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Abstract

The paper is concerned with the problem of regularization by noise of 3D Navier-Stokes
equations. As opposed to several attempts made with additive noise which remained incon-
clusive, we show here that a suitable multiplicative noise of transport type has a regularizing
effect. It is proven that stochastic transport noise provides a bound on vorticity which gives
well posedness, with high probability. The result holds for sufficiently large noise intensity
and sufficiently high spectrum of the noise.
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1 Introduction

Well posedness of the 3D incompressible Navier-Stokes equations is a famous open problem
[17]. Around this central problem many variants have been identified which are still very
difficult and could contribute to build a general picture. One of them is the well posedness
of stochastic 3D Navier-Stokes equations. In spite of several attempts, see for instance [23,
10, 36, 24], it remained unsolved. The logic behind these attempts is the known fact that
noise sometimes improves the theory of differential equations, a fact certainly true in finite
dimensions [41, 33, 14] and also true for some infinite dimensional systems, like [28, 19, 20, 15,
12, 16, 4, 13, 27, 7, 26], but not for all examples of PDEs and noise, as shown for different
examples related to Euler equations in [20] and [8]. For PDEs of parabolic type, additive
noise was always invoked as the most natural candidate to prove the above mentioned property
of regularization by noise. Multiplicative transport noise was used only in inviscid problems,
like [19, 20, 16] devoted to transport, 2D Euler (point vortices) and 1D Vlasov-Poisson (point
charges) equations, respectively. Here we change perspective and use multiplicative transport
noise for the 3D Navier-Stokes equations. The result is a particular regularization by noise
phenomenon. We prove that stochastic transport noise suppresses vorticity increase and gives
long term well posedness, with high probability. Opposite to all results mentioned above that
hold for any (non-null) intensity of the noise, the result proved here holds for sufficiently large
noise intensity and sufficiently high spectrum of the noise. In a sense, it is similar to the
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stabilization by noise result of [2, 1] (see the acknowledgments at the end of the paper). In
devising this result we have been very influenced also by [21, 25, 18, 31].

Before we give our main results in Section 1.3, we recall more details on regularization by
noise in Section 1.1 and discuss a partial motivation for transport noise – including its main
limitation – in Section 1.2.

1.1 General remarks on regularization by noise

The idea that noise may improve the existence and uniqueness theory of 3D Navier-Stokes
equations is a long standing one. In a näıve way it is based on the analogy with the case of
finite dimensional differential equations

dXt = b (t,Xt) dt+ dWt, X0 = x ∈ R
d

where an additive d-dimensional noise Wt restores existence and uniqueness even when the drift
b : [0, T ] × R

d → R
d is just bounded measurable [41]. Such result attracted much attention in

finite dimensions, with further progresses like [33, 14] and many others, and it was extended
to infinite dimensions [28, 11, 12, 13, 7] but covering only one-dimensional Partial Differential
Equations (PDEs) of parabolic type, with nonlinearities which are irregular, but not in the
direction of the irregularity of the inertial term of Navier-Stokes equations (the drift of the
above mentioned works is for instance a bounded measurable map on a suitable Hilbert space).
There are also heuristic arguments, perhaps less näıve, which may give the feeling that some
kind of noise, or just randomness in the initial conditions, may exclude the realization of very
special dynamical paths with so strong vortex stretching to lead to a singularity in finite time;
perhaps the phenomenon discussed by [39] is prevented by noise. It is also the opinion of many
experts that during fully develped turbulence singularities should not appear, maybe opposite
to transient-to-turbulence regimes where a high degree of organization of the motion can still
occur and lead to blow-up; the link between turbulence regime and noisy PDEs is heuristic,
but see the discussion in Section 1.2 below.

The problem, whether additive noise “regularizes” 3D Navier-Stokes equations remains
open but some contributions have been made. Among others, let us remind the following ones:

(1) a Caffarelli-Kohn-Nirenberg theory has been developed for stochastic 3D Navier-Stokes
equations [23], with the interesting consequence that, at every time t, the random set of spatial
singularities St (ω) is empty with probability one, namely

P (ω ∈ Ω : St (ω) = ∅) = 1,

having denoted by (Ω,F ,P) the underlying probability space (full absence of singularities would
be the statement

P

(

ω ∈ Ω :
⋂

t≥0

St (ω) = ∅
)

= 1

but this remains open);
(2) The infinite dimensional Kolmogorov equation associated to the stochastic 3D Navier-

Stokes equations has been solved [10], opening a door for the application to uniqueness of
weak solutions – not yet reached due to regularity problems of the solution to the Kolmogorov
equation (see [29] for a recent result on non-uniqueness in law of stochastic 3D Navier-Stokes
equations via the convex integration method);

(3) Markov selections with the Strong Feller property – elaborating a preliminary result
of [10] – have been constructed [24], proving a continous dependence result on initial condi-
tions, due to noise, which has no counterpart in the deterministic theory of 3D Navier-Stokes
equations.
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1.2 Transport and advection noise

The previous results, in analogy with the finite dimensional case, have been obtained by an
additive noise with suitable non-degeneracy properties. It is the first noise that is natural to
investigate, used for instance in numerical simulations to accelerate transition to turbulence
[42]. But from the physical viewpoint the justification is weak. On the heuristic ground, on the
contrary, a multiplicative noise of advection type is more motivated, by the idea of separating
large and small scales and model the small ones by noise, corresponding to some intuition of
turbulence. The 3D Navier-Stokes equations perturbed by such advection noise have the form

∂tξ + Luξ + L◦ηξ = ∆ξ (1.1)

where the notations will be defined during the next arguments.
Let us discuss this issue of noise approximation of small scales for the 3D Navier-Stokes

equations written in vorticity form, say on the torus T
3 = R

3/Z3 with periodic boundary
conditions:

∂tξ + Luξ = ∆ξ, ξ|t=0 = ξ0 (1.2)

where u is the velocity field, satisfying also div u = 0, ξ = curlu is the vorticity field, the
viscosity is set to one to avoid too many parameters below, and Luξ is the Lie derivative

Luξ = u · ∇ξ − ξ · ∇u.

In various functions spaces the link between u and ξ is uniquely inverted by a Biot-Savart
operator B, so that we write u = Bξ. Assume

ξ0 = ξ0,L + ξ0,S

(the subscript L stands for “Large” scale part, S for “Small” part) and assume we can solve
the system

∂tξL + LuξL = ∆ξL, ξL|t=0 = ξ0,L

∂tξS + LuξS = ∆ξS, ξS|t=0 = ξ0,S

where u = B (ξL + ξS). The sum ξ = ξL + ξS solves (1.2). Very heuristically, we could think
that in some limit and in a regime of turbulent fluid the small component ξS varies in time
very rapidly compared to the larger one ξL (unfortunately such a separation of scales has never
been proved to hold so strictly) so that

η := uS

can be considered as an approximation of white noise. The equation for ξL is

∂tξL + LuL
ξL + LηξL = ∆ξL, ξL|t=0 = ξ0,L

which has precisely the form (1.1). Above we have used the more precise notation L◦ηξ to
anticipate the fact that we work with Stratonovich stochastic integrals, the correct ones –
when one can prove a Wong-Zakai result – as limit of regular approximations of white noise.

A key issue which emerges from the previous heuristics is that the multiplicative structure
of the noise is related to the Lie derivative L◦ηξ, because that is the form of the inertial term.
We call advection term the expression L◦ηξ. It is composed of the transport term T◦ηξ and the
vortex stretching term S◦ηξ defined respectively as

T◦ηξ = η · ∇ξ, S◦ηξ = ξ · ∇η

3



(with suitable Stratonovich interpretation). The advection structure of the noise was stressed
also by the geometric approach of [30]. The effect on fluid dynamics of an advection noise is to
stretch vorticity in a relatively strong way. In the case of full advection noise L◦ηξ = T◦ηξ−S◦ηξ
we meet an intermediate but unlucky situation. On one side, the Stratonovich-Itô corrector is
again a multiple of the Laplacian (see Proposition 6.1), which goes in the right direction. But
on the other side certain main estimates blow-up in the scaling limit N → ∞ considered below,
due to the additional stretching introduced by the noise, and thus we cannot prove convergence
of the approximating scheme. Details are given in Section 6. Therefore, unfortunately, we are
unable to prove our result for the advection noise described so far; instead, we restrict ourselves
to the transport noise T◦ηξ, which has only the effect of an additional background motion of
the fluid, without stretching of the vector quantities. What we prove is that such random
background motion has a regularizing effect; or more precisely, as stated in the title, in the
limit of high modes, this transport noise improves vorticity blow-up control. In Section 7 we
make an effort to justify a model based on pure transport noise. The justification is incomplete
but may suggest new ideas.

As discussed in this section, we are thus aware of the limitation, from a physical viewpoint,
of our choice of the noise. However, a number of reasons suggest to consider at least this initial
case: (i) additive noise is not carefully motivated as well, since body forces in real fluids are
usually extremely smooth; hence the transport noise T◦ηξ is at least in a similar speculative line
of research; (ii) it is the first noise discovered to improve the theory of 3D Navier-Stokes equa-
tions; (iii) the proof given below, especially for what concerns the Stratonovich-Itô correction
term Sθ(ξ) defined in (1.6), is highly non-trivial and may constitute in the future a building
block for the investigation of more difficult and realistic cases. Last but not least, knowing
that such noise has a property of vorticity depletion, the intriguing question arises whether it
is possible to implement technologically a similar mechanism.

1.3 Main results

In view of the discussions above, we consider the 3D Navier-Stokes equations on the torus
T
3 = R

3/Z3 in vorticity form perturbed by a transport noise:

∂tξ + Luξ = ∆ξ + Π(η · ∇ξ),

where we apply the Leray projection operator Π to the noise part to make it divergence free.
This is a central element of our model and analysis that we now briefly comment. Without
the projection the model is not meaningful: if ξ is a solution, the equation becomes an identity
between three divergence free terms and a non-divergence free one (the transport noise term),
which hence should be equal to zero. Thus the projection is strictly necessary; but the conse-
quence is that computations below require a much greater effort (see e.g. Section 5). We also
mention that, since the vorticity ξ and the noise η are divergence free, we have

〈ξ,Π(η · ∇ξ)〉L2 = 〈ξ, η · ∇ξ〉L2 = 0.

This implies that the above equation has the same a priori L2-estimate as the deterministic
equation (1.2); as a result, it is globally well-posed for small initial values and enjoys the usual
estimate on the blow-up time for large ones. Therefore, at first glance, the multiplicative
transport noise has no regularizing effect on the 3D Navier-Stokes equations. However, by
taking a suitable scaling limit, we will show the phenomenon of dissipation enhancement (cf.
[9, 31] and references therein) which implies that, for given large initial data, the above equation
admits a pathwise unique global solution, with large probability.
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The space-time noise η used in this paper has the explicit form:

η(t, x) =
Cν

‖θ‖ℓ2
∑

k∈Z3

0

2
∑

α=1

θk σk,α(x) Ẇ k,α
t ,

where, for some constant ν > 0, Cν =
√

3ν/2 is the noise intensity and the coefficient 3/2
is chosen to simplify some of the equations below; Z

3
0 is the nonzero lattice points and θ ∈

ℓ2 = ℓ2(Z3
0), the usual space of square summable sequences indexed by Z

3
0. In the following

we will mainly consider those θ with only finitely many non-zero components. The family
{σk,α : k ∈ Z

3
0, α = 1, 2} of complex divergence free vector fields (see the next section for

explicit definitions) is a CONS of the space

HC =

{

v ∈ L2(T3,C3) :

∫

T3

v dx = 0, div v = 0

}

.

Finally, {W k,α : k ∈ Z
3
0, α = 1, 2} are independent complex-valued Brownian motions defined

on some filtered probability space (Ω,F , (Ft),P). Thus, the equation studied in the paper can
be written more precisely as below:

dξ + Luξ dt = ∆ξ dt+
Cν

‖θ‖ℓ2
∑

k∈Z3

0

2
∑

α=1

θkΠ(σk,α · ∇ξ) ◦ dW k,α
t . (1.3)

To save notations, we shall simply write
∑

k,α for
∑

k∈Z3

0

∑2
α=1.

We need some more notations in order to introduce the definition of solution. As usual, we
write H for the real subspace of HC. Denote by 〈·, ·〉L2 the L2-inner product in H, and V the
intersection of H with the first order Sobolev space H1(T3,R3). In the following we write L∗

u

for the adjoint operator of the Lie derivative: for any vector fields X,Y ∈ V , 〈LuX,Y 〉L2 =
−〈X,L∗

uY 〉L2 . Since u is divergence free, one has L∗
uY = u ·∇Y +(∇u)∗Y , where for i = 1, 2, 3,

((∇u)∗Y )i =
∑3

j=1 Yj∂iuj .

Definition 1.1. Given a filtered probability space (Ω,F , (Ft),P) and a family of independent
(Ft)-complex Brownian motions {W k,α : k ∈ Z

3
0, α = 1, 2} defined on Ω, we say that an (Ft)-

progressively measurable process ξ is a strong solution of the Stratonovich equation (1.3) if it
has trajectories of class L∞(0, T ;H) ∩ L2(0, T ;V ) and in C

(

[0, T ],H−δ
)

and, for any diver-
gence free vector field v ∈ C∞(T3,R3), the process 〈ξt,Π(σk,α · ∇v)〉L2 is an (Ft)-continuous
semimartingale and P-a.s. the following identity holds for all t ∈ [0, T ]:

〈ξt, v〉L2 = 〈ξ0, v〉L2 +

∫ t

0

〈

ξs,L∗
us
v
〉

L2 ds+

∫ t

0
〈ξs,∆v〉L2 ds

− Cν

‖θ‖ℓ2
∑

k,α

θk

∫ t

0
〈ξs,Π(σk,α · ∇v)〉L2 ◦ dW k,α

s .

Recall that Stratonovich integrals are well defined when the integrand is an (Ft)-continuous
semimartingale, see [32] for the definition and theory used here. The rules of stochastic calculus
give us

∫ t

0
〈ξs,Π(σk,α · ∇v)〉L2 ◦ dW k,α

s

=

∫ t

0
〈ξs,Π(σk,α · ∇v)〉L2 dW k,α

s +
1

2

[

〈ξ·,Π(σk,α · ∇v)〉L2 ,W
k,α
·
]

t
,
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where the last term is the joint quadratic variation. The identity in Definition 1.1 with Π(σk,α ·
∇v) replacing v gives us

〈ξt,Π(σk,α · ∇v)〉L2 = Vt −
Cν

‖θ‖ℓ2
∑

l,β

θl

∫ t

0

〈

ξs,Π
[

σl,β · ∇Π(σk,α · ∇v)
]〉

L2
◦ dW l,β

s ,

where Vt has bounded variation. Hence, by (2.2) below, the only term which has non-zero joint

quadratic variation with W k,α
· is

− Cν

‖θ‖ℓ2
θ−k

∫ t

0

〈

ξs,Π
[

σ−k,α · ∇Π(σk,α · ∇v)
]〉

L2 ◦ dW−k,α
s ,

giving rise to

1

2

[

〈ξ·,Π(σk,α · ∇v)〉L2 ,W
k,α
·
]

t
= − Cν

‖θ‖ℓ2
θ−k

∫ t

0

〈

ξs,Π
[

σ−k,α · ∇Π(σk,α · ∇v)
]〉

L2 ds.

We have proved one implication of the following proposition. The proof of the other is similar.

Proposition 1.2. An (Ft)-progressively measurable process ξ with paths of class L∞(0, T ;H)∩
L2(0, T ;V ) and in C

(

[0, T ],H−δ
)

is a strong solution of the Stratonovich equation (1.3) if and
only if for any divergence free vector field v ∈ C∞(T3,R3), P-a.s., the following identity holds
for all t ∈ [0, T ]:

〈ξt, v〉L2 = 〈ξ0, v〉L2 +

∫ t

0

〈

ξs,L∗
us
v
〉

L2
ds+

∫ t

0
〈ξs,∆v〉L2 ds

− Cν

‖θ‖ℓ2
∑

k,α

θk

∫ t

0
〈ξs,Π(σk,α · ∇v)〉L2 dW k,α

s

+
C2
ν

‖θ‖2
ℓ2

∑

k,α

θkθ−k

∫ t

0

〈

ξs,Π
[

σ−k,α · ∇Π(σk,α · ∇v)
]〉

L2 ds.

