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ABSTRACT

We present the first application of the isosceles bispectrum to MCMC parameter inference from the cosmic 21-cm signal. We
extend the MCMC sampler 21CMMC to use the fast bispectrum code, BIFFT, when computing the likelihood. We create
mock 1000-h observations with SKA1-low, using PYOBS21 to account for uv-sampling and thermal noise. Assuming the spin
temperature is much higher than that of the cosmic microwave background, we consider two different reionization histories
for our mock observations: fiducial and late-reionization. For both models we find that bias on the inferred parameter means
and lo credible intervals can be substantially reduced by using the isosceles bispectrum (calculated for a wide range of scales
and triangle shapes) together with the power spectrum (as opposed to just using one of the statistics). We find that making the
simplifying assumption of a Gaussian likelihood with a diagonal covariance matrix does not notably bias parameter constraints
for the three-parameter reionization model and basic instrumental effects considered here. This is true even if we use extreme
(unlikely) initial conditions which would be expected to amplify biases. We also find that using the cosmic variance error
calculated with Monte Carlo simulations using the fiducial model parameters while assuming the late-reionization model for
the simulated data also does not strongly bias the inference. This implies we may be able to sparsely sample and interpolate
the cosmic variance error over the parameter space, substantially reducing computational costs. All codes used in this work are

publicly available.
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1 INTRODUCTION

The Square Kilometre Array' (SKA) aims to detect the high-redshift
21-cm line of neutral hydrogen. It is projected to produce high
precision maps at a wide range of redshifts. These maps can be used
to infer the properties of early generations of stars and galaxies as
they influence the intergalactic medium (IGM) via coupling, heating,
and ionizations (Dewdney 2016). The phase change in the Universe’s
ionization state induced by the latter process is called the Epoch of
Reionization (EoR).

Numerous studies have predicted great benefits from using higher-
order statistics, such as the bispectrum in our analysis of such data
sets. For example, Shimabukuro et al. (2016), Majumdar et al. (2017),
Watkinson et al. (2019b), Hutter et al. (2019), and Gorce & Pritchard
(2019) show that, due to the non-Gaussian nature of the signal,
additional information is contained in higher-order statistics, which
unlike the power spectrum, are sensitive to non-Gaussian structure in
a data set. In particular, Shimabukuro et al. (2016) perform a Fisher
forecast and find that using the equilateral bispectrum in addition
to the power spectrum substantially shrinks the credible limits of
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'The Square Kilometre Array http://www.skatelescope.org/  and
https://astronomers.skatelescope.org/wp-content/uploads/2016/05/SK
A-TEL-SKO-0000002_03_SKA1SystemBaselineDesignV2.pdf

the parameters of a three-parameter EoOR model compared to those
resulting from using the power spectrum alone.

Furthermore, it appears that the error due to instrumental noise is
not as large as one might naively expect; see for example, Yoshiura
et al. (2015), Watkinson et al. (2019b), and Trott et al. (2019). This
is because Gaussian distributed noise has zero bispectrum so that
it is only the statistical fluctuations of the noise bispectrum that
contributes to the measured error on the bispectrum (Yoshiura et al.
2015).

The Fisher analysis of Shimabukuro et al. (2016), while an
important first step towards understanding the improvements gained
in performing parameter estimation with the bispectrum, likely
underestimates the credible limits associated with each parameter.
This is because a parameter’s covariance matrix is only accurately
described by the inverse of the Fisher matrix if the errors on the
measured quantities are perfectly Gaussian (i.e. the likelihood surface
is Gaussian around the maximum likelihood point), which is not a
given for even the 21-cm power spectrum. It has also been shown
that the covariance predicted by a Fisher forecast, by the Cramer—Rao
bound, provides the smallest possible attainable error, i.e. it provides
alower limit (Fisher 1935; Cramér 1946; Rao 1945; Tegmark, Taylor
& Heavens 1997). In this paper, we take the work of Shimabukuro
et al. (2016), a step further by adding the isosceles bispectrum (in
which we include a wide range of triangle configurations in addition
to the equilateral) within a Monte Carlo Markov Chain (MCMC)
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parameter estimation framework, building on the established 21-cm
MCMC code 21CMMC (Greig & Mesinger 2015a, 2017b; Park
et al. 2018).

Section 2 describes our bispectrum likelihood and the methods
used to simulate instrumental effects and measure the bispectrum. In
Section 3, we look at an idealized case with no instrumental effects
or sample variance to see the maximal achievable improvement to
the parameter constraints when combining the bispectrum and power
spectrum. In Section 4.1, we compare analytic approximations to the
sample-variance error with the true sample-variance error calculated
using Monte Carlo (MC) methods. We will show in this section
that assuming a sample-variance error that is a fixed percentage
of the statistics in any given bin is a very poor approximation, as
is propagating the power-spectrum sample-variance error on to the
bispectrum assuming Gaussianity. In Section 4.2, we present our
main analysis that include instrumental effects (uv sampling & noise)
and sample variance. We will show in this section that using the
bispectrum in combination with the power spectrum reduces the bias
(and in some cases the credible intervals) on all parameters relative
to that of the power-spectrum only analysis. This is true regardless
of how likely is the realization of the “true” universe (i.e. if the initial
conditions are outliers) or its reionization history.

