/3/3838/6498124 by Luisa Ferrini use
roject number CE170100013. AM acknowledges support from 

he ERC under the European Union’s Horizon 2020 research and 
nnovation programmes (AIDA – #638809). The results presented 
ere reflect the authors’ views; the ERC is not responsible for their
se. 

ATA  AVA ILA BILITY  

he codes used to produce this work are all publicly available with
inks to access provided in the main text. The data underlying this
rticle will be shared on reasonable request to the corresponding 
uthor 

EFER ENCES  

ernardeau F., Colombi S., Gaztanaga E., Scoccimarro R., 2001, Phys. Rep. ,
367, 1 

rillinger D., Rosenblatt M., 1967, in Harris B., ed., Spectr. Anal. time Ser.
Wiley, New York, p. 189 

ram ́er H., 1946, Mathematical Methods of Statistics (PMS-9). Princeton 
Univ. Press, Princeton 

ewdney P., 2016, Technical report, SKA1 System Baseline Design V2. SKA 

Office, Manchester, UK 

isher R. A., 1935, J. R. Stat. Soc. , 98, 39 
 oreman-Macke y D., Hogg D. W., Lang D., Goodman J., 2013, PASP , 125,

306 
urlanetto S. R., Oh S. P., 2005, MNRAS , 363, 1031 
urlanetto S. R., Zaldarriaga M., Hernquist L., 2004, ApJ , 613, 1 
azagnes S., Koopmans L. V., Wilkinson M. H., 2021, MNRAS, 502, 1816 
oodman J., Weare J., 2010, Commun. Appl. Math. Comput. Sci. , 5, 65 
orce A., Pritchard J. R., 2019, MNRAS , 489, 1321 
reig B., Mesinger A., 2015a, MNRAS , 449, 4246 
reig B., Mesinger A., 2017b, MNRAS , 472, 2651 
inich M. J., Clay C. S., 1968, Rev. Geophys. , 6, 347 
inich M., Messer H., 1995, IEEE Trans. Signal Process. , 43, 2130 
inich M. J., Wolinsky M., 2005, J. Stat. Plan. Inference , 130, 405 
utter A., Watkinson C. A., Seiler J., Dayal P., Sinha M., Croton D. J., 2019,

MNRAS , 492, 653 
liev I. T., Mellema G., Ahn K., Shapiro P. R., Mao Y., Pen U.-L., 2014,

MNRAS, 439, 725 
aur H. D., Gillet N., Mesinger A., 2020, MNRAS, 495, 2354 
im Y. C., Powers E. J., 1978, Phys. Fluids , 21, 1452 
oopmans L. et al., 2015, Advancing Astrophysics with the Square Kilometre 

Array (AASKA14). SKA Organisation, Manchester, p. 1 
ewis A., 2011, J. Cosmol. Astropart. Phys. , 10, 1475 
iguori M., Sefusatti E., Fergusson J. R., Shellard E. P. S., 2010, Adv. Astron. ,
2010, 64 

ajumdar S., Pritchard J. R., Mondal R., Watkinson C. A., Bharadwaj S.,
Mellema G., 2017, MNRAS , 476, 4007 

ellema G. et al., 2013, Exp. Astron., 36, 235 
esinger A., Furlanetto S. R., 2007, ApJ , 669, 663 
esinger A., Furlanetto S., Cen R., 2010, MNRAS , 411, 955 
ondal R., Bharadwaj S., Majumdar S., 2016, MNRAS , 464, 2992 
urray S., Greig B., Mesinger A., Mu ̃ noz J., Qin Y., Park J., Watkinson C.,

2020, J. Open Source Softw. , 5, 2582 
asirudin A., Murray S. G., Trott C. M., Greig B., Joseph R. C., Power C.,

2020, ApJ , 893, 118 
ark J., Mesinger A., Greig B., Gillet N., 2018, MNRAS , 484, 933 
ober J. C. et al., 2013a, AJ , 145, 65 
ober J. C. et al., 2014b, AJ, 782, 66 
in Y., Mesinger A., Park J., Greig B., Mu ̃ noz J. B., 2020, MNRAS , 495,

123 
ao C., 1945, Bull. Calcutta Math. Soc., 37, 81 
coccimarro R., 2015, Phys. Rev. D , 92, 083532 
coccimarro R., Colombi S., Fry J. N., Frieman J. A., Hivon E., Melott A.,

1998b, ApJ , 496, 586 
coccimarro R., Sefusatti E., Zaldarriaga M., 2004a, Phys. Rev. D , 69, 1550 
efusatti E., Crocce M., Scoccimarro R., Couchman H., 2016, MNRAS , 460,

3624 
haw A. K., Bharadwaj S., Mondal R., 2019b, MNRAS , 487, 4951 
haw A. K., Bharadwaj S., Mondal R., 2020, MNRAS , 498, 1480 
himabukuro H., Yoshiura S., Takahashi K., Yok o yama S., Ichiki K., 2016,

MNRAS , 468, 1542 
obacchi E., Mesinger A., 2014, MNRAS , 440, 1662 
egmark M., Taylor A., Heavens A., 1997, ApJ , 480, 22 
rott C. M. et al., 2019, Publ. Astron. Soc. Aust. , 36, e023 
atkinson C. A., Majumdar S., Pritchard J. R., 2017a, MNRAS , 472, 2436 
atkinson C. A. et al., 2019b, MNRAS , 482, 2653 
atkinson C. A., Trott C. M., Hothi I., 2021c, MNRAS , 501, 367 

oshiura S., Shimabukuro H., Takahashi K., Momose R., Nakanishi H., Imai
H., 2015, MNRAS , 451, 266 
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andom seeds used for mock observed data in this study. As with
he bispectrum the extreme seed (purple solid like) is more than 1 σ
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ins, especially at the later stages of reionization, i.e. z ≤ 7. 
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z = 6.32

z = 7.0

z = 8.0

z = 9.0

Figure A1. Here, we plot with thin lines all 2000 power spectra used in 
estimating the error due to sample variance for our simulation dimensions. 
The plots from top to bottom correspond to z = [6.3, 7.0, 8.0, and 9.0]. We 
o v erplot the two random seeds used in our parameter estimation analysis 
chosen from about 50 trial runs to minimize (54 321) and maximize (6937) 
the reduced χ2 between them and the mean of the distribution of the thin 
lines shown by the thin lines in the plot. 
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