(1.4)

We shall always assume that θ ∈ ℓ2 is radially symmetric, i.e.,

θk = θl whenever |k| = |l|. (1.5)

The above equation (1.4) can be written in the weak form as

dξ+Luξ dt = ∆ξ dt+
Cν

‖θ‖ℓ2
∑

k,α

θkΠ(σk,α ·∇ξ) dW k,α
t +

C2
ν

‖θ‖2
ℓ2

∑

k,α

θ2k Π
[

σk,α ·∇Π(σ−k,α ·∇ξ)
]

dt.

To simplify the notation, we denote the Stratonovich-Itô correction term by

Sθ(ξ) =
C2
ν

‖θ‖2
ℓ2

∑

k,α

θ2k Π
[

σk,α · ∇Π(σ−k,α · ∇ξ)
]

, (1.6)

which, like the Laplacian, is a symmetric operator with respect to the L2-inner product of
divergence free vector fields. This term looks a little complicated, but we can show that, if ξ
is smooth, then it has a simple limit when taking a special sequence of {θN}N≥1, see (1.12)
below. Summarizing these discussions, we can rewrite the above equation as

dξ + Luξ dt =
[

∆ξ + Sθ(ξ)
]

dt+
Cν

‖θ‖ℓ2
∑

k,α

θkΠ(σk,α · ∇ξ) dW k,α
t . (1.7)
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The equation (1.7), due to the presence of the nonlinear part Luξ, has only local solutions for
general initial data ξ0 ∈ H, hence we need the cut-off technique. For R > 0, let fR : R+ → [0, 1]
be a smooth non-increasing function taking the value 1 on [0, R] and 0 on [R + 1,∞). Fix a
parameter δ ∈ (0, 1/2). We consider

dξ + fR(‖ξ‖−δ)Luξ dt =
[

∆ξ + Sθ(ξ)
]

dt+
Cν

‖θ‖ℓ2
∑

k,α

θkΠ(σk,α · ∇ξ) dW k,α
t , (1.8)

where ‖ · ‖s is the norm of the Sobolev space Hs(T3,R3), s ∈ R. Note that, although we are
concerned with H-valued solutions, here, due to technical reasons, we use a cut-off on negative
Sobolev norms. Thanks to the cut-off, we can prove the global existence of pathwise unique
strong solution to (1.8).

Theorem 1.3. Assume ξ0 ∈ H, T > 0 and θ ∈ ℓ2 verifies the symmetry property (1.5),
then there exists a pathwise unique strong solution to (1.8) on the interval [0, T ]. More pre-
cisely, given a filtered probability space (Ω,F , (Ft),P) and a family of independent (Ft)-complex
Brownian motions {W k,α : k ∈ Z

3
0, α = 1, 2} defined on Ω, there exists a pathwise unique (Ft)-

progressively measurable process ξ with trajectories of class L∞(0, T ;H) ∩ L2(0, T ;V ) and in
C
(

[0, T ],H−δ
)

, such that for any divergence free test vector field v ∈ C∞(T3,R3), one has
P-a.s. for all t ∈ [0, T ],

〈ξt, v〉L2 = 〈ξ0, v〉L2 +

∫ t

0
fR
(

‖ξs‖−δ

)〈

ξs,L∗
us
v
〉

L2 ds+

∫ t

0
〈ξs,∆v〉L2 ds

+

∫ t

0
〈ξs, Sθ(v)〉L2 ds− Cν

‖θ‖ℓ2
∑

k,α

θk

∫ t

0

〈

ξs, σk,α · ∇v
〉

L2 dW k,α
s .

Moreover, there is a constant C‖ξ0‖L2 ,δ,R,T > 0, independent of ν > 0 and θ ∈ ℓ2, such that

P-a.s., ‖ξ‖L∞(0,T ;H) ∨ ‖ξ‖L2(0,T ;V ) ≤ C‖ξ0‖L2 ,δ,R,T . (1.9)

We shall first prove the existence of global weak solutions to (1.8), and then prove that
(1.8) enjoys the pathwise uniqueness property, which, together with Yamada-Watanabe type
argument [34, Theorem 3.14], gives us the desired assertion, see Section 3. By stopping the
solution given by this theorem at the random time τR = inf{t ≥ 0 : ‖ξt‖−δ ≥ R} (equal to +∞
if the set is empty) we get a local solution of the original equation (1.7) without cut-off.

Next, we take a special sequence {θN}N≥1 ⊂ ℓ2 as follows: for some γ > 0,

θNk =
1

|k|γ 1{N≤|k|≤2N}, k ∈ Z
3
0, N ≥ 1. (1.10)

One can take more general sequences {θN}N≥1, but we do not pursue such generality here, see
Remark 5.7 for a short discussion. It is easy to show that

lim
N→∞

‖θN‖ℓ∞
‖θN‖ℓ2

= 0. (1.11)

Moreover, we shall prove in Theorem 5.1 that for any smooth divergence free vector field v,

lim
N→∞

SθN (v) =
3

5
ν∆v (1.12)

7



which is independent of γ > 0. We fix R0 > 0 and let BH(R0) be the closed ball in H, centered
at the origin with radius R0. Consider the sequence of stochastic 3D Navier-Stokes equations
with cut-off:

dξN = − fR
(

‖ξN‖−δ

)

LuN ξN dt+
[

∆ξN + SθN
(

ξN
)]

dt

+
Cν

‖θN‖ℓ2
∑

k,α

θNk Π
(

σk,α · ∇ξN
)

dW k,α
t

(1.13)

with initial condition ξN |t=0 = ξN0 ∈ BH(R0). For every N ≥ 1, Theorem 1.3 implies that the
equation (1.13) has a pathwise unique global solution ξN with the property

P-a.s.,
∥

∥ξN
∥

∥

L∞(0,T ;H)
∨
∥

∥ξN
∥

∥

L2(0,T ;V )
≤ CR0,δ,R,T , (1.14)

where CR0,δ,R,T is independent of ν > 0 and N ∈ N.
We want to take limit N → ∞ in the above equation. Thanks to (1.11) and the bounds

(1.14) on the solutions ξN , one can show that the martingale part in (1.13) will vanish. Next,
due to (1.12), the viscosity coefficient in the limit equation will be 1 + 3

5ν. Now we can state
our main result.

Theorem 1.4 (Scaling limit). Fix R0 > 0, T > 0 and assume that
{

ξN0
}

N≥1
⊂ BH(R0)

converges weakly in H to some ξ0. Then there exist ν > 0 and R > 0 big enough, such that the
pathwise unique strong solution ξN of (1.13) converges weakly to the global strong solution of
the deterministic 3D Navier-Stokes equations

∂tξ + Luξ =
(

1 +
3

5
ν
)

∆ξ, ξ|t=0 = ξ0. (1.15)

Moreover, let X = L2(0, T ;H)∩C
(

[0, T ],H−δ
)

and QN
ξ0

be the law of the solution ξN to (1.13)

with ξN |t=0 = ξ0 ∈ BH(R0), N ∈ N; then for any ε > 0,

lim
N→∞

sup
ξ0∈BH (R0)

QN
ξ0

(

ϕ ∈ X : ‖ϕ− ξ·(ξ0)‖L2(0,T ;H) ∨ ‖ϕ− ξ·(ξ0)‖C([0,T ],H−δ) > ε
)

= 0.

Here we write ξ·(ξ0) to emphasize that it is the unique solution of (1.15) starting from ξ0.

It is well known that, for any initial vorticity ξ0 ∈ BH(R0) (equivalently, the velocity field
u0 belongs to some ball in V ), if the viscosity ν is big enough, then the deterministic 3D Navier-
Stokes equations (1.15) have a unique global strong solution, with explicit estimate on the time
evolution of the norm ‖ξt‖L2 , see for instance Lemma 4.3 below. In the following we want to take
advantage of this fact and derive some consequences on the stochastic approximating equations
(1.13). The idea is similar to [22] but here it is based on the noise, it is a regularization by
noise property, as opposed to [22] where it is due to a deterministic mechanism of fast rotation,
in spite of the presence of the noise.

We fix R0 > 0, and ν, R big enough (see Corollary 4.4 for estimates on their values). For
any ξ0 ∈ BH(R0), denote by ξ = ξ·(ξ0) the unique global solution to (1.15); we can assume

‖ξ‖C([0,T ],H−δ) ≤ R− 1. (1.16)

Now we consider the approximating equations (1.13), but with the same initial condition ξ0
as in (1.15). Given T > 0 and arbitrary small ε > 0, Theorem 1.4 implies that there exists
N0 = N0(R0, ν,R, T, ε) ∈ N such that for all N ≥ N0, the pathwise unique strong solution ξN

of (1.13) satisfies

P

(

∥

∥ξN − ξ
∥

∥

L2(0,T ;H)
∨
∥

∥ξN − ξ
∥

∥

C([0,T ],H−δ)
≤ ε
)

≥ 1 − ε. (1.17)
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Combining this with (1.16), we deduce

P

(

∥

∥ξN
∥

∥

C([0,T ],H−δ)
< R

)

≥ 1 − ε.

Thus, if we define the stopping time τNR = inf
{

t > 0 :
∥

∥ξNt
∥

∥

−δ
> R

}

(inf ∅ = T ), then

P
(

τNR ≥ T
)

≥ 1 − ε. (1.18)

For any t ≤ τNR , it holds fR
(

‖ξNt ‖−δ

)

= 1, thus
(

ξNt
)

t≤τNR
is a solution to the following equation

without cut-off:

dξN + LuN ξN dt =
[

∆ξN + SθN
(

ξN
)]

dt+
Cν

‖θN‖ℓ2
∑

k,α

θNk Π
(

σk,α · ∇ξN
)

dW k,α
t .

Therefore we have proved

Corollary 1.5. Corresponding to R0 > 0, T > 0 and ε > 0, choose ν > 0 and R > 0 satisfying
(1.16), and choose N0 as above. Then for all N > N0, for any initial value ξ0 ∈ BH(R0), the
equation

dξ + Luξ dt =
[

∆ξ + SθN (ξ)
]

dt+
Cν

‖θN‖ℓ2
∑

k,α

θNk Π(σk,α · ∇ξ) dW k,α
t (1.19)

admits a unique strong solution up to time T with a probability no less than 1 − ε.

Recall that, by Proposition 1.2 and the subsequent arguments, equation (1.19) is equivalent
to equation (1.3) with θ = θN , which has unitary viscosity and Stratonovich noise. Hence this
corollary proves well posedness on a large time interval for large initial conditions but only
unitary viscosity; the result is a form of regularization by noise.

A natural question is whether one can extend further the life time of the strong solution.
Recall that, for any ξ0 ∈ BH(R0), the L2-norm of the unique solution to the deterministic 3D
Navier-Stokes equations (1.15) decreases exponentially fast. Combining this fact with (1.17),
we will show that the life time of the pathwise unique solution can actually be extended to ∞,
with large probability.

Theorem 1.6 (Long term well posedness). Given R0 > 0, take ν ≥ 5
3

[

C0R0/(2π
2)1/4 − 1

]

and R > 0 big enough, where C0 is a constant coming from some Sobolev embedding inequality.
Then for any 0 < ε ≤ (2π2)1/4/(2C0), for all T > 1 such that

2R0 e
−2π2ν1(T−1) ≤ ε,

where ν1 = 1 + 3
5ν, there exists N0 = N0(R0, ν,R, ε, T ) chosen as above such that for all

N ≥ N0, for all ξ0 ∈ BH(R0), the equation (1.19) has a pathwise unique solution with infinite
life time with probability greater than 1 − ε.

This paper is organized as follows. In the next section we give explicit definitions of the
vector fields {σk,α}k,α used above, and prove the key identity (2.3); a heuristic proof of (1.12)
is provided in a special case, in order to facilitate the reader’s understanding. Then we prove
Theorem 1.3 in Section 3, i.e. the global existence of pathwise unique solution to the equation
(1.8) with cut-off. Section 4 contains the proofs of Theorems 1.4 and 1.6, while Section 5 is
devoted to the proof of the limit (1.12). We provide in Section 6 a discussion of the reason
why we cannot deal with the advection noise, and some heuristic arguments in Section 7 with
an attempt to justify the pure transport noise.
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2 Notations, proof of (2.3) and heuristic discussions

In this section we first define the vector fields {σk,α}k,α appeared in the last section and prove
the identity (2.3). Similar results hold also in high dimensions, see e.g. [25, Section 2]. Then
we provide some heuristic discussions on the noise used in this paper, as well as a preliminary
justification of the limit (1.12).

Recall that Z
3
0 = Z

3 \ {0} is the nonzero lattice points. Let Z
3
0 = Z

3
+ ∪Z

3
− be a partition of

Z
3
0 such that

Z
3
+ ∩ Z

3
− = ∅, Z

3
+ = −Z

3
−.

Let L2
0(T3,C) be the space of complex valued square integrable functions on T

3 with zero
average. It has the CONS:

ek(x) = e2πik·x, x ∈ T
3, k ∈ Z

3
0,

where i is the imaginary unit. For any k ∈ Z
3
+, let {ak,1, ak,2} be an orthonormal basis of

k⊥ := {x ∈ R
3 : k · x = 0} such that {ak,1, ak,2, k

|k|} is right-handed. The choice of {ak,1, ak,2}
is not unique. For k ∈ Z

3
−, we define ak,α = a−k,α, α = 1, 2. Now we can define the divergence

free vector fields:
σk,α(x) = ak,αek(x), x ∈ T

3, k ∈ Z
3
0, α = 1, 2. (2.1)

Then {σk,1, σk,2 : k ∈ Z
3
0} is a CONS of the subspace HC ⊂ L2

0(T
3,C3) of square integrable

and divergence free vector fields with zero mean. A vector field

v =
∑

k,α

vk,ασk,α ∈ HC

has real components if and only if vk,α = v−k,α.
Next we introduce the family {W k,α : k ∈ Z

3
0, α = 1, 2} of complex Brownian motions. Let

{

Bk,α : k ∈ Z
3
0, α = 1, 2

}

be a family of independent standard real Brownian motions; then the complex Brownian mo-
tions can be defined as

W k,α =

{

Bk,α + iB−k,α, k ∈ Z
3
+;

B−k,α − iBk,α, k ∈ Z
3
−.

Note that W k,α = W−k,α (k ∈ Z
3
0, α = 1, 2), and they have the following quadratic covariation:

[

W k,α,W l,β
]

t
= 2 tδk,−lδα,β , k, l ∈ Z

3
0, α, β ∈ {1, 2}. (2.2)

Take a θ ∈ ℓ2 which is radially symmetric, namely, it satisfies (1.5). We want to prove the
following key equality:

∑

k,α

θ2k(σk,α ⊗ σ−k,α) =
2

3
‖θ‖2ℓ2I3, (2.3)

where I3 is the identity matrix of order 3. First, one has

∑

k,α

θ2k(σk,α ⊗ σ−k,α) =
∑

k,α

θ2k(ak,α ⊗ ak,α) =
∑

k

θ2k(ak,1 ⊗ ak,1 + ak,2 ⊗ ak,2)

=
∑

k

θ2k

(

I3 −
k ⊗ k

|k|2
)

,
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where in the last step we have used the fact that
{

k
|k| , ak,1, ak,2

}

is an ONS of R3. It remains

to compute the last series. Fix any i, j ∈ {1, 2, 3}. If i 6= j, without loss of generality, suppose
i = 1 and j = 2, then

∑

k,α

θ2kσ
1
k,ασ

2
−k,α = −

∑

k∈Z3

0

θ2k
k1k2
|k|2 = 0,

due to the symmetry property (1.5) and the fact that the sum involving the four points
(k1, k2, k3), (k1,−k2, k3), (−k1, k2, k3), (−k1,−k2, k3) cancel. If i = j, then

∑

k,α

θ2kσ
i
k,ασ

i
−k,α =

∑

k∈Z3

0

θ2k

(

1 − k2i
|k|2

)

=
∑

k∈Z3

0

θ2k
|k|2 − k2i

|k|2 .

Next, using the mapping ψ : Z3
0 → Z

3
0, (k1, k2, k3) 7→ (k2, k1, k3), one can show that

∑

k∈Z3

0

θ2k
k21 + k23
|k|2 =

∑

k∈Z3

0

θ2k
k22 + k23
|k|2 .

In the same way,
∑

k∈Z3

0

θ2k
k21 + k23
|k|2 =

∑

k∈Z3

0

θ2k
k21 + k22
|k|2 =

∑

k∈Z3

0

θ2k
k22 + k23
|k|2 ,

and thus each of them is equal to

1

3

∑

k∈Z3

0

θ2k
2
(

k21 + k22 + k23
)

|k|2 =
2

3
‖θ‖2ℓ2 .

