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Abstract
This thesis studies the limits on the performances of inference tasks with quantum data
and quantum operations. Our results can be divided in two main parts.

In the first part, we study how to infer relative properties of sets of quantum states,
given a certain amount of copies of the states. We investigate the performance of optimal
inference strategies according to several figures of merit which quantifies the precision of
the inference. Since we are not interested in obtaining a complete reconstruction of the
states, optimal strategies do not require to perform quantum tomography. In particular,
we address the following problems:

• We evaluate the asymptotic error probabilities of optimal learning machines for
quantum state discrimination. Here, a machine receives a number of copies of a
pair of unknown states, which can be seen as training data, together with a test
system which is initialized in one of the states of the pair with equal probability.
The goal is to implement a measurement to discriminate in which state the test
system is, minimizing the error probability. We analyze the optimal strategies for
a number of different settings, differing on the prior incomplete information on the
states available to the agent.

• We evaluate the limits on the precision of the estimation of the overlap between two
unknown pure states, given N and M copies of each state. We find an asymptotic
expansion of a Fisher information associated with the estimation problem, which
gives a lower bound on the mean square error of any estimator. We compute the
minimum average mean square error for random pure states, and we evaluate the
effect of depolarizing noise on qubit states. We compare the performance of the
optimal estimation strategy with the performances of other intuitive strategies,
such as the swap test and measurements based on estimating the states.

• We evaluate how many samples from a collection of N d-dimensional states are
necessary to understand with high probability if the collection is made of identical
states or they differ more than a threshold ε according to a motivated closeness
measure. The access to copies of the states in the collection is given as follows:
each time the agent ask for a copy of the states, the agent receives one of the states



ii

with some fixed probability, together with a different label for each state in the
collection. We prove that the problem can be solved with O(

√
Nd/ε2) copies, and

that this scaling is optimal up to a constant independent on d,N, ε.

In the second part, we study optimal classical and quantum communication rates for
several physically motivated noise models.

• The quantum and private capacities of most realistic channels cannot be evalu-
ated from their regularized expressions. We design several degradable extensions
for notable channels, obtaining upper bounds on the quantum and private capac-
ities of the original channels. We obtain sufficient conditions for the degradability
of flagged extensions of channels which are convex combination of other chan-
nels. These sufficient conditions are easy to verify and simplify the construction of
degradable extensions.

• We consider the problem of transmitting classical information with continuous vari-
able systems and an energy constraint, when it is impossible to maintain a shared
reference frame and in presence of losses. At variance with phase-insensitive noise
models, we show that, in some regimes, squeezing improves the communication
rates with respect to coherent state sources and with respect to sources producing
up to two-photon Fock states. We give upper and lower bounds on the optimal
coherent state rate and show that using part of the energy to repeatedly restore a
phase reference is strictly suboptimal for high energies.
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Chapter 1

Introduction

The development of science and technology depends fundamentally on the possibility to
make inference on the basis of experimental data. The wit of the experimenter in choosing
the right measurement procedure has always been crucial to make a good observation.
In quantum mechanics, however, the choice of the measurement is elevated to a more
fundamental position; at variance with the classical idealization of a measurement, where
measurements differ in the way they perform a coarse graining of some absolute truth, in
principle accessible, different quantum measurements can be fundamentally incompatible;
they cannot be seen as different imprecise versions of an idealized measurement. Different
measurements that solve two different inference problems, can be completely useless for
an inference problem they are not designed for.

This thesis addresses the study of the fundamental limits on several quantum statis-
tical inference tasks of particular interest. The problems we consider are examples of
hypothesis testing and communication, generalized to settings where quantum data and
operations are allowed. This possibility generates a rich variety of scenarios. In particu-
lar, we explore two kinds of problems:

• Optimal testing and estimation of unitarily invariant properties of sets of quantum
states.

• Classical and quantum capacities of discrete and continuous variables quantum
channels of physical relevance.

The interest in these topics is motivated by both fundamental and technological rea-
sons. On a fundamental level, the study of optimal strategies and performances for
quantum inference tasks is an interesting physical problem, where the quantum mechan-
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Chapter 1. Introduction 2

ical constraints on the ability of the observer to make inferences play a manifest role.
On the technological side, studying fundamental limits clarifies the ideal goal for any
relevant practical strategy. In the light of the steady progress of quantum technology
towards quantum sensors [DRC17], quantum internet [WEH18], universal quantum com-
puters [Pre18], a detailed study of the fundamental limits of quantum statistical inference
is of pressing importance. In particular, the choice of the problems addressed in this thesis
is inspired by practical applications in computation and communication.

On the computation side, the fine-grained control of quantum systems is steadily pro-
gressing towards fully programmable and correctable quantum computers, capable of
doing tasks for which classical computation is believed to be insufficient. The most nat-
ural application is the one advocated originally by Feynman [Fey82], that is to simulate
quantum systems. However, Grover’s algorithm [Gro96], which gives a quadratic speedup
for unstructured search, and especially Shor’s algorithm [Sho97] for polynomial time fac-
torization of integers, suggest that quantum computers are definitely more powerful than
classical ones. More than two decades of work have been dedicated to explore quantum
algorithms, and many more applications are likely unforeseeable. Large-scale quantum
computers are believed to be realizable thanks to quantum error correction [Sho95], par-
ticularly in its fault-tolerant incarnations [Sho96; Got10], which allow to protect quantum
states by encoding them in a logical space which is a subspace of the physical space, such
that errors on the logical space can be corrected. Ultimately, due to the intrinsic prob-
abilistic nature of quantum measurement, any quantum algorithm solves an inference
problem. Moreover, in a future where fully functional quantum computers are a reality,
it is likely that large amount of high dimensional data will be available, similarly to how
classical computers motivated the development of statistical learning theory and machine
learning [Vap98; LBH15]. In the quantum case, data will be inherently quantum, and
fully quantum information processing will be required to probe this data in the most
efficient way.

On the communication side, quantum theory imposes fundamental constraints on the op-
timal communication rates of classical and quantum information in presence of noise, as
all the communication channels are fundamentally quantum. Indeed, there are regimes
where quantum effects cannot be neglected: this happens already in the familiar set-
ting of classical communication mediated by electromagnetic waves with finite average
power [CD94], and it is perhaps more drastic for quantum communication, that stud-
ies how to protect quantum states from noise: in the latter case, even if the noise is
not so strong that any input is replaced by the same output, quantum communication
may be not possible at all, at variance with classical communication [BDS97]. More-
over, quantum effects are not only a hindrance but also a resource: sharing quantum
entanglement allows to transfer any quantum state between different physical systems
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with a universal protocol using local operations and classical communication (quantum
teleportation [Ben+93]), communicate at higher rates than permitted by classical com-
munication (superdense coding [BW92]), while the probabilistic nature of quantum mea-
surement allows to devise schemes where classical information can be communicated with
the guarantee that it cannot be overheard by any third party (a classic example is the
BB84 protocol [BB14]). It may be helpful to stress that the model of a communication
channel is appropriate for any noise acting on a quantum system, being environmen-
tal noise in a transmission line between distant parties or local noise acting in time on
a quantum memory or processor. For this reason, quantum communication rates for
noise models appropriate for a quantum memory give the ultimate limits for the rate
between reliable logical and physical qubits that can be guaranteed through quantum
error correction.

In the following sections I present the original contributions of this thesis.

1.1 Learning with quantum data

As already emphasized, a fundamental departure from classical hypothesis testing and
estimation is the non-uniqueness of the measurement. Optimizing over quantum strate-
gies is thus much more difficult than in the classical case. However, when the prior
information is generic, optimal strategies can be obtained using symmetry principles.
This principle has a long history of success in quantum information theory [Hay17a], and
it is still very fruitful. In particular, we consider settings where the goal is to devise a
unique measurement that works well for solving different inference problems, either with
average or worst case figures of merit. For such universal devices, representation theory
helps to reduce the degrees of freedom of the optimization problem, sometimes in such a
way that the optimization can be fully characterized. The quantities of interest may not
be available in a closed form, but a detailed analysis can give at least the leading orders
of asymptotic expansions in the extensive parameters of the problem.

Chapter 5: Learning machines for quantum state discrimina-
tion [FMG19]

The most basic inference task is state discrimination: given a copy of a state with the
promise that it is either ρ or σ with equal probability, guess the correct state with a test
achieving the lowest probability of error on average. The determination of the optimal
test and an analytical formula for the probability of error are among the first results
obtained in quantum information theory, known under the name of Holevo-Helstrom
theorem [Hel69; Hol73]. We studied the setting where the agent is not provided with the
classical description of ρ and σ, but with an equal number n of labeled copies of ρ and σ
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which can be used as a training set. In this way, the problem becomes an instance of a
supervised quantum learning task. Several previous work have studied different settings
for this problem under the name of programmable state discrimination [BH05]. We
address the optimization of the minimum error probability when the states ρ and σ are
assumed to be randomly extracted from unitarily invariant distributions over the set of
states, and the goal is to minimize the average probability of error for random ρ and σ. In
the limit of infinite number of copies of ρ and σ, the optimal probability of error reduces
to the one given by the Holevo-Helstrom theorem. In addition to the determination of the
optimal measurement, we determine the leading orders of the asymptotic expansion in n
of the optimal average error probability, improving on previous results [HHH05a; Sen+10;
AH11], in various settings: we find such expansion for pure states in any dimension at
fixed overlap, for qubits of fixed purities but otherwise random, and for mixed qubit states
distributed according to a hard sphere prior. We also produced a circuit to implement the
optimal measurement for n = 1 and pure qubit states on a physical machine, evaluating
the maximum amount of noise tolerable such that the measurement can be carried out
sufficiently close to the ideal performances.

Chapter 6: Estimation of overlap between quantum states [Fan+20a]

We consider optimal estimation of the overlap for two unknown pure states in dimension
d, given N and M copies of each. We considered an average case scenario, where copies
of states with equal overlap are provided after the same Haar-random distributed unitary
acts on them. The optimal measurement can be determined using representation the-
ory, therefore one can reduce the analysis to estimators of the overlap given the classical
probability distribution of the optimal measurement [BIMT06; GI06; LSB06]. A mini-
mum variance unbiased estimator of the Hilbert-Schmidt distance of two (possibly mixed)
states had also been found in [BOW19], together with an analytical expression of the
variance. We look at this problem from an information-theoretic viewpoint, evaluating
the asymptotic Quantum Fisher information of the family of average input states at fixed
overlap, giving a lower bound on the mean square error of any estimator according to the
Cramér-Rao bound. We also complete the investigation of the Bayesian estimation initi-
ated by [BIMT06; GI06; LSB06], giving an analytical solution for any d for the average
mean square error for pairs of independent random pure states, for any d. We also con-
sidered the effect of depolarizing noise on qubit states, giving an asymptotic expression
of the optimal average mean square error. These optimality results have been compared
with the performances of intuitive local strategies. Most importantly, the results illus-
trate how a simple measurement for this problem known as the swap test [Buh+01] is
substantially suboptimal with respect to the optimal measurement when the overlap is
small.
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Chapter 7: Testing identity of a collection of quantum states in the sampling
model [FSG21]

Given access to copies of a collection of N quantum states in a Hilbert space of dimension
d, we study a procedure to decide whether they are all equal or their minimum average
distance from a state is larger than a small constant. The copies are labeled and each
copy can be one of the states with some prescribed probability. The problem was solved
for two states with fixed number of copies by [BOW19], and we develop their construc-
tion to deal with this more general case, following the solution of the analogous problem
for classical distributions [DK16]. In this case we are not interested in an accurate de-
termination of the average case probability of error, while we care about understanding
the required number of copies such that the worst case probability of error is still higher
than a fixed threshold. From a realistic quality control perspective, the setting we con-
sider is particularly meaningful: one could imagine that some preparation procedure is
ended by some measurement, but different outcomes of the measurement are expected
to correspond to the same desired state. Since the outcome of the measurement at the
preparation stage is random, the procedure prepares in principle different states for each
measurement outcome. We devise a universal procedure to test the hypothesis that the
states produced are equal or sufficiently far, with the guarantee that producing O(

√
Nd)

copies of random states suffice to guarantee a correct answer with high probability. This
dependence on the dimension and the number of states is actually optimal.

1.2 Classical and quantum communication over quantum
channels

Quantum Shannon theory [Wil17; Hol19] provides a characterization of the maximum
achievable transmission rates (capacities) for classical or quantum data through a quan-
tum channel, as maximizations of entropic functionals. Available characterizations of
most capacities cannot be computed algorithmically, since they involve a limit of an in-
finite sequence of optimization problems, one for each number of uses of the channel.
Superadditivity of quantum entropic functionals makes such regularization necessary
and can hinder the evaluation of capacities even for simple fundamental channels; see,
e.g., [SS96; SY08; Has09; Li+09; SSY11; ZZS17; Zhu+19]. While it is hard to get past
regularized expressions in the general case, it is important to get our best understanding
of the capacities of physically motivated channels. The depolarizing channel is a paradig-
matic example of this tension: despite its simple definition, the evaluation of its quantum
capacity has resisted more than 20 years of attempts. We obtained bounds on quantum
and private capacities of several fundamental channels, including the depolarizing chan-
nel, by tailoring general results to the peculiar structure of the channels of interest. Even
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when the capacity is known, it is often difficult to find a code working at good rates
which is also practically feasible. We address the problem in the context of continuous
variable communication without a phase reference, where we study the performances
of codes constructed with Gaussian states, which can be produced by standard optical
elements [Ser17].

Chapter 8: Degradable flagged extensions [FKG20; KFG20; FKG21]

For degradable channels [DS05], the coherent information and the private information
are additive and equal, therefore the quantum and private capacity are given by a single-
letter formula (meaning that a single optimization involving one use of the channel is
required to compute the capacity). In [FKG20], we introduced a new upper bound for
the quantum capacity of the depolarizing channel using a degradable flagged extension,
where an environment is assumed to “friendly” provide partial helpful information to the
receiver. To be specific, for a given noisy quantum channel N =

∑
j pjNj with proba-

bility distribution {pj}, Nj channels, and a collection of states σj , a flagged extension is
N̂ =

∑
j pjNj ⊗ σj . In contrast to previous flagged extensions [SSW08; SS08; Ouy14],

our extension of depolarizing channel uses non orthogonal flags which gives a tighter
upper bound. The idea was further exploited by bounding the quantum capacity of the
depolarizing channel, BB84 channel and amplitude damping channel using approximate
degradability [Sut+17; LLS18a] applied to flagged extensions [Wan21]. In [KFG20], we
improve these results constructing new exactly degradable flagged extensions [KFG20],
which use more than two flags: we exhibit a candidate degrading map for which a suf-
ficient condition for degradability is expressed in terms of simple algebraic conditions
involving the Kraus operators of the original channels and the flags. We obtain non-
trivial degradable extensions for any mixture of a unitary operator and another channel,
with the probability associated to the unitary operator being larger than 1/2, and also
for convex combination of unitary operators. For Pauli channels, these conditions char-
acterize a rich family of degradable flagged extensions, for which an explicit formula for
the quantum capacity can be obtained. We also apply these methods to the generalized
amplitude damping channel, which is a realistic model of noise acting on superconduct-
ing qubits. In [FKG21] we design other degradable extensions for single-mode phase-
insensitive Gaussian channels, modeling loss and amplification of electromagnetic signals
at fixed frequency. These channels can be classified as thermal attenuators, thermal am-
plifiers and additive noise channels. We find new degradable Gaussian extensions of the
thermal attenuator and the thermal amplifier by improving previous construction based
on weak-degradability, while a proper flagged extension is obtained for the Gaussian ad-
ditive noise, by adapting the construction of [KFG20] to the infinite dimensional setting.
With these techniques we can obtain bounds on the quantum and private capacity which
are state-of-the-art at the time of the writing.
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Chapter 9: Gaussian codes in absence of a shared reference [Fan+20b]

A milestone result in quantum Shannon theory is the computation of the classical capac-
ity for phase-insensitive Gaussian channels [Gio+14]. For these channels the maximum
classical information transmission rate is attained by sending coherent states, which
can be considered as the most classical quantum states of light. However, this optimal
rate can be attained only by assuming the possibility of maintaining a shared reference
frame [BRS07] between the sender and the receiver. We considered a memory channel for
which complete phase-decoherence takes place after M subsequent uses of the transmis-
sion line, which effectively models the loss of a common phase reference within a finite
time period. This channel is non-Gaussian, its classical capacity is the same as the iden-
tity channel and it is achievable using an encoding with Fock states. Since Fock states
are hard to produce, it is important to study the performance of restricted encodings.
We showed that the strategy of using part of the energy for preparing a phase-reference
state in one mode and using the other modes to communicate with coherent states is in
general suboptimal, even at large energies, with respect to random coding with coherent
states. For coherent states encodings the channel is a classical-quantum generalization of
the Poisson channel, and we can upper bound its capacity using recent results on the clas-
sical capacity of the Poisson channel [CR19]. This upper bound is sufficient to show, in
the caseM = 1 (equivalent to photon counting at the receiver’s end) that sub-Poissonian
squeezed-coherent states surpass the best coherent states rates. This is an example of
an advantage of non-classical Gaussian light in a physically-motivated communication
context. We show numerical evidence that this result is robust to noise represented by a
zero temperature attenuator. Moreover, with sufficient amount of noise and in the right
energy regime, binary or ternary encodings with squeezed-coherent states perform better
than binary or ternary encodings with low photon number states or coherent states, for
M = 1 and M = 2.

1.3 Outline

The thesis is structured as follows. In Chapter 2, after recalling the fundamental objects
in quantum information theory and their properties, we review fundamental quantum
statistical inference tasks. In Chapter 3, we review basics of quantum Shannon theory
and definitions and characterizations of capacities of quantum channels, with particular
attention to the properties of degradable channels. In Chapter 4, after recalling basics
of representation theory, we review group theoretic approaches to hypothesis testing and
estimation, and we present Pauli channels, Gaussian channels and the group theoretic
structures behind them. Chapter 5, 6, 7, 8, 9 present the original results just discussed,
and Chapter 9 contains final remarks and perspectives.
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Chapter 2

Statistical inference in the quantum
domain

2.1 Quantum states

Any system which can be the object of an experiment can be described in quantum
theory as a unit-trace positive semi-definite operator on a Hilbert space H. Such objects,
called quantum states, allow to predict the probability distribution of the outcomes of
measurements on the system [Hol11b]. We will consider Hilbert spaces of finite dimension
dimH = d as well as Hilbert spaces of infinite dimension isomorphic to the space of square
integrable functions on Rn, L2(Rn). The former case models physical systems with d

distinguishable states, such as the states of a spin system, and it is used to describe
discrete variable quantum computation and communication. The latter case models n
distinguishable quantum particles, and we will use it to describe a system of n modes
of the radiation field. The space of states of a Hilbert space H will be denoted as Σ(H)

and it is a convex set. The extremal points Σ(H) are pure states and have a special
role in quantum information theory. The projectors on vectors of H are pure states.
Given an orthonormal basis of H and its associated set of pure state projectors, the set
of states that are convex combination of basis projectors is in one-to-one correspondence
with the set of probability distribution on the set [d] := {1, ..., d} for d-dimensional H
or Nn if H = L2(Rn). This observation shows that quantum information theory is a
non-commutative generalization of classical probability theory. The study of quantum
information tasks show how quantum objects differ from classical objects, and several
interesting phenomena arise: quantumness makes inference tasks harder, quantum effects

10
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improve performances with respect to classical resources, and new information processing
tasks which have no classical analogue are possible.

Using Dirac’s notation, we will often denote Hilbert space vectors v ∈ H as kets |v〉,
their conjugate transpose as bras 〈v|, and inner products of two vectors w, v as 〈w|v〉.
Following this notation, the image of operator A acting on a vector v is also denoted as
|Av〉, and its conjugate transpose as 〈Av|. We also use the notation 〈v|A |w〉 := 〈v|Av〉.
For an operator A : HA → HB the adjoint A† : HB → HA is the unique operator
(if it exists) satisfying

〈
A†w

∣∣v
〉
A

= 〈w|Av〉B for all |w〉 ∈ HA and |v〉 ∈ HB, where
〈·|·〉A/B are the inner products of HA and HA respectively. In finite dimension A† is
the conjugate transpose of A. For linear operators between two Hilbert spaces HA and
HB we sometimes uses the notation VA→B to clarify domain and codomain, and we may
write VA if HA = HB.

An operator VA→B is an isometry if it preserves the inner product: 〈v|w〉A =

〈VA→Bv|VA→Bw〉B; VA→B is an isometry if and only if V †B→AVA→B = IA, where IA
is the identity operator of A. Moreover, if VA→B is an isometry VA→BV

†
B→A is the pro-

jector on the range of VA→B. If HA = HB and V †A is also an isometry, VA is called a
unitary operator and V †AVA = VAV

†
A = IA. We will make use of the Schatten operator

norms [Hay17c]: ||A||p := Tr
[√

A†A
p
]1/p

.

Two separate quantum systems A and B, with associated Hilbert spaces HA and HB,
can be joined as a unique system AB with associated Hilbert space HA ⊗HB. We will
sometimes use the notation ρAB for a bipartite state of a system AB. The marginal state
ρA is defined as ρA := trB[ρAB], where the partial trace is computed as trB[ρAB] :=∑

i∈I(IA⊗〈i|)ρAB(IA⊗|i〉), where {|i〉}i∈I is a basis of HB, the result being independent
on the choice of the basis. To streamline the notation, we will often denote sets with
indexed element dropping the subset indicating the index set, e.g. writing {|i〉} instead
of {|i〉}i∈I . ρA is sufficient to predict the probability of the outcome of any measurement
of the state ρAB acting only system A. Product states are of the form ρAB = ρA ⊗ ρB.
Separable states are such that they can be written as convex combinations of product
states. Entangled states are non-separable states, and pure entangled states can always
be written according to the Schmidt decomposition as |ψ〉AB =

∑
i

√
λi |i〉A ⊗ |i〉B, with

λi positive real numbers which correspond to the non-zero eigenvalues of ρA and ρB,
and {|i〉A} and {|i〉B} are sets of orthonormal vectors of respectively HA and HB. Any
mixed state ρA can be written in terms of a purification, i.e. a pure bipartite state
|φ〉AB such that the dimension of HB is equal or larger than the dimension of HA, and
trB[|φ〉〈φ|AB] = ρA. The purity of a state ρA is measured as tr

[
ρ2
A

]
≤ 1, with the

equality holding if and only if ρA is pure. A maximally entangled state is a state of
the form |Γ〉AB =

∑min(dA,dB)
i=1

1√
min(dA,dB)

|i〉A ⊗ |i〉B. In inference problems, we usually
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assume to have at our disposal many copies of the same source. In this case the Hilbert
space we consider is H⊗n := H⊗ ...⊗H︸ ︷︷ ︸

n times

and we denote n copies of ρ as ρ⊗n.

2.2 Quantum measurements

A measurement on Σ(H) is described as a positive operator valued measures (POVM),
i.e. [Hol11b] a function M from the set A(Ω) of measurable subsets of a measurable
space Ω to positive operators, such that:

• M(∅) = 0, M(Ω) = I;

• M(B) ≥ 0, ∀B ∈ A(Ω);

• For any at most countable disjoint decomposition {Bi} of B ∈ A(Ω), M(B) =∑
iM(Bi), where the series is weakly convergent in the operator sense (a sequence

of bounded operators {Ai} on H converges weakly to A if for any |v〉 , |w〉 ∈ H,
limi→∞ 〈v|Ai |w〉 = 〈v|A |w〉).

We denote the set of POVM on Ω as M(Ω). The probability for the event B to occur
when the measurement associated to M is performed on a state ρ is

p(B) := tr[M(B)ρ]. (2.1)

For discrete probability spaces [m], one can assign a positive semi-definite operator Ei
to each i ∈ [m], and define M as M(B) =

∑
i∈B Ei. The condition for M to be a POVM

is simply
∑m

i=1Ei = I. The probability of the event i is p(i) = tr[Eiρ].

An observable is a random variable X : Ω→ R that can be sampled from a measurement.
In the finite dimensional case, Hermitian operators H = H† =

∑
i λiPi with eigenvalues

{λi} define real observables, which can be sampled by the POVM constructed from the
projectors Pi on the eigenspaces of H with eigenvector λi: Ei = Pi. The expectation
value of H on ρ can be calculated as

Eρ[H] := tr[Hρ] =
∑

i

tr[Piρ]λi (2.2)

More generally, the expectation value of a POVM defined on a subset of Rn, such
that {Eλ}, λ ∈ Rn are positive semi-definite operators and p(B) =

∫
B dnλ tr[Eλρ], is

Eρ[{Eλ}] :=
∫

dnλ tr[Eλρ]λ. In the infinite dimensional case compact Hermitian op-
erators can still be represented in the form H =

∑
i λiPi, while for self-adjoint non-

bounded operators on L2(R) one has to resort to the continuous spectral representa-
tion H =

∫
λP (dλ), where P (dλ) is a projector valued measure. For example, the
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position operator Q will be written as Q =
∫
R xE(dx), where E(dx) is defined by

tr
[∫
B E(dx) |ψ〉〈ψ|

]
=
∫
B dx|ψ(x)|2 for all B measurable subsets of R, where ψ(x) is

the wave function of |ψ〉. This also defines a probability density for the position mea-
surement, p(x) = |ψ(x)|2.

The central moments of the random variable associated to the observable H, if they
exists, can be computed as µ(n)

ρ [H] := tr[(H − tr[Hρ])nρ], and we denote the variance
as Varρ[H] := µ

(2)
ρ [H]. Analogous definitions can be given for observable arising from

general POVM.

2.3 Quantum channels

A generic linear map between operators (super-operator) on HA and HB will be denoted
as NA→B, with subscript omitted when not needed. The identity map on operators
on HA will be denoted as IA. The tensor product operation of two maps N ⊗ N ′
is defined by linearity from the action on a basis of product operators, on which it
acts as N ⊗ N ′[X ⊗ Y ] = N [X] ⊗ N ′[Y ]. The biggest class of transformations of
states that is considered physically meaningful is the set of completely positive trace
preserving (CPTP) linear maps, i.e. maps NA→B such that for any auxiliary Hilbert
space HC :

• NA→B ⊗ IC [X] ≥ 0 if X ≥ 0 (completely positive);

• tr[N [X]] = tr[X] (trace preserving).

This class of transformations models noise on quantum hardware and communication
lines, therefore it is of fundamental importance in quantum information theory and also
referred to as quantum channels. In fact, states and measurements can be considered as
a special case of quantum channels: states can be written as channels from the trivial
Hilbert space of dimension 1 to states, while the probability distribution associated with
the outcomes of a POVM M = {Ei} acting on a state ρ can be seen as the output of the
channel NM [ρ] :=

∑
i tr[Eiρ] |i〉〈i|.

In addition to the definition we just gave, quantum channels can be also character-
ized through the Kraus representation from a collection of Kraus operators {Ki} such
that:

• N [X] =
∑

iKiXK
†
i ;

• ∑iK
†
iKi = I.

Any channel between finite-dimensional Hilbert spaces admits a finite Kraus represen-
tation. For infinite dimensional channels, a set of Kraus operators of infinite cardinality
may be needed. Different sets of Kraus operators {K ′i}, {Ki} for the same channels
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are related by an isometry, i.e. K ′i =
∑

j VijKj , V †V = I if |{K ′i}| ≥ |{Ki}|. Another
important representation of quantum channel is the Stinespring representation, which
shows how any channel NA→B can be realized as a unitary interaction UAE→BE′ with
an environment prepared in a suitable state |τ〉〈τ |:

NA→B[X] = trE′ [UAE→BE′XA ⊗ |τ〉〈τ |E U
†
AE→BE′ ]. (2.3)

Equivalently, UAE→BE′ |τ〉 can be seen as an arbitrary isometry from A to BE′, VA→BE′ .
Different Stinespring representations of the same channel, given by isometries VA→BE′
and V ′A→BE′′ with dimHE′′ ≥ dimHE′ , are such that V ′A→BE′′ = WE′→E′′VA→BE′ for
some isometry WE′→E′′ .

Finally, the Choi-Jamiołkowski representation establishes a correspondence between
channels and states. The Choi state EAR of a linear superoperator NA→B is defined
as

EBR(N ) := NA→B ⊗ IR→R[|Γ〉〈Γ|AR], (2.4)

where |Γ〉AR is a maximally entangled state of AR, with HR ∼= HA. A linear super-
operator NA→B is completely positive if and only if its Choi state EBR(N ) ≥ 0. For
infinite-dimensional systems, an analogue of the Choi-Jamiołkowski representation can
be defined [Hol11a].

2.4 Quantum statistical inference

The basic inference problem is to distinguish between two or more hypotheses on the
basis of observations. In the language of quantum states, a property is a function from
quantum states to {0, 1}, for example a statement that can be verified to be true or false
by looking at the mathematical description of the state. A general inference problem
would be, given a collection of properties {Pi} and a state ρ, to determine Pi(ρ) with
some quantum strategy. By the Choi-Jamiołkowski representation this construction is
immediately lifted to channels. Hypothesis testing solves the following type of problems:
given

• a collection of mutually exclusive properties, i.e. if Pi(ρ) = 1 for some i, then
Pi′(ρ) = 0 for i 6= i′, for any state ρ;

• an unknown state ρ for which there exists an i such that Pi(ρ) = 1,

determine which i satisfies Pi(ρ) = 1.

In this section, we review fundamental results on several quantum hypothesis testing
paradigms.
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2.4.1 Quantum discrimination

A fundamental hypothesis testing problem is state discrimination [BK15; BC09; Ber10].
Here ρ can be one of a collection of states {σi}, and the goal is to understand which state
it is, performing a measurement on one copy of ρ. To evaluate the performance of the
inference strategy one can consider various figures of merit.