2 INCLUSION OF INSTRUMENTAL EFFECTS
AND BISPECTRUM LIKELIHOOD TO 21CMMC

For the purposes of this analysis, we modify the latest version of
21CMMC : an MC sampler of 21CMFASTV3 (a PYTHON-wrapped,
seminumerical simulation of the 21-cm signal at high redshifts;
Murray et al. 2020). 21CMMC can be downloaded from https:
/Igithub.com/21cmFAST/21CMMC, and is detailed in: Greig &
Mesinger (2015a; which describes the first implementation that used
a three-parameter model for reionization), Greig & Mesinger (2017b;
which extends sampling to parameters responsible for heating and
Lyman-« coupling effects), and Park et al. (2018; which introduces
mass dependence to the star formation rates and escape fraction
of ionizing radiation, as well as luminosity functions). The latest
version of 21CMMC has the option of using either the EMCEE
or Multinest samplers; here we use EMCEE which is an Affine-
invariant, openMP-parallelized MCMC sampler (for more details see
https://emcee.readthedocs.io/en/stable/) (Goodman & Weare 2010;
Foreman-Mackey et al. 2013).

21CMFASTV3 is a standalone code for computing 3D realizations
of the 21-cm signal and its component fields. Sampling Gaussian
initial conditions, it uses Lagrangian perturbation theory to generate
density and velocity fields (e.g. Bernardeau et al. 2001); then
using a combination of excursion set (Furlanetto, Zaldarriaga &
Hernquist 2004) and light cone integration, it generates ionization
and temperature fields. We refer the interested reader to Mesinger &
Furlanetto (2007) and Mesinger, Furlanetto & Cen (2010) for details,
as well as to the extensive documentation associated with the code
itself available at https://github.com/21cmfast/21cmFAST.

For this demonstrative work, we use the simplest, three parameter
reionization model (as described in Greig & Mesinger 2015a),
and assume the spin temperature exceeds the cosmic microwave
background temperature. We also compute our summary statistics
from coeval cubes, instead of light cones.” These choices keep the
analysis time to a minimum facilitating the ability to experiment

2A coeval cube is a data cube that has been simulated using a fixed
cosmological time throughout. A light cone data set is one in which the
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with different aspects of the analysis while still being informative.
In future work, we will relax these assumptions.
The parameters that we vary in our analysis are:

(1) ¢ = fese fs Nypp (1 + Nwee)”! which is the ionizing efficiency
of galaxies. Here, fc is the escape fraction of ionizing photons, N,
is the number of ionizing photons produced per baryon in stars, and
e 18 the cumulative number of IGM recombinations per baryon.
This is assumed to be a constant, and a region is deemed to be ionized
if the collapsed fraction within that region is greater than or equal to
¢~!. Increasing ¢ therefore speeds up the EoR.

(1) Ty is the minimum virial temperature needed for haloes to
host star-forming galaxies (determined by cooling and feedback
mechanisms that allow star formation). Smaller 7;, means star
formation is possible in lower-mass haloes that are less biased. Thus
reducing 7\ results in an earlier EoR, characterized by smaller, more
uniformly distributed cosmic H I regions.

(iii) Ryax defines the maximum distance a photon can travel in an
ionized IGM before it encounters a recombined atom. This effective
parameter can loosely be related to a characteristic mean free path
(c.f. Furlanetto & Oh 2005 and Sobacchi & Mesinger 2014). As Ryax
is only relevant when it is smaller than the typical H1I region size,
reducing it extends the late stages of the EoR without impacting the
early stages.

We make the assumption that the power spectrum and bispectrum
measurements are independent (from each other and between each
k bin for the power spectrum or triangle configuration for the
bispectrum). We also assume independence of these statistics at each
redshift. This allows us to approximate the total likelihood using
a simple sum over x? values. Specifically, we take In £L(0|d) =
-3 ; (dij —m;;)/(20;;), where the indices denote redshift and
statistical bins, i.e. each ij corresponds to the measurement of a
single power spectrum or bispectrum bin (from the data d;; or model
m;;) at one of the redshift bins under consideration. For the main
results of this paper, we pre-compute o ; by forward simulating the
fiducial model, each time varying the initial seed of the simulation
to account for the sample variance error, and including a random
realization of instrumental noise. The standard deviation we use in
this study is calculated using 2000 such Monte Carlo (MC) samples
of the power spectrum and bispectrum in each bin (although it is
worth noting that the error estimate has mostly converged by 1000
iterations).

We ignore the contribution to the power spectrum and bispectrum
for k modes that fall outside of the range 0.1 < k < 1.0 cMpc~.
The lower k cut is motivated by avoiding modes that are likely to
suffer from corruption due to foreground leakage, and the upper cut
excludes modes that will suffer from the effects of shot noise (Greig
& Mesinger 2015a). For the bispectrum, this means that if any one
of the three k-vectors that form a given triangle configuration fall
outside of this range, then the configuration is excluded from our
likelihood calculation.

We set our fiducial model parameter values as ¢ = 30.0, log 7\,
= 4.7, and Ry« = 15. We also consider a late reionization model
with ¢ = 17.0, log Tyi; = 5, and R, = 10. We initialize the core of
21CMMC to simulate coeval cubes at z = [6.3, 7, 8, and 9], chosen to
sample a range of ionized fractions, with our redshifts corresponding
to xy; = [0.13,0.33,0.62, 0.79] for our fiducial model and xy, =
[0.70, 0.80, 0.89, 0.94] for our late reionization model. Note that our

simulated epoch evolves with frequency (or redshift), i.e. each slice along the
z-axis represents a different cosmological time.
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late reionization model is not picked as a realistic model, it is selected
somewhat arbitrarily to provide a test case that is quite different to the
fiducial model.> We use the same prior ranges as Greig & Mesinger
(2015a),1.e. 10 < ¢ < 30,4<Tyy <6and5 < Rmax(bubble) < 20. Our
coeval cubes are 1283 and (256 Mpc)?® in dimension, chosen to keep
both sample variance and analysis time to acceptable levels (Iliev
et al. 2014; Kaur, Gillet & Mesinger 2020).