The proof of (2.3) is complete.
Next, we note that σk,α · ∇σ−k,α ≡ −2πi (ak,α · k)ak,α = 0 and Cν =

√

3ν/2, thus for any
smooth divergence free vector field ξ, the equality (2.3) implies

C2
ν

‖θ‖2
ℓ2

∑

k,α

θ2k Π
[

σk,α · ∇(σ−k,α · ∇ξ)
]

= Π[ν∆ξ] = ν∆ξ. (2.4)

It may be helpful for the reader to rewrite some of the previous concepts and formulae with
different notations. The space-dependent vector valued Brownian motion used here is

η(t, x) :=
Cν

‖θ‖ℓ2
∑

k,α

θkσk,α(x)W k,α
t

and its incremental covariance matrix-function is

Q(x, y) :=
1

2
E [η(1, x) ⊗ η(1, y)] =

C2
ν

‖θ‖2ℓ2
∑

k,α

θ2k σk,α(x) ⊗ σ−k,α(y) = Q(x− y),

where we add the coefficient 1/2 due to (2.2), and

Q(z) :=
C2
ν

‖θ‖2ℓ2
∑

k,α

θ2k ak,α ⊗ ak,α e
2πik·z

(the random field W (t, x) is invariant by translations in x). The above computations, in
particular (2.3), give us

Q(0) = νI3.
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Moreover, recall the Stratonovich-Itô corrector

Sθ(ξ) =
C2
ν

‖θ‖2ℓ2
∑

k,α

θ2k Π [σk,α · ∇Π (σ−k,α · ∇ξ)]

and introduce the associated quadratic form

a (ξ, v) := −〈Sθ(ξ), v〉 =
C2
ν

‖θ‖2ℓ2
∑

k,α

θ2k 〈Π(σ−k,α · ∇ξ), σk,α · ∇v〉L2

on divergence free smooth vector fields ξ, v (we have used Π∗ = Π, Πv = v and div σk,α = 0 in
the integration by parts). Let Π⊥ be the projection operator orthogonal to Π: for any vector
field v ∈ L2(T3,R3), Π⊥v is the gradient part of v. Then

Π(σ−k,α · ∇ξ) = σ−k,α · ∇ξ − Π⊥(σ−k,α · ∇ξ). (2.5)

Therefore, we get
a (ξ, v) = a0 (ξ, v) − a1 (ξ, v) ,

where

a0 (ξ, v) :=
C2
ν

‖θ‖2ℓ2
∑

k,α

θ2k 〈σ−k,α · ∇ξ, σk,α · ∇v〉L2 ,

a1 (ξ, v) :=
C2
ν

‖θ‖2ℓ2
∑

k,α

θ2k
〈

Π⊥ (σ−k,α · ∇ξ) ,Π⊥(σk,α · ∇v)
〉

L2 .

We have, with the definitions above,

a0 (ξ, v) = 〈Q(0)∇ξ,∇v〉L2 = −ν 〈∆ξ, v〉L2

which explains (2.4) and clarifies that its structure is quite general.
Finally, for a particular choice of ξ and v, we show in a heuristic way that a1(ξ, v) converges

to −2
5ν〈∆ξ, v〉L2 in the special scaling limit considered in the last subsection. This is to help

the reader with understanding the limit (1.12), since the rigorous proof of the general case is
quite long, see Section 5. To this end, we introduce the new operator

S⊥
θ (ξ) =

C2
ν

‖θ‖2ℓ2
∑

k,α

θ2k Π
[

σk,α · ∇Π⊥(σ−k,α · ∇ξ)
]

; (2.6)

then a1(ξ, v) = −
〈

S⊥
θ (ξ), v

〉

L2 and, by (2.4) and (2.5), it is clear that

Sθ(v) = ν∆v − S⊥
θ (v). (2.7)

We fix l ∈ Z
3
0 and take complex vector fields

ξ = v = σl,1 + σl,2 = (al,1 + al,2)el.

Recall the sequence θN defined in (1.10); by Corollary 5.3, we have

S⊥
θN (v) = − 6π2ν

‖θN‖2
ℓ2

2
∑

β=1

|l|2Π

{[

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · (k − l))
k − l

|k − l|2
]

el

}

∼ − 6π2ν

‖θN‖2
ℓ2

2
∑

β=1

|l|2Π

{[

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · k)
k

|k|2
]

el

}

,
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where ∠k,l is the angle between the vectors k and l, and ∼ means the difference between the
two quantities vanishes as N → ∞. The complex conjugate v̄ of v is divergence free, hence

〈

S⊥
θN (v), v̄

〉

L2 ∼ − 6π2ν

‖θN‖2
ℓ2

2
∑

β=1

|l|2
〈[

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · k)
k

|k|2
]

el, (al,1 + al,2)e−l

〉

L2

= − 6π2ν

‖θN‖2
ℓ2
|l|2

2
∑

β,β′=1

∑

k

(

θNk
)2

sin2(∠k,l)
(al,β · k)(al,β′ · k)

|k|2 .

Recall that {al,1, al,2, l
|l|} is an ONS of R3. By symmetry, the terms with β 6= β′ vanish, thus

〈

S⊥
θN (v), v̄

〉

L2 ∼ − 6π2ν

‖θN‖2
ℓ2
|l|2

2
∑

β=1

∑

k

(

θNk
)2

sin2(∠k,l)
(al,β · k)2

|k|2

= − 6π2ν

‖θN‖2
ℓ2
|l|2
∑

k

(

θNk
)2

sin4(∠k,l),

where we have used
2
∑

β=1

(al,β · k)2

|k|2 = 1 −
(

k

|k| ·
l

|l|

)2

= sin2(∠k,l).

Now, approximating the sums by integrals and changing to spherical variables yield

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin4(∠k,l) ∼
∫

{N≤|x|≤2N}
sin4(∠x,l)

|x|2γ dx
∫

{N≤|x|≤2N}
1

|x|2γ dx
=

∫ 2N
N

dr
r2γ−2

∫ π
0 sin5 ψ dψ

∫ 2π
0 dϕ

∫ 2N
N

dr
r2γ−2

∫ π
0 sinψ dψ

∫ 2π
0 dϕ

=
1

2

∫ π

0
sin5 ψ dψ =

8

15
.

Thus, as N → ∞,

〈

S⊥
θN (v), v̄

〉

L2 → −6π2ν|l|2 · 8

15
= −16

5
π2ν|l|2 =

2

5
ν〈∆v, v̄〉L2 ,

since ∆v = −4π2|l|2v = −4π2|l|2(σl,1 + σl,2).

3 Existence of pathwise unique global solution to (1.8)

In this section we fix ν > 0, R > 0, δ ∈ (0, 1/2) and θ ∈ ℓ2 satisfying (1.5). Consider the
equation (1.8) that we recall here:

dξ + fR(‖ξ‖−δ)Luξ dt =
[

∆ξ + Sθ(ξ)
]

dt+
Cν

‖θ‖ℓ2
∑

k,α

θkΠ(σk,α · ∇ξ) dW k,α
t . (3.1)

Our purpose is to show the global existence of pathwise unique solutions to the above equation.
We consider the Galerkin approximations of the equation (3.1). Recall that H is the

subspace of L2
0(T3,R3) consisting of divergence free vector fields with zero average, and V the

intersection of H with the first order Sobolev space H1(T3,R3). The norms in H and V are
‖ · ‖H = ‖ · ‖L2 and ‖ · ‖V , respectively. For N ≥ 1, let

HN = span{σk,α : |k| ≤ N,α = 1, 2}
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be a finite dimensional subspace of H and ΠN : H → HN the orthogonal projection. We define

bN (ξN ) = fR
(

‖ξN‖−δ

)

ΠN

(

LuN
ξN
)

, ξN ∈ HN ,

where uN = B(ξN ) and B is the Biot-Savart kernel on T
3. Next, by (2.7) and the expression

(5.4) of S⊥
θ (v), we see that if v ∈ HN , then Sθ(v) ∈ HN . Thus we consider the following SDEs

on HN :











dξN =
[

− bN (ξN ) + ∆ξN + Sθ(ξN )
]

dt+
Cν

‖θ‖ℓ2
∑

k,α

θkΠN

(

σk,α · ∇ξN
)

dW k,α
t ,

ξN (0) = ΠN ξ0 ∈ HN .

(3.2)

We have the following simple result.

Lemma 3.1. P-a.s., for all t > 0,

‖ξN (t)‖2L2 +

∫ t

0
‖∇ξN (s)‖2L2 ds ≤ ‖ξ0‖2L2 + Cδ,R t, (3.3)

where Cδ,R > 0 is a constant depending on δ and R, but independent of N, ν and θ ∈ ℓ2.

Proof. For simplicity of notation we omit the time variable t. By the Itô formula,

d‖ξN‖2L2 = −2〈ξN , bN (ξN )〉L2 dt+ 2〈ξN ,∆ξN 〉L2 dt+ 2〈ξN , Sθ(ξN )〉L2 dt

+
2Cν

‖θ‖ℓ2
∑

k,α

θk
〈

ξN ,ΠN (σk,α · ∇ξN )
〉

L2 dW k,α
t +

2C2
ν

‖θ‖2
ℓ2

∑

k,α

θ2k
∥

∥ΠN (σk,α · ∇ξN )
∥

∥

2

L2 dt,

where the quadratic variation term follows from (2.2). As σk,α is divergence free, we have

〈

ξN ,ΠN (σk,α · ∇ξN )
〉

L2 =
〈

ξN , σk,α · ∇ξN
〉

L2 = 0,

thus the martingale part vanishes. Since Cν =
√

3ν/2 and ΠN : H → HN is an orthogonal
projection,

2C2
ν

‖θ‖2
ℓ2

∑

k,α

θ2k
∥

∥ΠN (σk,α · ∇ξN )
∥

∥

2

L2 ≤ 3ν

‖θ‖2
ℓ2

∑

k,α

θ2k‖Π(σk,α · ∇ξN )‖2L2 .

Moreover, by the definition (1.6) of Sθ and integration by parts,

2〈ξN , Sθ(ξN )〉L2 = − 2C2
ν

‖θ‖2
ℓ2

∑

k,α

θ2k
〈

σk,α · ∇ξN ,Π(σ−k,α · ∇ξN )
〉

L2

= − 3ν

‖θ‖2
ℓ2

∑

k,α

θ2k‖Π(σk,α · ∇ξN )‖2L2 .

Summarizing the above discussions we obtain

d‖ξN‖2L2 ≤ −2〈ξN , bN (ξN )〉L2 dt− 2‖∇ξN‖2L2 dt. (3.4)

Next, we deal with the more difficult nonlinear term:

〈ξN , bN (ξN )〉L2 = fR
(

‖ξN‖−δ

)〈

ξN ,LuN
ξN
〉

L2 = −fR
(

‖ξN‖−δ

)〈

ξN , ξN · ∇uN
〉

L2 ,
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since
〈

ξN , uN · ∇ξN
〉

L2 = 0. Hölder’s inequality leads to

|〈ξN , bN (ξN )〉L2 | ≤ fR
(

‖ξN‖−δ

)

‖ξN‖2L3‖∇uN‖L3 ≤ CfR
(

‖ξN‖−δ

)

‖ξN‖3L3 .

Here and below, C > 0 is a generic constant which may change from line to line. Using the
Sobolev imbedding H1/2(T3) →֒ L3(T3) we obtain

|〈ξN , bN (ξN )〉L2 | ≤ CfR
(

‖ξN‖−δ

)

‖ξN‖31/2.

Next, we need the interpolation inequality

‖φ‖1/2 ≤ ‖φ‖1/2(1+δ)
−δ ‖φ‖(1+2δ)/2(1+δ)

1 , φ ∈ H1(T3),

which gives us

|〈ξN , bN (ξN )〉L2 | ≤ CfR
(

‖ξN‖−δ

)

‖ξN‖3/2(1+δ)
−δ ‖ξN‖3(1+2δ)/2(1+δ)

1

≤ CδfR
(

‖ξN‖−δ

)

‖ξN‖3/2(1+δ)
−δ ‖∇ξN‖3(1+2δ)/2(1+δ)

L2 .

Since δ < 1/2, it holds 3(1 + 2δ)/2(1 + δ) < 2. Then, Young’s inequality leads to

|〈ξN , bN (ξN )〉L2 | ≤ fR
(

‖ξN‖−δ

)

(

1

2
‖∇ξN‖2L2 + C ′

δ‖ξN‖6/(1−2δ)
−δ

)

≤ 1

2
‖∇ξN‖2L2 + C ′

δ(R + 1)6/(1−2δ).

(3.5)

where we have used the property of the cut-off function fR mentioned above (1.8).
Finally, combining (3.4) and (3.5), we get

d‖ξN‖2L2 ≤ −‖∇ξN‖2L2 dt+ 2C ′
δ(R+ 1)6/(1−2δ) dt,

which immediately yields the desired result.

Lemma 3.1 implies that the sequence {ξN}N≥1 is bounded both in L∞(Ω, L∞(0, T ;H)
)

and in L2
(

Ω, L2(0, T ;V )
)

. As a result, there exists a subsequence {ξNi
}i≥1 which converge

weakly-∗ in L∞(Ω, L∞(0, T ;H)
)

and weakly in L2
(

Ω, L2(0, T ;V )
)

.
In order to pass to the limit in the nonlinear term, we need stronger convergence of {ξNi

}i≥1.
For this purpose, let ηN be the law of ξN , N ≥ 1; we shall prove that the family {ηN}N≥1 is
tight on

L2(0, T ;H) ∩ C
(

[0, T ],H−δ
)

.

Indeed, with slightly more work, we can show the tightness in C([0, T ],H−) where H− =
∩s<0H

s. We shall use Simon’s compactness results in [38] which involve the time fractional
Sobolev spaces. For γ ∈ (0, 1), p > 1 and a normed linear space (Y, ‖ · ‖Y ), the fractional
Sobolev space W γ,p(0, T ;Y ) consists of those functions ϕ ∈ Lp(0, T ;Y ) such that

∫ T

0

∫ T

0

‖ϕ(t) − ϕ(s)‖pY
|t− s|1+γp

dtds <∞.

In the following we take Y = H−6, a choice which will become clear in view of the calculations
in Corollary 3.5.

Theorem 3.2. (i) For any γ ∈ (0, 1/2),

L2(0, T ;V ) ∩W γ,2
(

0, T ;H−6
)

⊂ L2(0, T ;H)

is a compact imbedding.
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(ii) If p > 12(6 − δ)/δ, then

Lp(0, T ;H) ∩W 1/3,4
(

0, T ;H−6
)

⊂ C
(

[0, T ],H−δ
)

is a compact imbedding.

Proof. The first assertion follows directly from [38, p.86, Corollary 5]. For assertion (ii), we
shall apply [38, p.90, Corollary 9]. In this case, we use the interpolation inequality

‖ϕ‖−δ ≤ ‖ϕ‖1−κ
L2 ‖ϕ‖κ−6, ϕ ∈ H,

where κ = δ/6, playing the role of the parameter θ in [38, p.90, Corollary 9]. We have
s0 = 0, r0 = p and s1 = 1/3, r1 = 4, hence, sκ = (1 − κ)s0 + κs1 = κ/3 and

1

rκ
=

1 − κ

r0
+
κ

r1
=

1 − κ

p
+
κ

4
.

For p given above, it is clear that sκ > 1/rκ, thus we deduce the second assertion from Corollary
9 in [38].

Recall that ηN is the law of ξN , N ≥ 1. We have the following immediate consequences.

Corollary 3.3. (i) If there is C > 0 such that

E

∫ T

0
‖ξN (t)‖2V dt+ E

∫ T

0

∫ T

0

‖ξN (t) − ξN (s)‖2−6

|t− s|1+2γ
dtds ≤ C for all N ∈ N, (3.6)

then {ηN}N∈N is tight on L2(0, T ;H).

(ii) If there is C > 0 such that

E

∫ T

0
‖ξN (t)‖p

L2 dt+ E

∫ T

0

∫ T

0

‖ξN (t) − ξN (s)‖4−6

|t− s|7/3 dtds ≤ C for all N ∈ N, (3.7)

then {ηN}N∈N is tight on C
(

[0, T ],H−δ
)

.

To apply these tightness criteria, by Lemma 3.1, it is sufficient to estimate the expectations
involving double time integrals. For this aim, we need the next estimate.

Lemma 3.4. There is a constant C = C(‖ξ0‖L2 , ν, δ,R, T ) > 0, independent of N and θ, such
that for any 0 ≤ s < t ≤ T and l ∈ Z

3
0, j = 1, 2, one has

E

(

∣

∣

〈

ξN (t) − ξN (s), σl,j
〉

L2

∣

∣

4
)

≤ C|l|8|t− s|2.