In minimum error discrimination, one assumes that the state ρ is with probability pi
equal to ρi, i = 1, ..,m and the goal is to maximize the average probability of success
over the possible POVMs M = {Ei}:

popt
succ = sup

{Ei}∈M[m]

m∑

i=1

pi tr[Eiρi]. (2.5)

This has been one of the first problems to be considered in quantum information theory,
and necessary and sufficient conditions for the optimality were immediately found [Hol73;
YKL75]. It can be cast as a semi-definite program [EMV03] and solved numerically,
although there is not an analytical formula for the optimal probability in the general
case. For a collection of two states, one can instead solve the problem exactly:

Theorem 2.4.1 (Holevo-Helstrom theorem [Hel69; Hol73]). For any binary
POVM {E1, E2}, the probability of success for quantum state discrimination of two states
ρ and σ with prior probabilities p1 and p2 satisfies

psucc = p1 tr[E1ρ] + p2 tr[E2ρ] ≤ popt
succ =

1

2
+
||p1ρ− p2σ||1

2
, (2.6)

The inequality is saturated by a projective measurement, with E1 being the projector on
the eigenspaces with positive eigenvalues of p1ρ− p2σ.

The trace distance between ρ and σ is defined as

Definition 2.4.1 (Trace distance).

DTr(ρ, σ) :=
1

2
||ρ− σ||1. (2.7)

It appears in Eq. (2.6) in the case p1 = p2 = 1
2 , showing its operational meaning. It will

be useful to mention some properties of the trace distance:

• it is a proper distance, since it comes from a norm;

• it is invariant under isometries, DTr(UρU
†, UσU †) = DTr(ρ, σ) for U †U = I;

• it satisfies monotonicity DTr(N [ρ],N [σ]) ≤ DTr(ρ, σ).
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In the multi-hypothesis case there are analytic results for symmetric sets of
states [Ban+97; EF01; Bar01; CH03; EMV04]. A good guess for a POVM is the pretty
good measurement [HW94; EF01], defined as

Definition 2.4.2 (Pretty good measurement). For any set of states {σi}, and a
probability distribution {pi} one can define a POVM called the pretty good measurement,
with elements:

Ei =

(
m∑

i′=1

pi′σi′

)−1/2

piσi

(
m∑

i′=1

pi′σi′

)−1/2

. (2.8)

The pretty good measurement is optimal for sets of symmetric states [EMV04] and gives a
powerful bound on the optimal success probability [BK02]: pPGM

succ ≥ (popt
succ)2. Other upper

and lower bounds can be obtained on the optimal probability of success [Qiu08; Mon08],
or on probability of success of the pretty good measurement [Mon07; Mon19].

A different setting is unambiguous discrimination, where the POVM has the elements
{Ei}i∈I ∪ {E?}, where E? indicates an inconclusive result. It is requested is that the
probability of misidentifying ρ is zero, that is Tr[σiEi′ ] = 0 for all i 6= i′. The problem
is to find the maximum average probability of success. For two pure states this problem
was solved in [Iva87; Die88; Per88; JS95]. For n pure states a non-trivial solution exists if
the states are linearly independent, and an explicit expression for the optimal probability
of success can be obtained for uniform success probabilities [Che98], and for equidistant
states [CB98; Roa+11]. The necessary and sufficient conditions for unambiguous dis-
crimination of mixed states were found in [RST03; FDY04]. Upper [Zha+01; Fen+02;
NUK18] and lower [NUK18; Lü21] bounds can be obtained. As for the minimum error
case, the problem can be cast as a semi-definite program [Eld03a].

More general discrimination problems can be designed if one allows both inconclusive
outcomes and wrong answers, such as maximum confidence discrimination [Cro+06], and
discrimination with bounded probability of inconclusive answers [FJ03; Eld03b].

The discrimination problem can also be extended to channels. For two quantum channels,
there is freedom in choosing an input state such that the output states corresponding
to the alternatives have the maximum distinguishability. In particular, for two channels
NA→B andMA→B, one looks at maximizing the distinguishability of the states NA→B⊗
IC [ρAC ] andMA→B⊗IC [ρAC ], where C is an arbitrary auxiliary system, whose dimension
is in principle a free parameter in the optimization problem. According to the Holevo-
Helstrom theorem, the maximum trace norm of the weighted difference of the outputs
gives the optimal success probability. For equal priors this gives to so-called called
diamond-norm distance [Kit97]:



Chapter 2. Statistical inference in the quantum domain 17

Definition 2.4.3 (Diamond-norm distance).

D�(N ,M) := sup
HC ,σAC

DTr(NA→B ⊗ IC [ρAC ],MA→B ⊗ IC [ρAC ]). (2.9)

This quantity can be evaluated with a semidefinite program [Wat09], and it can be
proven that the dimension of system C can be chosen to be equal to the dimension of A
(see [Wat18] for a proof of this fact and many other properties).

We also mention an asymmetric setting for binary state discrimination. In this case ρ is
promised to be σ1 or σ2. The two type of errors are treated asymmetrically

• Type I error: ρ = σ1, outcome 2, probability of error q1 := tr[E2σ1];

• Type II error: ρ = σ2, outcome 1, probability of error q2 := tr[E1σ2].

The goal of asymmetric state discrimination is to minimize q2 when q1 < ε, giving a
different importance to the errors of the two types. The minimum q2 at fixed ε is also
related to the smooth min entropy Dε

min(ρ||σ) [Dat09; BD10; BD11; WR12]:

Definition 2.4.4 (Smooth min entropy).

Dε
min(ρ||σ) := − log2 inf

0≤E≤I
{tr[Eρ] : tr[Eσ] > 1− ε}. (2.10)

The smooth min entropy finds an operational meaning in the resource theory of asym-
metric distinguishability [Mat10; WW19a].

If an arbitrarily large number n of copies of the state are available, the probabilities
of error will go to zero, as long as the trace distance between each pair of states is
bounded below by a constant. This is a fundamental consequence of the fact that as
long as the probability of error of pairwise discrimination is bounded from 1/2, repeat-
ing the measurement many times will give the right answer with a probability of error
decreasing exponentially with respect to n. One can then ask how fast this decay can
be for a general measurement. If the decay of the error probability perr(n), which is
considered as a figure of merit, is exponential as a function of n, the error exponent is
perr(n) = limn→∞− log perr(n)

n . In particular, the asymptotics of Dε
min(ρ⊗n||σ⊗n) gives an

operational interpretation to the quantum relative entropy:

Definition 2.4.5 (Quantum relative entropy). If supp(ρ) ⊆ supp(σ), we define

D(ρ||σ) := tr[ρ(log ρ− log σ)], (2.11)

otherwise D(ρ||σ) := +∞.
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For commuting states, with eigenvalues given by probability distributions p = {pi} and
q = {qi}, this definition reduces to the classical relative entropy between two distribu-
tions, D(p||q) =

∑
i pi log pi

qi
if supp(p) ⊆ supp(q) and D(p||q) = +∞ otherwise. The

following result holds, generalizing the classical Stein’s lemma [CT05].

Definition 2.4.6 (Quantum Stein lemma [HP91; ON05]).

lim
n→∞

Dε
min(ρ⊗n||σ⊗n)

n
= D(ρ||σ) (2.12)

From the definition, it follows that the relative entropy is additive: D(ρ1 ⊗ ρ2||(σ1 ⊗
σ2) = D(ρ1||ρ2) + D(σ1||σ2). The quantum relative entropy is not a distance, because
it is not symmetric and it does not satisfy the triangle inequality. However, it satisfies
monotonicity D(N [ρ]||N [σ]) ≤ D(ρ||σ), and it follows that it is non-negative if ρ and σ
are states. The monotonicity of the relative entropy is a deep, non-trivial result which is
equivalent to strong subadditivity, which we will recall in the context of quantum Shannon
theory as Theorem 3.1.1.

If the probability of type I error is constrained to vanish with some error exponent one
instead finds the quantum Hoeffding bound [OH04; Nag06; Hay07]. The error exponent
of the minimum error probability of discrimination with multiple copies of the state can
also be determined, and the result is known as quantum Chernoff bound. With two states
this has been done in [NS09; Aud+08], later generalized to multiple states [Li16].

As far as channels are involved, when more copies of the channels can be used, char-
acterizing the optimal strategy is much more complicated [CDP08], since the channels
can be accessed in parallel or in sequence. Several results have been obtained in both
symmetric and asymmetric settings [Har+10; PW17; Pir+19; WW19b; ZP20a; ZP20b;
Wil+20; SHW20].

2.4.2 Quantum estimation and tomography

Another important problem is the following: for a family of continuously parametrized
states ρθ, θ ∈ Θ, suppose to have access to the state ρθ∗ . How well can one infer the
value of θ∗? We denote as {Eθ̃} a POVM that estimates the value of θ as θ̃ when
the outcome is θ̃. We will refer to an estimator θ̃ implying that it is obtained from a
suitable POVM. The probability density of getting outcome θ̃ when the true parameter
is θ is p(θ̃|θ) = tr

[
Eθ̃ρθ

]
. The expectation value of the estimator θ̃ is the expectation

value of the corresponding POVM, which for ease of notation we now denote Eθ[θ̃] :=

Eθ[{Eθ̃}], since the statements we will make are valid for any estimator. This problem
can be still framed as hypothesis testing, with mutually exclusive properties that are
continuously parametrized. However, it is clear that it would be too demanding to ask
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for exact determination of the parameter θ∗, even in the classical case. A figure of merit
appropriate for this case is the mean square error (MSE), defined as

Definition 2.4.7 (Mean square error).

MSE(θ) :=

∫

θ̃∈Θ
dθ̃ p(θ̃|θ)(θ̃ − θ)2 (2.13)

If a prior knowledge on θ is available, expressed in the form of a probability distribution
p(θ), we can also define the average mean square error (AvMSE):

Definition 2.4.8 (Average mean square error).

AvMSE :=

∫

θ∈Θ
p(θ)

∫

θ̃∈Θ
dθ̃ p(θ̃|θ)(θ̃ − θ)2. (2.14)

Given a family of states {ρθ}, the choice of an estimator such that the average mean
square error is minimized is the subject of Bayesian estimation. This figure of merit can
be suitably generalized in the case where there are multiple parameters to estimate, i.e.
θ is a vector. In particular, if the family of states is {ρ(θ)⊗n} when the parametrization
is such that any states of H can be written as ρ(θ) for some θ, the problem of finding θ∗

is known as quantum tomography. In the single parameter case, a bound on MSE(θ) is
given by the quantum version of the Cramér-Rao bound [Hel69; Hol11b], which we state
without making regularity requirements precise. The classical Cramér-Rao bound states
the following, for any estimator with probability distribution p(θ̃|θ), with expectation
value Eθθ̃.

Theorem 2.4.2 (Cramér-Rao bound [CT05]). The mean square error of any esti-
mator θ̃ satisfies

MSE(θ) ≥
[
dEθ[θ̃]
dθ

]2
1

F (θ)
+ (Eθ[θ̃]− θ)2, (2.15)

where

F (θ) =

∫

θ̃∈Θ

1

p(θ̃|θ)

(
dp(θ̃|θ)
dθ

)2

. (2.16)

F (θ) is called Fisher information. The Fisher information of a POVM applied to a
family of states will generally depend on the details of the POVM, but can be bounded
from above by an information quantity which depends only on the family of states {ρθ},
which is called quantum Fisher information. It is defined starting from the symmetric
logarithmic derivative, that is the operator Lθ satisfying dρ

dθ = Lθρθ+ρθLθ
2 .
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Theorem 2.4.3 (Quantum Cramér-Rao bound [Hol11b; Par09]). The Fisher
information F (θ) of any estimator θ̃ is bounded as

F (θ) ≤ H(θ) := tr
[
ρθL

2
θ

]
, (2.17)

A POVM attaining the bound is given by the projectors on the eigenvectors of Lθ. There-
fore, the MSE of any estimator satisfies

MSE(θ) ≥
[
dEθ[θ̃]
dθ

]2
1

H(θ)
+ (Eθ[θ̃]− θ)2. (2.18)

H(θ) is called quantum Fisher information.

The multi-parameter case is much richer than the single-parameter one [Hol11b; SBD16],
and it is beyond the scope of the present thesis. We mention that a class of bounds
on the covariance matrix of the estimator, known as Holevo-Cramér-Rao bounds can
be computed as a semidefinite program [AFD19], and are asymptotically attainable
for the tomography problem, under mild conditions [KG08; YCH19]. We also remark
that the problem of finding fundamental bounds for the estimation of a subset of the
complete set of parameters is studied, and known as estimation with nuisance parame-
ters [SYH20].

In the single-parameter case, the solution for the Bayesian estimation problem is given
in [Per71]:

Theorem 2.4.4 (Optimal Bayesian estimator). If an estimator θ̃B minimizing the
average mean square error is constructed from an observable S, then S satisfies

SΓ + ΓS

2
= η, (2.19)

where

Γ :=

∫
p(θ) ρθ dθ,

η :=

∫
θ p(θ) ρθ dθ. (2.20)

In the case of Γ positive definite S is uniquely determined as:

S =

∫ ∞

0
e−αΓ η e−αΓ dα. (2.21)
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2.4.3 Finite size effects and property testing

The information-theoretic approach to estimation based on generalization of the Fisher
information is appropriate to investigate the asymptotic limit of large number of copies,
where the number of copies is larger than any other extensive parameter of the problem.
However, it fails to give concrete answers when other parameters can be considered to be
large, such as the dimension or the rank. The sample complexity of quantum tomogra-
phy is the number of copies that are necessary and sufficient in order to guarantee that
any unknown state can be determined to accuracy ε with high probability. Since it is
hard to characterize the sample complexity exactly, the goal is to determine its general
dependence on the dimension of the Hilbert space. This problem remained unsolved
until recently [Haa+17; OW16; OW17], when a solution has been found, establishing the
sample complexity of quantum tomography as O(dr/ε2), where d is the dimension of the
supporting Hilbert space, and r is the rank of the state to be determined. This perfor-
mance is achieved with nonlocal measurements on many copies of the states. Beyond the
sample complexity with optimal measurements, several works have studied performances
of local measurements with efficient reconstruction algorithms (e.g. [Gro+10; Fla+12;
KRT17; Gut+18; AKG19]).

The study of the sample complexity of quantum tomography reflects the general spirit
of property testing, a concept developed in computer science [Gol17a], and applied to
hypothesis testing of distributions [Can20] and quantum states and channels [MW16].
At variance with optimal asymptotic error rates studied in statistical classical and quan-
tum hypothesis testing [Hay17c], the sample complexity captures finite size effects in
inference problems. A general binary hypothesis testing problem can be framed as a
property testing problem in the following way: given a property P associated to the null
hypothesis, the property associated to the alternative hypothesis is to be ε-far from the
states satisfying P, for example in trace distance. A typical property testing problem
will have the following structure. Find a two-outcome test (binary POVM) acting on
H⊗n with outcomes "accept" and "reject" such that, for any ρ ∈ H satisfying either
case A or B, where

• Case A: P(ρ) = true;

• Case B: minσ:P(σ)=trueDTr(ρ, σ) > ε,

when the test is applied to m copies of ρ, the probability of getting "accept" is larger
than 2/3 in case A, and smaller than 1/3 in case B, i.e.





P (test 7→ "accept" |Case A) > 2/3 ,

P (test 7→ "accept" |Case B) < 1/3 .

(2.22)
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Note that the values 2/3 and 1/3 are entirely conventional, and can be replaced by any
constant in (1/2, 1) and (0, 1/2) respectively. The reason is that if for m copies such
test exists, one can repeat it a constant number of times and take the majority vote.
The probability of error for the test obtained with this classical post-processing goes
down exponentially fast in the number of repetitions, independently of the particular
test. Therefore, the dependence on the extensive parameters of the problem is already
determined by the test with constant probability of error.

Examples of property testing problems are: certifying productness [HM10], certifying
stabilizerness [GNW21], certifying identity with a known or unknown state [Mon07;
BOW19].

Another important problem which is studied in the finite copies setting is shadow to-
mography, i.e. estimate expectation values of a set of observables [Aar07; Aar18; AR19;
HKP20].

For a review of many other results in the context of certification of quantum states and
channels in the non-asymptotic regime, we refer to [KR21].



Chapter 3

Quantum Shannon theory

In a landmark paper [Sha48], Shannon understood how the law of large numbers allows
to compress messages and to protect them from noise, founding a mathematical theory of
communication. In his model, a source of messages is represented by a probability distri-
bution p = (p1, ..., pn) on d symbols, and dlog2 de bits are required to faithfully represent
each symbol. A sequence of n symbols will thus require ndlog2 de bits. The first of Shan-
non’s results states that as n goes to infinity sequences are contained in a typical set of car-
dinality 2nS(p) with probability arbitrarily close to one, where S(p) = −∑n

i=1 pi log2 pi
is the Shannon entropy. Therefore, a compression and decompression algorithm using
nS(p) bits is able to reliably reconstruct the original message. The second of Shannon’s
result shows how to characterize the maximum number M of sequences of n symbols of
an alphabet [d], such that if some noise (channel) acts independently on each symbol,
the receiver can reliably recover the original sequence, in the limit of large n. In fact,
the result characterizes the maximum ratio log2M

n , and it is called the capacity of the
channel. The capacity is never zero, unless the channel is completely noisy, which came
as a surprise at the time [CT05].

Quantum Shannon theory generalizes this approach to quantum states and quantum
channels. At variance with the classical case, there are several possible communication
tasks. In the following we give some definitions and characterizations. Proofs of the
results cited can be found in [Wil17; Hol19], beyond the original papers we refer to. We
will need these facts in Chapters 8, 9.

23
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3.1 Von Neumann entropy

The generalization of the Shannon entropy for quantum states is the von Neumann
entropy, defined as:

Definition 3.1.1 (von Neumann entropy).

S(ρA) := −Tr[ρA log2 ρA] (3.1)

The von Neumann entropy of a state coincides with the Shannon entropy of the proba-
bility distribution associated to the eigenvalues of the state. Therefore, there is no clash
in using the same symbol for the two quantities. This notation is also suitable to denote
marginal entropies. For a state ρAB ∈ Σ(HA ⊗HB), the marginal entropy S(ρA) is the
entropy of the marginal state ρA. We will also use the notation S(A)ρ := S(ρA), when
we will need emphasis is on the system A rather than the state ρ.

The von Neumann entropy also characterize the maximum rate of compression of a
quantum states: for n large, ρ⊗n is arbitrarily close to a state supported on a Hilbert
space of dimension 2nS(ρ). This fact was proven by [Sch95].

We list some properties of von Neumann entropy.

• Positivity: S(ρ) ≥ 0 for any state ρ, with equality if and only if ρ is pure.

• Maximum value: S(ρ) ≤ log d if ρ ∈ Σ(Cd).

• Invariance under isometries: S(ρB) = S(VA→BρAV
†
A→B) for any isometry VA→B.

• Concavity: S(
∑n

i=1 piρi) ≥
∑n

i=1 piS(ρi) for any probability distribution p =

(p1, ..., pn) and any collection of states {ρi}i=1,...,n.

• Additivity for tensor products: S(ρA ⊗ ρB) = S(ρA) + S(ρB).

• Chain rule for classical quantum states: For states of the form ρAB =∑n
i=1 pi |i〉〈i|A ⊗ (ρi)B we have S(ρAB) = S(p) +

∑n
i=1 piS(ρi)

• Equality of marginal entropies for pure states: S(ρA) = S(ρB) for ρAB pure.

• Conditional entropy S(A|B)ρ := S(AB)ρ − S(B)ρ can be negative.

The last property is peculiar for quantum states and it is not a generalization of a classical
property, since it is due to the existence of entanglement. From the von Neumann entropy
other entropic quantities can be defined, which have operational meaning by themselves.
We define:

Definition 3.1.2 (Mutual information).

I(A;B)ρ := S(A)ρ + S(B)ρ − S(AB)ρ. (3.2)
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A fundamental properties of the mutual information is the following:

Theorem 3.1.1 (Strong subadditivity).

I(A;B)ρ ≤ I(A;BC)ρ. (3.3)

While strong subadditivity is elementary in the classical case, the quantum case requires
a much more complicated proof [LR73a; LR73b; Lin75]. It is a cornerstone of quan-
tum Shannon theory, as many results follow from this property. For example, strong
subadditivity is equivalent to the monotonicity of the relative entropy:

Theorem 3.1.2 (Monotonicity of the relative entropy). For any channel N

D(ρ||σ) ≥ D(N [ρ]||N [σ]). (3.4)

Strong subadditivity also guarantees a data processing inequality for mutual information:
for any two channels NA→A′ ,N ′B→B′ and any state ρAB, defining σA′B′ = NA→A′ ⊗
N ′B→B′ [ρAB], we have I(A;B)ρ ≥ I(A′;B′)σ.

Another important entropic quantity is the coherent information, which is equal to the
negative of the conditional entropy:

Definition 3.1.3 (Coherent information).

I(A〉B)ρ := S(B)ρ − S(AB)ρ (3.5)

Coherent information also satisfies a data processing inequality: for any channel
NA→A′ , and any state ρAB, defining σAB′ = IA ⊗ NB→B′ [ρAB], we have I(A〉B)ρ ≥
I(A〉B′)σ.

3.2 Capacities of quantum channels

3.2.1 Classical communication

For a classical quantum state of the form

ρAB =

k∑

i=1

pi |i〉〈i|A ⊗ (ρi)B, (3.6)

we can define:

Definition 3.2.1 (Holevo quantity).

χ({pi, ρi}) = S

(
k∑

i=1

piρi

)
−

k∑

i=1

piS(ρi) (3.7)
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One can verify that χ({pi, ρi}) = I(A;B)ρ for a classical quantum state. The Holevo
quantity was first introduced as un upper bound for the classical mutual information
I(A;X) for the joint probability distribution obtained applying a POVM to the regis-
ter B of a classical quantum state ρAB as in Eq. 3.6 [Hol73]. In fact, it has an even
more fundamental role in the characterization of the classical capacity of a quantum
channel.

We now illustrate the scheme of a classical communication task. Alice wants to send Bob
one of |M | messages, or codewords. She can do it by sending states (ρm)An ∈ Σ (H⊗n),
wherem ∈M label the codeword. Bob receives a state (NA→B)⊗n[(ρm)An ], and performs
a POVM {Mm̂} to decode the message as m̂. The choice of states (ρm)An and POVM
{Em̂} defines a code C. The worst-case error probability of the code C is then

pe(C) = max
m∈M

tr
[
(I − Em)N⊗nA→B[(ρm)An ]

]
. (3.8)

The rate of a code is
Rc(C) =

log2M

n
(3.9)

and we denote a code as C(n, r, ε) if it uses n uses of the channel with rate r = Rc(C) and
probability of error ε = pe(C). A rate Rc is called achievable with N if for any δ > 0,
ε > 0 there exists a code C(n,Rc − δ, ε) for sufficiently large n. We can then give the
following definition.

Definition 3.2.2 (Definition of classical capacity). The classical capacity of a quan-
tum channel NA→B is defined as

C = sup{Rc|Rc achievable withN}. (3.10)

A characterization of the classical capacity in terms of the Holevo quantity was found
in [Hol98; SW97]. First, any value assumed by the Holevo quantity χ({pi,N [ρi]}) is an
achievable rate, therefore

Theorem 3.2.1 (Achievable classical rate: Holevo information of a channel).
The Holevo information of N defined as

χ(N ) := sup
{pi,ρi}

χ({pi,N [ρi]}), (3.11)

is an achievable rate. It follows that χ(N⊗)/n is also achievable.

Second, the family of achievable rates characterized in term of the Holevo quantity sat-
urate the classical capacity:
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Theorem 3.2.2 (Classical capacity). The classical capacity of N is

C(N ) = lim
n→∞

χ(N⊗n)

n
. (3.12)

Unfortunately, this formula does not give a computable characterization of the capacity,
since it requires to solve, in principle, an infinite sequence of optimization problems.
It is computable when the Holevo information is additive, meaning χ(N⊗n) = nχ(N ),
which is not always guaranteed. It holds for entanglement breaking channels, reviewed
in the next section [Sho02a], for unital qubit channels [Kin02], for depolarizing chan-
nels [Kin03], Hadamard channels [Kin06; Kin+05], phase-insensitive Gaussian chan-
nels [Gio+04; Gio+14]. The latter are a realistic noise model for electromagnetic waves
in vacuum or optical fiber. In Chapter 9 we will consider a variation of this noise model,
in which phase decoherence occurs. We defer the presentation of Gaussian channels to
Chapter 4. By continuity results on channel capacities with respect to the diamond
norm distance [LS09; Win16; Shi17], channels close to channels with additive Holevo
information have approximately additive Holevo information [Led+18]. However, there
exists channels for which χ(N ⊗M) > χ(N ) + χ(M) [HW08; Has09], a fact proved
non-constructively.

Note that, for channels between infinite-dimensional Hilbert spaces, it is necessary to
impose a further constraint on the encoding protocol to have finite results: typically, as
motivated by the case of electromagnetic signals, one considers only protocols which have
an average input state with bounded energy, or in general a positive definite observable.
In optical communication, this constraint is motivated by a practical limit in the source
power. In this case the formula for the Holevo information of the channel is modified
restricting the supremum to ensemble satisfying the constraint, and the classical capacity
of the channel is given by the regularized constrained Holevo information

The superadditivity of the Holevo information tells us that the characterization of the
classical capacity is not entirely satisfactory. However, the situation is dramatically dif-
ferent when the sender and the receiver share unlimited entanglement, and the encoding
of classical messages is done with a collection of CPTP maps acting on the sender’s part
of shared entangled states, with outputs in the inputs of n channel uses. In this case the
optimal rate is completely characterized as the mutual information of the channel [AC97;
Ben+99; Ben+02]. .

Theorem 3.2.3 (Entanglement assisted classical capacity.). The classical entan-
glement assisted classical capacity of N is

Ce(N ) = I(N ) := sup
ρAA′

I(B;A′)NA→B⊗IA′ [ρAA′ ]. (3.13)
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This characterization holds since the mutual information gives achievable rates and it is
additive. The state ρAB can be chosen to be pure. This characterization can be seen
as a noisy version of superdense coding [BW92], as the achievability can be shown by
random codes of unitary operations applied on the sender’s share of the typical subspace
of ρ⊗nAB.

An equivalent expression for the mutual information of the channel I(N ) is I(N ) =

supρA I(N , ρA), where I(N , ρA) := S(ρA) + S(NA→B[ρA])− S(N c
A→E′ [ρA]). I(N , ρA) is

concave in ρA [Wil17], which helps in solving the maximization.

3.2.2 Private communication

The BB84 protocol [Ben+14] shows how Alice and Bob can establish a secret key us-
ing the fact that different ensembles of pure states can have the same average state.
This principle allows to devise a general strategy to communicate classical information
through quantum channel, in such a way that it can be protected from any eavesdrop-
per Eve that has access to the environment. From the point of view of Alice and Bob,
a private classical communication protocol is executed in the same way as the classi-
cal protocol already explained. In addition, it is asked that any potential eavesdropper
cannot decode Alice messages with probability of success larger than another parame-
ter ε′. If Alice sends a message m, any eavesdropper will receive a post-processing of
(ωm)E′n :=

(
N c
A→E′

)⊗n
[(ρm)An ]. The most restrictive condition is that there exists a

state ωE′n such that

DTr((ωm)E′n , ωE′n) ≤ ε′ ∀m ∈M (3.14)

A private code can be denoted as Cp(n,Rp, ε, ε′) following the notation established for
classical codes, and ε′ is the such that the privacy condition Eq. 3.14 holds.

A rate for private communication Rp is called achievable with N if for any δ > 0, ε > 0,
ε′ > 0 there exists a code Cp(n,R− δ, ε, ε′) for sufficiently large n. We can then give the
following definition.

Definition 3.2.3 (Definition of classical capacity). The private classical capacity
of a quantum channel N is defined as

P = sup{Rp|Rp achievable withN}. (3.15)

The entropic functional which characterize the private capacity is the private informa-
tion:



Chapter 3. Quantum Shannon theory 29

Theorem 3.2.4 (Achievable private rate: Private information of a channel).
The private information of a channel N is defined as

Ip(N ) = max
{pi,ρi}

χ({pi,N [ρi]})− χ({pi,N c[ρi]})} (3.16)

is an achievable rate for private communication. It follows that Ip(N⊗)/n is also achiev-
able.

The private information gives an achievable rate, obtained from random codewords gener-
ated from an ensemble that saturate the maximization. The idea behind the achievability
proof is to have multiple codewords for the same message, and arrange the codewords
in subsets corresponding to the same message. For each subset, the average state of the
subset at the environment output should be a constant state. While all the codewords
can be distinguishable for Bob with high probability, Eve sees on average the same state
for each codeword, since a random choice of codewords makes the average states of each
codewords close to the average state of the ensemble, at the output of the environment.
The minimum necessary redundancy allows to communicate at the private information
rate.

We have the following regularized expression for the private capacity [Dev05;
CWY04]:

Theorem 3.2.5 (Private capacity). The private capacity of a channel N is

P (Λ) = lim
n→∞

Ip(N⊗n)

n
(3.17)

The private information is not additive, with explicit examples for Pauli channels
(e.g. [SRS08]). Moreover, any alternative formula for the private capacity cannot be
additive: a channel with zero private capacity together with a channel of classical ca-
pacity C can have a private capacity larger than C [Li+09]. A case in which the private
information should be evaluated for an infinite number of uses is found in [ES15].