Note, performing forward modelling of the full intended survey
area for EoR science with the SKA is not possible. For example, the
smallest intended survey footprint is ~100 deg.? (Koopmans et al.
2015) which at 150 MHz corresponds to ~1.5 Gpc. Instead, for
parameter inference, we typically focus on simulating close to the
primary field of view, which for the SKA is ~3 deg (~480 Mpc at
150 MHz). Nominally, we would choose our mock observation to be
of this scale, however, in this work we are interested in estimating the
true covariance of the sample variance uncertainty, which requires
MC sampling a large number of realization. As such, we restrict our
investigations to simulations of side length 250 Mpc.

Importantly, this implies that our estimate of the sample variance
will be larger than that expected from the SKA. However, the impact
of this can simply be interpreted as our inferred constraints being
considered conservative estimates. Further, the primary focus of this
work is investigating the improvements in our constraining power,
following the inclusion of the bispectrum rather than performing a
forecast for the SKA.

2.1 BIFFT - a fast code for measuring the bispectrum

The bispectrum is defined as the Fourier transform of the three-point
correlation function (which measures excess probability as a function
of three points in real space). It can be written as

)’ B(ky, ko, k3)8P(ky + ky + k3) = (Ak)A(k)AK3)), (1)

where 8P(k, + ks + k3) is the Dirac-delta function. Accordingly,
the bispectrum is a function of three k vectors that form a closed
triangle, often referred to (as we will from here on) as a triangle
configuration. It is necessary to perform some kind of averaging
when measuring the bispectrum to beat down statistical noise. As is
common in bispectrum and power spectrum analysis, we choose to
perform spherical averaging, i.e. our bispectrum measurements are
functions of triangle shape and size only, not orientation.

The bispectrum is the lowest-order polyspectra that is sensitive
to non-Gaussian information, or structure, in a data set. For a nice
description of the real-space structures that different k-space triangle
configurations are sensitive to see Lewis (2011), Watkinson et al.
(2019b), and Hutter et al. (2019; see in particular fig. 1).

Due to computational limitations, the bispectrum is often over-
looked in forward-modelling frameworks. Naively, it requires mul-
tiple nested loops to find the k-space pixels that form closed
triangles of the desired shape and size. However, there are methods
that make the calculation tractable for many applications. One of
these is to use Fast-Fourier Transforms to enforce the Dirac-delta
function in equation (1; Scoccimarro 2015; Sefusatti et al. 2016).
BIFFTis a PYTHON package that wraps a C implementation of
the Fourier-transform bispectrum method, described in Watkinson,
Majumdar & Pritchard (2017a) and publicly available from https:
/Ibitbucket.org/caw11/bifft. It is very fast, taking only a few seconds
per triangle configuration on a MacBookPro (2.3 GHz 19 intel core,

3The ionized fractions we quote are for our ‘standard’ seed, which we discuss
in Section 4.1.
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16Gb RAM) for a data cube of size 256°. This method is extensively
described in Watkinson et al. (2017a); Watkinson, Trott & Hothi
(2021c).

Throughout we will normalize out the amplitude of the bispectrum
to isolate the non-Gaussian information:

B(ky, ky, k3)
(ki ky k3)1 P(ky) P(ka) P(k3)

Equation (2) is commonly applied in signal processing, see for
example Hinich & Clay (1968), Kim & Powers (1978), Hinich &
Messer (1995), and Hinich & Wolinsky (2005). It has also been
argued by Brillinger & Rosenblatt (1967) that equation (2) is the
preferred normalization for the bispectrum. In the context of the 21-
cm signal, this was explored at length by Watkinson et al. (2019b).
Primarily, this preference comes from the fact that it removes the
correlations with the power spectrum meaning it better isolates the
non-Gaussian information. Equally, since it is not modulated by the
power spectrum amplitude, it is less susceptible to statistical noise
which is preferred for parameter inference. Consequently, since this
normalized bispectrum is not a direct function of the power spectrum,
it is easier to justify its linear combination with the power spectrum
in our likelihood function.

bk, ky, k3) = 2)

2.2 uy sampling and noise generation with PYOBS21

In order to carry out our investigation we wrote PYOBS21 (which can
be used as a bolt-on module for 21CMMC or 21CMFASTV3) to
apply uv sampling and add Gaussian random noise (with standard
deviation based on 21CMSENSE calculations) to a 21-cm brightness-
temperature coeval simulation.*

The established code 21CMSENSE outputs the noise and sample-
variance error of the spherically averaged power spectrum as a
function of k. PYOBS21 relies on an adapted version of calc_sense.py
from 21CMSENSE, which instead outputs a file containing the k,,
ky, k. (in cMpc™!') corresponding to the instrument’s uv sampling
and bandwidth associated with the simulation dimensions, along
with the noise power spectrum associated with each uv sample.
21CMSENSEis described extensively in Pober et al. (2013a) and
Pober et al. (2014b). We assume optimistically that foregrounds
are fully removed and assume a track scan mode of operation. On
the first call to PYOBS21, a maskfile of the same dimension as the
21CMFASTYV3 simulation is created containing the noise power in
each pixel (the noise in pixels that are repeat samples are combined
coherently using inverse-covariance weighting) and zeroed where
there are no uv-samples. Once the uv-noise maskfile is written to file,
PYOBS21 accesses it each time it is called, zeroes any unsampled
pixels in the cosmological simulation, and adds a random sample
of Gaussian noise to each pixel (based on the noise power in the
corresponding uv-noise maskfile pixel).