Proof. It is enough to consider |l| ≤ N . Since ξN satisfies the equation (3.2), we have

〈

ξN (t) − ξN (s), σl,j
〉

L2

= −
∫ t

s

〈

bN (ξN (r)), σl,j
〉

L2 dr +

∫ t

s

〈

ξN (r),∆σl,j
〉

L2 dr

+

∫ t

s

〈

ξN (r), Sθ(σl,j)
〉

L2 dr − Cν

‖θ‖ℓ2
∑

k,α

θk

∫ t

s

〈

ξN (r), σk,α · ∇σl,j
〉

L2 dW k,α
r .
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We omit the time variable r in the sequel when there is no confusion. We have

〈

bN (ξN ), σl,j
〉

L2 = fR
(

‖ξN‖−δ

)

(

〈

uN · ∇ξN , σl,j
〉

L2 −
〈

ξN · ∇uN , σl,j
〉

L2

)

= −fR
(

‖ξN‖−δ

)

(

〈

ξN , uN · ∇σl,j
〉

L2 +
〈

ξN · ∇uN , σl,j
〉

L2

)

.

Lemma 3.1 and the fact ∇σl,j = 2πiσl,j ⊗ l imply
∣

∣

〈

ξN , uN · ∇σl,j
〉

L2

∣

∣ ≤ C|l| ‖ξN‖L2‖uN‖L2 ≤ Cξ0,δ,R,T |l|,

where Cξ0,δ,R,T = C(‖ξ0‖L2 , δ, R, T ) is a constant. Similarly,
∣

∣

〈

ξN · ∇uN , σl,j
〉

L2

∣

∣ ≤ C‖ξN‖L2‖∇uN‖L2 ≤ C‖ξN‖2L2 ≤ Cξ0,δ,R,T .

Therefore,

E

∣

∣

∣

∣

∫ t

s

〈

bN (ξN ), σl,j
〉

L2 dr

∣

∣

∣

∣

4

≤ Cξ0,δ,R,T |l|4|t− s|4.

Next, since ∆σl,j = −4π2|l|2σl,j, we have
∣

∣

〈

ξN ,∆σl,j
〉

L2

∣

∣ ≤ C‖ξN‖L2 |l|2 ≤ Cξ0,δ,R,T |l|2.

As a consequence,

E

∣

∣

∣

∣

∫ t

s

〈

ξN ,∆σl,j
〉

L2 dr

∣

∣

∣

∣

4

≤ Cξ0,δ,R,T |l|8|t− s|4.

By (2.7) and (5.4), we have

Sθ(σl,j) = ν∆σl,j +
6π2ν

‖θ‖2
ℓ2

Π

{[

∑

k,α

θ2k(ak,α · l)2(al,j · (k − l))
k − l

|k − l|2
]

el

}

.

Therefore,

‖Sθ(σl,j)‖L2 ≤ 4π2ν|l|2 +
6π2ν

‖θ‖2
ℓ2

∣

∣

∣

∣

∑

k,α

θ2k(ak,α · l)2(al,j · (k − l))
k − l

|k − l|2
∣

∣

∣

∣

≤ 4π2ν|l|2 +
6π2ν

‖θ‖2
ℓ2

∑

k,α

θ2k(ak,α · l)2 ≤ 10π2ν|l|2.

This implies

E

∣

∣

∣

∣

∫ t

s

〈

ξN , Sθ(σl,j)
〉

L2 dr

∣

∣

∣

∣

4

≤ E

(
∫ t

s
C|l|2‖ξN‖L2 dr

)4

≤ Cξ0,ν,δ,R,T |l|8|t− s|4.

Finally, by the Burkholder-Davis-Gundy inequality,

E

∣

∣

∣

∣

Cν

‖θ‖ℓ2
∑

k,α

θk

∫ t

s

〈

ξN , σk,α · ∇σl,j
〉

L2 dW k,α
r

∣

∣

∣

∣

4

≤ C4
ν

‖θ‖4
ℓ2
E

(

∑

k,α

θ2k

∫ t

s

∣

∣

〈

ξN , σk,α · ∇σl,j
〉

L2

∣

∣

2
dr

)2

.

We have
∑

k,α

θ2k
∣

∣

〈

ξN , σk,α · ∇σl,j
〉

L2

∣

∣

2 ≤
∑

k,α

θ2k‖ξN‖2L2‖σk,α · ∇σl,j‖2L2 ≤ Cξ0,δ,R,T‖θ‖2ℓ2 |l|2.
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Substituting this estimate into the above inequality yields

E

∣

∣

∣

∣

Cν

‖θ‖ℓ2
∑

k,α

θk

∫ t

s

〈

ξN , σk,α · ∇σl,j
〉

L2 dW k,α
r

∣

∣

∣

∣

4

≤ Cξ0,ν,δ,R,T |l|4|t− s|2.

Summarizing the above estimates we complete the proof.

As a consequence, we have

Corollary 3.5. The family {ηN}N≥1 is tight both on L2(0, T ;H) and on C
(

[0, T ],H−δ
)

.

Proof. We first check the uniform boundedness of the second expectation in (3.7). By Cauchy’s
inequality and Lemma 3.4,

E
(

‖ξN (t) − ξN (s)‖4−6

)

= E

(

∑

l,j

∣

∣〈ξN (t) − ξN (s), σl,j〉L2

∣

∣

2

|l|12

)2

≤
(

∑

l,j

1

|l|12
)

E

(

∑

l,j

∣

∣〈ξN (t) − ξN (s), σl,j〉L2

∣

∣

4

|l|12

)

≤ C
∑

l,j

C|l|8|t− s|2
|l|12 ≤ C ′|t− s|2

since 12 − 8 > 3. Therefore,

E

∫ T

0

∫ T

0

‖ξN (t) − ξN (s)‖4−6

|t− s|7/3 dtds ≤
∫ T

0

∫ T

0

C ′|t− s|2
|t− s|7/3 dtds < +∞.

Thus we have proved the estimate (3.7). Now we can apply (ii) in Corollary 3.3 to get the
tightness of {ηN}N≥1 on C

(

[0, T ],H−δ
)

.
In the same way, we can check the uniform boundedness of the second expectation in (3.6),

using the facts that γ ∈ (0, 1/2) and

E
∣

∣〈ξN (t) − ξN (s), σl,j〉L2

∣

∣

2 ≤
[

E
∣

∣〈ξN (t) − ξN (s), σl,j〉L2

∣

∣

4
]1/2

≤ C|l|4|t− s|.

The proof is complete.

Based on the above results, we can apply the Prohorov theorem (see [5, p.59, Theorem
5.1]) to deduce that there exists a subsequence {ηNi

}i≥1 which converge weakly to some
probability measure η supported on L2(0, T ;H) and on C

(

[0, T ],H−δ
)

. Moreover, by Sko-
rokhod’s representation theorem ([5, p.70, Theorem 6.7]), there exist a new probability space
(

Ω̃, F̃ , P̃
)

and a sequence of random variables
{

ξ̃Ni

}

i≥1
and ξ̃ defined on this space, such that

ξ̃Ni

d∼ ηNi
(i ≥ 1), ξ̃

d∼ η, and

P̃-a.s., lim
i→∞

ξ̃Ni
= ξ̃ in the topologies of L2(0, T ;H) and C

(

[0, T ],H−δ
)

. (3.8)

Remark 3.6. We can also consider {ξN}N≥1 together with the family of complex Brownian
motions W :=

{

W k,α : k ∈ Z
3
0, α = 1, 2

}

to get tightness of their joint laws. Here, for
simplicity, we write W for the whole family of Brownian motions. Namely, for each i ∈ N,
there exist a family W̃Ni :=

{

W̃Ni,k,α : k ∈ Z
3
0, α = 1, 2

}

of independent complex Brownian

motions defined on
(

Ω̃, F̃ , P̃
)

such that
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(1) for any i ∈ N, (ξNi
,W ) and

(

ξ̃Ni
, W̃Ni

)

have the same joint law;

(2) in addition to (3.8), we have, for all k ∈ Z
3
0 and α ∈ {1, 2}, W̃Ni,k,α converge P̃-a.s. in

C([0, T ],C) to a complex Brownian motion W̃ k,α.

Furthermore, the family W̃ :=
{

W̃ k,α : k ∈ Z
3
0, α = 1, 2

}

of Brownian motions are mutually
independent. See for instance the discussions above (3.7) of [18] for details. These additional
facts will be useful in the proof of existence of weak solutions.

The next bounds on the limit ξ̃ are important for us to prove the scaling limit in the next
section, where we will need them to show tightness.

Corollary 3.7. There exists a constant C‖ξ0‖L2 ,δ,R,T independent of θ ∈ ℓ2 such that P̃-a.s.,

∥

∥ξ̃
∥

∥

L∞(0,T ;H)
≤ C‖ξ0‖L2 ,δ,R,T (3.9)

and
∥

∥ξ̃
∥

∥

L2(0,T ;V )
≤ C‖ξ0‖L2 ,δ,R,T . (3.10)

Proof. Thanks to (3.3), the proof of the first assertion is similar to that of [18, Lemma 3.4],
hence we omit it here. Next we focus on (3.10). For any N ≥ 1, ξN satisfies the bound (3.3)
almost surely. Hence, there is a constant C‖ξ0‖L2 ,δ,R,T > 0, independent of θ ∈ ℓ2, such that,
P-a.s.,

‖ξN‖L2(0,T ;V ) ≤ C‖ξ0‖L2 ,δ,R,T .

Since ξ̃Ni
has the same law as ξNi

, thus it enjoys the same bound: P̃-a.s.,

∥

∥ξ̃Ni

∥

∥

L2(0,T ;V )
≤ C‖ξ0‖L2 ,δ,R,T .

Note that the bound is independent of i ≥ 1. This implies that there is an event Ω̃0 ⊂ Ω̃ of
full probability such that for every ω̃ ∈ Ω̃0, one has

sup
i≥1

∥

∥ξ̃Ni
(ω̃, ·)

∥

∥

L2(0,T ;V )
≤ C‖ξ0‖L2 ,δ,R,T . (3.11)

Therefore, up to a subsequence, ξ̃Ni
(ω̃, ·) converge weakly in L2(0, T ;V ) to some limit ξ̂(ω̃, ·).

This also means that ξ̃Ni
(ω̃, ·) converge weakly in L2(0, T ;H) to ξ̂(ω̃, ·). Combining this fact

with (3.8), we conclude that ξ̂(ω̃, ·) = ξ̃(ω̃, ·). This holds for all ω̃ ∈ Ω̃0, the event of full
probability. As a consequence, the limit process ξ̃ obtained above actually has trajectories in
L2(0, T ;V ), and by the property of weak convergence, one has, for any ω̃ ∈ Ω̃0,

∥

∥ξ̃(ω̃, ·)
∥

∥

L2(0,T ;V )
≤ lim inf

i→∞

∥

∥ξ̃Ni
(ω̃, ·)

∥

∥

L2(0,T ;V )
≤ C‖ξ0‖L2 ,δ,R,T .

This completes the proof.

Now we can prove the existence of pathwise unique strong solutions to the stochastic NSEs
(3.1) with cut-off.

Proof of Theorem 1.3. The proof is quite long and is divided into two steps. In Step 1, we
prove that the limit process ξ̃ obtained above is a weak solution to the equation (3.1), while in
Step 2 we prove that the pathwise uniqueness holds for (3.1), thus the existence of a unique
strong solution follows from the Yamada-Watanabe type result [34, Theorem 3.14].
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Step 1: weak existence. Let v be any divergence free test vector field. Recall that, by Remark
3.6, we have the sequences of complex Brownian motions W̃Ni :=

{

W̃Ni,k,α : k ∈ Z
3
0, α = 1, 2

}

,

such that for each i ∈ N,
(

ξ̃Ni
, W̃Ni

)

has the same law as the pair
(

ξNi
,W
)

defined on the
original probability space (Ω,F ,P), and the latter pair satisfies the equation (3.2) with Ni in
place of N . Thus ξ̃Ni

verifies the following stochastic integral equation:

〈

ξ̃Ni
(t), v

〉

L2 =
〈

ΠNi
ξ0, v

〉

L2 +

∫ t

0
fR
(

‖ξ̃Ni
(s)‖−δ

)

〈

ξ̃Ni
(s),L∗

ũNi
(s)(ΠNi

v)
〉

L2

ds

+

∫ t

0

〈

ξ̃Ni
(s),∆v

〉

L2 ds+

∫ t

0

〈

ξ̃Ni
(s), Sθ(v)

〉

L2 ds

− Cν

‖θ‖ℓ2
∑

k,α

θk

∫ t

0

〈

ξ̃Ni
(s), σk,α · ∇ΠNi

v
〉

L2
dW̃Ni,k,α

s ,

where ũNi
= B

(

ξ̃Ni

)

is the velocity field on the new probability space Ω̃ and α ranges in {1, 2}.
Recall that B is the Biot-Savart operator and L∗ is the adjoint operator of the Lie derivative,
see its formula above Theorem 1.3. By (5.4), Sθ(v) is also a smooth divergence free vector
field. Thanks to the above preparations, it is standard to show that all the terms, except
the nonlinear one, converge to the corresponding limits, see for instance the proof of Theorem
2.2 at the end of [18, Section 3]. In the following we concentrate on the convergence of the
nonlinear term and denote Ẽ the expectation on the new probability space

(

Ω̃, F̃ , P̃
)

.
We omit the time variable s in the integrals to save space. We have, by triangle inequality,

Ẽ

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0
fR
(

‖ξ̃Ni
‖−δ

)

〈

ξ̃Ni
,L∗

ũNi
(ΠNi

v)
〉

L2

ds−
∫ t

0
fR
(

‖ξ̃‖−δ

)〈

ξ̃,L∗
ũv
〉

L2 ds

∣

∣

∣

∣

]

≤ Ẽ

[
∫ T

0
fR
(

‖ξ̃Ni
‖−δ

)

∣

∣

∣

〈

ξ̃Ni
,L∗

ũNi
(ΠNi

v)
〉

L2

−
〈

ξ̃,L∗
ũv
〉

L2

∣

∣

∣
ds

]

+ Ẽ

[
∫ T

0

∣

∣

∣
fR
(

‖ξ̃Ni
‖−δ

)

− fR
(

‖ξ̃‖−δ

)

∣

∣

∣
·
∣

∣

∣

〈

ξ̃,L∗
ũv
〉

L2

∣

∣

∣
ds

]

.

Denote the two expectations on the right hand side by I1 and I2 respectively. First,

I1 ≤ Ẽ

[
∫ T

0

∣

∣

∣

〈

ξ̃Ni
,L∗

ũNi
(ΠNi

v)
〉

L2

−
〈

ξ̃,L∗
ũv
〉

L2

∣

∣

∣
ds

]

. (3.12)

Recall the P̃-a.s. convergence stated in (3.8); we deduce that ũNi
= B

(

ξ̃Ni

)

converge a.s. in the

strong topology of L2(0, T ;V ) to the velocity field ũ = B
(

ξ̃
)

. Moreover, the uniform bounds
(3.10) and (3.11) imply that

P̃-a.s., ‖ũ‖L2(0,T ;V ) ∨
(

sup
i≥1

‖ũNi
‖L2(0,T ;V )

)

≤ C‖ξ0‖L2 ,δ,R,T .

Finally, since v is smooth, ΠNi
v converge to v in C1(T3,R3). Using these facts, it is easy to

show that the right hand side of (3.12) tends to 0 as i→ ∞.
It remains to prove that I2 also vanishes as i→ ∞. First, one can easily show that, P̃-a.s.,
∣

∣

∣

〈

ξ̃,L∗
ũv
〉

L2

∣

∣

∣
≤
∥

∥ξ̃
∥

∥

L2

∥

∥L∗
ũv
∥

∥

L2 ≤
∥

∥ξ̃
∥

∥

L2‖ũ‖V ‖v‖C1 ≤ C
∥

∥ξ̃
∥

∥

2

L2‖v‖C1 ≤ C2
‖ξ0‖L2 ,δ,R,T‖v‖C1 .

Moreover, (3.8) implies that, P̃-a.s.,

lim
i→∞

sup
t∈[0,T ]

∥

∥ξ̃Ni
(t) − ξ̃(t)

∥

∥

−δ
= 0.
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Since fR is bounded and continuous, we apply the dominated convergence theorem to conclude
that I2 vanishes as i→ ∞.