3.2.3 Quantum communication

Quantum communication is a genuinely quantum task, which has no classical analogue.
In this case, Alice possesses a share of a quantum state, possibly entangled with Charlie.
She wants to send Bob her share of the quantum state, such that the joint state held by
Bob and Charlie is close to the original one, independently of the particular state. At
her side, Alice acts on her share of ρA′C ∈ Σ(HA′ ⊗ HC) with a channel EA′→An . Bob
receives N⊗nAn→Bn ◦ EA′→An(ρA′C) and performs a decoding applying a channel DBn→B′ .
The final state is then ρ′B′C = DBn→B′ ◦ N⊗nAn→BN ◦ EA′→An(ρA′C). The maps EA′→An
and DBn→B′ define a quantum code Cq. The rate Rq(Cq) is
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Rq(Cq) =
log2 dimHA′

n
. (3.18)

The constraint on the error probability is replaced in the quantum case by the following
condition on the decoding error

DTr(DBn→B′ ◦ N⊗nAn→BN ◦ EA′→An(ρA′C), ρA′C) ≤ ε, ∀ρA′C ∈ Σ(HA′ ⊗HC) (3.19)

A quantum code can be denoted as Cq(n,Rq, ε) if it uses n uses of the channel at rate
Rq, with decoding error ε such that Eq. 3.19 holds.

Definition 3.2.4 (Definition of quantum capacity). The quantum capacity of a
quantum channel N is defined as

Q = sup{Rq|Rq achievable withN}. (3.20)

In this case, achievable quantum communication rates are given by the coherent infor-
mation of the channel. We use the notation

Ic(ρ,N )τAB := I(A〉B)τ , (3.21)

where τAB = NA′→B ⊗ IA[ψAA′ ] and ψAA′ is a purification of ρA.

Theorem 3.2.6 (Achievable quantum rate: coherent information of a channel).
The coherent information of a channel N defined as:

Ic(N ) = sup
ρA

Ic(ρ,N )τAB , (3.22)

is an achievable rate for quantum communication. It follows that Ic(N⊗)/n is also achiev-
able.

Note that Ic(ρ,N ) = I(A〉B)τ = S(N [ρ]) − S(N c[ρ]). Both expressions of Ic(ρ,N ) are
useful.

A way to construct a quantum code at the coherent information rate Ic(ρ,N ) is to map
a basis of A′ to a basis of a subspace of the typical subspace of the state ρ⊗nA . This
subspace has to have the property that its image under the channels decouples from
the environment, making Bob able to decode correctly [Hay+08]. A detailed strategy
involves making a coherent version of a private code constructed from and ensemble of
eigenvectors of ρ, which achieves reliable private communication at the coherent infor-
mation rate [Dev05; Wil17].

The quantum capacity is characterized as [Llo97; Sho02b; Dev05]:
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Theorem 3.2.7 (Quantum capacity).

Q(N ) = lim
n→∞

Ic(N⊗n)

n
(3.23)

At variance with the non-additivity of the Holevo quantity, the non-additivity of the
coherent information was immediately noticed. Indeed, the coherent information of a
channel can be zero even if the channel is not a constant channel. By showing that
for the coherent information of more uses of the channel is non zero while the one-
use coherent information is zero, superadditivity was discovered [SS96; DSS98]. Several
subsequent works have explored this phenomenon for a variety of channels [SS07; FW08;
SSY11; Cub+15; LLS18a; BL19; SG21; Sid20b; Sid20a; NPJ20; Yu+20], with evidence
that an unbounded number of uses of the channel may be necessary to obtain a non zero
coherent-information [Cub+15], for a channel with non-zero quantum capacity. As for
the private capacity, the quantum capacity cannot have an additive formula in terms
of an information quantity which is additive for a tensor product of generic channels,
because of the striking superactivation phenomenon: two channels with zero quantum
capacity can have non-zero quantum capacity if used together [SY08; SSY11].

It can be shown that the private information of a channel is always larger than the
coherent information, implying also P (N ) ≥ Q(N ).

We also mention the entanglement assisted quantum capacity QE(N ), which give the
optimal rate for quantum teleportation in presence of noise. Thanks to a duality be-
tween superdense coding and quantum teleportation, this capacity is equal to half the
entanglement assisted classical capacity [DHW04].

Moreover, while classical communication from the sender to the receiver does not increase
the quantum capacity [Ben+96; BKN00], classical feedback does [Ben+96]. The two-way
quantum capacity Q↔(N ) [Ben+96], defined as the quantum capacity assisted by local
operations and classical communication, is a very relevant figure of merit for transmission
of quantum information, since it is usually conceivable that Alice and Bob have a good
and cheap classical channel to communicate. However, we also stress that on quantum
memories this adaptive protocol cannot be applied, since the noise acts at the same time
on all the physical systems. In this case, Q(N ) sets the ultimate limits for information
preservation. In the same way of Q↔(N ), one can define the two-way private capacity
P↔(N ). Q↔(N ) and P↔(N ) lack a characterization in terms of an entropic functional,
but upper and lower bounds are available, which we will mention in the next section
since they are obviously bounds for the capacities Q(N ) and P (N ) as well.
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3.3 Bounds on private and quantum capacities

In Chapter 8 we will present a method to obtain upper bounds on the quantum and
private capacity of channels which has a wide applicability, and at the time of the writ-
ing gives the best bounds available for several channels of practical and fundamental
relevance. In this section, we review the current knowledge on bounds on the quantum
and private capacity.

Any value of the coherent information for some input state is a lower bound. As we al-
ready mentioned, interesting results can be found on lower bounds on the zero quantum
capacity threshold, with informed choices of states which are good for the high noise
regime. For Pauli channels (see Chapter 4 for a presentation) there are several works
showing superadditivity from zero capacity thresholds [SS96; DSS98; SS07; FW08], the
most recent and comprehensive being [BL19]. We do not know of any superadditiv-
ity evidence for gaussian channels, even in the energy-constrained setting. However,
for the single-mode thermal attenuator at constrained energy, superadditivity for input
states restricted to Gaussian states has been shown in [NPJ20]. Among qubit chan-
nels, the dephrasure channel, which is a concatenation of a dephasing and an erasure
channel, exhibits clear superadditivity already at the level of the two-letter coherent in-
formation [LLS18a]. Other examples of manifest superadditivity can be found in [SG21;
Sid20b; Sid20a].

In the following, we will concentrate on upper bounds, which are also the interest of
Chapter 8 of this thesis. First of all, any capacity is monotonic with respect to composi-
tion, i.e. C̃(Φ1 ◦ N ◦ Φ2) ≤ C̃(N ) for any triple of channels Φ1,N ,Φ2 and any capacity
C̃. Therefore, if the capacity of N can be computed, this results in a computable upper
bound on the capacity of Φ1 ◦ N ◦ Φ2. We call N an extension of Φ1 ◦ N ◦ Φ2.

Fortunately, there are classes of channels for which the quantum and private capacity
can be computed, since their coherent information is additive.

Degradable and antidegradable channels are defined as follows.

Definition 3.3.1 (Degradable channel). A channel NA→B with a complementary
channel N c

A→E′ is degradable if there exists a channel WB→E′ such that N c
A→E′ =

WB→E′ ◦ NA→B.

Definition 3.3.2 (Antidegradable channel). A channelNA→B with a complementary
channel N c

A→E′ is antidegradable if N c
A→E′ is degradable.

A subset of antidegradable channels are entanglement breaking channels:

Definition 3.3.3 (Entanglement breaking channels). A channel NA→B is entan-
glement breaking if NA→B ⊗ IC [ρAC ] is separable for any ρAC .
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For degradable channels the quantum and private capacity can be exactly computed, and
they actually coincide.

Theorem 3.3.1 (Quantum capacity of degradable channels). For a degradable
channel N , Ip(N⊗n) = Ic(N⊗n) = Ip(N ) = Ic(N ), therefore

Q(N ) = Ic(N ) = P (N ). (3.24)

Additivity of coherent information for degradable channel was shown in [DS05],
while [Smi08] showed the additivity of the private information, and that the private
information coincides with coherent information. It is known that the quantum and pri-
vate capacities do not coincide in general, since there exists channel with positive private
information and zero quantum capacity [HHH98].

For antidegradable channels the quantum and private capacity is zero, since Ic(N ) = 0

by a no-cloning argument [BDS97; Gio+03; GF05], (see also [Hol08; CRS08]).

Theorem 3.3.2 (Quantum and private capacity of antidegradable channels).
For an antidegradable channel N , Ic(N⊗n) = Ic(N ) = 0, therefore

Q(N ) = 0. (3.25)

Since an antidegradable channel can always be extended to a channel which is both degrad-
able and antidegradable, P (N ) = 0.

A degradable extension for antidegradable channels, with zero coherent information, has
been found in [SS08]. Examples of channels that are either degradable or antidegrad-
able are dephasing channels [DS05], amplitude damping channels [GF05], quantum lim-
ited attenuators and amplifiers [WPGG07], and all qubit channels with Kraus rank
two [WPG07].

An important fact is the concavity of the coherent information of degradable chan-
nels [YHD08], which makes the optimization easier:

Theorem 3.3.3 (Concavity of coherent information for degradable channels).
If a channel N is degradable, for any ensemble {pi, ρi} we have

Ic(N ,
n∑

i=1

piρi) ≥
n∑

i=1

piIc(N , ρi). (3.26)

Since the quantum and private capacities are easily computed for degradable channels, an
established way to find upper bounds on the quantum and private capacity is to finding
degradable extensions and computing their coherent information.
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For example, the thermal amplifier and attenuator and the additive noise channel are not
degradable, but they can be realized as a composition of a quantum limited attenuator
and a quantum limited amplifier, which are instead either degradable or antidegradable.
In this way, an area of zero capacity which strictly includes entanglement-breaking chan-
nels [Hol08] has been found in [CGH06], and upper bounds have been found in [WQ16;
Sha+18; RMG18; NAJ19]. Similar techniques have been applied to the generalized am-
plitude damping channel [KSW20].

The notion of weak-degradability is introduced in [CG06] and used in [CGH06] to classify
single-mode Gaussian channels.

Definition 3.3.4 (Weak degradability). A channel with physical representation

NA→B[X] = trE′ [UAE→BE′XA ⊗ ρEU †AE→BE′ ], (3.27)

where ρE is a generic mixed state, is called weakly degradable if there exists a channel
WB→E′

trB[UAE→BE′XA ⊗ ρEU †AE→BE′ ] =WB→E′ ◦ NA→B[X]. (3.28)

While degradable channels are weakly degradable, the converse is not true since
ρE is mixed. However, for a purification |τ〉〈τ |EB′ of ρE , the channel ÑA→BB′ =

trE′ [(UAE→BE′ ⊗ IB′)XA ⊗ |τ〉〈τ |EB′ (UAE→BE′ ⊗ IB′)†] is a degradable extension of N .
Therefore Q(N ) ≤ Q(Ñ ). This fact was also used in [RMG18] to obtain a bound on the
quantum capacity of the thermal attenuator.

Another important type of degradable extensions are flagged extensions, which we will
study in detail in Chapter 8. We restate the definition of flagged extension we mentioned
in the introduction.

Definition 3.3.5 (Flagged extension of a convex combination of channels).
For a channel N =

∑
j pjNj with probability distribution {pj}, {Nj} channels, and a

collection of states {σj}, a flagged extension is

N̂ =
∑

j

pjNj ⊗ σj . (3.29)

The case with orthogonal flags {σj} was introduced in [SS08], noting that flagged exten-
sions with orthogonal flags of convex combination of degradable channels are degradable,
obtaining upper bounds on the quantum capacity of Pauli channels. This result came
after it was observed that the quantum capacity is convex for convex combination of
degradable channels [WPG07; SSW08], and after similar bounds could be obtained ex-
ploiting the notion of communication with symmetric side channel assistance [SSW08].
This idea was used in [Ouy14] and developed in [LDS18], where optimization of upper
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bounds from flagged convex combinations of degradable and antidegradable channels
were considered.

The concept of approximate degradability was introduced in [Sut+17], showing that non-
additivity effect can be bounded if the channel, composed with a candidate degrading
map, is close to the complementary channel in diamond norm distance. The minimum
diamond norm distance obtained in this way is the degradability parameter, and it can
can be computed by a semidefinite program. Another notion of approximate degrad-
ability is given by the minimum distance from degradable channels. In both cases one
can obtain an upper bound on the quantum capacity in terms of the single-letter coher-
ent information and the degradability parameter of the channel. [LLS18b] analytically
estimates the degradability parameter for low noise channels in terms of the diamond
norm distance to the identity channel, using the complementary channel as candidate
degrading map.

Approximate degradability was also used in [Sha+18], to bound quantum and pri-
vate capacities of thermal attenuator and amplifier, with an energy constraint. (see
also [WQ16] for energy constrained quantum and private capacity of infinite dimensional
systems).

Interestingly, while these results based on degradability give the best bounds available for
important finite dimensional channels, bounds valid for the two-way quantum capacity
(quantum communication assisted by unlimited forward-backward classical communica-
tion) [Pir+17; WTB17] of thermal attenuator and amplifier and additive Gaussian noise,
proved to be state-of-the-art in low noise regimes. To our knowledge, this is the only case
where upper bounds for two-way capacities are competitive with upper bounds given by
(approximate)-degradability.

For completeness, we mention several bounds which are more general and in some cases
have also the advantage of providing strong converses for the optimal rate, i.e. the er-
ror of a code with rate higher than the upper bound goes to one exponentially fast in
the number of channel uses. The Rains information, inspired by the Rains bounds in
entanglement theory [Rai01], is a strong converse for the unassisted quantum capac-
ity [TWW17], and more easily computable upper bounds on the Rains information are
available [WFD19; ZP20a], which also give strong converses for the two-way quantum
capacity [BW18; ZP20a]. Squashed entanglement is an upper bound for the two-way
private capacity [TGW14]. Entanglement cost [Ber+13] is a strong converse for two-
way private capacity [CMH17]. Relative entropy of entanglement [Pir+17] is a strong
converse for unassisted private capacity and two-way private capacity for teleportation
covariant channels [Pir+17; WTB17]. Max-relative entropy of entanglement of a channel
is a strong converse for two-way private capacity [CMH17]. Other upper bounds to the
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quantum capacity are [MHRW16; GJL18].



Chapter 4

Symmetries and quantum
information processing

A problem that seems complicated at first glance may be greatly simplified if symmetries
are taken into account. Many relevant problems in quantum information theory can be
attacked using group representation theory [Hay17b], and this thesis makes extended
use of this tool. In Sec. 4.1 we recall elements of representation theory of finite and
compact groups. In Sec. 4.2 we present important applications of these results in quantum
statistical inference, inspired by the selection of [Hay17a]. These applications will be used
in Chapters 5, 6, 7. In Sec. 4.3 and 4.4, we introduce Pauli channels and Gaussian states
and channels putting an emphasis of their group theoretic structure, which will be crucial
in Chapters 8, 9.

4.1 Group theory and representation theory

The intention of this section is to offer a compact presentation of these classic results
that can be used as a quick reference for the reader of this thesis. The level of detail of
the presentation is a little more than what actually is needed in the following chapters,
with the goal to present the group theoretic objects we use in a clearer way. Sometimes
simple arguments are used to justify properties needed for our computations, which
are actually corollaries of deeper theorems (e.g. orthogonality of matrix elements of
irreducible representation come from the Peter-Weyl theorem [Kna86]). The presentation
is inspired by [Hay17b], which introduces group representation theory in the context of
quantum physics. Most proofs of the theorems can be found in [Hay17b], while for the
more technical results references are [Kna86; Sag01; GW09; Hal15].

37
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4.1.1 Groups and representations

A group G is a set together with a product G×G→ G, denoted as (g1, g2)→ g1g2, with
the following properties:

• associativity: g1(g2g3) = (g1g2)g3

• unique neutral element e such that ge = g for each g ∈ G,

• unique inverse g−1 for each g ∈ G such that gg−1 = e (and therefore g−1g = e).

The order of the a group is the cardinality of the set |G|. A subgroup H is a subset of
G closed under product and taking inverses. The conjugacy class of the element a is
{a} := {gag−1|g ∈ G}, and such classes establish an equivalence relation on G. Given
two groups H and K with cartesian product H ×K one can define the direct product
group H ×K, with (h, k)(h′, k′) = (hh′, kk′).

Groups have a rich structure, and it is fruitful to consider maps between groups that
preserve this structure. A map f between two groups G1, G2 is a homomorphism if
f(g1)f(g2) = f(g1g2), and f is furthermore an isomorphism if it is bijective. We write
G1
∼= G2 if an isomorphism exists, and if G1 = G2 the isomorphism is also called

automorphism.

In addition, groups can act on a set in a way that mirrors the group structure. This is
physically meaningful, as we can see a group as the set of transformations of a system.
The action of a group on a set Θ is a function T : G × Θ → Θ denoted as (g, θ) → gθ

satisfying (g1g2)θ = g1(g2θ) for all g1, g2 ∈ G and θ ∈ Θ, and eθ = θ for all θ ∈ Θ. A
group acts transitively on a non-empty set Θ if for every θ1, θ2 ∈ Θ there is a g ∈ G such
that gθ1 = θ2, and in this case Θ is called a homogenous space. Given an element θ0,
the stabilizer of θ0 is the subgroup H s.t. {h ∈ G|T (h, θ0) = θ0}. For an element g ∈ G,
[g] := gH is a residue class, the set of residue classes is the quotient space G/H, and it
encodes the set of non-trivial transformations of θ0. The action of a group on itself given
by the product f : G×G→ G, f(a, g) := aga−1 is an automorphism.

We will also mention some important facts that can be obtained by considering the
elements of the group as a basis of a vector space, with an additional structure given by
the group product. A real (complex) algebra is a linear real (complex) space a together
with a product operation a× a denoted as (v, w)→ v ·w, which is bilinear, i.e.

∑
i aivi ·∑

j bjwj =
∑

i,j aibjvi · wj . An homomorphism of algebras a and b is a linear function
f : a→ b such that f(v) · f(w) = f(v · w). For a finite group, a group algebra C[G] can
be obtained on a complex vector space with a basis indexed by the elements of the group
and the product is given by the product of G.

Some examples of well known groups are:
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• permutation group Sn;

• cyclic groups: Uk = {ei2πj/k|j ∈ Z}, k ∈ N;

• U(1) = {z ∈ C||z| = 1};

• general linear group GL(H) of invertible linear maps on H, subgroup U(H) of
unitary operators;

• subgroups of GL(Cn): SL(Cn) (matrices with determinant one), U(Cn) (unitary
matrices), SU(Cn) (unitary matrices with determinant one).

Representations give groups of transformations realizable on a Hilbert space H based on
a group G. We now state some basic facts about representations. A representation is
a homomorphism f between G and GL(H), a unitary representation has f(G) ⊆ U(H).
Two representations f1 and f1 are isomorphic if there exists an invertible linear operator
A such that Af1A

−1 = f2, and unitarily isomorphic if A unitary. For any two repre-
sentations f1 and f2, we denote by f1 ⊕ f2 the direct sum representation, which acts as
f1 ⊕ f2(g) = f1(g) ⊕ f2(g). Conversely, a representation is decomposable if it is a direct
sum of two representations. A fundamental question is to understand how to decompose
a representation as direct sum of representations.

Definition 4.1.1 (Irreducible representation). A representation f is called reducible
if there exists a non-trivial invariant subspace K ⊆ H, K 6= {0} or H, such that f(g)u ∈ K
for each u ∈ K and for each g ∈ G. If a non-trivial invariant subspace does not exists,
the representation is irreducible.

A representation that can be written as a direct sum of irreducible representation is com-
pletely reducible. Unitary representations have the property that if they have an invariant
subspace, its orthogonal subspace is also invariant. It follows that finite-dimensional uni-
tary representations are completely reducible. Moreover, representations of finite groups
are either irreducible or decomposable, since they are unitary with respect to the following
product: (v, w)G := 1

|G|
∑

g∈G 〈v| f(g)†f(g) |w〉. Therefore, finite dimensional represen-
tations are completely reducible. For the purposes of this thesis, the knowledge of the
reduction of unitary representations acting on Hilbert spaces of quantum systems makes
us able to solve quantum information processing tasks. We denote as ΛG the set of in-
dexes describing the irreducible unitary representations of G, up to unitary isomorphism.
For λ ∈ ΛG, we denote the corresponding representation space as Uλ(G) of dimension
dλ, and the corresponding representation by fλ. The reduction into irreducible represen-
tation of f, where each equivalent irreducible representation appears with multiplicities
nλ, has the following decomposition

H ∼=
⊕

λ∈ΛG

Uλ(G)⊗ Cnλ (4.1)
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and we write the decomposition of f as f = ⊕λ∈ΛGnλfλ. {|j〉}nλj=1 is a complete orthonor-
mal set of vectors (CONS) for {Cnλ}, while a CONS of Uλ(G) is given by {|λ; j〉}dλj=1.
These vectors |λ; j〉 ⊗ |j′〉 = |λ; j; j′〉 form a CONS of H. We denote matrix elements of
representation matrices as Rλ,i,j(g) = 〈λ, i| fλ(g) |λ, j〉.

4.1.2 Schur’s lemma and orthogonality relations

The following simple but deep result is the cornerstone of many applications:

Theorem 4.1.1 (Schur’s lemma). Let f1 and f2 be two irreducible representations
on complex vector spaces V and W . If A is a linear map from V to W such that
Af1(g) = f2(g)A, ∀g ∈ G, then A = 0 or A is an isomorphism. If f1 = f2, A is a
multiple of the identity.

As a corollary, an operator A ∈ GL(H) satisfying Af(g) = f(g)A for a representation
with decomposition f = ⊕λ∈ΛGnλfλ, will have the form

A =
⊕

λ∈ΛG

IUλ(G) ⊗Aλ (4.2)

according to the decomposition of Eq. (4.1), and Aλ acting on the multiplicity space of
the irreducible representation λ.

Another important consequence of Schur’s lemma are the following orthogonality rela-
tions for finite groups:

∑

g∈G

1

|G|Rλ,i,j(g)Rλ′,i′,j′(g) =
δλλ′δii′δjj′

dλ
(4.3)

A similar statement holds if there exists a left and right invariant measure µ(dg) on the
group, i.e.

∫
G µ(dg)f(g) =

∫
g∈G µ(dg)f(ag) =

∫
G µ(dg)f(ga) for any a ∈ G, f : G → C

and
∫
G µ(dg) = 1. For finite groups, we used the measure µ(B) = |B|

|G| , which satisfies
this property. For compact groups, a left and right invariant measure exists and it is
the unique, and it is called Haar measure [Kna86; Hal15]. In fact, given a left and right
invariant measure µ one can define the space L2(G) := {f : G→ C|

∫
G µ(dg)f(g)f(g) <

∞} and matrix elements of irreducible unitary representations are dense in L2(G), a
result known as Peter-Weyl theorem [Kna86].

The function χ(g) := Tr[f(g)] is called the character of the representation f and it is
invariant under conjugation of g, i.e. χ(g) = Tr

[
f(aga−1)

]
for all a, g ∈ G, by ciclicity

of the trace and since f is an homomorphism. The space of functions invariant under
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conjugation is a vector space called the space of class functions. The character of a rep-
resentation can be calculated as χ(g) =

∑
λ∈ΛG

nλχλ(g), where χλ(g) is the character
of the irreducible representation λ and nλ its multiplicity. From the orthogonality rela-
tions for matrix elements, Eq. (4.3), it follows that characters are also an orthonormal
set

∑

g∈G

1

|G|χλ′(g)χλ(g) = δλ,λ′ (4.4)

Therefore the multiplicities of a representation with character χ can be calculated as
mλ =

∑
g∈G

1
|G|χ(g)χλ(g). With a little more work (see e.g. [Hay17b]) one can show

that characters are actually a basis of the linear space of class function. Since the latter
has dimension equal to the number of conjugacy classes of G for finite G, the irreducible
representations of a finite group are in bijection with the conjugacy classes of G.

We complete the list of important consequences of Schur’s lemma by stating the following
facts

• Unitary irreducible representations of finite groups are finite dimensional.

• Unitary irreducible representations of compact groups are finite dimensional.

The first fact can be checked by picking v ∈ Uλ and considering the operator
1
|G|
∑

g∈G f(g)†λ |v〉〈v| f(g)λ. This operator has trace 1, and it is a multiple of the identity
operator on Uλ, by Schur’s lemma. Therefore the dimension of Uλ is finite. The same
fact for compact groups can be shown by using the properties of the Haar measure.

We will often be interested in tensor product representations, defined as f1 ⊗ f1(g) :=

f1(g)⊗ f2(g) for two representations f1 and f2. We will denote the decomposition of the
tensor product space of the product of two irreducible representation as

Uλ(G)⊗ Uλ′(G) ∼=
⊕

λ′′∈ΛG

Uλ′′(G)⊗ CC
λ′′
λ,λ′ (G)

, (4.5)

where Cλ′′λ,λ′ are the multiplicities of the irreducible representation with label λ′′ in the
tensor product representation of labels λ, λ′. The isomorphism can be expressed as a
change of basis, which is called the Clebsch-Gordan transform.

4.1.3 Representations of the symmetric group

The group of permutations of n objects is also known as the symmetric group on the set
[n]:



Chapter 4. Symmetries and quantum information processing 42

Sn := {σ : [n]→ [n] : σ is bijective} (4.6)

We can denote an element σ ∈ Sn as a vector with components σi = σ(i). The cardinality
of this group is |Sn| = n!, and the conjugacy classes are given by the cycles structure of
the permutations. A cycle of length k ≥ 2 is a permutation such that there exists an
element i ∈ [n] such that σ(i), σ2(i), ..., σk(i) are all different and they coincide with all
the elements on [n] for which σ(i) 6= i. Two cycles are disjoint if they act non-trivially
on disjoint subsets of [n], and it follows that disjoint cycles commute. A cycle of length
2 is called a transposition, and exchanges exactly two elements. Transpositions generate
Sn, and the sign of a permutation sgn(σ) is defined as −1 elevated to the number of
transpositions whose product is σ. Any permutation can be written in a unique way
as a product of cycles up to their order. The list of integers given by the length of the
cycles of σ in decreasing order, followed by a number of 1 for as many elements such that
σ(i) = i, gives a partition of n. The cycle structure does not change under conjugation:
for a permutation σ = σ(1)σ(2)...σ(l) where σ(j) are disjoint cycles, we have that for any
τ ∈ Sn, τστ−1 = τσ(1)τ−1τσ(2)τ−1...τσ(l)τ−1 and τσ(j)τ−1 are disjoint cycles since τ
is bijective. These observation tells us that the conjugacy classes of Sn are indexed by
partitions of n, therefore:

Proposition 4.1.1 (Irreducible representation of Sn). The irreducible representa-
tions of Sn are labelled by partitions of n, i.e. is vectors λ of n components such that
λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 and

∑n
i=1 λi = n.

A pictorial way to indicate a partition is the Young diagram Yλ, as seen in Fig. 4.1, where
rows of λi boxes are arranged in non-increasing order from top to bottom. The length
of the diagram l(Y ) is the number of rows, the size of the diagram |Y | is the number of
boxes. The length and the size of a partition are defined acccordingly. A Young tableau
is obtained by filling a Young diagram of size n with distinct elements of [n]. Standard
Young tableaus are Young tableaus obtained by filling the boxes with the rule that the
integers are strictly decreasing in each row from left to right and strictly decreasing
in each column from top to bottom. Semistandard Young tableau are Young tableaus
obtained by filling the boxes with the rule that the integers are weakly decreasing in each
row from left to right and strictly decreasing in each column from top to bottom.

The irreducible representations can be constructed from the algebra C[Sn] and Young
symmetrizer [Sag01], as follows: for a Young tableau T , the horizontal permutations
H(T ) are defined as the permutation that leave the elements of the rows invariant, and
vertical permutations V (T ) are those that leave columns invariant. The horizontal sym-
metrizer is cHT :=

∑
σ∈H(T ) σ ∈ C[Sn], the vertical symmetrizer cVT :=

∑
σ∈V (T ) sgn(σ)σ ∈

C[Sn], and the symmetrizer is cT = cHT c
V
T . The subspace C[Sn]cT := {xcT |x ∈ C[Sn]}
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Figure 4.1: Examples of a) Young diagram, b) Standard Young tableau, c) Semistandard
Young tableau of length 4 and size 13.

is an irreducible representation space for the action of the group Sn by left multiplica-
tion. The irreducible representation is uniquely identified by the partition λ (it does
not depend on the choice of the tableau), and its Hilbert space is indicated as Vλ(Sn).
All the irreducible representation of Sn are obtainable in this way, and they are also
known as Specht modules. The dimension of Vλ(Sn) is equal to the number of standard
Young tableau of shape λ. In the following sections, we will denote the character of the
irreducible representation λ of Sn as χλ(µ), where µ is a partition. The dimension of the
irreducible representation λ is ωλ := χλ((1, 1, ..., 1)).

4.1.4 Representations of SU(d)

SU(d) is a compact group of great importance in quantum theory, as it describes the set
of unitary channels for a Hilbert space of dimension d. The irreducible representations
of SU(d) can be constructed from the representations of its Lie algebra su(d), therefore
we take the opportunity to introduce Lie algebras.