By working in simulation co-ordinates (i.e. cMpc) and creating the
uv-noise maskfile on the first call, PYOBS21is very quick, making
it suitable for MC calculations, including calculating instrumental
error on any statistic (that is in itself also relatively quick to compute).
Note, this approach is an approximation as it ignores the evolution
of the uv sampling along the line of sight. It also ignores the effect of
the primary beam, effectively assuming the field size is small enough

4pyOBs21 can be used for light cone data if it is chunked into cubes, but
since PYOBS21 assumes a fixed redshift in translating the uv sampling of the
instrument to simulation co-ordinates, it is not the ideal tool for use with light
cones.
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to not be affected by this (which for the box sizes simulated here is
not unreasonable) or that the primary beam has been corrected for.
The SKA noise level produced by this PYOBS21 (using the central
region from the current design for the SKA-Low phase 1 telescope
model and assuming 1000-h observation time) is consistent with that
predicted by Mellema et al. (2013) and Koopmans et al. (2015).
The SKA1-Low details and antenna locations used for our noise
calculations are based on the latest SKA configuration coordinates’
(central region) and Dewdney (2016).

3 PARAMETER RECOVERY USING THE
ISOSCELES BISPECTRUM FOR AN IDEALIZED
CASE

In this work, we only consider the isosceles configuration as a
function of angle between k1 and k2, and for a range of scales. Our
range of isosceles triangles span shapes from squeezed to stretched,
and should therefore be able to pick up a large range of non-Gaussian
structures in the 21-cm maps. We refer the reader to section 3 of
Watkinson et al. (2019b) and Lewis (2011) for discussions of the
types of structures that various configurations are sensitive to, as well
as to the results of Majumdar et al. (2017) for verification that the
isosceles configuration captures key features of reionization maps.

In this section, we compare the parameter constraints
achieved when using the isosceles bispectrum (for k; = k; =
[0.12cMpc!, 0.3cMpc!, 0.7 cMpc !, 0.98 cMpc~']) and for 6/x
= [0.01, 0.05, 0.1, 0.2, 0.33, 0.4, 0.5, 0.6, 0.7, 0.85, and 0.95]
(where 0 is the internal angle to k| + k;), the power spectrum, and
a combination of the two statistics.® To do so, we assume a best
case scenario of negligible instrumental effects, perfect foreground
removal, and negligible sample variance (i.e. the only source of
error is our 15 per cent modelling uncertainty). In practice, this
involves a running analysis on the raw coeval cubes produced by
21CMFASTV3 and assuming the same random seed for the data and
model. We also include a modelling uncertainty of 15 per cent of the
modelled statistics, as is default in 21CMMC).

The corresponding corner plot for the three parameter
model is shown in Fig. 1. Darker/lighter shading encloses
68 per cent/95 per cent of the credible limits. Different colors indicate
different statistics used for computing the likelihood: (i) bispectrum
is shown with grey; (ii) power spectrum is shown with red; and (iii)
bispectrum + power spectrum is shown with blue.

Under these idealized conditions, the power spectrum only (pspec-
only) statistic results in tight, unbiased constraints, which can be
seen in the bottom of Fig. 1, where we plot the marginal statistics,
i.e. the marginalized posterior’s mean =+ the 68 per cent upper and
lower credible limits. As in Greig & Mesinger (2015a), we see a
moderate degeneracy between the ionizing efficiency and the virial
temperature. This is because both parameters affect the timing of
reionization; for example, both a high virial temperature and a low
ionizing efficiency will delay and slow the progress of reionization.
The epoch of heating, ignored in this exploratory work, should break
this degeneracy (e.g. Greig & Mesinger 2017b).

5The SKA antenna positions we use are given by the central region antenna po-
sitions of https://astronomers.skatelescope.org/wp-content/uploads/2016/09/
SKA-TEL-SKO-0000422_02_SKA1_LowConfigurationCoordinates- 1.pdf
OFor all the statistics we consider, we disregard contribution from any k modes
that fall outside of the range ks < k < knyq, where kr = 27r/L is the fundamental
k scale and L is the length of a side of the simulation, and kyyq = 1.0/2.0%Nxk,
where N is the resolution on a side. A consequence of these restrictions is
that not all 6 bins will be included for larger values of k.

3841

— bispec-only (same seed, 0.15*mod SV)
M pspec-only (same seed, no inst, 0.15¥mod SV)
Il bispec+pspec (same seed, no inst, 0.15*mod SV)

a8}
A e o]
s 46t
S
=
45t
a4t
43F : \ \
17 +
»
16 ~ + g
% I ‘ \
15 |- R L SRR
g \ D
< \ P
mr =T o 780
13+
. L . . P B L
20 25 30 35 4.4 4.6 4.8 13
zeta Tvir
35

347 + ................................................................................. ..
e_ 15 ................................................................................... *
E
o
14
pspec-only bispec-only bispec+pspec

Figure 1. Corner plot (top) for a likelihood based on the spherically averaged
isosceles bispectrum (bispec-only; grey), power spectrum (pspec-only; red),
and power spectrum + bispectrum (bispec+pspec; blue). The bottom plot
shows the mean +68 per cent credible intervals for each parameter. All
assume a best-case scenario of no instrumental effects or foregrounds and use
the same random seed for our models and data. In this and all the figures that
follow, our simulations have dimensions of 128> pixels and (256 cMpc)? and
redshifts simulated are z =[6.3, 7, 8, and 9]. For our bispectrum likelihood, we
use the isosceles triangle configurations for 11 linearly spaced 6 bins and for
ki =k, =[0.12 chc", 0.3 chc*I, 0.7 chc’l, 0.98 chc"] (where 6
is the internal angle to k| + k). We see the power spectrum in such a case
does a good job of constraining the data but constraints are improved by the
inclusion of the bispectrum.