Summarizing the above arguments we conclude that the limit process ξ̃ satisfies

〈

ξ̃(t), v
〉

L2 = 〈ξ0, v〉L2 +

∫ t

0
fR
(

‖ξ̃(s)‖−δ

)

〈

ξ̃(s),L∗
ũ(s)v

〉

L2

ds

+

∫ t

0

〈

ξ̃(s),∆v
〉

L2 ds+

∫ t

0

〈

ξ̃(s), Sθ(v)
〉

L2 ds

− Cν

‖θ‖ℓ2
∑

k,α

θk

∫ t

0

〈

ξ̃(s), σk,α · ∇v
〉

L2 dW̃ k,α
s ,

Thus ξ̃ is a global weak solution to the stochastic 3D Navier-Stokes equations (3.1), i.e. (1.8).
Step 2: pathwise uniqueness of (3.1). Assume that on a probability space (Ω,F , (Ft),P)

there are two solutions ξi (i = 1, 2) of (3.1) with the same complex Brownian motions
{

W k,α :
k ∈ Z

3
0, α = 1, 2

}

and the same initial condition, satisfying the bounds

P-a.s., ‖ξi‖L∞(0,T ;H) ∨ ‖ξi‖L2(0,T ;V ) ≤ C‖ξ0‖L2 ,δ,R,T , i = 1, 2. (3.13)

Let ξ = ξ1 − ξ2, then

dξ = −
[

fR(‖ξ1‖−δ)Lu1
ξ1 − fR(‖ξ2‖−δ)Lu2

ξ2
]

dt+
[

∆ξ + Sθ(ξ)
]

dt

+
Cν

‖θ‖ℓ2
∑

k,α

θkΠ(σk,α · ∇ξ) dW k,α
t .

Note that the vorticity ξ is divergence free. Thanks to (3.13), one can check that the assump-
tions of [37, p.72, Theorem 2.13] are verified, thus by the Itô formula [37, (2.5.3)] and the
definition (1.6) of Sθ(ξ), we have

d‖ξ‖2L2 = − 2
〈

ξ, fR(‖ξ1‖−δ)Lu1
ξ1 − fR(‖ξ2‖−δ)Lu2

ξ2

〉

L2

dt− 2‖∇ξ‖2L2 dt

− 2C2
ν

‖θ‖2
ℓ2

∑

k,α

θ2k‖Π(σk,α · ∇ξ)‖2L2 dt+
2Cν

‖θ‖ℓ2
∑

k,α

θk
〈

ξ, σk,α · ∇ξ
〉

dW k,α
t

+
2C2

ν

‖θ‖2
ℓ2

∑

k,α

θ2k
∥

∥Π(σk,α · ∇ξ)
∥

∥

2

L2 dt,

where the last quadratic variation term follows from (2.2). The martingale part vanishes, since
all the vector fields σk,α are divergence free; therefore,

d‖ξ‖2L2 = −2
〈

ξ, fR(‖ξ1‖−δ)Lu1
ξ1 − fR(‖ξ2‖−δ)Lu2

ξ2

〉

L2

dt− 2‖∇ξ‖2L2 dt. (3.14)

Now we treat the difficult terms involving Lie derivatives:

J :=
〈

ξ, fR(‖ξ1‖−δ)Lu1
ξ1 − fR(‖ξ2‖−δ)Lu2

ξ2

〉

L2

=
[

fR(‖ξ1‖−δ) − fR(‖ξ2‖−δ)
]〈

ξ,Lu1
ξ1
〉

L2 + fR(‖ξ2‖−δ)
〈

ξ,Lu1
ξ1 − Lu2

ξ2
〉

L2

=: J1 + J2.

(3.15)

We start with J1:

|J1| ≤ ‖f ′R‖∞ ‖ξ1 − ξ2‖−δ

∣

∣

〈

ξ,Lu1
ξ1
〉

L2

∣

∣

≤ C‖ξ‖L2

(

∣

∣

〈

ξ, u1 · ∇ξ1
〉

L2

∣

∣+
∣

∣

〈

ξ, ξ1 · ∇u1
〉

L2

∣

∣

)

=: J1,1 + J1,2.
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By Hölder’s inequality with exponent 1
3 + 1

6 + 1
2 = 1, we have

J1,1 ≤ C‖ξ‖L2‖ξ‖L3‖u1‖L6‖∇ξ1‖L2 ≤ C‖ξ‖L2‖ξ‖1/2‖u1‖1‖∇ξ1‖L2 ,

where we have used the Sobolev embeddings H1/2(T3) →֒ L3(T3) and H1(T3) →֒ L6(T3).
Moreover, applying the interpolation inequality,

J1,1 ≤ C‖ξ‖1/21 ‖ξ‖3/2
L2 ‖ξ1‖L2‖∇ξ1‖L2 ≤ C‖∇ξ‖1/2

L2 ‖ξ‖3/2L2 ‖ξ1‖L2‖∇ξ1‖L2 . (3.16)

Young’s inequality with exponent 1
4 + 3

4 = 1 implies

J1,1 ≤
1

5
‖∇ξ‖2L2 + C‖ξ‖2L2‖ξ1‖4/3L2 ‖∇ξ1‖4/3L2 ≤ 1

5
‖∇ξ‖2L2 + C1‖ξ‖2L2‖∇ξ1‖4/3L2 ,

since, by (3.13), ξ1 is a.s. bounded in L∞(0, T ;H). Next we turn to estimate J1,2. By Hölder’s
inequality with exponent 1

3 + 1
3 + 1

3 = 1,

J1,2 ≤ C‖ξ‖L2‖ξ‖L3‖ξ1‖L3‖∇u1‖L3 ≤ C‖ξ‖L2‖ξ‖1/2‖ξ1‖21/2
≤ C‖ξ‖1/21 ‖ξ‖3/2

L2 ‖ξ1‖L2‖ξ1‖1 ≤ C‖∇ξ‖1/2
L2 ‖ξ‖3/2L2 ‖ξ1‖L2‖∇ξ1‖L2 ,

which is the same as the right hand side of (3.16). Thus, similarly as above, we have

J1,2 ≤
1

5
‖∇ξ‖2L2 + C1‖ξ‖2L2‖∇ξ1‖4/3L2 .

Summarizing the above arguments, we obtain

J1 ≤
2

5
‖∇ξ‖2L2 + C‖ξ‖2L2‖∇ξ1‖4/3L2 . (3.17)

Next we estimate J2 defined in (3.15) which can be done in the same way as for J1. Since
0 ≤ fR ≤ 1,

|J2| ≤
∣

∣

〈

ξ,Lu1
ξ1 − Lu2

ξ2
〉

L2

∣

∣ ≤
∣

∣

〈

ξ,Lu1
ξ
〉

L2

∣

∣+
∣

∣

〈

ξ,Luξ2
〉

L2

∣

∣ = J2,1 + J2,2, (3.18)

where u = u1 − u2. We have

J2,1 =
∣

∣〈ξ, u1 · ∇ξ〉L2 − 〈ξ, ξ · ∇u1〉L2

∣

∣ =
∣

∣〈ξ, ξ · ∇u1〉L2

∣

∣,

since u1 is divergence free. By Hölder’s inequality and the Sobolev embedding H1/2(T3) →֒
L3(T3),

J2,1 ≤ ‖ξ‖2L3‖∇u1‖L3 ≤ C‖ξ‖21/2‖∇u1‖1/2
≤ C‖ξ‖L2‖ξ‖1‖∇u1‖1 ≤ C‖∇ξ‖L2‖ξ‖L2‖∇ξ1‖L2 .

where the third step follows from the interpolation inequality and ‖∇u1‖1/2 ≤ ‖∇u1‖1, respec-
tively. We deduce that

J2,1 ≤
1

5
‖∇ξ‖2L2 + C‖ξ‖2L2‖∇ξ1‖2L2 . (3.19)

Next, we consider J2,2 in (3.18):

J2,2 ≤ |〈ξ, u · ∇ξ2〉L2 | + |〈ξ, ξ2 · ∇u〉L2 |. (3.20)

Using the Hölder inequality with exponents 1
2 + 1

3 + 1
6 = 1,

|〈ξ, u · ∇ξ2〉L2 | ≤ ‖ξ‖L3‖u‖L6‖∇ξ2‖L2 ≤ C‖ξ‖1/2‖u‖1‖∇ξ2‖L2 ,
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where we have also used the Sobolev embedding H1(T3) →֒ L6(T3). Now, by the interpolation
inequality,

|〈ξ, u · ∇ξ2〉L2 | ≤ C‖ξ‖1/2
L2 ‖ξ‖1/21 ‖ξ‖L2‖∇ξ2‖L2 ≤ C‖∇ξ‖1/2

L2 ‖ξ‖3/2L2 ‖∇ξ2‖L2 .

Thus, by Young’s inequality with exponents 1
4 + 3

4 = 1,

|〈ξ, u · ∇ξ2〉L2 | ≤ 1

5
‖∇ξ‖2L2 + C‖ξ‖2L2‖∇ξ2‖4/3L2 . (3.21)

It remains to estimate the last term |〈ξ, ξ2 · ∇u〉L2 | in (3.20). We have

|〈ξ, ξ2 · ∇u〉L2 | ≤ ‖ξ‖L3‖ξ2‖L3‖∇u‖L3 ≤ C‖ξ‖21/2‖ξ2‖1/2
≤ C‖ξ‖L2‖ξ‖1‖ξ2‖1 ≤ C‖∇ξ‖L2‖ξ‖L2‖∇ξ2‖L2 .

Finally, we get

|〈ξ, ξ2 · ∇u〉L2 | ≤ 1

5
‖∇ξ‖2L2 + C‖ξ‖2L2‖∇ξ2‖2L2 .

This estimate together with (3.18)–(3.21) implies

J2 ≤
3

5
‖∇ξ‖2L2 + C‖ξ‖2L2

(

‖∇ξ1‖2L2 + ‖∇ξ2‖4/3L2 + ‖∇ξ2‖2L2

)

.

Now we combine the above estimate with (3.15) and (3.17) to deduce

|J | ≤ ‖∇ξ‖2L2 + C‖ξ‖2L2

(

‖∇ξ1‖4/3L2 + ‖∇ξ1‖2L2 + ‖∇ξ2‖4/3L2 + ‖∇ξ2‖2L2

)

.

Substituting this result into (3.14), we conclude that, P-a.s. for all t ∈ [0, T ],

d‖ξ‖2L2 ≤ C‖ξ‖2L2

(

‖∇ξ1‖4/3L2 + ‖∇ξ1‖2L2 + ‖∇ξ2‖4/3L2 + ‖∇ξ2‖2L2

)

dt.

By the regularity properties (3.13) on the two solutions ξ1 and ξ2, the quantity in the brackets
on the right hand side is integrable. Thus Gronwall’s inequality give us ‖ξ(t)‖2L2 = 0 P-a.s. for
all t ≤ T . The proof is complete.

4 The scaling limit and its consequences

In this part, we take the sequence {θN}N∈N defined in (1.10), which satisfies

lim
N→∞

‖θN‖ℓ∞
‖θN‖ℓ2

= 0. (4.1)

For any N ≥ 1, we consider the stochastic 3D Navier-Stokes equations (1.13) with cut-off,
namely,

dξN+fR
(

‖ξN‖−δ

)

LuN ξN dt =
[

∆ξN+SθN
(

ξN
)]

dt+
Cν

‖θN‖ℓ2
∑

k,α

θNk Π
(

σk,α·∇ξN
)

dW k,α
t (4.2)

with ξN |t=0 = ξN0 ∈ BH(R0). Recall that uN is related to ξN via the Biot-Savart law: uN =
B
(

ξN
)

. By Theorem 1.3, the system (4.2) has a pathwise unique solution ξN on the interval
[0, T ], satisfying the bounds below:

P-a.s.,
∥

∥ξN
∥

∥

L∞(0,T ;H)
∨
∥

∥ξN
∥

∥

L2(0,T ;V )
≤ CR0,δ,R,T , (4.3)
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where CR0,δ,R,T is independent of ν and N ; moreover, for any divergence free test vector field
v, one has P-a.s. for all t ∈ [0, T ],

〈

ξN (t), v
〉

L2 =
〈

ξN0 , v
〉

L2 +

∫ t

0
fR
(

‖ξN (s)‖−δ

)

〈

ξN (s),L∗
uN (s)v

〉

L2

ds

+

∫ t

0

〈

ξN (s),∆v
〉

L2 ds+

∫ t

0

〈

ξN (s), SθN (v)
〉

L2 ds

− Cν

‖θN‖ℓ2
∑

k,α

θNk

∫ t

0

〈

ξN (s), σk,α · ∇v
〉

L2 dW k,α
s .

(4.4)

Using the uniform bounds (4.3) and the equation (4.4), one can show that the assertion of
Lemma 3.4 still holds for ξN , N ∈ N. Thus, let QN be the law of ξN , N ∈ N, as in Corollary
3.5, we can prove

Lemma 4.1. The family {QN}N∈N is tight on L2(0, T ;H) and on C
(

[0, T ],H−δ
)

.

Next, repeating the arguments below Corollary 3.5, we can find a subsequence {QNi}i∈N
converging weakly to some probability measure Q which is supported on L2(0, T ;H) and on
C
(

[0, T ],H−δ
)

. Moreover, there is a new probability space
(

Ω̃, F̃ , P̃
)

and a sequence of processes
{(

ξ̃Ni , W̃Ni
)}

i∈N and
(

ξ̃, W̃
)

defined on Ω̃, such that

(a) for each i ∈ N,
(

ξ̃Ni , W̃Ni
) d∼ (ξNi ,W ); in particular, W̃Ni and W̃ are families of complex

Brownian motions;

(b) P̃-a.s., as i → ∞, ξ̃Ni converge to ξ̃ strongly in L2(0, T ;H) and in C
(

[0, T ],H−δ
)

, and

W̃Ni,k,α converge in C([0, T ],C) to W̃ k,α for all k ∈ Z
3
0 and α = 1, 2.

Now we prove the following intermediate result.

Proposition 4.2. Assume that ξN0 converge weakly in H to ξ0 ∈ BH(R0). Then the limit
process ξ̃ solves the deterministic 3D Navier-Stokes equations with cut-off: for any divergence
free test vector field v ∈ C∞(T3,R3),

〈

ξ̃(t), v
〉

L2 = 〈ξ0, v〉L2 +
(

1 +
3

5
ν
)

∫ t

0

〈

ξ̃(s),∆v
〉

L2 ds+

∫ t

0
fR
(

‖ξ̃(s)‖−δ

)〈

ξ̃(s),L∗
ũ(s)v

〉

L2 ds,

(4.5)
where ũ = B

(

ξ̃
)

is the corresponding velocity field.

Proof. By the above assertion (a) and (4.4), the process ξ̃Ni on the new probability space
(

Ω̃, F̃ , P̃
)

satisfies the equation below:

〈

ξ̃Ni(t), v
〉

L2 =
〈

ξNi
0 , v

〉

L2 +

∫ t

0

〈

ξ̃Ni(s),∆v
〉

L2 ds+

∫ t

0

〈

ξ̃Ni(s), SθNi (v)
〉

L2 ds

+

∫ t

0
fR
(

‖ξ̃Ni(s)‖−δ

)

〈

ξ̃Ni(s),L∗
ũNi (s)

v
〉

L2

ds

− Cν

‖θNi‖ℓ2
∑

k,α

θNi

k

∫ t

0

〈

ξ̃Ni(s), σk,α · ∇v
〉

L2 dW̃Ni,k,α
s ,

where ũNi = B
(

ξ̃Ni
)

is the velocity field on the new probability space Ω̃. We want to take
limit i→ ∞ in the above equation. The proof is similar to the existence part of Theorem 1.3,
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with two main differences: (1) by Theorem 5.1, SθNi (v) converge in L2(T3,R3) to 3ν
5 ∆v, thus

the assertion (b) implies

P̃-a.s., lim
i→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

〈

ξ̃Ni(s), SθNi (v)
〉

L2 ds− 3ν

5

∫ t

0

〈

ξ̃(s),∆v
〉

L2 ds

∣

∣

∣

∣

= 0.

(2) the martingale part vanishes in the mean square sense. We conclude from these two facts
and the weak convergence of ξNi

0 to ξ0 that the limit equation is (4.5).
It remains to prove the assertion (2). We denote Ẽ the expectation on the probability space

(

Ω̃, F̃ , P̃
)

and recall that Cν =
√

3ν/2. By the Itô isometry and (2.2),

Ẽ

(

Cν

‖θNi‖ℓ2
∑

k,α

θNi

k

∫ t

0

〈

ξ̃Ni(s), σk,α · ∇v
〉

L2 dW̃Ni,k,α
s

)2

=
3ν

‖θNi‖2
ℓ2

∑

k,α

(

θNi

k

)2
Ẽ

∫ t

0

∣

∣

〈

ξ̃Ni(s), σk,α · ∇v
〉

L2

∣

∣

2
ds

≤ 3ν
‖θNi‖2ℓ∞
‖θNi‖2

ℓ2
Ẽ

∫ t

0

∑

k,α

∣

∣

〈

ξ̃Ni(s), σk,α · ∇v
〉

L2

∣

∣

2
ds.