A real (complex) linear space V is called a real (complex) Lie algebra when there is a
map [·, ·] : V ×V → V , called a commutator, that satisfies the following conditions:

• bilinearity: [aX1 + bX2, Y ] = a[X1, Y ] + b[X2, Y ],

• skew-symmetry: [X,Y ] = −[Y,X],

• Jacobi law: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Basic examples: the set gl(V ) of linear maps on V with the matrix commutator, the
set u(H) of skew-Hermitian matrices on H. Consider now a subgroup G of GL(d),
parametrized by l real variables θ1, ..., θl, which is topologically closed. The Lie algebra
g of G is defined as

g(d) := {X : etX ∈ G,∀t ∈ R}, (4.7)

where the matrix exponential is defined as eX :=
∑∞

n=1
Xn

n! .
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From the Lie product formula

lim
m→∞

(
etY/metX/m

)m
= et(X+Y ), (4.8)

since G is closed, it follows that aX + bY ∈ g(d) for any X,Y ∈ g(d) and a, b ∈ R.
Moreover, etXY e−tX ∈ g since eetXY e−tX = etXeY e−tX ∈ G. Then we have

lim
t→0

etXY e−tX − Y
t

= [X,Y ], (4.9)

therefore [X,Y ] ∈ g since g is closed. This makes g(d) a real Lie algebra with the
commutator [·, ·].

A representation of an algebra is an homomorphism from the algebra to gl(H). A rep-
resentation f of a continuous group induces a representation of its Lie algebra, defined
as

f(X) := lim
t→0

f(etX)− I
t

. (4.10)

Since U ∈ U(d) can be written as U = eA for a some anti-hermitian matrix A = −A†, for
any finite dimensional unitary representation of the group G one has a an anti-Hermitian
representation of the Lie algebra. A representation of an algebra is irreducible if it has no
non-trivial invariant subspace, that is a subspace K ⊆ H such that f(X)u ∈ K, ∀u ∈ K,
reducible otherwise. If f is irreducible as a representation of G, it is also irreducible as a
representation of g.

Any matrix U ∈ SU(d) can be written as U = eA for a some anti-hermitian traceless
matrix A = −A†, and indeed det eA = etrA. Therefore, the real vector space of anti-
hermitian traceless matrices coincides with su(d). A basis of this vector space is given
by the following matrices

F xj.l :=
i

2
(|l〉〈j|+ |j〉〈l|) 1 ≤ j < l ≤ d; (4.11)

F yj,l :=
1

2
(|j〉〈l| − |l〉〈j|) 1 ≤ j < l ≤ d; (4.12)

F zj := i(|j〉〈j| − |j + 1〉〈j + 1|) j = 1, ..., r − 1, (4.13)

and a subspace is given by sd(d), spanned by {F zj }. For an irreducible representation f

of su(d), we define
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Ej := if(F zj ) j = 1, ..., d− 1; (4.14)

Kj,l± := −if(F xj,l)∓ f(F yj,l) 1 ≤ j < l ≤ d. (4.15)

Defining the vectors αj,l with components αj,l,j′ = δj′,j − δj′,l − δj′+1,j + δj′+1,l the
following commutation relations hold:

[Ej ,Ej′ ] = δj,j′ ; (4.16)

[Ej′ ,Kj,l,±] = ±αj,l,j′Kj,l,±; (4.17)

[Kj,l,+,Kj,l,−] = Ej + ...+ El−1 (4.18)

From these commutation relations it follows that the representation space of f can be
written as a direct sum of subspaces indexed by listsm = [m1, ..,md−1] of eigenvalues of
simultaneous eigenvectors of {Ej}j=1,...,d−1. These lists of eigenvalues are called weights,
and the subspace with weight m is indicated as Hm. Due to Eq. (4.17), for v ∈ Hm we
have Kj,l,±v ∈ Hm±αj,l or Kj,l,±v = 0. In fact, one obtains:

Theorem 4.1.2 (Irreducible representations of su(d)). For any finite dimensional
irreducible representation of su(d) there exists a unique weight w of non-negative integers
such that

• Hw is one-dimensional,

• Kj,l,−v = 0 for any v ∈ Hw.

Irreducible representations of su(d) with the same weight are equivalent, and labeled as
fw.

The representation space of fw is generated by the vectors Knj,l
j,l,−v for v ∈ Hw, therefore

all the other weights of the irreducible representation are integer vectors. We can obtain
irreducible representations of SU(d) from these irreducible representations of su(d):

Proposition 4.1.2 (Irreducible representations of SU(d) and su(d)). The irre-
ducible representations of SU(d) can be obtained from the irreducible finite dimensional
representations of su(d), according to the definition

fw(U) := efw(A), U = eA, A ∈ su(d). (4.19)

This is a well defined representation, since for any matrix U there exists a traceless anti-
hermitian matrix A such that U = eA, and SU(d) is simply connected [Hal15].
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Expanding ef(tA) = etf(A) at first order in t, if an invariant space exists for ef(tA) then it
is also an invariant space for f(A).

From this discussion it follows that irreducible representation of SU(d) can also be labeled
by maximum weights. We will need representations with maximum weights that can be
obtained from partitions. The maximum weight of the partition (λ1, ..., λd) is [λ1 −
λ2, λ2 − λ3, ..., λd − λd−1]. We label these representations as Uλ(SU(d)).

The character of the irreducible representation corresponding to a partition λ is a function
of the eigenvalues of U ∈ SU(d) and is given by the Schur polynomial:

sλ(x1, ..., xd) :=
det(x

λj+δj
i )

det(x
δj
i )

(4.20)

where xλji denotes a d × d matrix with such entries and δ = (d − 1, d − 2, ..., 1, 0). The
dimension of the Hilbert space Uλ(SU(d)) is given by ω(d)

λ := sλ(1, ..., 1), and corresponds
to the number of semistandard Young tableau of shape λ and boxes filled with the integers
{1, ..., d}.

4.1.5 A special case: SU(2)

The case of SU(2) is much easier to handle, with many explicit formulas avail-
able [VMK88]. In this case, the highest weight is given by an integer, and irreducible
representations are often labeled by half the maximum weight, i.e. by an half integer j.
The dimension of the irreducible representation j is 2j + 1. The representation theory
of SU(2) is of fundamental importance in physics, since it describes transformations of
particles with spin, and irreducible representations of SU(2) with integer j are also irre-
ducible representations of SO(3), which describe rotations in space and appears in the
description of the Hilbert space of particles in three dimensions. In our case SU(2) is
interesting as it describes unitary transformations of qubits. Moreover, when two pure
state in generic dimensions are involved, they effectively span the space of a qubit and the
representation theory of SU(2) becomes relevant. We denote the representation matrix
elements as Dj

m,n(U), where j is the irreducible representation label and m and n are
the weights, in this case integers between −j and j. For SU(2), the decomposition in
Eq. (4.5) simplifies considerably as

Uj1 ⊗ Uj2 ∼=
⊕

|j1−j2|≤j≤j1+j2

Uj , (4.21)

since the multiplicities Cjj1,j2(SU(2)) either 1 if |j1 − j2| ≤ j ≤ j1 + j2 and 0 otherwise.
Given that the multiplicity of j in the tensor product of j1 and j2 is at most one,
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the Clebsch-Gordan coefficents are the matrix elements of the unitary transformation
connecting the basis {|j,m〉} and {|j1,m1, j2,m2〉}, where |j1,m1, j2,m2〉 := |j1,m1〉 ⊗
|j2,m2〉.

Cj,mj1,m1,j2,m2
:= 〈j,m|j1,m1, j2,m2〉 (4.22)

when |j1 − j2| ≤ j ≤ j1 + j2, and 0 otherwise. These coefficients can be chosen to be
real. For the Wigner matrices, orthogonality relations Eq. (4.3) read

∫
dUDj

m,n(U)Dj′

m′,n′(U) =
δj,j′δm,m′δn,n′

2j + 1
(4.23)

Using Clebsch-Gordan coefficents and orthogonality relations, we can transform any in-
tegral of products of elements of Wigner matrices into a contraction of Clebsch-Gordan
coefficients. For example, using

Dj1
m1,n1

(U)Dj2
m2,n2

(U) =
∑

|j1−j2|≤j≤j1+j2

Cj,m1+m2
j1,m1,j2,m2

Dj
m1+m2,n1+n2

(U)Cj,n1+n2
j1,n1,j2,n2

(4.24)

we can compute
∫
dUDj

m,n(U)Dj1
m1,n1

(U)Dj2
m2,n2

(U) = Cj,mj1,m1,j2,m2
Cj,nj1,n1,j2,n2

δj,j2+j2δm,m1+m2δn,n1+n2

2j + 1
.

(4.25)

By viewing Clebsch-Gordan coefficients as tensor with three decorated legs, where the
decoration is the irreducible representation associated with the leg, one can pictorially
represent these contractions, and there exists a graphical calculus which enables to sim-
plify the resulting symbols [VMK88]. A general contraction may have free legs, that
is legs which are not contracted. We will make use of an identity which is obtainable
from this graphical calculus in Chapter 6, but we won’t treat the rules of this graphical
calculus, for which we refer to [VMK88; MD19].

4.2 Symmetries and optimal measurements

4.2.1 Covariant and invariant measurements

One of the most important application of representation theory in this thesis is to charac-
terize optimal measurement in presence of symmetries. We now state two general results
that will be used several times in this thesis. A wider treatment of these ideas can be
found in [Hay17a].

For Θ homogeneous space under the action of G, a covariant family with respect to a
unitary representation f of G is a family of states {ρθ} such that

f(g)ρθf(g)† = ρgθ (4.26)



Chapter 4. Symmetries and quantum information processing 48

We also assume that ρθ = ρgθ0 for some g ∈ G and fixed θ0 ∈ Θ. The first results concerns
covariant measurements, i.e. POVM of the form {f(g)E0f(g)†}g∈G, which estimate θ as
θ̃ = gθ0 for some θ0 ∈ Θ. A measure dµ(θ) on Θ can be obtained from the left and right
invariant measure dg of G. Assuming such measure exists, a generic POVM to estimate
θ is {Mθ̃},

∫
Θ dµ(θ̃)Mθ̃ = I, and we measure the accuracy of the estimation with some

cost function l(θ̃, θ) ≥ 0, with the property that l(θ̃, θ) = l(gθ̃, gθ) for any g ∈ G. The
set of covariant POVMs is denoted asMcov(Θ). We have that

Theorem 4.2.1 (Optimality of covariant measurements). For a covariant family
{ρθ} and a group G with Haar measure dg a measurement that minimizes the worst case
cost

min
M∈M(Θ)

max
θ∈Θ

∫

Θ
dµ(θ̃) tr

[
Mθ̃ρθ

]
l(θ̃, θ), (4.27)

and the average (Bayesian) cost

min
M∈M(Θ)

∫

Θ
dµ(θ)

∫

Θ
dµ(θ̃) tr

[
Mθ̃ρθ

]
l(θ̃, θ). (4.28)

can be chosen to be covariant, i.e.

Mg̃ = f(g̃)E0f(g̃)†
∫

G
dg̃f(g̃)E0f(g̃)† = I (4.29)

with an estimator θ̃ := g̃θ0.

Proof. Given a POVM {Mθ̃}, we define its covariant counterpart {M cov
g̃ } = f(g̃)Eθ0f(g̃)†,

Eθ0 =
∫
G dgf(g)†Mgθ0f(g)

∫

Θ
dµ(θ)

∫

Θ
dµ(θ̃) tr

[
Mθ̃ρθl(θ̃, θ)

]
=

∫

Θ
dµ(θ̃)

∫

G
dg tr

[
Mθ̃f(g)ρθ0f(g)†

]
l(θ̃, gθ0)

=

∫

G
dg̃

∫

G
dg tr

[
Mg̃θ0f(g)ρθ0f(g)†

]
l(g̃θ0, gθ0)

=

∫

G
dg̃

∫

G
dg′
∫

G
dg tr

[
Mg̃θ0f(g̃g

′−1g)ρθ0f(g̃g
′−1g)†

]
l(g̃θ0, g̃g

′−1gθ0)

=

∫

G
dg̃

∫

G
dg′
∫

G
dg tr

[
Mg̃θ0f(g̃g

′−1g)ρθ0f(g̃g
′−1g)†

]
l(g′θ0, gθ0)

=

∫

G
dg′
∫

G
dg tr

[
f(g′−1)†Eθ0f(g

′−1)f(g)ρθ0f(g)†
]
l(g′θ0, gθ0)

=

∫

G
dg̃

∫

G
dg tr

[
f(g̃)Eθ0f(g̃)†f(g)ρθ0f(g)†

]
l(g̃θ0, gθ0), (4.30)

=

∫

Θ
dµ(θ)

∫

G
dg̃ tr

[
M cov
g̃ ρθ

]
l(g̃θ0, θ), (4.31)
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where the first two equalities comes from the definition of the measure on Θ, the third
from the left invariance of dg, the fourth from invariance of l(θ, θ′), the following from
the definitions of the covariant counterpart of {Mθ̃}.

This shows that in the Bayesian setting {M cov
g̃ } has the same performance of {Mθ̃},

therefore we can restrict the optimization to covariant POVMs. The fact that covariant
POVMs minimize the worst case cost follows since worst case cost is always higher than
the average cost

min
M∈M(Θ)

max
θ∈Θ

∫

Θ
dµ(θ̃) tr

[
Mθ̃ρθ

]
l(θ̃, θ) ≥ min

M∈Mcov(Θ)

∫

Θ
dµ(θ)

∫

Θ
dµ(θ̃) tr

[
Mθ̃ρθ

]
l(θ̃, θ),

(4.32)

the average cost of a POVM is equal to the average cost of its covariant counterpart, and
the inequality above is saturated for a covariant POVM.

We note that for a covariant POVM, the total POVM element corresponding to θ0 is
Mθ0 =

∫
H dhf(h)Ehθ0f(h)†, therefore it commutes with f(h′) for any h′ ∈ H. The struc-

ture of covariant POVMs is thus simplified by applying Schur’s lemma to Mθ0 according
to irreducible representations of H.

An example of a covariant family is given by n copies of a pure state of Cd, i.e. |ψ〉〈ψ|⊗n ∈
Cnd. In this case the group action is given by SU(d), and we choose as initial point a
state |0〉 ∈ Cd. The set of this states is supported in the completely symmetric subspace
of Cnd, which hosts an irreducible representation of SU(d), of dimension

(
n+d−1
d−1

)
. A

covariant POVM is given by EU |0〉 =
(
n+d−1
d−1

)
U⊗n |0〉〈0|⊗n U⊗n†, and it is optimal to

estimate |ψ〉 under various figures of merit [Hay97]. The states U⊗n |0〉 are an example
of coherent states, obtained as the orbit of a maximum weight vector under the action of
an irreducible representation [Per72].

Suppose now we have a collection of states {ρθ,η} such that it is covariant with respect to
θ ∈ Θ at each fixed η ∈ E, with a unitary representation f independent of η. We want to
estimate η, while we are not interested in θ. We measure the accuracy of the estimation
with some function l(η̃, η) ≥ 0. We have that

Theorem 4.2.2 (Optimality of invariant measurements). For a covariant fam-
ily {ρθ,η} with respect to θ and a group G with Haar measure dg, a measurement that
minimizes the worst case cost for the estimation of η

min
M∈M(E)

max
θ∈Θ,η∈E

∫

E
dη̃ tr[Mη̃ρθ,η]l(η̃, η) (4.33)
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and the worst case average (Bayesian) cost at fixed η

min
M∈M(E)

max
η∈E

∫

E
dη̃

∫

Θ
dµ(θ) tr[Mη̃ρθ,η]l(η̃, η). (4.34)

and the global Bayesian cost for a prior distribution

min
M∈M(E)

∫

E
dη p(η)

∫

E
dη̃

∫

Θ
dµ(θ) tr[Mη̃ρθ,η]l(η̃, η). (4.35)

can be chosen to be invariant, i.e.

Mη = f(g)Mηf(g)†, ∀g ∈ G. (4.36)

In particular, the minimum worst case cost and of the minimum worst case Bayesian cost
at fixed η are the same, and attained by the same POVM.

Proof. For any POVM {Mη̃} we denote its corresponding invariant POVM as {M inv
η̃ }

with M inv
η̃ =

∫
G dgf(g)Mη̃f(g)†. We have that

∫

E
dη̃

∫

Θ
dµ(θ) tr[Mη̃ρθ,η]l(η̃, η)

=

∫

E
dη̃

∫

G
dg tr

[
Mη̃f(g)ρθ0,ηf(g)†

]
l(η̃, η)

=

∫

E
dη̃

∫

G
dg′
∫

G
dg tr

[
Mη̃f(g

′g)ρθ0,ηf(g
′g)†
]
l(η̃, η)

=

∫

E
dη̃ tr

[
M inv
η̃ f(g)ρθ0,ηf(g)†

]
l(η̃, η). (4.37)

Therefore {M inv
η̃ } has the same performance of {Mη̃} in the Bayesian case. The same is

true for the global Bayesian cost, by the same derivation. We have that

max
θ∈Θ

∫

E
dη̃ tr[Mη̃ρθ,η]l(η̃, η) ≥

∫

E
dη̃

∫

Θ
dµ(θ) tr[Mη̃ρθ,η]l(η̃, η)

=

∫

E
dη̃

∫

Θ
dµ(θ) tr

[
M inv
η̃ ρθ,η

]
l(η̃, η) (4.38)

where the first inequality is saturated when M inv
η̃ = Mη̃. This means

max
θ∈Θ,η∈E

∫

E
dη̃ tr[Mη̃ρθ,η]l(η̃, η) ≥ max

η∈E

∫

E
dη̃

∫

Θ
dµ(θ) tr

[
M inv
η̃ ρθ,η

]
l(η̃, η) (4.39)

which is saturated when M inv
η̃ = Mη̃.
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An example of a family {ρθ,η} covariant with respect to θ is the family of i.i.d states ρ⊗n

of dimension d, since ρ = UρdiagU
† for some U ∈ SU(d) and ρdiag positive-semidefinite

diagonal d× d matrix. Here η can be the vector of eigenvalues of ρ. In fact, an optimal
measurement for quantum tomography in sample complexity can be obtained by first
estimating η with an invariant measurement, and then estimating U with a covariant
measurement [Key06; OW16; OW17; Haa+17]. We recall the specific symmetries of
i.i.d. states in the next section. We also mention that estimation problems in presence of
symmetries can also be framed in the context of the resource theory of asymmetry [GS08;
MS13; MS14b; MS14a].

Finally, we note that the theorems discussed in this section apply also to the discrete
case of hypothesis testing, where the space of alternatives is discrete and a finite group
acts on it.

4.2.2 Schur-Weyl duality

In this section we review a deep representation theory result that connects representations
of the compact group SU(d) and the symmetric group Sn, and it is of fundamental im-
portance for quantum statistical inference. Consider the state space of n, d-dimensional
systems, H⊗nd . This space naturally hosts unitary representations of these two groups,
therefore a unitary represantation of the product SU(d)× Sn.

Specifically, SU(d) and Sn act on a basis {|i1〉⊗|i2〉⊗...⊗|in〉}i1,i2....,in of H⊗nd via unitary
representations un : SU(d)→ U(H⊗nd ), sn : Sn → U(H⊗nd ) as follows

un(U) |i1〉 ⊗ |i2〉 ⊗ ...⊗ |in〉 = U⊗n |i1〉 ⊗ |i2〉 ⊗ ...⊗ |in〉
= U |i1〉 ⊗ U |i2〉 ⊗ ...⊗ U |in〉 , ∀U ∈ SU(d) (4.40)

sn(τ) |i1〉 ⊗ |i3〉 ⊗ ...⊗ |in〉 =
∣∣τ−1(i1)

〉
⊗
∣∣τ−1(i2)

〉
⊗ ...⊗

∣∣τ−1(in)
〉
, ∀τ ∈ Sn.

In particular, observe that the two representations commute, i.e. [un(U), sn(τ)] =

0, ∀U ∈ SU(d), and∀τ ∈ Sn. Already by Schur’s lemma, we are able to tell that
un(U) should be block diagonal according to the decomposition into irreducible repre-
sentations of Sn, and sn(τ) should be block diagonal according to the decomposition into
irreducible representations of SU(d). In fact, something stronger can be said. As we saw
in previous sections, we associate a pair of irreducible representations of SU(d) and Sn to
any partition of size n and length at most d, with associated Young diagrams. Let Yn,d
denote be the set of integer partitions of n in at most d parts. λ ∈ Yn,d can then also be
written as a vector λ = (λ1, λ2, ..., λd) with λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0. We have
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Theorem 4.2.3 (Schur-Weyl duality [Wey47; GW09]). H⊗nd can be decomposed as

H⊗nd ∼=
⊕

λ∈Yn,d

Uλ(SU(d))⊗ Vλ(Sn), (4.41)

where the unitary irreducible representation (irrep) uλ of SU(d) acts non trivially on the
factor Uλ(SU(d)) of dimension ω(d)

λ and the irrep sλ of Sn acts non trivially on the factor
Vλ(Sn) of dimension ωλ.

A proof of the theorem can be found in [GW09], while [Hay17b; Hay17a] collects several
applications in quantum information theory. The use of the congruence sign in Eq. (4.41)
indicates that this block decomposition is accomplished by a unitary transformation; in
the case considered here this unitary is the Schur transform. One can then ask how
hard is to implement this change of basis on a quantum computer in the gate model, and
efficient circuits for the Schur transform have been found [BCH06; Har05a; Kro19].

A state ρ⊗n ∈ D(H⊗nd ) is invariant under the action of sn(σ) for any σ. By Schur’s
lemma, ρ⊗n can be decomposed in block diagonal form according to the isomorphism in
Eq. (4.41).

ρ⊗n =
∑

λ∈Yn,d

SWn
ρ (λ)ρλ ⊗

Iλ
ωλ
, (4.42)

where SWn
ρ (λ) is a probability distribution over the Young diagrams. It is immediate

to see that SWn
ρ (λ) depends only on the number of copies n and on the spectrum of

ρ, and ρλ are ω(d)
λ -dimensional states. In particular, one can compute SWl

ρ from the
characters of SU(d) as SWn

ρ (λ) = sλ(η1, ..., ηd), where η1, ..., ηd are the eigenvalues of ρ.
This is due to the fact that un(U) is a polynomial representation of SU(d), meaning that
the entries of un(U) are polynomials in the entries of U : one can explicitly construct
these polynomials from the Schur transform. Therefore, applying the Schur transform
to ρ⊗n, the entries of SWl

ρ(λ)ρλ will be a polynomial function of the entries of ρ, where
the polynomial function is the same of un. In particular, tr

[
SWn

ρ (λ)ρλ
]

= SWn
ρ (λ) can

be computed with a unique polynomial function of eigenvalues, the same that gives the
character of uλ from the eigenvalues of U . For a more detailed discussion of this feature
we refer to [Har05b; Chr06], where this fact is discussed by noting that Schur-Weyl
duality holds also for the action of the larger group GL(d).

The projective measurement given by projectors on Uλ(SU(d)) ⊗ Vλ(Sn), {Πλ}λ∈Yn,d is
called weak Schur sampling [Har05a; Kro19], and it can be executed with gate complexity
O(l, log d, log 1/δ), where δ is the precision of the implementation. From Theorem 4.2.2
and the discussion just made it should be clear that it is the optimal measurement to
estimate the spectrum of a state. Indeed, the following important result holds [ARS88;
KW01; HM02; CM06]:
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Theorem 4.2.4 (Spectrum estimation). We have

P (D(λ̄||s) > ε) :=
∑

λ:D(λ̄||s)>ε

SWn
ρ (λ) ≤ (n+ 1)d(d+1)/2 exp(−εn) (4.43)

In particular, with O(d2/ε2) log(d/ε) log(1/δ) copies of ρ the estimate λ̄ obtained from
the outcome λ of weak Schur sampling satisfies D(λ̄||s) ≤ ε with probability at least 1−δ.
For state of rank r, one can substitute d with r.

From this large deviation bound sufficient sample complexities for estimating any unitar-
ily invariant quantity can be obtained. This result can be seen as a quantum equivalent
of the tail bounds for classical distributions based on the method of types [CT05], and it
was used for constructing universal quantum source coding protocols [HM02], universal
entanglement concentration [MH04], universal quantum Stein’s lemma [Hay02] and uni-
versal classical-quantum channel coding [Hay08]. Recent works have attacked directly
the estimation of the spectrum [OW15] and entropies [AKG19] studying the bias and the
variance of suitable estimators based on weak Schur sampling, and obtaining upper and
lower bounds on the sample complexities.

A general observable that can be obtained by post-processing of weak Schur sampling,
can be written as O =

∑
λ∈Yn,d OλΠλ. This is always the case for linear combinations of

permutations, which are also invariant under conjugation with permutations, i.e. O =∑
τ∈Sn cτ sn(τ), sn(σ)Osn(σ)† = O for every σ ∈ Sn.

Finally, for any decomposition H⊗nd = ⊗Ni=1H⊗mid (where
∑N

i=1mi = n), one can define a
family of weak Schur sampling projectors for each factor, {Π(i)

λ }λ∈Ymi,d , which give com-
muting projective measurements which we call local weak Schur sampling. Nonetheless,
we can also consider the global weak Schur sampling measurement given by {Πλ}λ∈Yn,d .
Since {Πλ}λ∈Yn,d are invariant under local permutations, by Schur’s lemma they commute
with the projectors {⊗Ni=1Π

(i)
λi
}λi∈Ymi,d , therefore local and global weak Schur sampling

can be done with a unique projective measurement. The probabilities of the outcomes
do not depend on the order in which local and global measurements are executed. There-
fore, the composition of global and local weak Schur samplings define a further projective
measurement which we call nested weak Schur sampling. In particular, this measurement
is also efficient in gate complexity.

Estimation of unitarily invariant properties of set of states

We will be interested in estimating unitarily invariant quantities of sets of states. In this
section, we make some general observations on this problem, using the representation
theory results recalled in this chapter.

One has the following recoupling of two SU(d) irreducible representations:
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Uµ(SU(d))⊗ Uν(SU(d)) =
⊕

λ

Uλ(SU(d))⊗ CC
λ
µ,ν (4.44)

with Cλµ,ν called the Little-Richardson coefficient. Combining this fact with (4.41) we
have

H⊗(h+k)
d

∼=
⊕

µ,ν

Uµ(SU(d))⊗ Vµ(Sh)⊗ Uν(SU(d))⊗ Vν(Sk) (4.45)

∼=
⊕

µ,ν,λ

Uλ(SU(d))⊗ CC
λ
µ,ν ⊗ Vµ(Sh)⊗ Vν(Sk). (4.46)

We also have of course

H⊗(h+k)
d

∼=
⊕

λ

Uλ(SU(d))⊗ Vλ(Sh+k). (4.47)

We will now use the abbreviations A to indicate the subsystem H⊗(h)
d , B for the subsys-

tem H⊗(k)
d and AB for the complete system H⊗(h+k)

d . Defining the projectors ΠAB
λ on

Uλ(SU(d))⊗Vλ(Sh+k), ΠA
µ on Uµ(SU(d))⊗Vµ(Sh), ΠB

ν on Uν(SU(d))⊗Vν(Sk), it follows
that for a state ρ⊗h ⊗ σ⊗k one has the following block diagonal decomposition

ρ⊗h ⊗ σ⊗k =
∑

µ,ν,λ

pµ,ν(ρ, σ)ψ(ρ, σ)µ,ν ⊗
Iµ
ωµ
⊗ Iν
ων
, (4.48)

with ψ(ρ, σ)µ,ν ∈ Σ(⊕λUλ(SU(d)) ⊗ CCλµ,ν ), and Iµ
ωµ
∈ Σ(Vµ(Sh)), Iν

ων
∈ Σ(Vν(Sk)) with

pµ,ν(ρ, σ) = tr
[
(ΠA

µ ⊗ΠB
ν )ρ⊗h ⊗ σ⊗k

]
. Note that [ΠAB

λ , (ΠA
µ ⊗ΠB

ν )] = 0

Suppose now we are interested in estimating a unitarily invariant property of the pair
of states (ρ, σ), that is a function f(ρ, σ) such that f(ρ, σ) = f(UρU †, UσU †). The
family of pair of states {ρ, σ} is covariant under the action of (ρ, σ) → (UρU †, UσU †).
From Theorem 4.2.2, we can estimate f(ρ, σ) optimally with an invariant measurement.
Using the invariance of the measurement, the probability distribution of the outcome of
a measurement are the same if the measurement is done on

∫
dU(UρU †)

⊗h ⊗ (UσU †)
⊗k

instead of ρ⊗h ⊗ σ⊗k. One obtains

∫
dU(UρU †)

⊗h ⊗ (UσU †)
k

=
∑

µ,ν,λ

pµ,ν,λ(ρ, σ)
Iλ

ω
(d)
λ

⊗ ψ̃(ρ, σ)µ,ν,λ ⊗
Iµ
ωµ
⊗ Iν
ων

(4.49)
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with ψ̃(ρ, σ)µ,ν,λ ∈ Σ(CCλµ,ν ), pµ,ν,λ = tr
[
ΠAB
λ (ΠA

µ ⊗ΠB
ν )ρ⊗h ⊗ σ⊗k

]
, Iλ

ω
(d)
λ

∈
Σ(Uλ(SU(d)). Since we can always estimate f(ρ, σ) at arbitrary accuracy for h and
k large enough, the following fact, which we state as a theorem, is then evident:

Theorem 4.2.5 (Estimation of unitarily invariant properties). Provided that h
and k are sufficiently large, all unitarily invariant properties f(ρ, σ) can be estimated at
any precision given ρh ⊗ σk by projecting with ΠAB

λ (ΠA
µ ⊗ ΠB

ν ), which extracts a triple
(µ, ν, λ) according to pµ,ν,λ, and by some measurement on D(CCλµ,ν ).

In the case of ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| pure in Eq. (4.49), a drastic simplification
arises.