We find the pspec-only statistic generally results in tighter con-
straints than the bispectrum only (bispec-only) statistic. This tells us
that even in the idealized scenario, the amplitude of the signal is more
informative than the non-Gaussian information alone (at least for our
fiducial model). However, the credible intervals of R,.x are reduced
by a factor of 0.47 relative to the pspec-only case (see also Shaw,
Bharadwaj & Mondal 2020). This is because Ry, (by applying a
hard limit beyond which photons from a source will cease to be
effective at ionizing the IGM) induces structural features, to which
the bispectrum is particularly sensitive.

When we combine the bispectrum with the power spectrum,
the additional information from the non-Gaussianities in the maps
greatly reduces the degeneracies of the credible limits for all the

MNRAS 510, 3838-3848 (2022)
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parameters. This corresponds to a shrinkage of the credible intervals
by a factor of 0.70, 0.50, 0.60 for ¢, log(7 i), and Rpax, respectively
(with respect to those of pspec-only). Although we note that the
marginalized posterior mean is closer to the truth for both ¢ and
log(Tyi;) for the pspec-only case. This degree of improvement is
roughly in agreement with Shimabukuro et al. (2016), who perform
a Fisher analysis using 21CMFASTV2, in which they consider the
sensitivity levels of LOFAR and MWA. Although, even in the best
case scenario of a perfect observation, the degree of improvement is
not as extreme as the Fisher analysis suggests. This is understandable,
since the inverse of the Fisher matrix only provides an estimate of
smallest achievable credible limit.

4 THE IMPACT OF SAMPLE VARIANCE AND
INSTRUMENTAL EFFECTS

4.1 Modelling the sample-variance error

A major challenge to performing parameter estimation with 21-cm
data and simulations is correctly accounting for sample variance.
Even at the level of the power spectrum, this is difficult as the error
due to sample variance is dependent on the 21-cm signal itself, and
therefore the model parameters. This makes it a great challenge
to model the sample-variance error using MC simulations as we
have here. One would need to effectively sample the full model
parameter space (which for the current most complex 21CMMC
model consists of 17 astrophysical parameters, see Qin et al. 2020)
ateach point performing at least several hundred, ideally thousands of
simulations with different initial conditions. This would realistically
require the use of a machine-learning interpolation procedure to
make this tractable. You would also need to decide a priori how you
are going to chop up your light cone to measure your statistics as
a function of redshift (necessary to effectively capture the evolution
of the signal with a redshift using such summary statistics), or store
all the simulations to avoid being locked into any such choice (not
a terribly practical option). It is therefore interesting to consider
whether we might be able to approximate the sample-variance error
for the bispectrum using a similar analytic approach to that for the
power spectrum.

Assuming the signal is Gaussian, an estimate for the power
spectrum sample-variance error is given by Agv(k) = AL (k) =
k3/2m?) Py (k)/~/N(k), where P,;(k) is the 21-cm brightness-
temperature power spectrum and /N (k) is the number of times
a particular mode has been sampled. Similarly, we can calculate the
theoretical bispectrum sample variance error assuming it is Gaussian
distributed (as is often done in the case of Gaussian noise) as,

[AgB(ky, ka, k3)I* =k} % A Pki) Ay P(ky) A P(k3),  (3)
in this expression kf = 2 /L is the fundamental k scale, Vi3 &~
8.072 ky ky k3 (s k¢)> gives the number of fundamental triangles in
units of kf3 , s k¢ is the binwidth, and nj,3 = 1, 2, 6 for general,
isosceles, and equilateral triangle configurations, respectively (Scoc-
cimarro et al. 1998b; Scoccimarro, Sefusatti & Zaldarriaga 2004a;
Liguori et al. 2010). We assume s = 1 to obtain the maximum
possible estimate for the theoretical sample-variance contribution to
the bispectrum using this approximation.

Alternatively, we can estimate the true sample variance using
an MC approach in which we vary the initial-conditions (random
seeds) and random-noise realizations assuming the fiducial model
parameters. The ratio of the MC sample-variance error to that
calculated using equation (3) is plotted in Fig. 2 (where solid line
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Figure 2. Ratio of the sample variance on the bispectrum as measured from
brute force repeat simulation to that measured from theory assuming the
signal is Gaussian. Solid line correspond to z = 6.3, dot—dashed to z = 7,
dotted with triangles to z = 8, and dashed with circles to z = 9. The Gaussian
assumption for the sample variance is unable to even qualitatively capture the
features we see in the simulated sample variance.

correspond to z = 6.3, dot—dashed to z = 7, dotted with triangles
to z = 8, and dashed with circles to z = 9). It is clear that this
approximation is orders of magnitude lower than the true sample
variance for this box size and resolution. It is also clear that there
is no clean connection between this theoretical sample variance and
the true sample variance.

Qualitatively, there are two main trends represented here. First,
as reionization proceeds the non-Gaussianity increases owing to
the percolation of the ionized regions. As such, the ratio of the
sample variance estimates increases in amplitude with decreasing
redshift (as the Gaussian approximation deviates further from the
truth). Secondly, the amplitude increases for increasing k; = k;
as the non-Gaussianity is more prevalent on small scales due
to the bi-modality of the 21-cm signal from patchy reionization.
Theoretically, we could improve on this approximation by adding
the trispectrum contribution to each of the individual power spectrum
sample variance terms in equation (3), where this trispectum term
accounts for the non-Gaussianity of the 21-cm signal. However, in
doing so, we still will not entirely account for all possible non-
Gaussian contributions.