Using the fact that {σk,α : k ∈ Z
3
0, α = 1, 2} is an orthonormal system,

∑

k,α

∣

∣

〈

ξ̃Ni(s), σk,α · ∇v
〉

L2

∣

∣

2
=
∑

k,α

∣

∣

〈

(∇v)∗ ξ̃Ni(s), σk,α
〉

L2

∣

∣

2

≤
∥

∥(∇v)∗ ξ̃Ni(s)
∥

∥

2

L2 ≤ ‖∇v‖2∞
∥

∥ξ̃Ni(s)
∥

∥

2

L2 .

Recall that ξ̃Ni has the same law as ξNi , the latter satisfying the uniform bound (4.3). Thus,

Ẽ

(

Cν

‖θNi‖ℓ2
∑

k,α

θNi

k

∫ t

0

〈

ξNi(s), σk,α · ∇v
〉

L2 dW̃Ni,k,α
s

)2

≤ 3ν
‖θNi‖2ℓ∞
‖θNi‖2

ℓ2
Ẽ

∫ t

0
‖∇v‖2∞

∥

∥ξ̃Ni(s)
∥

∥

2

L2 ds ≤ CR0,ν,δ,R,T‖∇v‖2∞
‖θNi‖2ℓ∞
‖θNi‖2

ℓ2
,

which, by (4.1), tends to 0 as i→ ∞. Thus the limit ξ̃ satisfies the equation (4.5).

Now we need the following classical estimate for deterministic 3D Navier-Stokes equations.

Lemma 4.3. Let ξ0 ∈ H be fixed. If ν1 >
C0√
2π
‖ξ0‖L2 , where C0 is a dimensional constant comes

from some Sobolev embedding inequality, then the deterministic 3D Navier-Stokes equations

∂tξ + Luξ = ν1∆ξ, ξ|t=0 = ξ0 (4.6)

have a unique global strong solution satisfying

‖ξt‖L2 ≤
[(

1

‖ξ0‖4L2

− C4
0

4π2ν41

)

e8π
2ν1t +

C4
0

4π2ν41

]−1/4

≤
√

2πν1
C0

. (4.7)

Proof. We only recall some steps of proving the estimate (4.7), see e.g. [40, p.20] where it was
done for the velocity field. The proof of the following inequality is easier than that of (3.5); we
have (cf. [40, (3.26)])

d

dt
‖ξ‖2L2 ≤ −4π2ν1‖ξ‖2L2 +

C4
0

ν31
‖ξ‖6L2 ,
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where 4π2 comes from the application of the Poincaré inequality on T
3. Letting y(t) = ‖ξt‖2L2

yields the differential inequality y′ ≤ −4π2ν1y +
C4

0

ν3
1

y3 with y(0) = ‖ξ0‖2L2 . The latter can be

solved explicitly to yield

y(t) ≤
[(

1

y(0)2
− C4

0

4π2ν41

)

e8π
2ν1t +

C4
0

4π2ν41

]−1/2

,

which implies the estimate (4.7).

As a consequence, we have

Corollary 4.4. Given R0 > 0, if we choose ν > 5
3

(

C0√
2π
R0 − 1

)

and

R >

√
2π

C0

(

1 +
3

5
ν
)

,

then for any ξ0 ∈ BH(R0), the equation (4.5) reduces to the deterministic 3D Navier-Stokes
equations without cut-off.

Proof. Indeed, applying Lemma 4.3 with ν1 = 1 + 3
5ν, we have

‖ξ̃(t)‖−δ ≤ ‖ξ̃(t)‖L2 ≤
√

2π

C0

(

1 +
3

5
ν
)

< R.

Therefore, the cut-off part in the equation (4.5) is identically equal to 1, i.e., (4.5) reduces to

〈

ξ̃(t), v
〉

L2 = 〈ξ0, v〉L2 +
(

1 +
3

5
ν
)

∫ t

0

〈

ξ̃(s),∆v
〉

L2 ds+

∫ t

0

〈

ξ̃(s),L∗
ũ(s)v

〉

L2 ds, (4.8)

which is the weak formulation of vorticity form of the deterministic 3D Navier-Stokes equations.

Now we are ready to prove the first main result of this paper.

Proof of Theorem 1.4. We take the parameters ν and R as in Corollary 4.4. In the above we
have already shown that any weakly convergent subsequence of {QN}N≥1 converge weakly to
the Dirac measure δξ, where ξ is the unique global solution of the deterministic 3D Navier-
Stokes equations. Lemma 4.1 implies that the family {QN}N≥1 is tight on both L2(0, T ;H)
and on C

(

[0, T ],H−δ
)

. Therefore the whole sequence {QN}N≥1 converge weakly to the Dirac
measure δξ.

It remains to prove the second assertion of Theorem 1.4. We argue by contradiction.
Suppose there exists ε0 > 0 small enough such that

lim sup
N→∞

sup
ξ0∈BH (R0)

QN
ξ0

(

ϕ ∈ X : ‖ϕ− ξ·(ξ0)‖X > ε0

)

> 0,

where we have denoted by ‖ · ‖X = ‖ · ‖L2(0,T ;H) ∨ ‖ · ‖C([0,T ],H−δ). Recall that QN
ξ0

is the law

of the pathwise unique solution ξN to (4.2) with initial condition ξN |t=0 = ξ0 ∈ BH(R0) and
ξ·(ξ0) is the unique global solution of the deterministic 3D Navier-Stokes equations (4.8) with
initial condition ξ0. Then we can find a subsequence of integers {Ni}i≥1, and ξNi

0 ∈ BH(R0),
QNi := QNi

ξ
Ni
0

, i ≥ 1, such that (choose ε0 even smaller if necessary)

QNi

(

ϕ ∈ X :
∥

∥ϕ− ξ·
(

ξNi
0

)
∥

∥

X > ε0

)

≥ ε0 > 0. (4.9)
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For each i ≥ 1, let ξNi be the pathwise unique solution of (4.2) (replacing N by Ni) with
the initial value ξNi |t=0 = ξNi

0 ; then ξNi has the law QNi . Since
{

ξNi

0

}

i≥1
is contained in

the ball BH(R0), there exists a subsequence of
{

ξNi
0

}

i≥1
which converges weakly to some

ξ0 ∈ BH(R0). For simplification of notations, we assume the sequence
{

ξNi
0

}

i≥1
itself converges

weakly (without taking a subsequence).
We can show as in Lemma 4.1 that the family {QNi}i≥1 is tight on X = L2(0, T ;H) ∩

C
(

[0, T ],H−δ
)

, hence, up to a subsequence, QNi converge weakly to some probability measure
Q supported on X . The rest of the arguments are similar to those below Lemma 4.1. Namely,
by Skorokhod’s representation theorem, we can find a new probability space

(

Ω̃, F̃ , P̃
)

and a

sequence of processes
{

ξ̃Ni
}

i∈N defined on Ω̃, such that for each i ∈ N, ξ̃Ni has the same law

QNi as ξNi , and P̃-a.s., ξ̃Ni converge to some ξ̃ strongly in L2(0, T ;H) and in C
(

[0, T ],H−δ
)

.

As before, the limit ξ̃ solves the deterministic 3D Navier-Stokes equations (4.8) with initial
condition ξ0. From this we conclude that ξ̃ = ξ·(ξ0), and thus, as i→ ∞, ξ̃Ni converge in X to
ξ·(ξ0) in probability, i.e., for any ε > 0,

lim
N→∞

P̃

(

∥

∥ξ̃Ni − ξ·(ξ0)
∥

∥

X > ε
)

= 0. (4.10)

Note that ξ̃Ni
d∼ QNi , (4.9) implies

P̃

(

∥

∥ξ̃Ni − ξ·
(

ξNi

0

)
∥

∥

X > ε0

)

≥ ε0 > 0. (4.11)

We have the triangle inequality:
∥

∥ξ̃Ni − ξ·
(

ξNi

0

)
∥

∥

X ≤
∥

∥ξ̃Ni − ξ·(ξ0)
∥

∥

X +
∥

∥ξ·(ξ0) − ξ·
(

ξNi

0

)
∥

∥

X . (4.12)

Using the estimate in Lemma 4.3 and also the deterministic 3D Navier-Stokes equations, one
can easily show that the family

{

ξ·
(

ξNi
0

)}

i≥1
is bounded in L∞(0, T ;H) ∩ L2(0, T ;V ). The

boundedness in W 1/3,4
(

0, T ;H−6
)

∩W γ,2
(

0, T ;H−6
)

(here γ is any number in (0, 1/2)) can be
proven by following the arguments in Lemma 3.4 and Corollary 3.5, without taking expectation.
Then Theorem 3.2 implies the family

{

ξ·
(

ξNi
0

)}

i≥1
is sequentially compact in X = L2(0, T ;H)∩

C
(

[0, T ],H−δ
)

. Therefore, up to a subsequence, ξ·
(

ξNi

0

)

converge in X to some ξ̄, which

can be shown to solve (4.8) since ξNi

0 converge weakly to ξ0. In other words, ξ̄ = ξ·(ξ0)
and

∥

∥ξ·
(

ξNi

0

)

− ξ·(ξ0)
∥

∥

X → 0 as i → ∞. Combining this result with (4.10)–(4.12), we get a
contradiction.

The rest of this section is devoted to the proof of Theorem 1.6. We start with the following
elementary result.

Proposition 4.5. Let r0 = (2π2)1/4/C0, where C0 is a dimensional constant coming from some
Sobolev embedding inequality. Then for all ν > 0 and θ ∈ ℓ2, the stochastic 3D Navier-Stokes
equations

dξ + Luξ dt = ∆ξ dt+
Cν

‖θ‖ℓ2
∑

k,α

θkΠ(σk,α · ∇ξ) ◦ dW k,α
t (4.13)

have a pathwise unique global solution for any ξ0 ∈ BH(r0).

Proof. Here we do not provide the complete proof which is similar to that in the deterministic
theory, instead we only give some heuristic arguments. First we prove some a priori estimates
on the solutions: if ‖ξ0‖L2 ≤ r0, then P-a.s. for all t > 0,

‖ξt‖L2 ≤ 21/4‖ξ0‖L2 e−2π2t
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and (C1 is some positive constant independent of t)

∫ t

0
‖∇ξs‖2L2 ds ≤ ‖ξ0‖2L2 +C1.

Indeed, using the Stratonovich calculus and the fact that div(σk,α) = 0,

d‖ξ‖2L2 = −2〈ξ,Luξ〉L2 dt+ 2〈ξ,∆ξ〉L2 dt+
2Cν

‖θ‖ℓ2
∑

k,α

θk
〈

ξ,Π(σk,α · ∇ξ)
〉

L2 ◦ dW k,α
t

= 2〈ξ, ξ · ∇u〉L2 dt− 2‖∇ξ‖2L2 dt.

The rest of the computations are the same as the deterministic case, see e.g. Lemma 4.3 above
(taking ν1 = 1). Then we get

‖ξt‖L2 ≤
[(

1

‖ξ0‖4L2

− C4
0

4π2

)

e8π
2t +

C4
0

4π2

]−1/4

≤
[(

1

‖ξ0‖4L2

− C4
0

4π2

)

e8π
2t

]−1/4

≤
[

1

2‖ξ0‖4L2

e8π
2t

]−1/4

= 21/4‖ξ0‖L2 e−2π2t,

where the third inequality follows from the condition ‖ξ0‖L2 ≤ r0 = (2π2)1/4/C0, which implies

1

‖ξ0‖4L2

− C4
0

4π2
≥ 1

2‖ξ0‖4L2

.

This gives us the first estimate.
Next using the inequality

d‖ξ‖2L2 = 2〈ξ, ξ · ∇u〉L2 dt− 2‖∇ξ‖2L2 dt

≤ −‖∇ξ‖2L2 dt+ C1‖ξt‖6L2 dt,

we obtain from the above estimate of ‖ξt‖L2 that

∫ t

0
‖∇ξs‖2L2 ds ≤ ‖ξ0‖2L2 + C1

∫ t

0
‖ξs‖6L2 ds

≤ ‖ξ0‖2L2 + C1

∫ t

0
23/2‖ξ0‖6L2e

−12π2s ds ≤ ‖ξ0‖2L2 + C ′
1.

Thanks to the above a priori estimates, we can repeat the arguments in Section 3 to show
the existence of weak solutions to (4.13). In Section 3, the existence is proven on any finite
interval [0, T ], but it can be extended to [0,∞).

Next, for two weak solutions (defined on the same probability space) with a priori bounds
as above, we can prove as in the second part of Theorem 1.3 that the pathwise uniqueness
holds for (4.13). Thus we obtain a global pathwise unique solution by the Yamada-Watanabe
type result (see [34, Theorem 3.14]).

Now we are ready to prove Theorem 1.6.
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Proof of Theorem 1.6. Recall the choices of the parameters R0, ν,R, ε, T and N0(R0, ν,R, ε, T );
let N > N0(R0, ν,R, ε, T ). By Corollary 1.5, for any ξ0 ∈ BH(R0), the stochastic 3D Navier-
Stokes equations (1.19) have a pathwise unique strong solution ξN with initial condition ξ0,
which exists up to time T with a probability greater than 1 − ε; moreover, by (1.17),

P

(

∥

∥ξN − ξ
∥

∥

L2(0,T ;H)
∨
∥

∥ξN − ξ
∥

∥

C([0,T ],H−δ)
≤ ε
)

≥ 1 − ε, (4.14)

where ξ is the unique global solution of the deterministic 3D Navier-Stokes equations (4.6) with
ν1 = 1 + 3

5ν. By (4.7), for all t > 0,

‖ξt‖L2 ≤
[(

1

‖ξ0‖4L2

− C4
0

4π2ν41

)

e8π
2ν1t

]−1/4

≤
[(

1

R4
0

− C4
0

4π2ν41

)

e8π
2ν1t

]−1/4

.

The choice of ν implies that 2π2ν41 ≥ C4
0R

4
0, hence, for t > 0,

‖ξt‖L2 ≤
[

1

2R4
0

e8π
2ν1t

]−1/4

≤ 2R0e
−2π2ν1t.

As a consequence,

‖ξ‖L2(T−1,T ;H) =

[
∫ T

T−1
‖ξt‖2L2 dt

]1/2

≤ 2R0e
−2π2ν1(T−1) ≤ ε,

where the last step follows from the choice of T .
Now we consider the event

Ωε =
{

∥

∥ξN − ξ
∥

∥

L2(0,T ;H)
∨
∥

∥ξN − ξ
∥

∥

C([0,T ],H−δ)
≤ ε
}

.

Then (4.14) implies P(Ωε) ≥ 1 − ε. On the event Ωε, the triangle inequality yields

∥

∥ξN
∥

∥

L2(T−1,T ;H)
≤
∥

∥ξN − ξ
∥

∥

L2(T−1,T ;H)
+ ‖ξ‖L2(T−1,T ;H) ≤ ε+ ε = 2ε. (4.15)

Recall that ε ≤ (2π2)1/4/(2C0), which, together with (4.15), implies

∥

∥ξN
∥

∥

L2(T−1,T ;H)
≤ (2π2)1/4

C0
.

This inequality holds for all ω ∈ Ωε. As a result, for any ω ∈ Ωε, there exists t = t(ω) ∈ [T−1, T ]
such that

∥

∥ξNt(ω)(ω)
∥

∥

L2 ≤ (2π2)1/4

C0
.

Finally, applying Proposition 4.5 above to the equation (1.19) with the initial condition ξNt(ω)(ω),

we can conclude that the solution extends to all t > t(ω) for every ω ∈ Ωε.