Theorem 4.2.6. For two pure states |ψ〉 and |φ〉 with overlap | 〈ψ|φ〉 |2 = c, we have
∫

SU(d) dU U⊗h+k
[
(|ψ〉〈ψ|)⊗h ⊗ (|φ〉〈φ|)⊗k

]
U †
⊗(h+k) (4.50)

=
∑

J Ph,k(J |c)
IλJ

ω
(d)
λJ

⊗ |Jh,k〉〈Jh,k| . (4.51)

Here IλJ

ω
(d)
λJ

is the completely mixed state in UλJ (SU(d)), λJ := (h+k
2 + J, h+k

2 − J, 0, ..., 0),

|Jh,k〉〈Jh,k| ∈ Σ(VλJ (Sh+k)) is independent of |ψ〉 and |φ〉, and Ph,k(J |c) is a probability
distribution in J dependent only on c.

Proof. First of all, since |ψ〉⊗n and |φ〉⊗n are invariant under permutations, the sum over
µ and ν is restricted to Young diagrams of one row, corresponding to the the invariant
representation of Sh and Sk, which have dimension 1. Moreover, using the invariance of
the Haar measure we can insert for free an average over V ⊗h+k, where V sampled from
the Haar measure acts non trivially in the two-dimensional subspace E spanned by |ψ〉
and |φ〉. By Schur-Weyl duality, we have E⊗h+k ∼=

⊕
J UJ(SU(2)) ⊗ VλJ (Sh+k), where

now we label SU(2) irreducible representations by the total angular momentum J , and
the corresponding representations VλJ (Sh+k) are those with Young diagram of two rows
λJ = (h+k

2 + J, h+k
2 − J, 0, ..., 0), and J ranges from |h − k|/2 to (h + k)/2. Since the

multiplicities in the couplings of two SU(2) irreducible representations are always zero
or one, the state ψ̃(ρ, σ)µ,ν,λ in Eq. (4.49) is a trivial one-dimensional state and we can
write:

(∫
SU(2) dV V ⊗(N+M)

[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]
V †
⊗(N+M)

)

=
∑

J Ph,k(J |c) IJ
2J+1 ⊗ |Jh,k〉〈Jh,k| , (4.52)

where |Jh,k〉〈Jh,k| is a pure state in Σ(VλJ (Sh+k)) which does not depend on |ψ〉 and
|φ〉, and IJ

2J+1 is the completely mixed state in UJ(SU(2)), and Ph,k(J |c) is a probability
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distribution on J , computed in Appendix A.1. Since E⊗h+k is an invariant subspace under
the action of Sh+k, by Schur’s lemma it can be block diagonalized according to irreducible
representations of Sh+k on the whole space Cd⊗h+k, and Schur-Weyl duality applied to
E⊗h+k gives this decomposition. Therefore we have that

∑
J Ph,k(J |c) IJ

2J+1⊗|Jh,k〉〈Jh,k| is
also block diagonal according to the global Schur-Weyl duality decomposition, H⊗(h+k)

d =

⊕λUλ(SU(d)) ⊗ Vλ(Sh+k), with IJ
2J+1 ∈ Σ(UλJ (SU(d))) and |Jh,k〉〈Jh,k| ∈ Σ(VλJ (Sh+k)).

Therefore, a further integration over SU(d) gives

∫

SU(d)
dU

∫

SU(2)
dV UV ⊗(N+M)

[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]
(V †U †)

⊗(N+M)

=
∑

J

Ph,k(J |c)
IλJ

ω
(d)
λJ

⊗ |Jh,k〉〈Jh,k| , (4.53)

as stated.

If one restricts the attention to pµ,ν,λ, there is still an interesting class of quantities that
can be estimated. Indeed, we already know that µ and ν converge to the spectra of
respectively ρ and σ. Instead, if h = pn and k = (1−p)n, λ converges to the spectrum of
pρ+ (1− p)σ when n→∞. An implicit argument for this fact is contained in Matthias
Christandl’s thesis [Chr06]. Here we give a tail bound for the estimate, for the more
general case of convex combinations of an arbitrary number of states.

We define

ρ̄ :=

(
m∑

i=1

kiρi
n

)
, σ :=

m⊗

i=1

ρ⊗kii (4.54)

with the constraint n =
∑m

i=1 ki.

Global weak Schur sampling applied to σ gives a partition λ with probability
pλ({ρi, ki}) := tr

[
Πλ
⊗m

i=1 ρ
⊗ki
i

]
. We find that the estimate λ̄ := λ

n converges to the

spectrum of
∑m

i=1
kiρi
n , which we indicate as s({ρi, ki}):

Theorem 4.2.7 (Spectral estimation of a convex combination of states: tail
bound). The probability distribution of the random variable λ̄ obtained by weak Schur
sampling on

⊗m
i=1 ρ

⊗ki
i satisfies

P (D(λ̄/n||s({ρi, ki})) > ε) :=
∑

λ:D(λ̄/n||s({ρi,ki}))>ε

pλ({ρi, ki}) (4.55)

≤ (n+ 1)d(d−1)/2+m exp(−εn) (4.56)
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In particular, with O((d2 + m)/ε2) log
(
(d2 +m)/ε

)
log(1/δ)) copies of ρ the estimate λ̄

obtained from weak Schur sampling satisfies D(λ̄/n||s({ρi, ki})) ≤ ε with probability at
least 1− δ. If all the states have rank less than r, one can substitute d with rm.

Proof. The following matrix inequality holds for any probability distribution p on [m]

with associated vector ~p, expanding the product
(

m∑

i=1

kiρi
n

)⊗n
≥ B(n, ~p,~k)

1

n!

∑

τ∈Sn

sn(τ)

(
m⊗

i=1

ρ⊗kii

)
sn(τ)† (4.57)

where [CT05]

B(n, ~p,~k) :=

(
n

k1, k2, ...., km

) l∏

i=1

pkii ≥
1

(n+ 1)m
e−nD(~k/n||~p), (4.58)

so that we have

B(n,
~k

n
,~k) ≥ 1

(n+ 1)m
. (4.59)

It follows that
(

m∑

i=1

kiρi
n

)⊗n
≥ 1

(n+ 1)m
1

n!

∑

τ∈Sn

sn(τ)

(
m⊗

i=1

ρ⊗kii

)
sn(τ)†. (4.60)

Finally, we have that

pλ({ρi, ki}) = tr

[
Πλ

m⊗

i=1

ρ⊗kii

]
= tr

[
Πλ

1

n!

∑

τ∈Sn

sn(τ)

(
m⊗

i=1

ρ⊗kii

)
sn(τ)†

]
=

≤ (n+ 1)m tr

[
Πλ

(
m∑

i=1

kiρi
n

)⊗n]

= (n+ 1)mSWn
ρ̄ (λ). (4.61)

and the inequality of the theorem follow by combining the last inequality with Theorem
4.2.4.

A class of closeness measurements obtainable from the spectra of states and of their
convex combination are the Jensen divergences [BR82; BH09], which include the Jensen-
Shannon [Lin91; MLP05] divergence QJS(ρ, σ) := S(ρ+σ

2 ) − 1
2(S(ρ) + S(σ)) and the

Hilbert-Schmidt distance tr
[
(ρ− σ)2

]
= − tr

[
(ρ+ σ)2

]
+2 tr

[
ρ2
]
+2 tr

[
σ2
]
as a particular

case. These divergences possess metric properties [ES03; Lam+08; BH09]. The fact that
Jensen-Shannon divergence and its Tsallis variation for order α ∈ (0, 2] are square of
metrics is a recent breakthrough [Sra21; Vir21]. The Jensen-Shannon divergence has
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a special place, as it is a special case of the Holevo quantity, therefore it also has an
operational significance. The possibility to estimate − tr

[
(
∑

i piρi)
2
]

+
∑

i pi tr
[
(ρi)

2
]

with weak Schur sampling, from copies of states ρi will be central in the construction of
the measurement in Chapter 7.

4.3 Pauli channels

In this section we concentrate on an important subclass of random unitary channels:
Pauli channels, which describe random bit flip and phase flip errors in qubits. Explicit
error correcting codes are devised to be able to correct Pauli errors [Got10]. We also
consider the generalization of Pauli channels for qudits. As we mentioned in Chapter 3,
these channels exhibit non-additive quantum and private information, and it remains
an important open problem to characterize their quantum and private capacities. How-
ever, their particular symmetries make many computations accessible, and we will take
advantage of this fact to find refined upper bounds on their quantum and private ca-
pacities in Chapter 8. The following treatment of generalized Pauli channels follows the
phase-space description of finite dimensional quantum mechanics [Woo87; App05; Gro06;
GE08; dBe13; GNW21].

4.3.1 Qubit Pauli group

The Pauli group of one qubit has the following elements:

P := {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}, (4.62)

where

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
,

and the product is given by the matrix multiplication. Note that all the elements of
P are both unitary and hermitian. From P, one can construct the Pauli group of n
qubits obtained as the tensor product of n copies of P, Pn := {⊗nj=1ωj |ωj ∈ P}. For
our purposes it suffices to consider Pn := Pn/Cn, the quotient of the Pauli group with
its center Cn := {±I⊗n,±iI⊗n}. Each element of Pn can be identified by a pair of n
bit-strings x = (q, p) according to the definition

P(q,p) := i−p·q ⊗nj=1 Z
pjXqj . (4.63)

It is then immediate to see that for any two x = (q, p), y = (q′, p′) we have PxPy =

(−1)〈x,y〉PyPx, where
〈x, y〉 = p · q′ − q · p′ mod 2 . (4.64)
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In particular, two Pauli unitaries either commute or anticommute. Two very useful
properties are

1

2n
Tr[Px] = δx,0,

1

2n

∑

(q,p)∈Z2n
2

P(q,p)ρP(q,p) =
I

2n
∀ρ ∈ Σ(C2n). (4.65)

4.3.2 Qudit Pauli group

The generalization to qudits is straightforward. The generalization of the Pauli group

for one qudit, is the groupWd generated by τI (τ := e
(d2+1)πi

d ), and the Weyl-Heisenberg
operators X,Z acting as

X |j〉 = |j + 1〉 mod d, Z |j〉 = ej
2πi
d |j〉 j = 0, ..., d− 1. (4.66)

In this case, these matrices are unitaries but not generally hermitian. For several qudits,
likewise we set Wn

d := {⊗nj=1ωj |ωj ∈ Wd}. The center of this group is still a set of
multiples of the identity Cnd = {τ jI⊗n : j = 0, ..., D − 1}, where D = d if d is odd and
D = 2d if d is even; we define Wn

d :=Wn
d /C

n
d . Each element of Wn

d can be identified by
a pair of n Dit-strings x = (q, p) ∈ Z2n

D according to the definition

W(q,p) := e−
(d2+1)πi

d
(p·q) ⊗nj=1 Z

pjXqj . (4.67)

The commutation relations in these case read

WxWy = e
2πi
d
〈x,y〉WyWx, (4.68)

where now
〈x, y〉 = p · q′ − q · p′ mod D. (4.69)

Moreover, for any x, z ∈ Z2n
D we have

Wx+dz = (−1)(d+1)〈x,z〉Wx, (4.70)

meaning that even when d is even we can restrict to x ∈ Z2n
d if we are interested in listing

all the Pauli unitary channels, as the Wx+d(1,1,...,1,1) will give the same unitary channel
of Wx.

As in the qubit case, we have the following important properties

1

dn
Tr[Wx] = δx,0,

1

dn

∑

x∈Z2n
d

PxρPx =
I

dn
∀ρ ∈ Σ(Cdn). (4.71)
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4.3.3 Pauli channels

Pauli channels are defined as convex combinations of Pauli unitaries, that is:

Φw[ρ] =
∑

x∈Z2n
d

wxWxρW
†
x , (4.72)

where now it suffices to sum over Z2n
d instead of Z2n

D because of Eq. (4.70), andw(x) = wx.
is a probability distribution over Z2n

d .

A crucial property of Pauli channels is that they commute with Pauli unitaries,

Φw[WxρW
†
x ] = WxΦw[ρ]W †x . (4.73)

An important Pauli channel on one qudit is the depolarizing channel, which is associated
with a probability distribution wp(x) = (0, ..., 0) = p

d2
+ δ0,x(1− p).

Φ(d)
p [ρ] := (1− d2 − 1

d2
p)ρ+

p

d2

∑

x∈Z2
d\{0}

WxρW
†
x

= (1− p)ρ+ p
I

d
. (4.74)

The depolarizing channel implements the mixture between the input signal and the com-
pletely mixed state.

4.4 Gaussian channels

In this section we introduce on Gaussian states and channels, highlighting on the group
theoretic structures that describe them. Physically, Gaussian states coincide with ther-
mal states of quadratic hamiltonians, which explain their importance in physics. In fact,
they are the simplest class of continuous variable states to produce in the lab [Ser17].
Gaussian channels are channels that preserve Gaussian states. They are an important
class of realistic noise models for electromagnetic waves in vacuum or fiber, with phase-
insensitive Gaussian channels having a particular importance in this regard. While the
classical capacity of phase-insensitive channels can be exactly computed [GHGP15], their
quantum and private capacities are still open. We will bound the latter in Chapter 8.
We follow [Ser17] in the presentation of Gaussian states and channels and [Hol19] for the
properties of Gaussian channels for communication.
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4.4.1 Displacements

In this section we consider infinite dimensional Hilbert spaces L2(Rm), together with the
representation of the Lie algebra of canonical commutation relations:

[x̂i, p̂j ] = iδij [x̂i, x̂j ] = 0 [p̂i, p̂j ] = 0 (4.75)

where we set ~ = 1, and, as we will do when denoting non-constant operators on L2(Rm),
we used the hat notation. This space describes m modes of the radiation field. The
position and momentum operators, or quadratures, can be grouped into a vector

r̂ :=




x̂1

p̂1
...
x̂m
p̂m




(4.76)

For which the commutation relations become

[r̂i, r̂j ] = iΩijI, (4.77)

where

Ω :=
m⊕

i=1

(
0 1

−1 0

)
. (4.78)

The operators r̂ generate the displacements

D̂(s) = exp
(

isTΩr̂
)
, s ∈ R2m, (4.79)

which act on r̂ by shifts:

D̂(s)r̂D̂(s)† = r̂ + s (4.80)

The displacements are a subgroup of the unitary operators on L2(Rm), satisfying

D̂(s1 + s2) = D̂(s1)D̂(s2)eisT1Ωs2/2. (4.81)

and
tr
[
D̂(s1)D̂(−s2)

]
= δ(s1 − s2). (4.82)
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In fact, the set of displacements constitutes an orthogonal complete operator set and
allows the definition of the characteristic function of a trace class operator ρ̂ ∈ Σ(L2(Rm))

as [Ser17]

φρ̂(s) := tr
[
ρ̂D̂(−s)

]
, (4.83)

which uniquely identifies ρ̂.

4.4.2 Gaussian states

Gaussian states are those states whose characteristic function is Gaussian, i.e.

φρ̂(s) = exp

(
−1

4
sTΩTV Ωs + isTΩr̄

)
, (4.84)

with
r̄ := tr[r̂ρ̂] (4.85)

and (defining {A,B} := AB +BA

σ := tr
[
{(r̂− r̄), (r̂− r̄)T}ρ̂

]
(4.86)

being the associated statistical mean vector and covariance matrix respectively. It can
be shown that

σ ≥ ±iΩ, σ > 0. (4.87)

The creation and annihilation operators â†i , âi are defined as

âi =
x̂i + p̂i√

2
, (4.88)

They satisfy [a†i , aj ] = 1 and can be grouped as vector

â :=



â1
...
âm


 . (4.89)

On L2(R), the number operator is defined as

n̂ := â†â, (4.90)
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n̂ ≥ 0 and its spectrum is N, with multiplicities 1. The eigenvectors |n〉 form the Fock
basis. The expectation value n̂ is called the energy, and a thermal state of energy N is
defined as

ρ̂N :=
1

N + 1

n∑

i=1

(
N

N + 1

)i
|i〉 〈i| (4.91)

On L2(Rm), we can define

n̂i := â†iai (4.92)

and the total number operator is defined as:

N̂ :=
m∑

1=1

â†iai =
m∑

1=1

n̂i. (4.93)

N̂ ≥ 0. The eigenvectors of N̂ can be labeled as {|n1, ..., nm〉} and they are also called
Fock basis. We call m-mode thermal the states of L2(Rm) states that can be written as
product of thermal states of L2(R).

Writing the position and momentum operators in terms of the creation and annihilation
operators, we can give an alternative parametrization of displacement operators, D(~α) =

e
∑
i αai−α∗i a

†
i , where ~α is a vector of complex variables. An important subset of Gaussian

states are coherent states, which are obtained applying displacements to the vacuum
state:

|~α〉 = D(~α) |0〉 . (4.94)

Note that |~α〉 are always product states. Coherent states form a resolution of the iden-
tity ∫

d2~α

πm
|~α〉〈~α| = I, (4.95)

therefore they also define a POVM, which is called heterodyne measurement.

4.4.3 Symplectic transformations and the structure of Gaussian
states

Gaussian channels are channels that map Gaussian states to Gaussian states, and Gaus-
sian unitaries are unitary Gaussian channels, which form a subgroup of the unitary
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operators on L2(Rm). Gaussian unitary also include a representation of the symplectic
group Sp(2m,R), defined as the 2m× 2m invertible matrices S that satisfy

SΩST = Ω. (4.96)

The operators ÛS act on the quadrature implementing S on the quadratures

ÛS r̂Û
†
S = Sr̂, (4.97)

and we call them symplectic unitaries.

They act on displacements as

ÛSD̂(r)Û †S = D(Sr̂). (4.98)

The orthogonal symplectic matrices are a subgroup of Sp(2m,R) which is isomorphic to
U(m). They are represented by energy-preserving Gaussian unitaries, i.e. commuting
with N̂ . An important U(1) subgroup of energy preserving unitary are those of the form
Û(θ) = e−iθN̂ , generated by N̂ . They act on r̂ as

Û(θ)r̂Û(θ)† = R(θ)⊗mr̂, (4.99)

where

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
. (4.100)

A building block for non-energy preserving Gaussian unitaries are single mode squeezing,
defined as

Ŝ(ri) = exp
(ri

2
(â2
i − â†2i )

)
, (4.101)

and acting non-trivially only on the i-th quadrature operators as

Ŝ(ri)x̂iŜ(ri)
† = eri x̂i Ŝ(ri)p̂iŜ(ri)

† = e−ri p̂i (4.102)

for ri ∈ R. It can be proved that every symplectic unitary can be written as ÛS =

ÛuŜ(r1)...Ŝ(rm)Ûv for some u, v ∈ U(m) and ri ∈ R, and that any Gaussian unitary can
be written as a composition of a symplectic unitary and a displacement.
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Moreover, any Gaussian state can be generated applying Gaussian unitaries to a suitable
m-mode thermal state. The Gaussian unitary can be obtained by the symplectic diago-
nalization of the covariance matrix of the state, which is always possible by Williamson’s
theorem [Ser17]:

Theorem 4.4.1 (Williamson’s theorem). Let M be a 2n×2n strictly positive matrix.
There exists S ∈ Sp(2n,R) such that

SMST = D D = (λ1, λ1, λ2, λ2, ..., λn, λn) (4.103)

with di > 0 for each i.

(λ1, ..., λn) are the symplectic eigenvalues ofM , and they are also equal to the eigenvalues
of iΩM , which appear in pairs with positive and negative sign. From Williamson’s
theorem, the symplectic eigenvalues of σ determine the spectrum of the associated state.
In particular, the spectrum of a gaussian state always coincides with the spectrum of
a product of thermal states, and the von Neumann entropy can be computed from the
symplectic eigenvalues of σ as:

S(ρ̂) =
m∑

i=1

h(λi) h(x) :=
x+ 1

2
log

x+ 1

2
− x− 1

2
log

x− 1

2
. (4.104)

We conclude the section by defining gauge-invariant states.

Definition 4.4.1 (Gauge-invariant states). Gauge-invariant states are states which
satisfy

Û(θ)ρ̂Û(θ)† = ρ̂. (4.105)

Consequently, their first and second moments satisfy

r̄ = 0 (4.106)

R(θ)⊗mσR(θ)⊗m† = σ. (4.107)

The non-Gaussian channel

Φm[ρ̂] :=
1

2π

∫ 2π

0
dθ Û(θ)ρ̂Û(θ)†, (4.108)

outputs gauge-invariant states.

4.4.4 Gaussian channels

Since coherent states are a resolution of the identity and they are Gaussian states, a
Gaussian channel is identified by its action on Gaussian states. This action can be
expressed as an action on the first and second moments. The following characterization
can be proved [Ser17]:
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Theorem 4.4.2 (Classification of Gaussian channels). Any Gaussian channel N
from m modes to m modes acts on the first and second moments of Gaussian states as

r̄→ X r̄ + s

σ → XσXT + Y (4.109)

with X,Y real m×m matrices, s real vector of m real variables, and

Y + iΩ ≥ iXΩXT. (4.110)

The action on a general state can then be expressed on the characteristic function as

χρ̂(s)→ χN [ρ̂](s) = χρ̂(Ω
TXΩs)e−

1
4
sTΩTY Ωs. (4.111)

An important subset of Gaussian channels are those having a peculiar symmetry prop-
erty:

N [e−iθN̂ρeiθN̂ ] = e−iθN̂N [ρ]eiθN̂ , (4.112)

which is called gauge-covariance [Hol19]. We will also refer to these channels as phase-
insensitive channels. For these channels the Holevo information is additive [Gio+14;
Hol19]. However, no such simplification is known for the coherent information. In partic-
ular, the quantum capacity of a class of single-mode phase-insensitive Gaussian channels
describing attenuation, amplification and mixing with environmental noise is not known.
We now introduce these channels, and we will give bounds on their quantum capacities
in Chapter 8.

Thermal attenuators Eη,N , describe attenuation of signals, according to a parameter
0 ≤ η ≤ 1, in presence of a thermal environment of average photon number N ≥ 0. The
action on Gaussian states is defined by the mapping [CGH06]

r̄
Eη,N−−−→ r̄′ =

√
ηr̄ , (4.113)

σ
Eη,N−−−→ σ′ = ησ + (1− η)(2N + 1)I2 , (4.114)

with I2 being the two dimensional identity. The physical interpretation of the channel is
appreciated via the Stinespring representation [HG12; Wee+12; Ser17] which describes
this transformation as a beam splitter coupling the system with an extra enviromental
mode E initialized in a thermal (Gaussian) state, purified as a two mode squeezed state.
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Indeed, labelling with A the system mode, and indicating with ρ̂A its input state we can
write

Eη,N [ρ̂A] := TrE [Ûη(ρ̂A ⊗ (τ̂N )E)Û †η ]. (4.115)

In this expression Ûη (0 ≤ η ≤ 1) is an energy preserving unitary two-mode unitary
operator that transforms r̂ according to

Ûη r̂Û
†
η =

( √
ηI2

√
1− ηI2

−√1− ηI2
√
ηI2

)
r̂. (4.116)

The thermal state τ̂N entering in (4.115) is purified by a two-mode squeezed state |τN 〉,
which has

r̄|τN 〉 = (0, 0, 0, 0)

σ|τN 〉 =

(
(2N + 1)I2 2

√
N(N + 1)σ3

2
√
N(N + 1)σ3 (2N + 1)I2

)
, (4.117)

with

σ3 =

(
1 0

0 −1

)
. (4.118)

We shall also consider single-mode thermal amplifiers Φg,N . In this case the input state
interacts with a thermal bath through a two mode squeezing operator with parameter
g ≥ 1 inducing the mapping

r̄
Φg,N−−−→ r̄′ =

√
gr̄ , (4.119)

σ
Φg,N−−−→ σ′ = gσ + (g − 1)(2N + 1)I2 . (4.120)

In this case we have the following physical representation

Φg,N [ρ̂A] := TrE [Ŝg(ρ̂A ⊗ (τ̂N )E)Ŝ†g], (4.121)

where Ŝk is defined by

Ŝg r̂Ŝ
†
g =

( √
gI2

√
g − 1σ3√

g − 1σ3
√
gI2

)
r̂. (4.122)

Finally, the single-mode additive gaussian noise channel Λβ can be expressed as

Λβ[ρ̂] :=
β

2π

∫

R2

dre−
β
2
rTrD̂(r)ρ̂D̂(r)†, (4.123)
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where β > 0. The action on first and second moments is

r̄
Λβ−−→ r̄′ = r̄ , (4.124)

σ
Λβ−−→ σ′ = σ + 2I2/β , (4.125)

from which we understand the name of this channel: it adds uniform noise to the
state, with an intensity proportional to 1/β, and it is the quantum counterpart of white
noise.

Additive Gaussian noise is an example of classical mixing channels, [Ser17], characterized
as follows. For any n×n square matrix Y ≥ 0 with eigenvalues λ1, ..., λn, let us indicate
the support of Y as S(Y ), det+ Y =

∏
i:λi>0 λi, and pseudoinverse of Y as Y 	1. Classical

mixing channels have the form:

ΛY [ρ̂] :=

∫

S(Y )
dr

e−rTY 	1r

√
π

dimS(Y )√
det+Y

D̂(r)ρ̂D̂(r)† . (4.126)

Channels of this type are Gaussian and the action on the first and second moments
is

m
ΛY−−→m′ = m , V

ΛY−−→ V ′ = V + Y . (4.127)

We will need the following characterization of the coherent information of degradable
Gaussian channels, following Propositions 10.27 and 12.40 of [Hol19]

Theorem 4.4.3 (Coherent information of degradable Gaussian channels). For
a degradable Gaussian channel N , N c = Γ ◦ N , with Γ a Gaussian channel, Gaussian
states maximize the coherent information Ic(N , ρ̂) among states with fixed first and second
moments. In particular, the coherent information is maximized on Gaussian states. If N
is phase-insensitive, the coherent information is maximized on gauge-invariant Gaussian
states.

The last statement of the theorem is a direct consequence of the concavity of coherent
information, Theorem 3.3.3. Indeed, for a phase-covariant degradable channel

Ic(N ,Φm[ρ̂]) ≥ 1

2π

∫ 2π

0
dθIc(N , Û(θ)ρ̂Û(θ)) = Ic(N , ρ̂), (4.128)

the inequality due to concavity and the equality due to phase covariance, simply writing
Ic(N , ρ̂) = S(N [ρ̂])− S(N ⊗ I[|ρ〉〈ρ|]), where |ρ〉 is a purification of ρ̂. This means that
we can maximize among gauge-invariant states, and therefore gauge-invariant Gaussian
states by the first part of Theorem 4.4.3. Moreover, a more general formulation of gauge-
covariance is sufficient to have the equality, and we will need it in Chapter 8:
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Definition 4.4.2 (Generalized gauge-covariance). A channel from m modes to m′

modes has the generalized gauge-covariance property if for any θ

N [Û(θ)ρ̂Û(θ)†] = Û ′(θ)N [ρ̂]Û ′(θ)† (4.129)

for some unitary operators Û ′(θ).

From the same argument, degradable Gaussian channels which have generalized gauge-
covariance have coherent information maximized on gauge-invariant Gaussian states.
For channels of one mode input, gauge-invariant states coincide with thermal states.
However, we need another step to perform the maximization over the energy of the
thermal states. This actually follows from a very basic property of Gaussian channels,
which can be immediately obtained from the characterization of Theorem 4.4.2:

N [D̂(s)ρ̂D̂(s)†] = D̂(Xs)N [ρ̂]D̂(Xs)†, (4.130)

for some X real matrix. Using concavity and unitary invariance, and the expression
Eq. 4.123 for the additive noise channel, we obtain

Ic(N , ρ̂, ) ≤ Ic(N ,Λβ[ρ̂]). (4.131)

Therefore, since additive noise channels increase arbitrarily the energy of the input state
and preserve gauge-invariant states, the coherent information of the channel can be eval-
uated in the infinite energy limit.



Chapter 5

Learning machines for quantum
state discrimination

This chapter is largely based on:

• Marco Fanizza, Andrea Mari, and Vittorio Giovannetti. “Optimal Universal Learn-
ing Machines for Quantum State Discrimination”. In: IEEE Transactions on In-
formation Theory 65.9 (2019), pp. 5931–5944. doi: 10.1109/TIT.2019.2916646.
arXiv: 1805.03477.

5.1 Introduction

In this chapter we compute optimal probabilities of error for several scenarios of pro-
grammable state discrimination [BH05], a particular setting of the quantum state dis-
crimination task recalled in Chapter 2. As in the binary discrimination problem, we
want to correctly classify a quantum state which is known to be initialized in one of two
possible states. However, we assume that this task should be performed by a quantum
machine which does not have at its disposal a complete classical description of the two
template states, but it has access to n states prepared in the first template state and
by m more states prepared in the second template state. The problem has been stud-
ied in both the unambiguous [FDF02; FD04; DB02; BH05; HHH05b; BFH06; ZYQ06;
HB07; HB08; Sed+07; Sed+09; Bar+08; Sen+10; Col12; Zho14], and minimum error
setting [HHH05a; GK10; Sen+10; AH11; Sen+12], as well as discrimination with an
error margin [Sen+13]. We focus on the the minimum error case, extending previous
results in a variety of scenarios. In the minimum error case, for large n and m one ex-
pects to recover the optimal probability of error for binary state discrimination, given by
the Holevo-Helstrom theorem, Eq. (2.6). Therefore, the interest is to evaluate finite size
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correction, when n and m are finite.