For the power spectrum, correctly accounting for this non-
Gaussianity in the covariance has a non-negligible effect on the
resulting parameter constraints (provided large-scale measurements
are limited by thermal noise; Mondal, Bharadwaj & Majumdar 2016,
Shaw, Bharadwaj & Mondal 2019b; Shaw et al. 2020). For the
bispectrum, the sample variance dominates over the thermal noise
contribution for a wider range of k values, thus it is more imperative
to include the full sample variance than the approximation above.
Therefore, for the rest of the paper, we will use the MC-estimated
error estimates.

4.2 Parameter constraints using Monte Carlo-simulated error
term

The initial conditions of our Universe can impact the outcome of our
parameter estimation. To quantify this, we choose a “standard” and
an “extreme” model for our mock observations used for parameter
inference. Specifically, we use two different random seeds that
exhibit minimal and maximal x 2 from the mean of the signal, selected
from among ~50 different realizations. In the analysis of this section,

2202 UoIBIN 8| UO Josn uliad esin A +Z1.86¥9/8€8E/E/0 L G/910ILE/SEIUW/WOD dNO"dlWapede//:sdny Wolj papeojumoq


art/stab3706_f2.eps

EoR parameter estimation with the bispectrum

k1 =10.12,2=9.0

-84

—-14

-2

-3

B(k1,8)

-4

| -+ 6937
=+ 54321
= = =+ 6937
k =07,2=T.0 oy

157

101

B(k1, 8)

4= 6937

40| kl = 0.98, z=6.32 + s

301

201

B(k1, )

101

0.1 0.2 0.3 0.4 0.5
6/n

Figure 3. Here, we plot with thin lines all 2000 bispectra used in estimating
the error due to sample variance for our simulation dimensions. The plots
from top to bottom correspond to k1 =[0.12,0.3,0.7,0.98] and z = [9.0, 8.0,
7.0, 6.3]. We overplot the two random seeds used in our parameter estimation
analysis chosen from about 50 trial runs to minimize (54321) and maximize
(6937) the reduced x2 between them and the mean of the distribution of the
thin lines shown by the thin lines in the plot.

we use the MCMC-estimated noise+sample variance error, but since
we are using 21CMFASTV3 for generating our mock observations,
we set the modelling error factor to A = 0.0. We show the bispectrum
of these two random seeds in Fig. 3, we also plot in thin lines the
full range of bispectrum produced in the repeat sampling we used to
estimate the 1o sample-variance errors (which are the error bars on
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Figure 4. Corner plot (top) of credible intervals when using mock observed
data generated using the fiducial model and the standard seed and the bispec-
only (grey contours), the pspec-only (red contours), and bipsec+pspec (blue
contours) as summary statistics in the likelihood. The blacked-dashed lines
indicate the parameter values used to generate the mock observed data sets
for each model. The bottom plot shows the mean +68 per cent credible
intervals for each parameter. All include the effects of SKA-LOW (phase
1) uv sampling and noise, as well as sample variance, which we model the
associated standard deviation using MC methods and using the parameters of
the fiducial model. While all cases contain the truth within their 95 per cent
credible intervals, the posterior probability mass for the pspec-only case is
concentrated in a different region of model parameter space, resulting in
biased marginal statistics.

each of our random seed bispectra). The plots from top to bottom
correspond to k; =[0.12, 0.3, 0.7, 0.98] and z = [9.0, 8.0, 7.0, 6.3].
As can be seen from this plot, seed 6937 is our “extreme” seed and
seed 54 321 is our “standard” seed. For the interested reader, we have
included the equivalent plots for the power spectrum in Appendix A.

The top plot of Fig. 4 shows the resulting credible intervals when
we use the standard seed and assume the parameters of our fiducial
model for our mock observed data. The forward model and mock
observed data used for the analysis behind this plot both include
instrumental effects (i.e. uv sampling and noise). As before, the
largest grey contour shows the bispectrum-only case, the red contours
the power-spectrum only case, and the blue contours the bispectrum
+ power spectrum case. For both models the true parameters values
(marked with the black dashed lines) lie within the 95 per cent cred-
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ible intervals for all three combinations of statistic, however for the
fiducial model the power spectrum posterior is bimodal. Furthermore,
there is more probability density in the mode that is centred around
different parameter values to the truth, leading to biased marginal
statistics (this can be seen from the marginalized statistics for this
case, which we show in the bottom plot of Fig. 4). The posterior for
the bispectrum-only case has its probability-density focused around
the true parameter values for 7. and ¢, but as with the power
spectrum exhibits bias towards larger Ry, All is saved by combining
the power spectrum with the bispectrum, the marginal statistics of
which do not suffer from bias on the inferred parameter values.

We can attribute some blame for this bias to sample variance. That
is, numerical fluctuations in the statistics measured from the mock
observation compared to the statistics measured from the realizations
sampled within the MCMC, which use different random seeds to the
mock. Further, it is well known that the Ry; parameter causes a
‘knee’ feature in the power spectrum, meaning it is sensitive to one
or a small number of k-bins in the power spectrum (as well as how
wide or narrow the bins are in Fourier space). Numerical fluctuations
due to different seeds can cause the amplitude of the ‘knee’ to differ or
appear in neighbouring k-bins. These differences will be measurable
by our likelihood function resulting in biases in the inferred param-
eters. Once we combine the statistics, in some sense we average
out over this variance resulting in an improved ability to infer our
fiducial values. We could additionally mitigate this by removing
the Rupp parameter in favour of a more self-consistent treatment in
21CMFASTV3using inhomogeneous recombinations (e.g. Sobacchi
& Mesinger 2014). However, we defer this to future work.