5 Appendix 1: convergence of SθN (v)

Recall the definition (1.6) of Sθ(v) in the introduction. The purpose of this section is to prove

Theorem 5.1. Assume θN is given as in (1.10). Then for any smooth divergence free vector
field v : T3 → R

3, the following limit holds in L2(T3,R3):

lim
N→∞

SθN (v) =
3ν

5
∆v.
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First, thanks to the equality (2.7), it is sufficient to prove that, under the conditions of
Theorem 5.1,

lim
N→∞

S⊥
θN (v) =

2ν

5
∆v holds in L2(T3,R3), (5.1)

where the operator S⊥
θN

is defined in (2.6) (replacing θ by θN ). The reason for turning to the

new quantity S⊥
θ (v) is that we have simpler formulae for the operator Π⊥ which is orthogonal

to the Leray projection Π. If X is a general vector field, then, formally,

Π⊥X = ∇∆−1div(X). (5.2)

On the other hand, if X =
∑

l∈Z3

0

Xlel, Xl ∈ C
3, then

Π⊥X =
∑

l

l ·Xl

|l|2 lel = ∇
[

1

2πi

∑

l

l ·Xl

|l|2 el

]

. (5.3)

Now we assume the divergence free vector field v has the Fourier expansion

v =
∑

l,β

vl,βσl,β.

The coefficients {vl,β : l ∈ Z3
0, β = 1, 2} ⊂ C satisfy vl,β = v−l,β. Indeed, the computations

below do not require that v is a real vector field.

Lemma 5.2. We have

S⊥
θ (v) = − 6π2ν

‖θ‖2
ℓ2

∑

l,β

vl,βΠ

{[

∑

k,α

θ2k(ak,α · l)2(al,β · (k − l))
k − l

|k − l|2
]

el

}

. (5.4)

Proof. We give two different proofs, using respectively (5.3) and (5.2).
(1) We have

∇v(x) =
∑

l,β

vl,β∇σl,β(x) = 2πi
∑

l,β

vl,β(al,β ⊗ l)el(x).

Note that σ−k,α(x) = ak,αe−k(x); thus

(σ−k,α · ∇v)(x) = 2πi
∑

l,β

vl,β(ak,α · l)al,βel−k(x).

By the first equality in (5.3) and using al,β · l = 0, we have

Π⊥(σ−k,α · ∇v)(x) = 2πi
∑

l,β

vl,β(ak,α · l)(al,β · (l − k))
l − k

|l − k|2 el−k(x)

= −2πi
∑

l,β

vl,β(ak,α · l)(al,β · k)
l − k

|l − k|2 el−k(x).

(5.5)

As a consequence,
[

σk,α · ∇Π⊥(σ−k,α · ∇v)
]

(x)

= − 2πi
∑

l,β

vl,β(ak,α · l)(al,β · k)
l − k

|l − k|2 ek(x)ak,α · ∇el−k(x)

= − (2πi)2
∑

l,β

vl,β(ak,α · l)(al,β · k)
l − k

|l − k|2 (ak,α · (l − k))ek(x)el−k(x)

= − 4π2
∑

l,β

vl,β(ak,α · l)2(al,β · k)
k − l

|k − l|2 el(x).
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This immediately gives us the desired identity since C2
ν = 3ν/2.

(2) In the second proof we use (5.2). Since v is divergence free, we have div(σ−k,α · ∇v) =
(∇σ−k,α) : (∇v)∗, where : is the inner product of matrices and ∗ means (real) transposition.
Therefore,

div(σ−k,α · ∇v) =
[

− 2πi(ak,α ⊗ k)e−k(x)
]

:

[

2πi
∑

l,β

vl,β(al,β ⊗ l)el(x)

]∗

= 4π2
∑

l,β

vl,β
[

(ak,α ⊗ k) : (l ⊗ al,β)
]

el−k(x)

= 4π2
∑

l,β

vl,β(ak,α · l)(al,β · k)el−k(x).

This implies

∆−1div(σ−k,α · ∇v) = −
∑

l,β

vl,β(ak,α · l)(al,β · k)
el−k(x)

|l − k|2 ,

and thus,

Π⊥(σ−k,α · ∇v) = ∇∆−1div(σ−k,α · ∇v) = −2πi
∑

l,β

vl,β(ak,α · l)(al,β · k)
l − k

|l − k|2 el−k(x).

This coincides with (5.5). The rest of the computations are the same as those in the first proof,
so we omit them.

Corollary 5.3. Denote by ∠k,l the angle between the vectors k and l. We have

S⊥
θ (v) = − 6π2ν

‖θ‖2
ℓ2

∑

l,β

vl,β|l|2Π

{[

∑

k

θ2k sin2(∠k,l)(al,β · (k − l))
k − l

|k − l|2
]

el

}

.

Proof. Recall that { k
|k| , ak,1, ak,2} is an ONS of R3; we have

2
∑

α=1

(ak,α · l)2 = |l|2 −
(

l · k|k|

)2

= |l|2
(

1 − (k · l)2
|k|2|l|2

)

= |l|2 sin2(∠k,l).

Thus,

∑

k,α

θ2k(ak,α · l)2(al,β · (k − l))
k − l

|k − l|2 = |l|2
∑

k

θ2k sin2(∠k,l)(al,β · (k − l))
k − l

|k − l|2 .

Substituting this equality into (5.4) leads to the desired result.

Recall the sequence θN ∈ ℓ2 defined in (1.10). The next result is a crucial step for proving
the limit (5.1).

Proposition 5.4. For any fixed l ∈ Z
3
0 and β ∈ {1, 2},

lim
N→∞

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · (k − l))
k − l

|k − l|2 =
4

15
al,β.

Suppose we have already proved this result; we now turn to prove (5.1).

31



Proof of (5.1). By Corollary 5.3, for any N ≥ 1,

S⊥
θN (v) = −6π2ν

∑

l,β

vl,β|l|2Π

{[

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · (k − l))
k − l

|k − l|2
]

el

}

.

Since
2ν

5
∆v = −8π2ν

5

∑

l,β

vl,β|l|2al,βel

which is divergence free, we have

S⊥
θN (v) − 2ν

5
∆v

= − 6π2ν
∑

l,β

vl,β|l|2Π

{[

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · (k − l))
k − l

|k − l|2 − 4

15
al,β

]

el

}

.

Fix any big M > 0. We have

∥

∥

∥

∥

S⊥
θN (v) − 2ν

5
∆v

∥

∥

∥

∥

L2

≤ KM,1 +KM,2,

where

KM,1 ≤ C
∑

|l|≤M,β

|vl,β| |l|2
∣

∣

∣

∣

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · (k − l))
k − l

|k − l|2 − 4

15
al,β

∣

∣

∣

∣

and

KM,2 ≤ C
∑

|l|>M,β

|vl,β| |l|2
∣

∣

∣

∣

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · (k − l))
k − l

|k − l|2 − 4

15
al,β

∣

∣

∣

∣

≤ C
∑

|l|>M,β

|vl,β| |l|2
(

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

+
4

15

)

≤ 2C
∑

|l|>M,β

|vl,β| |l|2.

Since M is fixed, Proposition 5.4 implies that KM,1 vanishes as N → ∞, hence

lim sup
N→∞

∥

∥

∥

∥

S⊥
θN (v) − 2ν

5
∆v

∥

∥

∥

∥

L2

≤ 2C
∑

|l|>M,β

|vl,β| |l|2.

As the vector field v is smooth, the coefficients vl,β decrease to 0 as |l| → ∞ faster than any
polynomials of negative order. Thus we complete the proof by letting M → ∞.

Next we prove Proposition 5.4 for which we need a simple preparation.

Lemma 5.5. Fix l ∈ Z
3
0. For all k ∈ Z

3
0 with |k| big enough, one has

∣

∣

∣

∣

(k − l) ⊗ (k − l)

|k − l|2 − k ⊗ k

|k|2
∣

∣

∣

∣

≤ 4
|l|
|k| .

Proof. We have

(k − l) ⊗ (k − l)

|k − l|2 − k ⊗ k

|k|2 =
k − l

|k − l| ⊗
(

k − l

|k − l| −
k

|k|

)

+

(

k − l

|k − l| −
k

|k|

)

⊗ k

|k| ,
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and thus
∣

∣

∣

∣

(k − l) ⊗ (k − l)

|k − l|2 − k ⊗ k

|k|2
∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

k − l

|k − l| −
k

|k|

∣

∣

∣

∣

.

Next, since
k − l

|k − l| −
k

|k| =

(

1

|k − l| −
1

|k|

)

(k − l) − l

|k| ,

one has
∣

∣

∣

∣

k − l

|k − l| −
k

|k|

∣

∣

∣

∣

≤
∣

∣|k| − |k − l|
∣

∣

|k| +
|l|
|k| ≤ 2

|l|
|k| .

Summarizing the above estimates completes the proof.

Now we are ready to provide the

Proof of Proposition 5.4. Note that, by Lemma 5.5,
∣

∣

∣

∣

(al,β · (k − l))
k − l

|k − l|2 − (al,β · k)
k

|k|2
∣

∣

∣

∣

≤
∣

∣

∣

∣

(k − l) ⊗ (k − l)

|k − l|2 − k ⊗ k

|k|2
∣

∣

∣

∣

≤ 4
|l|
|k| .

Recall the definition of θN in (1.10); then

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin2(∠k,l)

∣

∣

∣

∣

(al,β · (k − l))
k − l

|k − l|2 − (al,β · k)
k

|k|2
∣

∣

∣

∣

≤ 1

‖θN‖2
ℓ2

∑

|k|≥N

(

θNk
)2 × 4

|l|
|k| ≤

4|l|
N

→ 0

as N → ∞. Therefore, it is sufficient to prove

lim
N→∞

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · k)
k

|k|2 =
4

15
al,β. (5.6)

Lemma 5.6. Let θN be given as in (1.10). We have

lim
N→∞

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin2(∠k,l)(al,β · k)
k

|k|2

= lim
N→∞

1

‖θN‖2
ℓ2

∫

{N≤|x|≤2N}

1

|x|2γ sin2(∠x,l)(al,β · x)
x

|x|2 dx.

(5.7)

We postpone the proof of Lemma 5.6 and continue proving Proposition 5.4. Let Jβ(N) be
the quantity on the right hand side of (5.7), which is a vector in R

3. To compute Jβ(N), we
consider the new coordinate system (y1, y2, y3) in which the coordinate axes are al,1, al,2 and
l
|l| , respectively. Let U be the orthogonal transformation matrix: x = Uy. For i ∈ {1, 2, 3}, let

ei ∈ R
3 be such that ei,j = δi,j , 1 ≤ j ≤ 3. We have

al,i = Uei (i = 1, 2) and
l

|l| = Ue3.

Now ∠x,l = ∠Uy,Ue3 = ∠y,e3 and

Jβ(N) =
1

‖θN‖2
ℓ2

∫

{N≤|y|≤2N}

1

|y|2γ sin2(∠y,e3) (Ueβ · Uy)
Uy

|y|2 dy

= U

[

1

‖θN‖2
ℓ2

∫

{N≤|y|≤2N}

1

|y|2γ sin2(∠y,e3)
yβy

|y|2 dy

]

.

(5.8)
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We denote J̃β(N) the term in the square bracket in (5.8), i.e. J̃β(N) = U∗Jβ(N) ∈ R
3. By

symmetry argument, we see that

J̃β,i(N) =
1

‖θN‖2
ℓ2

∫

{N≤|y|≤2N}

1

|y|2γ sin2(∠y,e3)
yβyi
|y|2 dy = 0, i ∈ {1, 2, 3} \ {β}. (5.9)

This can also be directly computed by using the spherical coordinates below.
Next, we compute J̃β,β (β = 1, 2) by changing the variables into the spherical coordinate

system:










y1 = r sinψ cosϕ,

y2 = r sinψ sinϕ,

y3 = r cosψ,

N ≤ r ≤ 2N, 0 ≤ ψ ≤ π, 0 ≤ ϕ < 2π.

In this system, ∠y,e3 = ψ. We have

J̃1,1(N) =
1

‖θN‖2
ℓ2

∫ 2N

N
dr

∫ π

0
dψ

∫ 2π

0
dϕ

1

r2γ
(sin2 ψ)(sinψ cosϕ)2 r2 sinψ

=
1

‖θN‖2
ℓ2

∫ 2N

N

dr

r2γ−2

∫ π

0
sin5 ψ dψ

∫ 2π

0
cos2 ϕdϕ.

Note that
∫ 2π
0 cos2 ϕdϕ =

∫ 2π
0

1
2 (1 + cos 2ϕ) dϕ = π and

∫ π

0
sin5 ψ dψ = −

∫ π

0
(1 − cos2 ψ)2 d cosψ = −

∫ π

0

(

1 − 2 cos2 ψ + cos4 ψ
)

d cosψ

= −
(

cosψ − 2

3
cos3 ψ +

1

5
cos5 ψ

)
∣

∣

∣

∣

π

0

=
16

15
.

Thus

J̃1,1(N) =
16

15
π × 1

‖θN‖2
ℓ2

∫ 2N

N

dr

r2γ−2
. (5.10)

Following the proof of Lemma 5.6 (it is much simpler here since the function g can be taken
identically 1), one can show

∣

∣

∣

∣

∑

k

(

θNk
)2 −

∫

{N≤|x|≤2N}

dx

|x|2γ
∣

∣

∣

∣

≤ C

N

∥

∥θN
∥

∥

2

ℓ2
(5.11)

for some constant C > 0. Equivalently,
∣

∣

∣

∣

∥

∥θN
∥

∥

2

ℓ2
− 4π

∫ 2N

N

dr

r2γ−2

∣

∣

∣

∣

≤ C

N

∥

∥θN
∥

∥

2

ℓ2
,

which implies
∣

∣

∣

∣

1

4π
− 1

‖θN‖2
ℓ2

∫ 2N

N

dr

r2γ−2

∣

∣

∣

∣

≤ C

N
.

Recalling (5.10), we obtain limN→∞ J̃1,1(N) = 4
15 , which, combined with (5.9), implies

lim
N→∞

J̃1(N) =
4

15
e1.

Therefore, by (5.8),

lim
N→∞

J1(N) = lim
N→∞

UJ̃1(N) =
4

15
Ue1 =

4

15
al,1.
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Similarly,

J̃2,2(N) =
1

‖θN‖2
ℓ2

∫ 2N

N
dr

∫ π

0
dψ

∫ 2π

0
dϕ

1

r2γ
(sin2 ψ)(sinψ sinϕ)2 r2 sinψ = J̃1,1(N) → 4

15
,

and thus limN→∞ J̃2(N) = 4
15e2. As a result,

lim
N→∞

J2(N) = lim
N→∞

UJ̃2(N) =
4

15
Ue2 =

4

15
al,2.

Combining these two results with (5.7), we obtain (5.6).

Now we provide the

Proof of Lemma 5.6. We define the function

g(x) = sin2(∠x,l)(al,β · x)
x

|x|2 , x ∈ R
3, x 6= 0.

Clearly, ‖g‖∞ ≤ 1. We shall prove that

∣

∣

∣

∣

∑

k

(

θNk
)2
g(k) −

∫

{N≤|x|≤2N}

g(x)

|x|2γ dx

∣

∣

∣

∣

≤ C

N

∥

∥θN
∥

∥

2

ℓ2
. (5.12)

Let �(k) be the unit cube centered at k ∈ Z
3 such that all sides have length 1 and are parallel

to the axes. Note that for all k, l ∈ Z
3, k 6= l, the interiors of �(k) and �(l) are disjoint. Let

SN =
⋃

N≤|k|≤2N �(k); then,

∣

∣

∣

∣

∑

k

(

θNk
)2
g(k) −

∫

SN

g(x)

|x|2γ dx

∣

∣

∣

∣

≤
∑

N≤|k|≤2N

∫

�(k)

∣

∣

∣

∣

g(k)

|k|2γ − g(x)

|x|2γ
∣

∣

∣

∣

dx.

It holds that, for all |k| big enough and x ∈ �(k),

∣

∣

∣

∣

g(k)

|k|2γ − g(x)

|x|2γ
∣

∣

∣

∣

≤
∣

∣

∣

∣

1

|k|2γ − 1

|x|2γ
∣

∣

∣

∣

+
|g(k) − g(x)|

|x|2γ ≤ C

(

1

|k|2γ+1
+

|g(k) − g(x)|
|k|2γ

)

.

Next,

|g(k) − g(x)| ≤ | sin2(∠k,l) − sin2(∠x,l)| +

∣

∣

∣

∣

(al,β · k)
k

|k|2 − (al,β · x)
x

|x|2
∣

∣

∣

∣

≤ 2| sin(∠k,l) − sin(∠x,l)| +

∣

∣

∣

∣

k ⊗ k

|k|2 − x⊗ x

|x|2
∣

∣

∣

∣

≤ 2|∠k,l − ∠x,l| + 2

∣

∣

∣

∣

k

|k| −
x

|x|

∣

∣

∣

∣

.

Since |x− k| ≤ 1 and |k| ≥ N ≫ 1, one has

|g(k) − g(x)| ≤ C

|k| .