Programmable state discrimination attracted a renewed interest, as it represents a gen-
uine instance of supervised quantum machine learning [DB18]. Indeed, machine learning
(ML) studies how to instruct a computer to solve a specific task by feeding it with a
collection of training data from which it could learn how to proceed. This approach
finds applications in a variety of practical pattern recognition, decision and clustering
problems where a definite classification of the various alternatives are not directly acces-
sible [Vap98; SSBD13; LBH15]. There is a vast effort in trying to understand if quantum
computer can be useful for classical machine learning tasks, and conversely to use classi-
cal machine learning algorithms for quantum problems, which we do not report here (see
for example the reviews [Wit14; SSP14; Bia+17; Cil+17; DB18]). However, the problem
we address in Chapter 6 is partially motivated by improving a quantum estimation sub-
routine of several proposed quantum algorithms for classical machine learning. Here we
concentrate on a purely quantum generalization of machine learning tasks, which take
quantum inputs as resources to perform some quantum task [ABG06]. Other examples
of this paradigm are quantum template matching [SCJ01; SC02], learning how to per-
form a unitary transformation [Bis+10; SBZ19; MC19], change point detection [AH11;
Sen+16; SCMT17; SMVMT18], programmable unitary discrimination [Hil+10; SSM18;
SSM21], unsupervised classification of quantum states [Sen+19]. An interesting question
which is brought up by these works is whether optimal strategies admit a semiclassical
separation with a learning phase which measures part of the data (e.g. a training set)
and outputs a candidate operation to apply on the remaining data (e.g. a test set). This
is not the most general strategy, but can be optimal in some scenarios [Bis+10; Sen+12;
MSW16].

Our analysis can be framed in the context of parameter estimation of covariant families,
for which invariant/covariant measurement are optimal, and the optimal measurement
in the worst case scenario can be also determined optimizing a Bayesian cost (see The-
orems 4.2.1, 4.2.2). Indeed, we directly address the problem in the Bayesian scenario,
giving the agent a prior distribution of the template states which is invariant under the
action of the same unitary operator on both states. We instead assume that some infor-
mation on the purities, on the distribution of the purities, and on the distance between
the states are given. Note that these are all unitarily invariant properties. These sce-
narios naturally emerge when, for instance, the training and the target data are affected
by some unavoidable deteriorating processes which the agent is aware of, or when the
different templates are affected by uncertainties arising from the absence of a common,
shared reference frame [BRS07].

The chapter has the following structure: the notation, the model and the results are
introduced in Sec. 5.2. We derive the general form of optimal measurement in Sec. 5.3,
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while our results are explicitly derived in three dedicated subsections. Specifically in
Sec. 5.3.1 we study the case of an optimal universal machines which is trained to dis-
criminate between two qubit density matrices of fixed but different purities. In Sec. 5.3.2
instead we focus on the case where the training data are two generic (possibly) mixed
quantum systems. In Sec. 5.3.3 we discuss the scenario where the training data are pure
with fixed relative overlap, but otherwise unknown, and the results of this analysis are
valid for a generic dimension. Finally in Sec. 5.3.4 we compare the optimal machines that
leads to the optimal probability thresholds for the three scenarios, commenting about
their compatibility. Sec. 5.4 presents an implementation of optimal machines obtained
by exploiting the QISKit software development kit [Abr+19].

5.2 The model

In a classical supervised learning classification problem a training set of labelled data
is provided to the machine, and the machine produces a classifier which can be used to
predict the label of new unlabelled data. In a probabilistic setting one can assume that
the dataset, consisting of pairs (x, y) of data x ∈ X and labels y ∈ Y is sampled with
a probability distribution P : X × Y → [0, 1]. A classifier is a labelling rule, which is
not necessarily deterministic, which obeys some conditional distribution p(y|x). We are
interested in minimizing the average case probability of error: a good learning algorithm
which has access to samples from P should obtain a classifier with a misclassification
probability close to the optimal, as the training dataset becomes large, and with the
fewest assumptions on the distribution P . The assumptions on P can also be described
probabilistically as a prior probability distribution G over the possible P . Given this prior
G, one can say that an algorithm is optimal for a training set of fixed size if it attains the
lowest probability on average. This average is done over all the possible distributions P ,
assuming they are distributed according to G. A straightforward way to generalise clas-
sical probabilistic task is to substitute probability distributions with quantum states: in
the problem considered in this chapter, the conditional probabilities P (X|Y ) are replaced
with quantum states, distributed according to a classical prior.

In the general case considered in the literature, the agent is provided with n1 copies of
ρ1, n2 copies of ρ2, m copies of the test state. Calling A the n d-level systems initialized
in ρ1, B the m d-level system initialized in ρ2, and X the system of the state to classify,
we have two possible alternatives:

• ρX = ρ1, τ
n1,n2,m
1 := ρ⊗n1

1 A ⊗ ρ⊗m1 X ⊗ ρ
⊗n2
2 B,

• ρX = ρ2, τ
n1,n2,m
2 := ρ⊗n1

1 A ⊗ ρ⊗m2 X ⊗ ρ
⊗n2
2 B.

We focus our attention to the case n1 = n2, and m = 1 with one copy of the quantum
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state to be tested available. Moreover, the state can be initialized in one of the two
alternatives ρ1 and ρ2 with equal probability 1/2. We will thus avoid writing superscripts
on τn1,n2,m

1/2 .

Chosen a two-outcome POVMM≡ {E1, E2} that acts globally on the full system AXB,
the average probability of error reads:

P (n)
err =

∫
dµ(ρ1, ρ2)

Tr[τ1E2] + Tr[τ2E1]

2
, (5.1)

where Tr[τiEj ] is the probability of finding outcome i when the state is in the j-th
configuration, while dµ(ρ1, ρ2) is a probability measure that gauges the initial ignorance
of the agent about ρ1 and ρ2. Exploiting then the completeness relation ofM this can
be finally recast into

P (n)
err =

1

2
− 1

4
Tr[Θ(E1 − E2)] , (5.2)

where Θ is the trace-null, Hermitian operator

Θ = α(n) − β(n) , (5.3)

given by the difference between the following density matrices of AXB,

α(n) ≡
∫
dµ(ρ1, ρ2)ρ⊗n1 A ⊗ ρ1X ⊗ ρ⊗n2 B,

β(n) ≡
∫
dµ(ρ1, ρ2)ρ⊗n1 A ⊗ ρ2X ⊗ ρ⊗n2 B. (5.4)

The Holevo-Helstrom theorem, Eq. (2.6) applies to this minimization problem by seeing it
as a binary state discrimination between two average states α(n) and β(n). The minimum
in Eq. (5.2) can be obtained by choosing an optimal POVMM which has components E1,
E2 respectively projecting on the positive and the negative eigenspaces of Θ, giving:

P
(n)
err,min =

1

2
− 1

4
‖Θ‖1 . (5.5)

Some general properties of P (n)
err,min can be determined by simple arguments. First of

all since the agent can always discard part of the ancillary states before attempting to
identify Q, by data processing, for all possible choices of the measure dµ(ρ1, ρ2), P (n)

err,min

has to fulfil the inequality

P
(n)
err,min ≤

1

2
− 1

4
‖
∫
dµ(ρ1, ρ2)(ρ1 − ρ2)‖1 , (5.6)
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and being a decreasing function of n, i.e.

P
(n)
err,min ≥ P

(n+1)
err,min . (5.7)

Furthermore, by exploiting the convexity of the trace-norm, the following lower bound
can be established

P
(n)
err,min ≥

1

2
− 1

4

∫
dµ(ρ1, ρ2)‖ρ1 − ρ2‖1 =: P̄H , (5.8)

for all n integers. The term on the right-hand-side of this inequality corresponds to
the average Helstrom error probability P̄H , i.e. the average minimum error probability
obtainable with a full classical description of the template states: under this condition in
fact, for each couple of density matrices ρ1 and ρ2, the agent can taylor a specific POVM
on X that it is optimized to distinguish them. Invoking a full tomographic reconstruction
of ρ1 and ρ2 (assuming ρ1 and ρ2 are states of a finite-dimensional Hilbert space), the
gap between P (n)

err,min and P̄H (optimal excess risk function [Sen+10]), can be shown to
nullify in the asymptotic regime n→∞, i.e.

lim
n→∞

P
(n)
err,min =

1

2
− 1

4

∫
dµ(ρ1, ρ2)‖ρ1 − ρ2‖1. (5.9)

Apart from the above results explicit expressions for P (n)
err,min are known only for a limited

set of configurations. In ref. [HHH05a] the authors focus on the case where both ρ1 and
ρ2 are pure states of a finite dimensional Hilbert space, extracted independently from the
Haar measure, and give the solution of the optimal probability of error as a finite sum.
In [Sen+10], the authors provide the formal solution for the minimum error case under
the assumption that ρ1 and ρ2 are qubit density matrices having the same assigned purity,
and under several priors on the purity. They also compute the optimal probability of
error for pure random qubit states, for arbitrary m, n1, n2. They compute several limits
and asymptotic expansions of the probability of error. For qubit mixed states, m = 1,
n1 = n2 = n→∞, they provide an asymptotic expansion of the error probability at order
O( 1

n). For pure qubit states, they provide unambiguous and minimum error probabilities
in the limits m → ∞, n1 = n2 fixed, an asymptotic expansion of the minimum error
probabilities form fixed, n1 = n2 = n→∞ at O( 1

n) , and an asymptotic expansion of the
minimum error probabilities for m = n1 = n2 = n → ∞, at order O( 1

n). In [GK10] the
optimal performances for qubit states of separable strategies, where the training data are
used to estimate a candidate POVM, is obtained with the formalism of local asymptotic
normality. [Sen+12] shows that an optimal strategy for the case of pure qubits n1 = n2,
m = 1 is of the separable form, and that separable POVMs are asymptotically optimal
for mixed qubits. It is not clear if these results survive for higher dimensional models
such as the one we consider for pure states. The case of pure states in dimension d with
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arbitrary n1, n2, m and fixed overlap has been formally solved in [AH11], under the name
of change point problem. In this paper the authors also evaluate the error exponent of
the optimal probability of error in the limit n1 = n2 = αm→∞, where α > 0 is a fixed
proportionality constant.

Our contribution, in the settingm = 1, n1 = n2 = n→∞, establishes further asymptotic
expansions of P (n)

err,min at large n. We do not have a rigorous estimation of the remainder
terms in the asymptotic expansions, but we can verify that the proposed expansions are
numerically accurate.

Specifically, we consider the following cases:

i) ρ1 and ρ2 qubit states having different assigned purities but being otherwise arbi-
trary;

ii) ρ1 and ρ2 being completely arbitrary (not necessarily pure) qubit states;

iii) ρ1 and ρ2 being arbitrary pure qudit states having assigned overlap.

Let us fix some notation, before stating the results. Adopting the Bloch sphere repre-
sentation we express the template states ρ1 and ρ2 in terms of their associated Bloch
vectors r1 and r2 via the mapping

ρ1 =
I + r1 · σ

2
, ρ2 =

I + r2 · σ
2

, (5.10)

with σ = (σx, σy, σz) being the Pauli vector. Any pair of qubit states can then be written
as

ρ1 = U1
I + r′1σz

2
U †1 , ρ2 = U2

I + r′2σz
2

U †2 , (5.11)

for some U1, U2 ∈ SU(2). Our prior distribution µ(ρ1, ρ2) can then be written as a
distribution over U1, U2, r′1, r′2. Our different scenarios are distinguished by the prior
distribution. As usual, we denote dU the Haar measure of SU(2). dµ(r′) = 3r′2dr′ is the
hard sphere prior, while δ(r′ − r) constrains the purity to a fixed value and δ(U − U0)

constrains U to be U0. In case iii) we use the following parametrization for pairs of states
at fixed overlap: defining U0 = exp(−iσy(π − θ)/2) we have that any pair of states
U1 |0〉 and U1U0 |0〉 with U1 unitary have overlap | 〈0|U0 |0〉 |2 = sin2 θ/2 and that any
pair of states |ψ1〉〈ψ1| and |ψ2〉〈ψ2| with overlap | 〈ψ1|ψ2〉 |2 = sin2 θ/2 can be written as
|ψ1〉〈ψ1| = U1 |0〉〈0|U †1 and |ψ2〉〈ψ2| = U1U0 |0〉〈0|U †0U †1 for some unitary U1.

We establish the following results:

Proposition 5.2.1 (Scenario i)). For a prior distribution

dµ(ρ1, ρ2) = dU1dU2δ(r
′
1 − r1)δ(r′2 − r2)dr′1dr

′
2, (5.12)
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the minimum error probability is

P
(n�1)
err,min =

1

2
− 1

24

(r1 + r2)3 − |r1 − r2|3
r1r2

+
5

24n

(r1 + r2)3 + |r1 − r2|3
r2

1r
2
2

− 1

24n

(r1 + r2)5 − |r1 − r2|5
r3

1r
3
2

+ o

(
1

n

)
. (5.13)

Proposition 5.2.2 (Scenario ii)). For a prior distribution

dµ(ρ1, ρ2) = dU1dU2dµ(r′1)dµ(r′2)dr′1dr
′
2, (5.14)

the minimum error probability is

P
(n�1)
err,min =

17

70
+

18

35n
+ o

(
1

n

)
. (5.15)

Proposition 5.2.3 (Scenario iii)). For a prior distribution

dµ(ρ1, ρ2) = dU1δ(U2 − U1U0)δ(r′1 − 1)δ(r′2 − 1), U0 = exp(−iσy(π − θ)/2), (5.16)

the minimum error probability is

P
(n�1)
err,min,d =

1

2

(
1− | cos θ2 |

)
+ 3+cos θ

8
√

2
√

1+cos θ

1

n
+ 1−60 cos θ−5 cos 2θ

128
√

2(1+cos θ)3/2

1

n2
+ o

(
1

n2

)
.

The result is valid also for arbitrary finite dimension d, when dU1 is substituted by the
Haar measure of SU(d).

5.3 Symmetries of average states

We now set out to determine the eigenvalues {λ`}` of the operator Θ defined in Eq. (5.3),
in order to rewrite Eq. (5.5) as

P
(n)
err,min =

1

2

(
1−

∑

`

+
λ`

)
, (5.17)

the sum being restricted on the positive part of the spectrum. This derivation overlaps
with those in [HHH05a; Sen+10; AH11].

Since Θ = α(n) − β(n), we first focus on diagonalizing α(n) and β(n) exploiting their
symmetry properties. Then, by noticing the common symmetries of α(n) and β(n), one
can reduce the problem to a diagonalization of 2×2 matrices. This procedure is an explicit
derivation of the fact that we can choose an invariant measurement for minimizing an
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average case cost, as the family of states τ1 and τ2 are covariant with respect to the action
of SU(2)×Sn×Sn in the sense considered by Theorem 4.2.2. Indeed, the average states
α(n) and β(n), and therefore Θ, are invariant under the action of the same group:

• [Θ, s
(A)
n (τ)] = [Θ, s

(B)
n (τ)] = 0 for every s

(A)
n (τ), s

(B)
n (τ) qubit permutations acting

respectively on HA and HB.

• [Θ, U⊗2n+1] = 0 for every U ∈ SU(2).

By Schur’s lemma, Θ will be block diagonal according to the decomposition into copies
of irreducible representations of SU(2)× Sn × Sn.

By Schur-Weyl duality, reviewed in Sec. 4.2.2, restricting to d = 2, we can decompose
the Hilbert space of n qubits as follows

H =
⊕

n/2−bn/2c≤j≤n/2

(Uj ⊗ Vj,n), (5.18)

where Uj hosts an irreducible representation of SU(2) with total angular momentum j,
and Vj,n hosts an irreducible representation of Sn associated to the partition (n2 + j, n2 −
j, 0, ..., 0). The dimension of Uj is 2j + 1 and the dimension of Vj,n is

ω(j, n) =
n! (2j + 1)(

n−2j
2

)
!
(
n+2j

2 + 1
)

!
. (5.19)

The Hilbert space of the systems AXB can be thus decomposed as

HAXB =
⊕

s

⊕

t

UAs ⊗ UX1/2 ⊗ UBt ⊗ VAs,n ⊗ VBt,n, (5.20)

Where SU(2) acts non-trivially on UAs ⊗ UX1/2 ⊗ UBt , as a product of the associated irre-
ducible representations, the permutations of the qubits in system A act non-trivially on
VAs,n, and the permutations on qubits in system B act non-trivially on VBt,n.

Moreover, using the recoupling theory of SU(2), recalled in Sec. 4.1.5 we can couple
UAs ⊗ UX1/2 obtaining UAs ⊗ UX1/2 = UAXs+1/2

⊕UAXs−1/2, and coupling with UBt we obtain
a basis of UAs ⊗ UX1/2 ⊗ UBt =

⊕
q UAXBq ⊗ Cg(s,t,q), where g(s, t, q) are multiplicities to

determine, which can be either zero, one or two. A basis of the whole space can be
indexed as

{
∣∣s′ = s± 1/2, t; q,m

〉
i,k
} (5.21)
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where q and m are a labels for a basis of UAXBq : q is a total angular momentum label
and m is an eigenvalue for Jztot, ~J2

tot |s′ = s± 1/2, t; q,m〉 = q(q+1) |s′ = s± 1/2, t; q,m〉,
Jztot |s′ = s± 1/2, t; q,m〉 = m |s′ = s± 1/2, t; q,m〉. The label q span from ||t− s| − 1/2|
to t + s + 1/2, while m runs from q to −q. We stress that in the above construction,
and in the remainder of this section, it is implicit assumed that |s± 1/2, t; q,m〉i,k is null
whenever the parameters s, t and q do not fit the necessary angular momentum selection
rules. i, k are additional labels associated to two bases of VAs,n and VBt,n. This allows us
to identify four different scenarios:

a) q = s+ t+ 1
2 ;

b) q = t− s− 1
2 and t > s;

c) q = s− t− 1
2 and s > t;

d) all s, t, q fitting the selection rules which are not included in the previous cases.

In the first three cases, only one of the elements of the pairs {|s± 1/2, t; q,m〉} survives:
specifically the s + 1/2 element for a) and b), while the s − 1/2 element for c). This
establishes the multiplicities g(s, t, q), and a basis of the multiplicity space is indexed by
the allowed values of s± 1/2 and t at fixed q.

The symmetry under SU(2)× Sn × Sn forces Θ to be block diagonalized as

Θ =
⊕

q,s,t

IAXBq ⊗Θ(s,t,q) ⊗ IAs,n ⊗ IBt,n, (5.22)

where now IAs,n⊗IBt,n is the identity operator on V A
s,n⊗VBt,n, IAXBq is the identity operator

on UAXBq . The operator Θ(s,t,q) is thus acting on the multiplicity spaces Cg(s,t,q), which
have dimension at most 2. In cases a) and b) and c), Θ(s,t,q) is a 1 × 1 matrix, with
eigenvalues λ(n)

s,t,q that we can formally compute as

Θ
(s,t,q)
++ =i,k 〈s+ 1/2, t; q,m|Θ |s+ 1/2, t; q,m〉i,k , (5.23)

for the case cases a) and b), and

Θ
(s,t,q)
−− =i,k 〈s− 1/2, t; q,m|Θ |s− 1/2, t; q,m〉i,k , (5.24)

for the c) case. The corresponding multiplicity is determined instead by Eq. (5.22), and
it evaluates to

M
(n)
s,t,q = (2q + 1) ω(s, n) ω(t, n) . (5.25)

In the scenario d) instead both the elements of the couple {|s± 1/2, t; q,m〉} survive and
the symmetry of the problem forces Θ to be described by 2 × 2 block diagonal terms



Chapter 5. Learning machines for quantum state discrimination 79

Θ|s,t,q,mi,k of the form,

Θ|s,t,q,mi,k ≡
[

Θ
(s,t,q)
++ Θ

(s,t,q)
+−

Θ
(s,t,q)
−+ Θ

(s,t,q)
−−

]
, (5.26)

with Θ
(s,t,q)
++ and Θ

(s,t,q)
−− as in Eq. (5.23) and Eq. (5.24) and with

Θ
(s,t,q)
+− = [Θ

(s,t,q)
−+ ]∗ = (5.27)

i,k 〈s+ 1/2, t; q,m|Θ |s− 1/2, t; q,m〉i,k .

Accordingly we get a further set of eigenvalues identified with the functions

λ
(n)
s,t,q(±) =

(
Θ

(s,t,q)
−− +Θ

(s,t,q)
++

2

)
±
√(

Θ
(s,t,q)
−− −Θ

(s,t,q)
++

2

)2

+ |Θ(s,t,q)
+− |2 , (5.28)

again characterized by multiplicities M (n)
s,t,q defined as in Eq. (5.25). The corresponding

eigenvectors are instead provided by the superpositions

|ψ(±)
s,t;q,m〉i,k = A(s,t,q) |s+ 1/2, t; q,m〉i,k +B

(n)
s,t,q(±) |s− 1/2, t; q,m〉i,k ,

(5.29)

with amplitudes A(s,t,q) = Θ
(s,t,q)
+− and

Bs,t,q(±) =

(
Θ

(s,t,q)
−− −Θ

(s,t,q)
++

2

)
±
√(

Θ
(s,t,q)
−− −Θ

(s,t,q)
++

2

)2

+ |Θ(s,t,q)
+− |2 , (5.30)

which, for ease of notation we present in a non-normalized form.

5.3.1 Scenario i): mixed states with fixed purity

In this scenario we can write

ρ1 = U1
I + r1 · σ

2
U †1 , ρ2 = U2

I + r2 · σ
2

U †2 , (5.31)

where r1 ≡ |r1| and r2 ≡ |r2| are constant, and average over all possible orientations of
r1 and r2 with two independent copies of the Haar measure.

Accordingly we rewrite Eq. (5.4) as

α(n) =

∫
dU1

(
U1ρ1U

†
1

)⊗n+1
⊗
∫
dU2

(
U2ρ2U

†
2

)⊗n
, (5.32)

β(n) =

∫
dU1

(
U1ρ1U

†
1

)⊗n
⊗
∫
dU2

(
U2ρ2U

†
2

)⊗n+1
. (5.33)
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With this choice both α(n) and β(n), as well as their difference Θ, become explicitly
invariant under unitaries acting in the same way on each qubit, i.e. U⊗2n+1.

In addition of the invariance under U⊗2n+1, α(n) and β(n) are also invariant under sep-
arate rotations of partitions of the system, in particular AX/B for α(n) and A/XB for
β(n).

By Schur-Weyl duality, for ρ with Bloch vector of modulus r one has the identity
∫
dU
(
UρU †

)⊗n
=
⊕

j

f
(n)
j (r)Ij ⊗ Ij,n, (5.34)

where Ij is the identity opertor on Uj and Ij,n is the identity operator on Vj,n
We compute f (n)

j in Appendix A.2, obtaining

f
(n)
j (r) =

1

2j + 1

(
1− r2

4

)n
2
−j (1+r

2

)2j+1 −
(

1−r
2

)2j+1

r
, (5.35)

This allows us to cast Eq. (5.32) in the following form

α(n) =
⊕

s′,t

f
(n+1)
s′ (r1)f

(n)
t (r2)Is′

AX ⊗ ItB ⊗ Is,nAX ⊗ It,nB , (5.36)

where Is′AX⊗ItB⊗Is,nAX⊗It,nB is the identity operator on Us′AX⊗UtB⊗Vs,nAX⊗Vt,nB,
and Us′AX is the irreducible representations of dimension 2s′ + 1 in UA(s) ⊗ UX(1/2), with
s′ = s ± 1/2. Adopting the basis {|s′ = s± 1/2, t; q,m〉i,k}q,m, defined in Eq. (5.21) we
can then use Eq. (5.36) to decompose α(n) as a direct sum of independent contributions
acting on the subspaces H(s,t)

AiXBk
, i.e.

α(n) =
⊕

s,t

⊕

i,k

(
⊕

q,m

α(n)|s,t,q,mi,k ) , (5.37)

where, for each s, t, i and k we exploited the fact that each term further decompose into
a direct sum of either 1× 1 or 2× 2 blocks of the form

α(n)|s,t,q,mi,k = f
(n+1)
s+1/2(r1)f

(n)
t (r2) |s+ 1/2, t; q,m〉i,k 〈s+ 1/2, t; q,m|

+f
(n+1)
s−1/2(r1)f

(n)
t (r2) |s− 1/2, t; q,m〉i,k 〈s− 1/2, t; q,m| , (5.38)

where as already mentioned it is implicit assumed that the vectors |s± 1/2, t; q,m〉i,k
nullify whenever the parameters s, t and q do not fit the angular momentum selection
rules. In a similar fashion we have that

β(n) =
⊕

s,t′

f (n)
s (r1)f

(n+1)
t′ (r2)Is

A ⊗ It′XB ⊗ Is,nA ⊗ It′,nXB , (5.39)
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where IsA⊗It′XB⊗Is,nA⊗It′,nXB is the identity operator on UsA⊗Ut′XB⊗Vs,nA⊗Vt′,nXB,
and Ut′XB is the irreducible representations of dimension 2t′ + 1 in UX(1/2) ⊗ UB(t), with
t′ = t± 1/2. Again this yields the following decomposition

β(n) =
⊕

s,t

⊕

i,k

(⊕

q,m

β(n)|s,t,q,mi,k

)
, (5.40)

where now

β(n)|s,t,q,mi,k = f (n)
s (r1)f

(n+1)
t+1/2 (r2) |s, t+ 1/2; q,m〉i,k 〈s, t+ 1/2; q,m|

+f (n)
s (r1)f

(n+1)
t−1/2 (r2) |s, t− 1/2; q,m〉i,k 〈s, t− 1/2; q,m| . (5.41)

In this expression the elements

{
∣∣s, t′ = t± 1/2; q,m

〉
i,k
} , (5.42)

are obtained by coupling U1/2
X and UtB and, as usual, we assume they nullify whenever

s, t and q do not fulfil the necessary selection rules. These vectors form a new basis
connected with {|s′ = s± 1/2, t; q,m〉i,k} via a unitary transformation in the multiplicity
space Cg(s,t,q), expressed by the following four amplitude probabilities

C
(s,t,q)
++ ≡ i,k

〈
s+ 1

2 , t; q,m
∣∣s, t+ 1

2 ; q,m
〉
i,k

,

C
(s,t,q)
+− ≡ i,k

〈
s+ 1

2 , t; q,m
∣∣s, t− 1

2 ; q,m
〉
i,k

,

C
(s,t,q)
−+ ≡ i,k

〈
s− 1

2 , t; q,m
∣∣s, t+ 1

2 ; q,m
〉
i,k

,

C
(s,t,q)
−− ≡ i,k

〈
s− 1

2 , t; q,m
∣∣s, t− 1

2 ; q,m
〉
i,k

, , (5.43)

relating the two different recouplings Eq. (5.21) and Eq. (5.42) of the irreducible repre-
sentations s, t, 1

2 . This is exactly the information that the Wigner 6j symbols [VMK88]
of SU(2) encode, and indeed C(s,t,q)

±± can be written as

C
(s,t,q)
±± = (−1)±

1
2
± 1

2

√
(2s± 1 + 1)(2t± 1 + 1)

{
t± 1

2 t 1
2

s± 1
2 s q

}
, (5.44)

which for the particular case at hand gives a closed analytic expression. Notice that
C

(s,t,q)
±± do not depend on m, as requested by Schur’s lemma.

From Eq. (5.37) and (5.40) it now follows that a similar decomposition holds also for
Θ,

Θ =
⊕

s,t

⊕

i,k

(⊕

q,m

Θ|s,t,q,mi,k

)
, (5.45)
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where for assigned s, t, i and k, Θ|s,t,q,mi,k are the following 1× 1 or 2× 2 matrices

Θ|s,t,q,mi,k = α(n)|s,t,q,mi,k − β(n)|s,t,q,mi,k . (5.46)

Invoking the convention established when introducing Eq. (5.21) we notice that 1 × 1

blocks occur explicitly in the scenarios detailed in the introductory part of the section:
a) q = s+ t+ 1

2 , b) q = t− s− 1
2 and t > s, and c) q = s− t− 1

2 and s > t, yielding the
eigenvalues

λ
(n)
s,t,q = f (n)

s (r1)f
(n)
t (r2) Λ

(n)
s,t,q , (5.47)

with

Λ
(n)
s,t,q =





R
(n)
s,+(r1)−R(n)

t,+(r2) case a),

R
(n)
s,+(r1)−R(n)

t,−(r2) case b),

R
(n)
s,−(r1)−R(n)

t,+(r2) case c),

(5.48)

where we introduced the functions

R
(n)
j,±(r) ≡

f
(n+1)
j±1/2(r)

f
(n)
j (r)

. (5.49)

For s, t, and q belonging to the remaining case d) instead, (5.46) is a 2× 2 matrix of the
form (5.26) [

Θ
(s,t,q)
++ Θ

(s,t,q)
+−

Θ
(s,t,q)
−+ Θ

(s,t,q)
−−

]
,

with eigenvalues as in (5.28) with the following identifications

Θ
(s,t,q)
++ = f (n)

s (r1)f
(n)
t (r2)

[
R

(n)
s,+(r1)−R(n)

t,+(r2)(C
(s,t,q)
++ )2 −R(n)

t,−(r2)(C
(s,t,q)
+− )2

]
,

Θ
(s,t,q)
−− = f (n)

s (r1)f
(n)
t (r2)

[
R

(n)
s,−(r1)−R(n)

t,+(r2)(C
(s,t,q)
−+ )2 −R(n)

t,−(r2)(C
(s,t,q)
−− )2

]
,

and

Θ
(s,t,q)
+− = −f (n)

s (r1)f
(n)
t (r2)

[
R

(n)
t,+(r2)C

(s,t,q)
++ C

(s,t,q)
−+ +R

(n)
t,−(r2)C

(s,t,q)
+− C

(s,t,q)
−−

]
,

where we used the coefficients C(s,t,q)
±± in Eq. (5.43) to express the elements of β(n)|s,t,q,mi,k

into the basis {|s′ = s± 1/2, t; q,m〉i,k}. The corresponding eigenvalues can also be ex-
pressed as in the rescaled form in Eq. (5.47) with

Λ
(n)
s,t,q(±) = a

(n)
s,t ± b

(n)
s,t,q , (5.50)
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the functions a(n)
s,t and b(n)

s,t,q being defined as

a
(n)
s,t ≡

R
(n)
s,+(r1)+R

(n)
s,−(r1)−R(n)

t,+(r2)−R(n)
t,−(r2)

2 , (5.51)

b
(n)
s,t,q ≡

√
[Gs(r1)−Gt(r2)]2−4Gs(r1)Gt(r2)(C

(s,t,q)
++ )2

2 , (5.52)

where for ease of notation we introduced

Gj(r) ≡ f
(n+1)
j+1/2(r)− f (n+1)

j−1/2(r) . (5.53)

For future reference we observe that from Eq. (5.44) the following inequality can be
determined

b
(n)
s,t,q ≥ b

(n)
s,t,q=s+t−1/2 , (5.54)

which in turn can be used to establish useful bounds for the eigenvalues (5.50), i.e.