If we now consider the results when we use the ‘extreme’ seed
for generating our mock observed data sets, then we see that the
95 per cent credible intervals for all combinations of summary
statistic still contain the true model parameters for all parameters.
However, they are in a lower probability region of the posterior than
they were for the case of the more standard seed. This can be seen in
Fig. 5, where the top plot shows the corner plot for the fiducial model
with extreme seed. We see that for the case of the ‘extreme’ seed,
the weight is more evenly spread across the two posterior modes
resulting in marginal statistics (which are summarized in the bottom
plot of Fig. 5) that are less biased than one might imagine from
examining the credible intervals by eye. The bias of the marginal
posterior’s mean is even reduced for the pspec-only case relative to
the results using the more standard seed for the mock observed data
set. Combining the bispectrum still improves the robustness of the
results; however, the bias on the marginal statistics of R,y is not as
reduced when the bispectrum and power spectrum are combined as
it is for the more standard seed.

As can be seen in the corner plot of Fig. 6 (top), there is much less
of an issue with bi-modality in the posterior for mock observed data
generated with the parameters of our late reionization model; clearly
this region of parameter space is less generic (i.e. the model statistics
are very distinct from those of other models). The marginal statistics
for this model are summarized in the bottom plot of 6. We see that
for our late reionization model, using the bispectrum in combination
with the power spectrum still overall reduces bias on the marginal
statistics (although at the cost of introducing a small bias on the
marginal statistics of ¢) and shrinks the credible intervals relative to
those of either statistic alone. We found that even in test runs where
we fixed the modelled initial conditions, using the standard seed and
the extreme seeds for the data that the results for our late reionization
model were still robust with no serious issue with biased results.

Fig. 7 shows the results for our late reionization model when the
extreme seed is used to generate the mock observed data. As with
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Figure 5. Corner plot (top) of credible intervals when using mock observed
data generated using the fiducial model and the ‘extreme’ seed for the bispec-
only (grey contours), pspec-only (red contours), and bipsec+pspec (blue
contours) as summary statistics in the likelihood. The blacked dashed lines
indicate the parameter values used to generate the mock observed data sets for
each model. The bottom plot shows the mean £68 per cent credible intervals
for each parameter. All include SKA-LOW (phase 1) instrumental effects
(assuming negligible primary beam effects), as well as sample variance,
which we model the associated standard deviation using MC methods and
using the parameters of the fiducial model. All cases contain the truth within
their 95 per cent credible intervals, albeit in a lower probability region of the
posterior.

the standard seed, the results for our late reionization model are
less biased than they are for the fiducial model with the 95 per cent
credible intervals of all combinations of statistic containing the true
model and with the combining of the bispectrum and power spectrum
improving the quality of the constraints. As we will discuss further
in the following paragraph, this is because this model is at a much
early stage of the reionization process for which differences between
seeds are suppressed relative to that of the fiducial model.

What is potentially important about the results of the our late reion-
ization model analysis is that we have used the standard deviation
due to sample variance as calculated for the fiducial model, rather
than calculating it for the our late reionization model parameters,
i.e. we have seen no serious negative impact from assuming sample
variance is the same in both regions of model parameter space, despite
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Figure 6. Corner plot (top) of credible intervals when using mock observed
data generated using our late reionization model and the standard seed for the
bispec-only (grey contours), the pspec-only (red contours), and bipsec+pspec
(blue contours) as summary statistics in the likelihood. The blacked dashed
lines indicate the parameter values used to generate the mock observed
data sets for each model. The bottom plot shows the mean +68 per cent
credible intervals for each parameter. All include SKA-LOW (phase 1)
instrumental effects (assuming negligible primary beam effects), as well as
sample variance, which we model the associated standard deviation using
MC methods and using the parameters of the fiducial model. While all cases
contain the truth within their 95 per cent credible intervals, the posterior
probability mass for the pspec-only case is concentrated in a different region
of model parameter space, resulting in biased marginal statistics.

them being very different models. This is likely because the sample-
variance error for the later-reionization model is smaller or similar
to that of the fiducial model because as the process of reionization is
less advanced (the late-reionizaton’s ionized fraction is only 0.7 at the
lowest redshift we consider as opposed to 0.3 in the fiducial model).
In the later stages of reionization (in the regime of sparse neutral
islands), the amplitude varies more between realizations, as can be
seen by the trend further away from the theoretical sample-variance
with decreasing redshift in Fig. 2. This result implies that one could
use the sample-variance from a single well-chosen model for all re-
gions in parameter space. A better, and still tractable, option would be
to sparsely sample the sample-variance error in parameter space and
use some form of interpolation to approximate the sample-variance
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Figure 7. Corner plot (top) of credible intervals when using mock observed
data generated using our late reionization model and the ‘extreme’ seed for
the bispec-only (grey contours), pspec-only (red contours), and bipsec+pspec
(blue contours) as summary statistics in the likelihood. The blacked dashed
lines indicate the parameter values used to generate the mock observed
data sets for each model. The bottom plot shows the mean 68 per cent
credible intervals for each parameter. All include SKA-LOW (phase 1)
instrumental effects (assuming negligible primary beam effects), as well as
sample variance, which we model the associated standard deviation using MC
methods and using the parameters of the fiducial model. Here, the combining
the bispectrum with the power spectrum still helps less in relieving bias
in the credible intervals, although the marginal statistics are seen to return
reasonable predictions of the true parameters.

error in other regions of parameter space. Whether or not, this would
be a sufficient approximation, and whether this finding extends to
the full covariance matrix should be addressed in future work.