Summarizing the above discussions, we obtain

∣

∣

∣

∣

∑

k

(

θNk
)2
g(k) −

∫

SN

g(x)

|x|2γ dx

∣

∣

∣

∣

≤
∑

N≤|k|≤2N

∫

�(k)

C

|k|2γ+1
dx ≤ C

N

∑

N≤|k|≤2N

1

|k|2γ =
C

N

∥

∥θN
∥

∥

2

ℓ2
.
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Note that there is a small difference between the sets {N ≤ |x| ≤ 2N} and SN , but, in the
same way, one can show that

∣

∣

∣

∣

∫

{N≤|x|≤2N}

g(x)

|x|2γ dx−
∫

SN

g(x)

|x|2γ dx

∣

∣

∣

∣

≤ C

N

∥

∥θN
∥

∥

2

ℓ2
.

Indeed, for any x ∈ �(k) with N ≤ |k| ≤ 2N , one has N − 1 ≤ |x| ≤ 2N + 1. Therefore,

SN =
⋃

N≤|k|≤2N

�(k) ⊂ {N − 1 ≤ |x| ≤ 2N + 1} =: TN .

One also has
RN := {N + 1 ≤ |x| ≤ 2N − 1} ⊂ SN .

Denote by A∆B the symmetric difference of sets A,B ⊂ R
3; then,

∣

∣

∣

∣

∫

{N≤|x|≤2N}

g(x)

|x|2γ dx−
∫

SN

g(x)

|x|2γ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

SN∆{N≤|x|≤2N}

g(x)

|x|2γ dx

∣

∣

∣

∣

≤
∫

SN∆{N≤|x|≤2N}

1

|x|2γ dx ≤
∫

TN\RN

1

|x|2γ dx ≤ C

N2γ−2
≤ C

N

∥

∥θN
∥

∥

2

ℓ2
,

where the last step follows from

∥

∥θN
∥

∥

2

ℓ2
=

∑

N≤|k|≤2N

1

|k|2γ ≥ 1

(2N)2γ
#{k ∈ Z

3
0 : N ≤ |k| ≤ 2N} ≥ C

N2γ−3
.

The proof is complete.

Remark 5.7. Assume γ ∈ [0, 3/2]. For any N ∈ N, we define

θNk =
1

|k|γ 1{|k|≤N}, k ∈ Z
3
0.

Then ‖θN‖ℓ∞ = 1 and ‖θN‖ℓ2 → ∞ as N → ∞. Thus the sequence {θN}N∈N satisfies the
property (1.11). With suitable modifications of the proofs in this section, we can still prove
Theorem 5.1. Indeed, the arguments above the proof of Proposition 5.4 remain the same. To
prove Proposition 5.4, we fix M ∈ N; then for all N > M ,

1

‖θN‖2
ℓ2

∑

k

(

θNk
)2

sin2(∠k,l)

∣

∣

∣

∣

(al,β · (k − l))
k − l

|k − l|2 − (al,β · k)
k

|k|2
∣

∣

∣

∣

≤ 1

‖θN‖2
ℓ2

∑

|k|≤M

2
(

θNk
)2

+
1

‖θN‖2
ℓ2

∑

|k|>M

(

θNk
)2 × 4

|l|
|k|

≤CM
‖θN‖2ℓ∞
‖θN‖2

ℓ2
+ 4

|l|
M
.

First letting N → ∞ and then M → ∞ we see that it is sufficient to prove the limit (5.6).
In the subsequent proofs, similar modifications work as well and we can complete the proof of
Theorem 5.1.
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6 Appendix 2: the difficulty with the advection noise

In this part we do some formal computations to illustrate why we cannot deal with 3D Navier-
Stokes equations (1.1) with the full advection noise. Using our vector fields {σk,α : k ∈ Z

3
0, α =

1, 2}, the equations can be written as

dξ + Luξ dt = ∆ξ dt+
Cν

‖θ‖ℓ2
∑

k,α

θkLσk,α
ξ ◦ dW k,α

t ,

where, as usual, u is related to ξ via the Biot-Savart law. It has the Itô formulation

dξ + Luξ dt = ∆ξ dt+
Cν

‖θ‖ℓ2
∑

k,α

θkLσk,α
ξ dW k,α

t +
C2
ν

‖θ‖2
ℓ2

∑

k,α

θ2kLσk,α

(

Lσ−k,α
ξ
)

dt.

By Proposition 6.1 below, this equation can be reduced to

dξ + Luξ dt = (1 + ν)∆ξ dt+
Cν

‖θ‖ℓ2
∑

k,α

θkLσk,α
ξ dW k,α

t . (6.1)

Proposition 6.1. It holds that

∑

k,α

θ2kLσk,α

(

Lσ−k,α
ξ
)

=
2

3
‖θ‖ℓ2∆ξ.

Proof. First, for any k ∈ Z
3
0, we have

ξ · ∇σk,α = 2πi(ξ · k)σk,α, α = 1, 2. (6.2)

Thus,
Lσk,α

ξ = σk,α · ∇ξ − 2πi(k · ξ)σk,α, α = 1, 2. (6.3)

Next we prove that for any k ∈ Z
3
0 and α = 1, 2,

Lσk,α

(

Lσ−k,α
ξ
)

= Tr
[

(ak,α ⊗ ak,α)∇2ξ
]

. (6.4)

The desired equality follows immediately from this fact and (2.3).
We have

Lσk,α

(

Lσ−k,α
ξ
)

= σk,α · ∇
(

Lσ−k,α
ξ
)

−
(

Lσ−k,α
ξ
)

· ∇σk,α =: I1 − I2.

By (6.3),
I1 = σk,α · ∇

(

σ−k,α · ∇ξ + 2πi(k · ξ)σ−k,α

)

.

The definition (2.1) of σk,α leads to

σk,α · ∇σk,α = σk,α · ∇σ−k,α = 0, k ∈ Z
3
0. (6.5)

Therefore,
I1 = Tr

[

(σk,α ⊗ σ−k,α)∇2ξ
]

+ 2πi
[

σk,α · ∇(k · ξ)
]

σ−k,α

= Tr
[

(ak,α ⊗ ak,α)∇2ξ
]

+ 2πi
[

k · (ak,α · ∇ξ)
]

ak,α.

Next, by 6.3 and (6.5),

I2 =
(

σ−k,α · ∇ξ + 2πi(k · ξ)σ−k,α

)

· ∇σk,α = (σ−k,α · ∇ξ) · ∇σk,α.
Replacing ξ in (6.2) by σ−k,α · ∇ξ yields

I2 = 2πi
(

(σ−k,α · ∇ξ) · k
)

σk,α = 2πi
[

k · (ak,α · ∇ξ)
]

ak,α.

Summarizing the above computations we obtain the equality (6.4).
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We want to find an a priori estimate for the solution to (6.1) with some heuristic compu-
tations below. By the Itô formula,

d‖ξ‖2L2 = −2〈ξ,Luξ〉L2 dt− 2(1 + ν)‖∇ξ‖2L2 dt+
2Cν

‖θ‖ℓ2
∑

k,α

θk
〈

ξ,Lσk,α
ξ
〉

L2 dW k,α
t

+
2C2

ν

‖θ‖2
ℓ2

∑

k,α

θ2k
∥

∥Lσk,α
ξ
∥

∥

2

L2 dt.

(6.6)

First, it is not difficult (cf. the proof of (3.5)) to show that

|〈ξ,Luξ〉L2 | ≤ 1

2
‖∇ξ‖2L2 + C‖ξ‖6L2 . (6.7)

Next, we denote

dM(t) :=
2Cν

‖θ‖ℓ2
∑

k,α

θk
〈

ξ,Lσk,α
ξ
〉

L2 dW k,α
t = − 2Cν

‖θ‖ℓ2
∑

k,α

θk
〈

ξ, ξ · ∇σk,α
〉

L2 dW k,α
t

the martingale part and

J(t) =
2C2

ν

‖θ‖2
ℓ2

∑

k,α

θ2k
∥

∥Lσk,α
ξ
∥

∥

2

L2 =
3ν

‖θ‖2
ℓ2

∑

k,α

θ2k
∥

∥Lσk,α
ξ
∥

∥

2

L2 .

Then, since 〈ξ,∆ξ〉L2 = −‖∇ξ‖2L2 , we obtain from (6.6) and (6.7) that

d‖ξ‖2L2 ≤ −(1 + 2ν)‖∇ξ‖2L2 dt+ C‖ξ‖6L2 dt+ dM(t) + J(t) dt. (6.8)

Now we compute the term J(t).

Lemma 6.2. It holds that

J(t) = 2ν‖∇ξ‖2L2 + 4νπ2
‖θ‖2h1

‖θ‖2
ℓ2
‖ξ‖2L2 ,

where
‖θ‖2h1 =

∑

k∈Z3

0

θ2k|k|2.

Proof. We split J(t) as J(t) =
∑3

i=1 Ji(t), where

J1(t) =
3ν

‖θ‖2
ℓ2

∑

k,α

θ2k
∥

∥σk,α · ∇ξ
∥

∥

2

L2 , J2(t) =
3ν

‖θ‖2
ℓ2

∑

k,α

θ2k
∥

∥ξ · ∇σk,α
∥

∥

2

L2 ,

J3(t) = − 3ν

‖θ‖2
ℓ2

∑

k,α

θ2k
(

〈σk,α · ∇ξ, ξ · ∇σ−k,α〉L2 + 〈σ−k,α · ∇ξ, ξ · ∇σk,α〉L2

)

.

Similarly as the proof of (2.3), we have

J1(t) = 2ν‖∇ξ‖2L2 .

Next, by (6.2),

∥

∥ξ · ∇σk,α
∥

∥

2

L2 = 4π2
∫

T3

∣

∣(ξ · k)σk,α
∣

∣

2
dx = 4π2

∫

T3

(ξ · k)2 dx.
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Thus,

J2(t) =
3ν

‖θ‖2
ℓ2

∑

k∈Z3

0

θ2k × 4π2
∫

T3

(ξ · k)2 dx =
12νπ2

‖θ‖2
ℓ2

∑

k∈Z3

0

θ2k

∫

T3

(ξ · k)2 dx.

Note that (ξ · k)2 =
∑3

i,j=1 kikjξiξj and (cf. the computations below (2.3))

∑

k∈Z3

0

θ2kkikj =

{

0, i 6= j;
1
3

∑

k∈Z3

0

θ2k|k|2 = 1
3‖θ‖2h1 , i = j.

Therefore,

J2(t) =
12νπ2

‖θ‖2
ℓ2

3
∑

i=1

1

3
‖θ‖2h1

∫

T3

ξ2i dx = 4νπ2
‖θ‖2h1

‖θ‖2
ℓ2
‖ξ‖2L2 .

Finally, by (6.2) and the definition of the vector fields σk,α, we have

〈σk,α · ∇ξ, ξ · ∇σ−k,α〉L2 = −2πi

∫

T3

(ξ · k)(ak,α · ∇ξ) · ak,α dx.

In the same way,

〈σ−k,α · ∇ξ, ξ · ∇σk,α〉L2 = 2πi

∫

T3

(ξ · k)(ak,α · ∇ξ) · ak,α dx.

Hence J3(t) vanishes. Summarizing these arguments we complete the proof.

Therefore, the inequality (6.8) reduces to

d‖ξ‖2L2 ≤ −‖∇ξ‖2L2 dt+C‖ξ‖6L2 dt+ dM(t) + 4νπ2
‖θ‖2h1

‖θ‖2
ℓ2
‖ξ‖2L2 dt.

The ratio
‖θ‖2

h1

‖θ‖2
ℓ2

spoils the a priori estimate, since the sequence {θN}N≥1 we take in our limit

process has always the property

lim
N→∞

‖θN‖2h1

‖θN‖2
ℓ2

= ∞.

7 Appendix 3: an incomplete attempt to motivate transport

noise

We advise the reader that the argument given in this section is a sort of cartoon based on
imagination, and a potentially rigorous scaling limit behind it would be presumably much
more intricate than what is explained, or maybe even impossible.

A fact, rigorous in several function spaces, is that given two vector fields A,B in R
3, the

condition
LAB = Π (A · ∇B) (7.1)

is equivalent to
B · ∇A = ∇q

for some scalar function q; the particular case when ∇q = 0 is implied by a “2D structure”

B (x) = b (x) e, A (x) = A (πe⊥x) (7.2)
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where e is a given unitary vector, b (x) is a scalar function on R
3 (hence the vector field B

points always in the direction e) and the improper notation A (x) = A (πe⊥x) means that A
depends only on the projection of x on the plane orthogonal to e (namely A is independent of
the coordinate along e; this implies that the directional derivative of A in the direction e is zero,
which is precisely B · ∇A = 0). What we describe below is a sort of local 2D structure, with
different orientations e at different points, in which the identity (7.1) could be approximately
satisfied.

Assume to observe a fluid where the vorticity field ξ is made of two components

ξ = ξL + ξS

where the large-scale component ξL is the sum of slowly varying smoothed vortex filaments ξiL

ξL =
∑

i

ξiL

and the small-scale component ξS is a fast-varying field. By smoothed vortex filament we mean
a vortex structure strongly concentrated along a vortex line; in the spirit of this cartoon we do
not give any precise definition, but vortex filaments, although extremely difficult to define and
describe, are commonly observed structures in complex fluids (see [42]). We need to qualify
the filaments as smoothed because viscosity does not allow for idealized filaments concentrated
over lines. Corresponding to the vorticity fields there are velocity fields obtained by Biot-Savart
law, u = uL + uS .

Consider a point x0 close to the core of a smoothed vortex filament ξiL, consider a neigh-
bourhood U (x0) of x0 and imagine a blow-up, a scaling such that we observe U (x0) as if it were
the full space. If the vortex filaments are sufficiently thin, separated, regular and slowly moving
compared to the fast component uS , in U (x0) (which now looks as the entire space) the vor-
ticity is very close to zero everywhere except along the line spanned by the vector e = ξiL (x0);
moreover, we may think to consider the full system on a time scale where the large-scale ob-
jects U (x0), ξiL (x0) etc. do not change while the small-scale objects ξS, uS change. The local
picture of the small-scale fluid uS in U (x0) is thus of a 3D fluid subject to a constant strong
rotation around the vector e. If such a fluid, namely uS |U(x0), would be isolated from any other
input and interaction, it would become approximatively averaged in the direction e, like the
field A in (7.2). This has been rigorously proved in several works, see for instance [3] (see also
[22] in a stochastic framework). Obviously we do not mean that the global field uS is almost
two-dimensional: only at local level it has a tendency to average in the direction of ξiL (x0);
this vector changes orientation from a small region to another. When this happens, we have
ξiL (x0) · ∇uS (x0) ∼ 0. We have argued in the proximity of a vortex core; far from filaments
ξiL (x0) · ∇uS (x0) is small just because ξL is almost zero by itself. We deduce that everywhere

ξL (x) · ∇uS (x) ∼ 0. (7.3)

We ignore whether it is possible to establish a more rigorous derivation of such a fact by a
proper scaling limit and maybe an argument similar to the concept of local equilibrium in the
statistical mechanics of particle systems, where the local convergence to equilibrium is replaced
by the “vertical averaging” property described above.

Let us derive a consequence of (7.3). Given a decomposition

ξ (0) = ξL (0) + ξS (0)

of an initial condition ξ (0), if the system
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∂tξL + LuL
ξL + LuS

ξL = ∆ξL

∂tξS + LuS
ξS + LuL

ξS = ∆ξS

with initial condition (ξL (0) , ξS (0)) has a solution, then ξ = ξL + ξS is a solution of the full
3D Navier-Stokes equations, solution decomposed in the two “scales” ξL and ξS . Consider the
first equation, for the large scales. We have

LuS
ξL = uS · ∇ξL − ξL · ∇uS.

We may also write
LuS

ξL = Π (uS · ∇ξL) − Π (ξL · ∇uS)

since Π (LuS
ξL) = LuS

ξL (but this is not true separately for the two addends). The equation
for the large scales then is

∂tξL + LuL
ξL + Π (uS · ∇ξL) = ∆ξL + Π (ξL · ∇uS) .

Assume we may apply the arguments described above. We get (approximately) the equation

∂tξL + LuL
ξL + Π (uS · ∇ξL) = ∆ξL.

The model considered in this work corresponds to the idealization when uS is replaced by a
white noise in time, idealization reminiscent of stochastic reduction techniques like those more
carefully developed in [35]. To be fair, let us notice that the isotropic noise considered in our
work is incompatible with the orthogonality conditions (7.3), making the above justification
still incomplete even at a very heuristic ground.
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