Λ
(n)
s,t,q(+) ≥ Λ

(n)
s,t,q=s+t−1/2(+) , (5.55)

Λ
(n)
s,t,q(−) ≤ Λ

(n)
s,t,q=s+t−1/2(−) . (5.56)

Replacing all this into Eq. (5.17) we can finally write

P
(n)
err,min =

1

2
− 1

2

∑

s,t,q,`

+
f (n)
s (r1)f

(n)
t (r2) M

(n)
s,t,q Λ

(n)
s,t,q(`) , (5.57)

with M (n)
s,t,q being the multiplicity factor defined in Eq. (5.25), the index ` assuming the

values ± for the case d), and where the subscript + indicates that only the positive
values of Λ

(n)
s,t,q(`) are allowed into the sum. In order to get an asymptotic expansion of

Eq. (5.57) we now notice that for large n the following expansion holds,

f (n)
s (r)ω(s, n) ≈ 1 + r

r

1

1 + n
2 + s

B(n,
1 + r

2
, n/2 + s) (5.58)

where B(n, 1+r
2 , n/2 + s) is a binomial distribution for the variable n/2 + s, and the

neglected terms give an exponentially suppressed contribution as n goes to infinity. The
mean of s

n is r
2 and the variance is 1−r2

4n , the next moments give contribution O(n−2).
The sum over s goes from zero or 1/2 to n/2, therefore if r is sufficiently greater than 0

we are neglecting in the sum a region where the binomial distribution is small and the
total contribution of the region to the sum is exponentially suppressed. The second useful
observation is that the eigenvalues and the term multiplying the binomial distribution in
Eq. (5.58), expanded in the variables s

n and t
n around their means, show series coefficients

that do not increase in powers of n as one goes to higher terms. Therefore to get the
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leading and next to leading term one needs the expansion only at second order in these
variables. We will see this kind of technique to produce an asymptotic expansion also in
Chapter 6, therefore we provide in Appendix A.3 a lemma A.3.1 which permit a more
formal treatment, which allows to control in principle the remainder terms.

The expansion in s
n ,

t
n around their means let us also determine the sign of the eigenvalues

in the relevant region for the sum. In particular for the four cases analyzed so far we
have:

a) Λ
(n)
s,t,q=s+t+1/2 = r1−r2

2 +O
(
| sn − r1

2 |+ | tn − r2
2 |+ | 1n |

)
,

b) Λ
(n)
s,t,q=t−s−1/2 = r1+r2

2 +O
(
| sn − r1

2 |+ | tn − r2
2 |+ | 1n |

)
,

c) Λ
(n)
s,t,q=s−t−1/2 = − r1+r2

2 +O
(
| sn − r1

2 |+ | tn − r2
2 |+ | 1n |

)
,

d) Λ
(n)
s,t,q(+) ≥

√
(r1−r2)2

2 +O
(
| sn − r1

2 |+ | tn − r2
2 |+ | 1n |

)
,

Λ
(n)
s,t,q(−) ≤ −

√
(r1−r2)2

2 +O
(
| sn − r1

2 |+ | tn − r2
2 |+ | 1n |

)
,

as s
n → r1

2 ,
t
n → r2

2 , and n→∞.

where in deriving the last two inequalities we used (5.55) and (5.56). The above expres-
sions allows us to identify the positive terms which, in the limit of large n, contribute
to the sum (5.57): for instance taking r1 > r2 we noticed that the positive eigenvalues
are those associated with case a) and the first of case d), while the case b), which is
also positive, can be ignored because t > s is not in the relevant region of the sum over
s, t. With this information, the sum over q can now be performed at the relevant order
with the second order of the Euler-MacLaurin expansion (the details are available in the
supplementary Mathematica [Wol18] notebooks, available at [Git]):

b∑

i=a

f(i) ≈
∫ b

a
f(x)dx+

f(a) + f(b)

2
. (5.59)

We noticed that the following orders in the Euler-MacLaurin expansion do not contribute
at the order of our asymptotic expansion. However, we did not bound rigorously the
remainder term, and the validity of the approximation is confirmed by the numerical
check.

The final result, which takes into account also the case r1 < r2, is

P
(n�1)
err,min ' 1

2
− 1

24

(r1 + r2)3 − |r1 − r2|3
r1r2

+
5

24n

(r1 + r2)3 + |r1 − r2|3
r2

1r
2
2

− 1

24n

(r1 + r2)5 − |r1 − r2|5
r3

1r
3
2

. (5.60)



Chapter 5. Learning machines for quantum state discrimination 85

�� �� �� �� �� �� ��
�

��

�	�


�	�

�	��

�	��

����

Figure 5.1: Scenario i) Minimal probability of error as a function of n, with r1 = 3
4

and r2 = 1
2 : exact values (dots), asymptotic expansion Eq. (5.60) (solid line), Helstrom

probability (dashed line).

which for r1 = r2 reproduce correctly the result of [Sen+10], and which in agreement
with Eq. (5.9) exhibits a leading order that corresponds to the average of the Helstrom
probabilities, i.e.

P̄H =
1

2
− 1

4

∫
sin θdθ

√
(r1−r2 cos θ)2+r2 sin2 θ

2 =
1

2
− 1

24

(r1 + r2)3 − |r1 − r2|3
r1r2

.

(5.61)

In Fig. 5.1 we show the comparison between the exact values of P (n)
err,min of Eq. (5.57)

and the asymptotic expansion Eq. (5.60).

5.3.2 Scenario ii): mixed states with hard sphere prior

In the scenario ii) we are interested in considering the case where ρ1 and ρ2 are arbitrary
(possibly) mixed density matrices. As already stated, this corresponds to the choice

dµ(ρ1, ρ2) = dU13r2
1dr1dU23r2

2dr2 , (5.62)

where again dU represents the Haar measure of SU(2) while dµ(r) is a measure
that gauges our ignorance about the purity of the template states, i.e. the length
of their associated Bloch vectors. Accordingly the only difference with the previous
paragraph is that now, in the expression of α(n) =

⊕
s,t

⊕
i,k(
⊕

q,m α
(n)|s,t,q,mi,k ) and

β(n) =
⊕

s,t

⊕
i,k

(⊕
q,m β

(n)|s,t,q,mi,k

)
given in Eq. (5.38) and (5.41) we have now to re-

place the functions f (n)
j (r) with their averaged values, i.e.

f
(n)
j (r)→ f

(n)
j ≡

∫
dµ(r)f

(n)
j (r) , (5.63)
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such that

α(n)|s,t,q,mi,k = f
(n+1)
s+1/2f

(n)
t |s+ 1/2, t; q,m〉i,k 〈s+ 1/2, t; q,m|

+f
(n+1)
s−1/2f

(n)
t |s− 1/2, t; q,m〉i,k 〈s− 1/2, t; q,m| , (5.64)

and

β(n)|s,t,q,mi,k = f (n)
s f

(n+1)
t+1/2 |s, t+ 1/2; q,m〉i,k 〈s, t+ 1/2; q,m|

+f (n)
s f

(n+1)
t−1/2 |s, t− 1/2; q,m〉i,k 〈s, t− 1/2; q,m| . (5.65)

Our choice for dµ(r) yields

f
(n)
j = 6

(
n
2 − j

)
!
(
1 + n

2 + j
)
!

(n+ 3)!
. (5.66)

The associated eigenvalues of Θ can then be expressed as in Eq. (5.47) with the rescaled
quantities Λ

(n)
s,t,q such that the eigenvalues λ(n)

s,t,q are

λ
(n)
s,t,q = f (n)

s f
(n)
t Λ

(n)
s,t,q ,

Λ
(n)
s,t,q are obtained as in Eq. (5.48),(5.50), with the terms R(n)

s,±(r) being replaced by

R
(n)
s,+ ≡

f
(n+1)
s+1/2

f
(n)
s

=
2 + n

2 + s

n+ 4
, R

(n)
s,− ≡

f
(n+1)
s−1/2

f
(n)
s

=
1 + n

2 − s
n+ 4

, (5.67)

and the same for R(n)
t,±(r) .

As a result, for the cases a), b), c), and d), we get the following solutions,

a)

Λ
(n)

s,t,q=s+t+
1
2

=
s− t
n+ 4

,

b)

Λ
(n)

s,t,q=t−s−1
2

=
1 + s+ t

n+ 4
,

c)

Λ
(n)

s,t,q=s−t−1
2

= −1 + s+ t

n+ 4
.

d)

Λ
(n)
s,t,q(±) = ±

√
3− 4q(1 + q) + 8s(1 + s) + 8t(1 + t)

2(n+ 4)
,
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which shows that only terms entering in the expression (5.57) for P (n)
err,min are those of a)

with s > t, those of b), and the Λ
(n)
s,t,q(+) term of d). Accordingly we can write

P
(n)
err,min =

1− S(n)

2
, (5.68)

with

S(n) =
∑

s>t f
(n)
s f

(n)
t M

(n)

s,t,s+t+
1
2

Λ
(n)

s,t,s+t+
1
2

+
∑

t>s f
(n)
s f

(n)
t M

(n)

s,t,t−s−1
2

Λ
(n)

s,t,t−s−1
2

+
∑

s,t f
(n)
s f

(n)
t

∑s+t−1
2

q=|s−t|+ 1
2

M
(n)
s,t,q Λ

(n)
s,t,q(+),

(5.69)

withM (n)
s,t,q the multiplicity factors of defined in Eq. (5.25) which allow for a simplification

of the resulting formula thanks to the identity

f (n)
s f

(n)
t M

(n)
s,t,q =

36(2s+ 1)(2t+ 1)(2q + 1)

(n+ 1)2(n+ 2)2
. (5.70)

To get to the final result at order O
(

1
n

)
one can still exploit the Euler McLaurin formula

(5.59) for each of the three sums, and the details are available in the supplementary
Mathematica notebooks [Git]. The result is

P
(n�1)
err,min '

17

70
+

18

35n
, (5.71)

which in n → ∞ agrees with the average Helstrom probability P̄H = 17/70 that in the
present case can be obtained by integrating Eq. (5.61) with respect to r1 and r2 with the
corresponding hard sphere measures. In Fig. 5.2 we show the comparison between the
exact values of P (n)

err,min of Eq. (5.68) and the asymptotic expansion in Eq. (5.71).

5.3.3 Scenario iii): pure states with fixed overlap

Scenario iii) considers the case where the templates states ρ1 = |ψ〉〈ψ| and ρ2 = |φ〉〈φ| are
pure and characterized by a mutual overlap | 〈ψ|φ〉 |2 = sin2 θ

2 which is known a priori,
while no information about the absolute orientation of the pair of states is assumed.
This task could be relevant in a scenario where for instance the machine is asked to
discriminate between two possible configurations on the basis of templates generated by
an external party, which does not share a common reference frame with the machine
itself. Without loss of generality we can model this problem by setting

|ψ〉 = U |0〉 , |φ〉 = UU0 |0〉 , (5.72)

with a fixed unitary U0, such that | 〈0|U0 |0〉 |2 = sin2 θ
2 , and U to be averaged over the

Haar measure. This time we can consider a general finite dimension d, and still solve the
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Figure 5.2: Scenario ii) Minimal probability of error as a function of n: exact values
(dots), asymptotic expansion Eq. (5.71) (solid line), Helstrom probability (dashed line).

problem using the recoupling theory of SU(2), using the result of Theorem 4.2.6. Indeed
by substituting h → n + 1, k → n, J → q, and expressing c in terms of θ, the states in
Eq. (5.4) can be written as

α(n) =
∫
dU
(
U |0〉 〈0|U †

)⊗n+1 ⊗
(
UU0 |0〉 〈0|U †0U †

)⊗n

=
∑

q Pn+1,n(q|θ) Iλq
ω
(d)
λq

⊗ |qn+1,n〉〈qn+1,n| (5.73)

β(n) =
∫
dU
(
U |0〉 〈0|U †

)⊗n ⊗
(
UU0 |0〉 〈0|U †0U †

)⊗n+1

=
∑

q Pn+1,n(q|θ) Iλq
ω
(d)
λq

⊗ |qn,n+1〉〈qn,n+1| (5.74)

where Ph,k(q|θ) depends only on θ and not on d, Iλq is the identity operator on
Uλq(SU(d)), and |qn+1,n〉〈qn+1,n| and |qn,n+1〉〈qn,n+1| are two different pure states of
Vλq(S2n+1). From these expressions, it is manifest that the trace distance between α(n)

and β(n) depends only on θ, therefore we can compute it for d = 2. Ph,k(q|θ) is computed
in Appendix A.1, obtaining in the special case of h = n+ 1, k = n

Pn+1,n(q|θ) =

n/2∑

h=−n/2

D
n
2

h,n
2
(U0(θ)D

n
2
n
2
,h(U0(θ)†) C

q,n+1
2

+h
n+1
2
,n+1

2
,n
2
,h
C
q,n+1

2
+h

n+1
2
,n+1

2
,n
2
,h
, (5.75)
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where U0(θ) = exp(−iσy(π − θ)/2), and the symbol Dj
mm′(U) represent the matrix el-

ements of the irreducible representations of U ∈ SU(2) with dimension 2j + 1, and
Cq,lj,m,j′,m′ being the Clebsch-Gordan coefficients, as defined in Sec. 4.1.5.

We now rewrite α(n) in terms of the decomposition used in this chapter. With respect
to previous scenarios, α(n) loses the invariance under independent U⊗n+1

1 , U⊗n2 U1, U2 ∈
SU(2) applied respectively to the system AX and B. However, since multi-copy pure
states are supported in the completely symmetric subspace, corresponding to the Young
diagram with only one row, we have the following decomposition

α(n) =
∑

q

Iq
AXB ⊗ α(n)

q (θ)⊗ IAXn/2+1/2,n+1 ⊗ IBn/2,n , (5.76)

where α(n)
q (θ) is an operator on Cg(n/2+1,n/2,q), IAXn/2+1,n+1⊗IBn/2,n is the identity operator

on VAXn/2+1,n⊗VBn/2,n, IAXBq is the identity operator on UAXBq . VAn/2+1,n+1⊗VBn/2,n has di-

mension 1, therefore we do not need indices i, k to label a basis for the support of α(n)
q (θ).

From these symmetries, one can obtain the eigenvectors of α(n) as {
∣∣n+1

2 , n2 ; q,m
〉
} and

their respective eigenvalues are computed in A.1):

α(n)
∣∣n+1

2 , n2 ; q,m
〉

=
Pn+1,n(q|θ)

2q + 1

∣∣n+1
2 , n2 ; q,m

〉
, (5.77)

Analogous properties applies for β(n) when expressed into the basis in Eq. (5.42). There-
fore as in the previous cases Θ can be expressed as a direct sum of 1× 1 and 2× 2 block
matrices. In the present case, however due to the special restriction on s and t instead
of the four possible cases observed in the previous section, only a) and d) may occur. It
turns out that for the case a) the associated eigenvalue is always null. For d) instead we
have

λ
(n)
s=n/2,t=n/2,q(±) = ±Pn+1,n(q|θ)

2q + 1
|C(s=n/2,t=n/2,q)

+− |, (5.78)

and the eigenvectors are the same that we obtain for r1 = r2 = 1 in the case of completely
random orientations: for pure states, the optimal POVM in the fixed overlap case is the
same. Therefore, writing the eigenvalues in a simpler notation as λ(n)

q (±), we have

Θ(n) =
∑

q

(
λ(n)
q (+)Πq,+ + λ(n)

q (−)Πq,−

)
, (5.79)

where Πq+ and Πq− are the projectors on eigenvectors with total angular momentum q

and respectively positive and negative eigenvalues.
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Replacing all this into Eq. (5.17) we can finally write

P
(n)
err,min =

1

2
− 1

2

∑

q

(2q + 1) λ(n)
q (+) , (5.80)

where we used the fact that M (n)
s=n/2,t=n/2,q = 2q+ 1 and that only the + elements of the

pairs (5.78) are positive. We note that

D
n
2

h,n
2
(U0)D

n
2
n
2
,h(U †0) = n!

(n2 +h)!(n2−h)!

(
cos2

(
π−θ

2

))n
2

+h (
sin2

(
π−θ

2

))n
2
−h
,

is a binomial distribution in the variable n
2 + h ∈ {0, ..., n}. We also note that

(
C
q,n+1

2
+h

n+1
2
,n+1

2
,n
2
,h

)2

=
2
(
n
2 − h

)
! (n+ 1)!(

n
2 + h

)
!

(
n
2 + h+ q + 1

2

)
!(

q − 1
2 − n

2 − h
)
!
(
n− q + 1

2

)
!
(
n+ q + 3

2

)
!
,

(5.81)

is also a probability distribution in the variable q ∈ {n2 + h, ..., n + 1
2}. Then the terms

entering in the sum of Eq. (5.80) rewrite explicitly as

(2q + 1)λ(n)
q (+) =

∑

h

n!(
n
2 + h

)
!
(
n
2 − h

)
!

(
cos2

(
π − θ

2

))n
2

+h(
sin2

(
π − θ

2

))n
2
−h

× 2
(
n
2 − h

)
!
(
n
2 + h+ q + 1

2

)
! (n+ 1)!(

n
2 − h+ q − 1

2

)
!
(
n
2 + h

)
!
(
n− q + 1

2

)
!
(
n+ q + 3

2

)
!

1

2

√
2(3/2 + q + n)(1/2− q + n)

(n/2 + 1/2)(n+ 1)
.

(5.82)

As usual we focus on the limit of large n � 1 for P (n)
err,min. In this case we notice

that in order to get up to the order O( 1
n2 ) for the resulting expression, one can expand

|C(s=n/2,t=n/2,q)
+− | around the mean of the distribution in q and consider contributions

up to the fourth central moment (see Appendix A.3 and supplementary Mathematica
notebooks [Git]), expand the result around the mean of the h distribution and calculate
the contributions up to the relevant moment (not more than the fourth). The result
is

P
(n�1)
err,min '

1

2

(
1− | cos θ2 |

)
+

3 + cos θ

8
√

2
√

1 + cos θ

1

n
+

1− 60 cos θ − 5 cos 2θ

128
√

2(1 + cos θ)3/2

1

n2
, (5.83)

where, as expected, the first contribution corresponds to the corresponding averaged
Helstrom probability P̄H – see also Fig. 5.3. We notice that for small deviations from
orthogonality, one has

P
(n�1)
err,min '

θ2

16
+

1

4n
− 1

8n2

(
1− θ2

4

)
, (5.84)
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Figure 5.3: Scenario iii) Minimal probability of error as a function of n,with θ = π
3 :

exact values (dots), asymptotic expansion Eq. (5.83) (solid line), Helstrom probability
(dashed line). In the inset we show the second order correction.

The expansion around coincident states is instead singular, but the formula is still valid
when the states are not coincident and n(π − θ) � 1. Since the optimal POVM is
the same of the totally random pure state scenario, averaging over θ before doing the
asymptotic expansion gives the result of Eq. (5.60) when r1 = r2 = 1. Integrating over
the probability distribution of the overlap c = sin2 θ

2 , which for Haar random |ψ〉1 and
|ψ2〉 is known (e.g. [AG15]) and equal to P (c) = (d − 1)(1 − c)d−2, gives also the same
result up to first order, while the order n−2 is not integrable. This is not inconsistent: one
can see that the averaged P (n)

err,min displays a n−
3
2 correction to Eq. (5.60) which is not

recoverable from this expansion, which at fixed n works only in the region n(π− θ)� 1.
We obtain

P
(n�1)
err,min,d '

1

2
− d− 1

2d− 1
+

(d− 1)2

3 + 4d(d− 2)

1

n
. . (5.85)

which agrees with the zero-th order result in [HHH05a]. The asymptotic correction
that we find can be also directly calculated by following the approach in [HHH05a],
the interested reader can find the calculations in the supplementary Mathematica note-
books [Git].

5.3.4 Compatibility between optimal machines

In the previous subsections we have analysed three different scenarios, which in princi-
ple give rise to different optimal machines. However, additional symmetries make some
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of the optimal machines compatible, in the sense that there exists a measurement that
is optimal for different scenarios. In particular, if ŜAB is the swap operator between
HA and HB, one can verify that ŜABα(n)Ŝ†AB = β(n) in scenario (ii), (iii) and also
(i) when r1 = r2. If this happens then ŜABΘŜ†AB = −Θ; it follows that if |λ〉 is an
eigenvector of Θ with eigenvalue λ, then also ŜAB |λ〉 is an eigenvector, with eigen-
value −λ. Since ŜAB |s+ 1/2, s; q,m〉i,k = |s, s+ 1/2; q,m〉i,k, ŜAB |s− 1/2, s; q,m〉i,k =

|s, s− 1/2; q,m〉i,k, in the spaces H(s,s)
AiXBk

spanned by |s± 1/2, s; q,m〉i,k the eigenvec-

tors are automatically determined as the orthogonal vectors |λ+〉,|λ−〉 in H(s,s)
AiXBk

such
as ŜAB |λ+〉 = |λ−〉.

In particular, since the the relevant subspace in scenario (iii) is only H(n
2
,n
2

)

AiXBk
, the optimal

machine for scenario (i) when r1 = r2, or the one for scenario (ii), are also optimal for
scenario (iii).

5.4 Implementation of the optimal POVM

From the knowledge of the eigenvectors in Eq. (5.29) one can reconstruct the optimal
POVM. Since it is a projective measurement, it can be realized by a change of basis from
the the eigenvectors to the computational basis, followed by a local measurement. In the
following we consider the implementation of the optimal machine of scenario iii), for the
case n = 1. The change of basis is:

|ψ1
2 ,

1
2 ;

3
2 ,

3
2
〉 → |↑↑↑〉 (C)

|ψ1
2 ,

1
2 ;

3
2 ,

1
2
〉 → |↑↑↓〉 (C)

|ψ(−)
1
2 ,

1
2 ;

1
2 ,

1
2

〉 → |↓↑↑〉 (B)

|ψ(+)
1
2 ,

1
2 ;

1
2 ,

1
2

〉 → |↑↓↑〉 (A)

|ψ(+)
1
2 ,

1
2 ;

1
2 ,−

1
2

〉 → |↓↑↓〉 (A)

|ψ(−)
1
2 ,

1
2 ;

1
2 ,−

1
2

〉 → |↑↓↓〉 (B)

|ψ1
2 ,

1
2 ;

3
2 ,−

1
2
〉 → |↓↓↑〉 (C)

|ψ1
2 ,

1
2 ;

3
2 ,−

3
2
〉 → |↓↓↓〉 (C)

(5.86)

where A (B) means that the result of the measurement is interpreted as X = A (X = B),
while for C we "flip a coin" to decide. In the computational basis the unitary rotation
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reads



1 0 0 0 0 0 0 0
0 1√

3
1√
3

0 1√
3

0 0 0

0 1√
3
−3−

√
3

6
0 3−

√
3

6
0 0 0

0 0 0 −3−
√
3

6
0 1

3+
√
3

1√
3

0

0 1√
3

3−
√
3

6
0 −3−

√
3

6
0 0 0

0 0 0 3−
√
3

6
0 1

−3+
√
3

1√
3

0

0 0 0 1√
3

0 1√
3

1√
3

0

0 0 0 0 0 0 0 1




, (5.87)

and the probability of error as a function of θ is

P
(1)
err,min =

1

2
− 1 + cos θ

4
√

3
. (5.88)

These kind of operations are suitable for all programmable devices which are based on
the circuit model of quantum computation, as for example the recent quantum super-
conducting processors developed by IBM [Ibm]. By using the software development kit
QISKit [Abr+19], we have determined a circuit that realises the POVM for the n = 1

case with input pure states and checked its performance with the IBM simulator. The
number of gates of our implementation is 61 single qubit operations and 60 CNOT, with
a depth of 43 operations. Given that the failure probability of a CNOT on real machines
is about 5·10−2, the failure probability of the circuit is at least 1−0.9560 ≈ 0.954. Indeed
we tried to remotely perform the experiment on the physical chip, without any significant
results. This fact underlines the importance of gate optimisation and error correction
for the proper operation of future quantum computers. However, with the simulation
tools of QISKit Aer, we were able to simulate the circuit with an error model consisting
in depolarising errors (Fig. 5.4) and thermal relaxation errors (Fig. 5.5): decreasing the
depolarising probability and increasing the relaxation times we can show how the circuit
is sensitive to this kind of noises, and that we recover the expected behaviour for small
noise.

5.5 Remarks

In this work we have discussed the performances of optimal universal learning quantum
machines that aim at discriminating the states of a qudit starting from a collection of
templates states in the hybrid, yet realistic scenario, where at least some global infor-
mation on the training set is classically available. Like classical supervised learning is a
fundamental tool with classical data, arguably quantum learning machines will be im-
portant for dealing with quantum data with quantum processors. Indeed, given that
quantum tomography is very expensive in terms of resources, dealing with quantum data
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Figure 5.4: Simulation of the optimal machine with QISKit Aer, with depolarising error
modeled after the gate average infidelity of each gate: pf are the depolarising probability
for the 16 qubit machine (Melbourne) if all the infidelity is due to a depolarising channel.
Frequency of misclassification errors with 256 repetitions for each θ, compared with the
predicted minimum error function (solid line).
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Figure 5.5: Simulation of the optimal machine with QISKit Aer, with thermal relaxation
times T1 = T2 = T equal for each qubit. Gate times are set to 200ns for 1 qubit gates
and 800ns for CNOT. Frequency of misclassification errors with 256 repetitions for each
θ, compared with the predicted minimum error function (solid line).
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requires to study alternatives which need little information about the data, make use
of the full power of quantum mechanics, and extract only the relevant information for
the problem at hand. Our work extends the previous results considering more general
scenarios. An interesting observation is that the optimal machine that does not assume
any kind of information about the template state, scenario (ii), it is also optimal for
scenario (iii), where the template states are assumed to be pure. It is therefore a very
general machine, which can be seen as the most convenient learning algorithm. Several
open question remain. The gate complexity of the implementation is not clear, and it
would be important to determine if the separation between learning and testing phases
which holds for qubits [Sen+12] is still valid in general dimension. The case of mixed
states in general dimension is also not studied. While it could be hard to exactly eval-
uate the leading correction as in the qubit case, it would be interesting to understand
how the number of copies of training states needed to get a probability of error which is
arbitrarily close to the Holevo-Helstrom bound depends on the dimension, in the worst
case. This would clarify quantitatively the advantage of programmable discriminators
with respect to tomography.



Chapter 6

Optimal overlap estimation

This chapter is largely based on:

• M. Fanizza, M. Rosati, M. Skotiniotis, J. Calsamiglia, and V. Giovannetti. “Beyond
the Swap Test: Optimal Estimation of Quantum State Overlap”. In: Physical
Review Letters 124.6 (2020), p. 060503. doi: 10.1103/PhysRevLett.124.060503.
arXiv: 1906.10639.

6.1 Introduction

The overlap between two pure quantum states is an example of the unitarily invariant
quantities treated in Sec. 4.2. In this chapter we consider the problem of estimating the
overlap between two unknown pure states of a d-dimensional Hilbert space. This prim-
itive attracted the attention in the quantum foundations community as an archetypical
instance of estimation of relative information [BIMT06; LSB06; GI06; BRS07]. A sim-
ple way to estimate the overlap is the swap test (SWT) [Buh+01; Cin+18; Cha+18]:
given two systems in the state |ψ〉 |φ〉, the probability of projecting it on its symmet-
ric subspace or its orthogonal is determined by the overlap between |ψ〉 and |φ〉. By
repeating this measurement on several pairs of copies one can obtain a good estimate
of this probability, and hence the overlap. The swap test is used in several quantum
information processing tasks, such as quantum fingerprinting [Buh+01; dBe04; KDK17],
entanglement estimation [Eke+02; Wal+07; MKB05; HM10], to quantum algorithms for
classical machine learning tasks [Har+10; LMR13; RML14; Cha+18; Cin+18; ZFF19;
WKS16; Hav+19; LR18]. The last application has attracted renewed interest on the
overlap estimation problem, and its efficient implementation and generalization on near-
term quantum computers have been discussed [Cha+18; Cin+18]. It is then a natural
question to ask what are the limits to the accuracy of the estimation of the overlap for
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a fixed number of copies (say N copies of |ψ〉 and M copies of |φ〉), and how much an
optimal measurement improves the performances with respect to the swap test, for the
same number of copies.