It is clear that using a diagonal covariance matrix and assuming
independence between statistical bins are not disastrous assumptions
in that the true parameters are constrained by the resulting parameter
estimation analysis, even if we consider outlier data. However, it will
give stronger and more robust results to not make such assumptions
and to use a fully multivariate Gaussian likelihood that includes all
correlations between the statistical bins, statistics, and redshifts. We
have discussed the difficulty of accurately accounting for sample
variance errors, it will equally be challenging to capture correlations
between redshifts, which can be seen in Fig. 8, where we plot the
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Figure 8. Covariance matrix for the power spectrum for all bins and redshifts
considered here. We see that there are correlations between statistical bins in
different redshifts, most notably between z = 8andz = 9.

covariance matrix for the power spectrum.” To avoid correlations
across redshift due to each independent realization sampling from
the same initial conditions, we split our 2000 realizations into four
distinct samples, each containing 500 realizations. This ensures that
no two distinct redshift samples contain power spectra obtained from
the same initial conditions. These correlations would likely be less
severe if we were working with chunks of light cones, which is the
more correct thing to consider; however, it is unlikely that there would
be no correlations whatsoever. It is also likely that as the complexity
of our forward model increases (necessary if we are to fully char-
acterize the instrumental effects, foreground residuals, ionospheric
effects, unresolved RFI, and polarization leakage) the assumption of
a multivariate Gaussian form for the likelihood will be insufficient.
A method to bypass all these issues would be to use likelihood-free
inference, which bypasses the need to ever pre-calculate a covariance
matrix since the likelihood (or posterior depending on the type of
likelihood-free inference) is estimated using forward simulations
during the inference process. It also means one does not ever need
to explicitly write down a likelihood function. This approach will
also be able to deal with cross-correlations of the cosmological
signal with the noise and foregrounds biasing parameter-inference
results, as seen in Nasirudin et al. (2020) who perform far more
accurate and detailed forward-modelling than that attempted here
(they also use a fully multivariate Gaussian likelihood). We will
discuss the application of likelihood-free methods as applied to 21-
cm observations in Watkinson, Alsing, Greig & Mesinger (in prep).

5 CONCLUSION

In this work, we have added an isosceles bispectrum likelihood
module to the established 21CMMC code that assumes indepen-
dence between all statistical bins and redshifts. We are able to make

7We do not plot the correlations between the power spectrum and bispectrum,
because the amplitude contribution has been normalized out of our bispectrum
analysis; we therefore expect correlations between the two statistics to be
negligible.
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this assumption by using a normalized version of the bispectrum
in which the contribution of the power spectrum to the bispectrum
has been removed. In order to perform our analysis, we use two
new publicly available codes BIFFT (to measure the bispectrum with
sufficient speed) and PYOBS21 (to simulate uv sampling and random
instrumental noise for coeval cubes).

We generate various mock observations by varying astrophysical
parameters, as well as the random seed for initial conditions. We
consider two sets of astrophysical parameters, which result in dif-
ferent reionization histories: a fiducial model and a late reionization
model. We also consider two different random seeds — one chosen
to produce relatively standard bispectra (in terms of its x> compared
to the mean) and another to produce more extreme outlier bispectra
data.

Various approaches for handling the bispectrum sample-variance
error term have also been considered. We find that the bispectrum
sample-variance error cannot be effectively described by propagating
the power spectrum sample-variance error on to the bispectrum under
the assumption of Gaussianity. We find that using the lo error
generated using MC methods for a simple 1D Gaussian likelihood is
sufficient to constrain the parameters of the three parameter model
of reionization considered here. We also find that using the sample-
variance error generated under our fiducial model while assuming
simulated data from a late-reionization model has no serious negative
impact on our results. This is important as it implies that we may be
able to get away with a sparse sampling of the bispectrum sample-
variance error as a function of parameter space combined with some
form of interpolation to estimate the error term at the unsampled
points of parameter space.

We find that combining the power spectra and the bispectrum
in the likelihood can significantly reduce the bias away from the
input reionization parameters, for all of the mock observations and
models considered here (see also Gazagnes, Koopmans & Wilkinson
2021). For the late-reionization model, we also see a reduction in the
credible limits. These findings hold true even if we consider outlier
mock observations.

Further work is needed to establish the improvements from using
the bispectrum in more complex models for reionization, such
as the mass-dependent paramtrization including spin temperature
fluctuations 21CMFASTV3 model. It will also be important for
future works that consider the issue of modelling the bispectrum
sample variance, to better understand its dependence on simulation
resolution and dimensions. It will also be necessary to get a better
understanding of how these results will be impacted by the inclusion
of more levels of observational realism, as there has already been
an indication that foreground residuals and observational effects
will be more problematic for the bispectrum (Watkinson et al.
2021c).
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APPENDIX A: THE SAMPLE VARIANCE OF
THE POWER SPECTRUM

In Fig. A1 we plot the 2000 power-spectra realizations that we use
to calculate our sample-variance errors. We also overplot the two
random seeds used for mock observed data in this study. As with
the bispectrum the extreme seed (purple solid like) is more than 1o
away from the more standard seed (blue dot—dashed line) for many
bins, especially at the later stages of reionization, i.e. z < 7.
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Figure Al. Here, we plot with thin lines all 2000 power spectra used in
estimating the error due to sample variance for our simulation dimensions.
The plots from top to bottom correspond to z = [6.3, 7.0, 8.0, and 9.0]. We
overplot the two random seeds used in our parameter estimation analysis
chosen from about 50 trial runs to minimize (54 321) and maximize (6937)
the reduced x2 between them and the mean of the distribution of the thin
lines shown by the thin lines in the plot.
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