The measurement optimizing the average information gain was identified in [BRS04],
and it is easily obtained as the optimal measurement according to several others figure of
merit, as a corollary of theorem 4.2.2, as we show in Sec. 6.2. This measurement is weak
Schur sampling, according to the decomposition of Theorem 4.2.6, therefore it is also effi-
ciently implementable [BCH06; Har05b; Kro19]. Regarding the explicit evaluation of the
optimal performances, previous works have solved the minimization of the qubit average
mean square error [BIMT06; LSB06], and also showed how to compute the optimal av-
erage mean square error in generic dimension, albeit without a closed form [GI06]. More
recently, the estimation of the Hilbert-Schmidt distance between two unknown mixed
states was used to obtain an algorithm for quantum state certification [BOW19]; in
this paper, the authors determine minimum variance unbiased estimator for the Hilbert-
Schmidt distance, which for pure states reduces to the overlap. We extend these results
addressing the estimation problem in full generality. Our main results are an asymptotic
expansion for the Fisher information of the family of averaged multi-copy states at fixed
overlap, which gives a lower bound on the mean square error of any estimator, according
to the Cramér Rao bound, Theorem 2.4.2. The answer we obtain is a function of the
overlap, and therefore we refer to this setting as the local setting, in contrast to the
global, Bayesian, setting, where we compute exactly the minimum average mean square
error for d-dimensional unknown states, left open by [GI06]. We state these results in
Sec. 6.2, and prove them respectively in Appendix A.4 and Sec. 6.7.

Moreover, we compare our results with the swap test and with two strategies based on
estimating either one or both |ψ〉 and |φ〉, see Fig. 6.1. Such strategies are useful in
distributed scenarios where copies of |ψ〉 and |φ〉 are produced in different and distant
laboratories. In the limit of large M +N and |M −N | constant the optimal strategy dis-
plays a finite asymptotic gap with respect to all the others, as we recall in Sec. 6.3. Also
note that the optimal measurement can be performed with the same accuracy even with-
out assuming the states to be labeled, as an instance of unsupervised learning [Sen+19].
The same is not true for the other candidates. We also show that the optimal measure-
ment is less invasive than the swap test (Sec. 6.4), and robust against single-qubit noise
(Sec. 6.5). Although the optimal measurement is efficiently implementable in terms of
gate complexity, the required number of gates can be still too high for near term imple-
mentations: it is important to address how the performance of the estimation is affected
if error correction is not available, and we discuss this problem in Sec. 6.6.
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Figure 6.1: Sketch of the OvE (overlap estimation) strategies studied in the chapter.
Top-left: optimal measurement, e.g. by Schur transform (see Ref. [Har05b] for the circuit
implementation). Top-right: circuit for the SWT, to be repeated N times. Bottom-left:
estimate |φ〉 and project |ψ〉 on the estimated direction. Bottom-right: estimate both
|φ〉 and |ψ〉 and calculate the overlap.

6.2 Optimal measurements for overlap estimation

We study the estimation of the overlap between two unknown qudit states |ψ〉 and |φ〉,
given N copies of |ψ〉 and M copies of |φ〉. The overlap is c = | 〈ψ|φ〉 |2. This problem
can be framed as in Theorem 4.2.2, since the input states are of the form

ρ(U, c) = U⊗(N+M) |Ψc〉〈Ψc| U †⊗(N+M), (6.1)

where |Ψc〉 = I⊗N ⊗W⊗M |0〉⊗(N+M), with | 〈0|W |0〉 |2 = c. This is clearly a covariant
family with respect to the action of SU(d) and Theorem 4.2.2 applies. For estimators c̃
of c, we consider as a cost function the mean square error l(c̃, c) := (c̃− c)2. We are thus
interested in measurements optimizing the worst case cost
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min
M∈M([0,1])

max
U∈SU(d),c∈[0,1]

∫ 1

0
dc̃ tr[Mc̃ρU,c](c̃− c)2, (6.2)

or, equivalently by Theorem 4.2.2, the worst case averaged cost at fixed c,

min
M∈M([0,1])

max
c∈[0,1]

∫
dU

∫ 1

0
dc̃ tr[Mc̃ρU,c](c̃− c)2, (6.3)

and the global Bayesian cost for some prior p(c),

min
M∈M([0,1])

∫ 1

0
dc p(c)

∫ 1

0
dc̃

∫
dU tr[Mc̃ρU,c](c̃− c)2. (6.4)

Specifying the optimality conditions to the problem at hand, we can state the following
fact.

Proposition 6.2.1. An estimator that optimizes the worst case cost, the worst case
average cost, and the global Bayesian cost for the problem of estimating c from the co-
variant family {ρ(U, c)} can be chosen to be an estimator c̃J from a projective measure-
ment {ΠJ}

⋃{I −∑J ΠJ}, where by Schur-Weyl duality H⊗N+M
d =

⊕
λ Uλ(SU(d)) ⊗

Vλ(SN+M ), and ΠJ is the projector on UλJ (SU(d)) ⊗ VλJ (SM+N )), λJ = (M+N
2 +

J, M+N
2 − J, 0, ..., 0).

Proof. From Theorem 4.2.2 we know that both the worst case average scenario at fixed
c and the average case scenario for some prior probability on c are optimized by a
POVM which is invariant, meaning that the POVM elements Ec̃ of the estimator c̃ are
block diagonal according to the decomposition of H⊗N+M

d given by Schur-Weyl duality
H⊗N+M
d =

⊕
λ Uλ(SU(d))⊗ Vλ(SN+M ). In particular, POVM elements should have the

form Ec̃ =
∑

λ IλJ ⊗ Eλc̃ , with IλJ is the identity operator in UλJ (SU(d)) and Eλc̃ is an
operator on VλJ (SM+N ).

The probability distribution of an invariant POVM on ρ(U, c) is equal to the probability
distribution of the same POVM acting on the averaged state

ρ(c) =

∫
dU U⊗(N+M) |Ψ0〉〈Ψ0| U †⊗(N+M). (6.5)

From Theorem 4.2.6 we know that

ρ(c) =
∑

J

PN,M (J |c) IλJ
ω

(d)
λJ

⊗ |JN,M 〉〈JN,M | , (6.6)
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where λJ := (M+N
2 + J, M+N

2 − J, 0, ..., 0), IλJ

ω
(d)
λJ

is the completely mixed state in

UλJ (SU(d)), |JN,M 〉〈JN,M | ∈ Σ(VλJ (SM+N )) is independent of |ψ〉 and |φ〉, and
PN,M (J |c) is a probability distribution in J dependent only on c.

The probability distribution of the outcomes of Eλc̃ is p(c̃|c) = tr[Ec̃ρ(U, c)] =
∑

J PN,M (J |c) tr
[
EλJc̃ |JN,M 〉〈JN,M |

]
, with

∫ 1
0 dc̃ tr

[
EλJc̃ |JN,M 〉〈JN,M |

]
= 1. We have

∫ 1

0
dc̃ p(c̃|c)(c̃− c)2 =

∑

J

PN,M (J |c)
∫ 1

0
dc̃ tr

[
EλJc̃ |JN,M 〉〈JN,M |

]
(c̃− c)2

≥
∑

J

PN,M (J |c)
(∫ 1

0
dc̃ tr

[
EλJc̃ |JN,M 〉〈JN,M |

]
c̃− c

)2

=:
∑

J

PN,M (J |c)(c̃(J)− c)2

=
∑

J

tr[ΠJρ(c)](c̃(J)− c)2, (6.7)

where the inequality comes from the convexity of the figure of merit. This means that
choosing a POVM {ΠJ} of orthogonal projections and a deterministic post-processing
c̃(J) is optimal.

The last argument shows that remaining optimization has to be done on c̃(J), an estima-
tor of c which is sampled from the classical distribution PN,M (J |c). We can still apply
the results on quantum estimation presented in Chapter 2 to this case, with the reduction
to a purely classical problem. In particular, we consider bounding the mean square error
of a worst case optimal estimator with the Cramér-Rao bound, Eq. (2.15),

v(c) := MSE(c̃) ≥ H(c)−1, (6.8)

where H(c) =
∑

J(∂cPM,N (J |c))2/PM,N (J |c) is the Fisher information of the measure-
ment statistics.

We find a formal asymptotic expansion for the Fisher information.

Proposition 6.2.2. The following asymptotic expansion holds for H(c), if M +N →∞
with M −N constant, 0 < c < 1.

H(c) =
M +N

4c(1− c) +O(1) (6.9)

For N = M , we compute the next to leading term as:
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H(c) =
N

2c(1− c) −
1

8c2
+O

(
1

N

)
. (6.10)

An asymptotically unbiased estimator which saturates at the leading order the Cramér-
Rao bound is

c̃loc
op (J) :=

(
J

Jmax

)2

. (6.11)

The proof involves manipulations with asymptotic expansions of Jacobi polynomials, and
it is deferred to Appendix A.4. The estimator for the overlap of [BOW19] also saturates
the Cramér-Rao bound at leading order, but not at the second order. Since that estimator
is the minimum variance unbiased estimator, it means that the Cramér-Rao bound cannot
be saturated by unbiased estimators at order O(1). The utility of the second order
characterization is to give asymptotic lower bounds for more general estimators, which
may not be exactly unbiased. An asymptotic Cramér-Rao bound with the leading order in
Eq. 6.11 can be obtained also with the formalism of estimation with nuisance parameters
(i.e. unknown parameters which we do not care to estimate) [SYH20], but this approach
does not guarantee that the remainder terms do not depend on the dimension.

Moreover, we are able to compute exactly the the optimal global Bayesian cost, with a
prior probability given by the probability distribution of overlaps of two Haar random
states [AG15]

pd(c) = (d− 1)(1− c)d−2. (6.12)

In the classical case the solution of the minimum mean square error problem of Theo-
rem 2.4.4 simplifies, and the minimum is attained by the estimator

c̃bay
op (J) :=

∫
dc c pd(c)PM,N (J |c)∫
dc pd(c)PM,N (J |c) . (6.13)

Using graphical calculus techniques for the recoupling theory of Clebsch-Gordan coeffi-
cients [VMK88], we obtain the following optimal global Bayesian estimator and corre-
sponding AvMSE (average mean square error):

Proposition 6.2.3. The global Bayesian optimal estimator and the minimum global
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Bayesian cost are:

c̃bayop (J) =
d+ J + J2 + M+N

2 −
(
M+N

2

)2
+MN

(d+M)(d+N)
, (6.14)

vop =
(d− 1)(d+M +N)

d(d+ 1)(d+M)(d+N)
. (6.15)

We compute these quantities in Sec. 6.7. We pause to highlight the following facts: i)
when d is fixed and the number of copies is large, the prior distribution of the states
is little informative with respect to the information that can be obtained by the actual
measurement; indeed we can see that when M + N → ∞, M − N constant, c̃bay

op (J) ≈
c̃loc

op (J) implying that the local optimal estimator is also a good Bayesian estimator and
vice versa; ii) contrarily to the local estimation results, the global MSE of Eq. (6.15) is
exact for all M , N and depends on d due to the prior, Eq. (6.12); iii) in particular, vop

decays as d−2 if one of either M or N is kept finite, whereas it decays only as d−1 when
M,N � 1.

6.3 Alternative strategies

In addition to this characterization of the optimal estimators, we consider a family of
intermediate strategies that employ 1-LOCC (one way local operations and classical
communication) on |ψ〉⊗N and |φ〉⊗M , and compare their performances with the optimal
measurement. The estimate-and-project (EP) strategy consists in estimating |φ〉 from
its M copies, then projecting each copy of |ψ〉 on this estimate and counting the fraction
of successful projections. When |φ〉 is known, projecting |ψ〉 on |φ〉 is optimal [Hol11b].
However, EP is not necessarily the optimal 1-LOCC strategy. The corresponding POVM
elements can be written as

E
(ep)
V,k = dV E

(M)
V ⊗ V ⊗NΠ

(N)
k V †⊗N , (6.16)

where E(M)
V =

(
n+d−1
d−1

)
(V |0〉 〈0|V †)⊗M is the optimal covariant measurement to estimate

|φ〉 [Hay97; Hay17b]: we mentioned it as the POVM obtained from coherent states of
SU(d) in Sec. 4.2.1. Π

(N)
k represents k successful projections of the copies of |ψ〉 on

the estimate of |φ〉. The estimator is c̃loc
ep (k) = k

N . The estimate-and-estimate (EE)
strategy instead consists in estimating both |ψ〉 and |φ〉 separately, then computing the
overlap between the estimated states. The corresponding POVM elements can be written
as

E
(ee)
V,W = dV dWE

(M)
V ⊗ E(N)

W , (6.17)

i.e., a product of two covariant measurements to estimate |φ〉 and |ψ〉. We take as local
estimator

c̃loc
ee (V,W ) =

∣∣∣〈0|V †W |0〉
∣∣∣
2
. (6.18)
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In the Supplementary Material of [Fan+20a] we obtained exact results for local and
Bayesian estimation using EP and EE. We will not repeat the calculation here, and we
just recall the asymptotic behaviour of the two estimators.

The mean square error of the local estimator for the EP measurement in the limit M →
∞, N constant is

vep(c) ∼
c(1− c)
N

, (6.19)

which coincides with the one of the optimal strategy, corresponding to a projection on
the known direction of |φ〉. In the limitM+N →∞,M−N fixed we have instead

vep(c) ∼
6c(1− c)
(M +N)

, (6.20)

which is 3/2 times larger than the optimal strategy.

The global average Bayesian cost is instead

vep =

∫
dc p(c)c2 −

N∑

k=0

p(k)c(k)2 =
(d− 1)((d+M)2 + (d+ 2M)N)

d(1 + d)(d+M)2(d+N)
. (6.21)

In the limit M →∞, N, d constant we have

vep ∼
(d− 1)

d(d+ 1)(d+N)
, (6.22)

which again coincides with the optimal Bayesian strategy in this limit. In the limit
M +N →∞, M −N, d fixed we have instead

vep ∼
6(d− 1)

d(d+ 1)(M +N)
, (6.23)

which again is 3/2 times larger than the optimal Bayesian strategy.

For the EE measurement, in the limit M → ∞, N, d constant we have a mean square
error for the local estimator which scales asymptotically as

vee(c) ∼
2c(1− c)

N
, (6.24)

which is twice as large as the optimal strategy in the leading order of N . In the limit
M +N →∞, M −N, d fixed we have instead

vee(c) ∼
8c(1− c)
(M +N)

, (6.25)

which is 2 times larger than the optimal strategy.
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Figure 6.2: Plot of the optimal local MSE scaling coefficient N · v(c) vs. the true value
of the overlap c, at leading order in M = N , for the strategies analyzed in the chapter.

In the Bayesian case we have instead in the limit M →∞, N, d constant

vee ∼
(d− 1)(d+ 2N)

d(d+ 1)(d+N)2
, (6.26)

which is (d+ 2N)/(d+N) times larger than the optimal Bayesian strategy. In the limit
M +N →∞, M −N, d fixed we have instead

vee ∼
8(d− 1)

d(d+ 1)(M +N)
, (6.27)

which is 2 times larger than the optimal Bayesian strategy.

Note that these asymptotic behaviours are valid when d is fixed, and it is needed that
N + M >> d in order to discard next to leading order terms. This is expected, as
covariant estimation is used as a subroutine.

Table (6.1) summarizes the performance of these strategies compared with the optimal
one, in the different asymptotic limits.

As we anticipated in the introduction, a very economic strategy to estimate the overlap
for multi-qubit states is to use the swap test [Buh+01], which requires only a control
qubit, two Hadamard gates and controlled swaps, controlled from the control qubit,
which act on pairs of the qubits of the two states. Mathematically, it is a projection on
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the completely symmetric subspace ofH⊗M+N
2k

and its orthogonal, hence it coincides with
the optimal measurement forM = N = 1. As the SWT acts on pairs of states, we restrict
to the caseM = N . The probability of a symmetric projection is s(c) = 1

2 (1 + c) and the
statistics of k successful projections out of N trials is given by the binomial distribution.
The optimal local MSE attainable by this test is simply,

vsw(c) =
1− c2

N
, (6.28)

while for the optimal global MSE vsw one can derive an exact expression for each value
of k, then compute the sum numerically, as detailed in the Supplementary Material
of [Fan+20a]. In the asymptotic limit of M = N � d a good approximation is provided
by averaging the optimal local MSE: vsw '

∫
dc pd(c)vsw(c) = (d+2)(d−1)/(d(d+1)N),

which is O(d) times larger than the optimal Bayesian cost vop.

In the same limit, we can compare the local MSE of all the strategies, see Fig. 6.2.
First, we observe a gap between the optimal strategy, that attains the QFI, and all the
other strategies. This means that, even with a large number of copies, the collective
measurement on |ψ〉⊗N ⊗|φ〉⊗M has a clear advantage over a non-collective one. Second,

we observe that the relative error
√
v(c)

c for small c scales as 1
c
√
N

for the SWT and as
1√
cN

for the other strategies, implying a quadratic improvement in 1√
c
in the number

of copies needed to reach a fixed relative error, while the optimal measurement is still
computationally efficient (see Sec.6.6). This is particularly relevant since for large d
small overlaps are exponentially more likely, see Eq. (6.12). This phenomenon is also at
the source of the so-called “barren plateau" problem [McC+18; Day+19] for quantum
variational circuits, and other types of strategies have been proposed to address this
issue [GB10; Ben+19; Kha+19].

We notice similar features for the global MSE, plotted in Fig. (6.3) as a function of N
for M fixed and increasing d (inset). We observe that the SWT is comparable with EE
for M ∼ N and d = 2, but with a small increase in dimension this feature disappears.
Moreover, there is in general a gap between the EP and EE strategies, the former being
closer to the optimal one.

Note that all these strategies except the optimal one require labeling of the states.

6.4 Measurement invasiveness

Another relevant figure of merit for applications is the fidelity between the post-
measurement state and the initial one, averaged over the measurement outcomes. Both
the optimal measurement and the SWT are projective measurements. We assume that
the post-measurement states are given by the result of such projections and hence the
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Local est. vop(c) vep(c) vee(c)

M = N →∞ 4c(1−c)
M+N

3
2vop(c) 2vop(c)

M →∞ c(1−c)
N vop(c) 2vop(c)

Bayesian est. vop vep vee

M = N →∞ 4(d−1)
d(d+1)(M+N)

3
2vop 2vop

M →∞ (d−1)
d(d+1)(d+N) vop

d+2N
2+N vop

Table 6.1: Local MSE and global MSE attainable via the optimal, EP and EE strategies
in two asymptotic limits. In all the cases the global MSEs coincide with the corresponding
average local MSE values, apart from asymptotically vanishing corrections.

average post-measurement fidelity can be written as

F (c) =

∫

U∈SU(d)
dU
∑

k

|〈ΨU |Ek |ΨU 〉|2, (6.29)

with {Ek = ΠJ} for the optimal measurement and {Ek = 1
n!

∑
σ∈SN sN (σ) ⊗

sN (σ)[(ΠS
2 )⊗k ⊗ (ΠA

2 )⊗N−k]s†N (σ) ⊗ s†N (σ)} for the SWT, where Π
S/A
2 are the projec-

tors on the completely symmetric subspace and its orthogonal in H⊗2
d . For the optimal

measurement {ΠJ}J , Eq. (6.29) evaluates to

Fop =

Jmax∑

J=Jmin

|〈Ψ|ΠJ |Ψ〉|2 =
∑

J

PM,N (J |c)2, (6.30)

For the swap test we restrict to M = N and we consider that the measurement is
separable and identical on each pair of copies. Moreover, the measurement on a single
pair SU(d)-invariant, and succeeds/fails with probability (1± c)/2. Hence we have

Fsw =

[(
1 + c

2

)2

+

(
1− c

2

)2
]N

=

(
1 + c2

2

)N
. (6.31)

In Fig. 6.3 we plot these two quantities as a function of c, showing that the optimal
measurement is less invasive than the SWT, especially for small overlap values.

6.5 Noise-robustness

We also considered how the optimal strategy changes when the states, which are expected
to be pure, are affected by depolarizing noise acting independently on each qudit before
reaching the measurement stage. Note that if the noisy channel is of a different kind, one



Chapter 6. Optimal overlap estimation 107

can at least reach the optimal MSE for the depolarizing channel by performing a twirling
operation, realizable by pre- and post-processing with random unitaries on each qudit
plus classical forward communication. This operation is

∫
dUU †N (UρU †)U = Φr[ρ] for

some r, where Φr is the depolarizing channel, Φr[ρ] = rρ+ (1− r) Id . After this operation
the overall state of the system can now be written as Φr0 [ψ]⊗N ⊗ Φr1 [φ]⊗M .

In Appendix A.5 we sketch the computation of optimal MSE in this case, restricting to
d = 2. Apart from some analytic computation to simplify the expressions, we again use
lemma A.3.1 to compute the asymptotics. In the limit M,N → ∞ with M

N finite, the
global MSE at leading order is vop,mix = 1

6Mr20
+ 1

6Nr21
, which agrees with the previously

found limit of Eq. (6.15) for zero-noise, ri = 1. Hence the net effect of white noise is to
rescale the MSE by a factor r−2

i for each state.

6.6 Gate complexity and noisy implementations

The advantage in the precision of the optimal estimation comes with the tradeoff that the
optimal measurement requires entangling operations over the whole system of N + M

qudits. As already remarked, the weak Schur transform [Kro19; Har05b] is a way to
perform the optimal measurement, and requires O(poly(N +M, log d, log 1

ε )) qudit gates
for precision ε. The resulting algorithm is efficient, but still unfeasible without error
correction. The SWT instead requires N independent circuits of fixed depth, and may
still be convenient for large overlaps or very noisy gates.

A mid-term solution is to divide input data in R groups of S copies of |φ〉 and |ψ〉, such
that S is the largest integer for which the given architecture can perform the optimal
measurement with high fidelity, repeat the measurement R times and do classical post-
processing. The performances of these intermediate protocols are between SWTs and
optimal measurement. In this section we sketch an evaluation of the effect of imperfect
gates on the accuracy of the estimate of the overlap. First of all we model the error
of each iteration of the swap test as white noise for each iteration: Nsw(s(c)) = (1 −
εsw)s(c) + εsw

1
2 , the Fisher information becomes

H(Nsw(s(c))) =
(1− εsw)2

1− c2(1− εsw)2
, (6.32)

For N repetitions, one gets a resulting MSE

vsw,noisy(c) =
1− c2(1− εsw)2

(1− εsw)2N
. (6.33)

We model the noise on the Schur transform measurement outcomes also as mixing with a
probability distribution q(c): Nsw(PM,N (J |c)) = (1− εSch)PM,N (J |c) + εSchq(c), with a
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probability of mixing that scales exponentially in the number of gates, 1−εSch ≈ (1−ε)g,
where ε is the error per gate, and g is the total number of gates. We recall the joint
convexity property of the Fisher Information, coming from its monotonicity:

F (λp(c) + (1− λ)q(c)) ≤ λF (p(c)) + (1− λ)F (q(c)), (6.34)

If we assume q(c) to be overlap independent, we obtain the bound

F (NSch(PM,N (J |c))) ≤ (1− εSch)F (PM,N (J |c)), (6.35)

so that
vSch,noisy(c) ≥

2c(1− c)
(1− εSch)N

. (6.36)

This is a very conservative estimate, as we are assuming we are acquiring useful informa-
tion with exponentially small probability. Hence the Swap test outperforms our optimal
strategy, based on the Schur transform, when the respective implementation errors satisfy
the following relation

(1− εSw)2

(1− c2)(1− ε2Sw)
≥ 1− εSch

2c(1− c) . (6.37)

One can express εSch and εSw in terms of the error per gate, ε, raised to gate complexity
of their respective circuits. An intermediate strategy could be to divide the N copies of
both |φ〉 and |ψ〉, into R groups of S copies, and perform the optimal measurement on
each group, followed by classical post-processing. If N = M = RS and F (J |c, S) is the
optimal Fisher information for the case with M = N = S copies, the Cramér-Rao bound
reads

v(c) ≥ 1

RF (J |c, S)
. (6.38)

The best option would be to choose S as the highest number of copies such that the
architecture can perform the optimal measurement in a sufficiently precise way. On
the other hand, if one requires to be in the asymptotic regime of the approximation
for c > c0, one can just find the minimum S for which the approximation works, and
perform the optimal measurement with S copies R times. The classical post processing
will have the optimal asymptotic performance for c > c0. In any case the bound (6.38)
is asymptotically achieved by a maximum likelihood estimator when R→∞.

6.7 Optimal global mean squared error

In this section we derive the optimal estimator and corresponding global average mean
squared error (AvMSE) for the case where the overlap c is a random variable with a distri-
bution induced by the Haar-uniform measure of SU(d), proving Proposition 6.2.3.
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While we could directly work with the classical probability distribution PM,N (J |c) and
the the prior probability distribution,

pd(c) =

∫

SU(d)
dU δ(c− | 〈ψ|U |ψ〉 |2) = (d− 1)(1− c)d−2, (6.39)

we can simplify the calculations following the more general treatment in [Per71] and
recalled as Theorem 2.4.4. We already know that the optimal observable is a post-
processing of projectors {ΠJ}, and that probability of outcome J is PM,N (J |c). Applying
our case to Theorem 2.4.4, we consider the two operators

Γ :=

∫
pd(c) ρ(c) dc

η :=

∫
c pd(c) ρ(c) dc. (6.40)

We can evaluate Γ as

Γ =

∫ 1

0
dcpd(c)

(∫

SU(d)
dU
(
U |ψ〉〈ψ|U †

)⊗N
⊗
(
UW (c) |ψ〉〈ψ|W †(c)U †

)⊗M
)

=

∫

SU(d)
dU
(
U |ψ〉〈ψ|U †

)⊗N

⊗
∫ 1

0
dc

∫

SU(d)
dV δ(c− | 〈ψ|V |ψ〉 |2)

(
UW (c) |ψ〉〈ψ|W †(c)U †

)⊗M

=

∫

SU(d)
dU
(
U |ψ〉〈ψ|U †

)⊗N
⊗
∫

SU(d)
dV

(
UWV V |ψ〉〈ψ|V †W †V U †

)⊗M

=

∫

SU(d)
dU
(
U |ψ〉〈ψ|U †

)⊗N
⊗
∫

SU(d)
dV
(
V |ψ〉〈ψ|V †

)⊗M

=
IλN,N/2

ω
(d)
λN,N/2

⊗ I(N)
λN,N/2

⊗
IλM,M/2

ω
(d)
λM,M/2

⊗ I(M)
λM,M/2

=
1

ω
(d)
λN,N/2

ω
(d)
λM,M/2

Jmax∑

J=Jmin

IλN+M,J
⊗ |JN,M 〉〈JN,M | , (6.41)

where in the third equality we have made use of the fact that there always exists a unitary
a unitary WV such that WV |ψ〉 〈ψ|W †V = |ψ〉 〈ψ| and WV V = W (| 〈ψ|V |ψ〉 |2), which
we can insert for free by the invariance of the Haar measure. In the fourth equality we
integrate over c and use the invariance of the Haar measure again to decouple the two inte-
grals. In the next equality we used the fact that coherent states of SU(d) are a resolution



Chapter 6. Optimal overlap estimation 110

of the projector on the completely symmetric subspace. Here λl,j := (h+j
2 , h−j2 , 0, ..., 0),

IλN,N/2 is the projector on UλN,N/2(SU(d)) and I
(N)
λN,N/2

is the projector on VλN,N/2(SN )

(which is one dimensional), and similarly for M . In the last equality we used that the
multiplicity is one for each irreducible representation of SU(d) in the coupling of two
irreducible representation of Young diagrams with one row is one, and the multiplicity
vector is determined by the form of ρ(c), Eq. (6.6).

To compute η we make use of the following identity, written for multi-qubit states

∫

SU(2)
dg(d− 1)

(
1− |D

(
1
2

)
1
2 ,

1
2

(g)|2
)d−2

|D
(

1
2

)
1
2 ,

1
2

(g)|2 (|0〉 〈0|)⊗N

⊗
(
D

(
1
2

)
(g)† |0〉 〈0|D

(
1
2

)
(g)

)⊗M

=

∫

SU(2)
dgD

d−1
2

−d−3
2 ,

d−1
2

(g)D
d−1

2

−d−3
2 ,

d−1
2

(g)∗D
M
2

k,
M
2

(g)D
M
2

k′,
M
2

(g)∗

∣∣N
2 ,

N
2

〉 〈
N
2 ,

N
2

∣∣⊗
∣∣M

2 , k
〉 〈

M
2 , k

′∣∣ (6.42)

=
1

d+M

J−N
2∑

k=−M
2

(
C
d−1+M

2
,− d−3

2
+h

d−1
2
,− d−3

2
,M
2
,k
C
J,N

2
+k

N
2
,N
2
,M
2
,k

)2 ∣∣∣∣J,
N

2
+ k

〉〈
J,
N

2
+ k

∣∣∣∣ , (6.43)
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with Dj
m,n(g) being Wigner matrices, so that

η =

∫ 1

0
pd(c)c

(∫

SU(d)
dU
(
U |ψ〉〈ψ|U †

)⊗N
⊗
(
UW (c) |ψ〉〈ψ|W †(c)U †

)⊗M
)

dc

=

∫

SU(d)
dU
(
U |ψ〉〈ψ|U †

)⊗N

⊗
∫ 1

0
dc pd(c) c

∫

SU(2)
dV δ(c− | 〈ψ|V |ψ〉 |2)

(
UW (c) |ψ〉〈ψ|W †(c)U †

)⊗M
(6.44)

=

∫

SU(d)
dU
(
U |ψ〉〈ψ|U †

)⊗N ∫

SU(2)
dV (d− 1)(1− | 〈ψ|V |ψ〉 |2)d−2| 〈ψ|V |ψ〉 |2

⊗
(
UW (| 〈ψ|V |ψ〉 |2) |ψ〉〈ψ|W †(| 〈ψ|V |ψ〉 |2)U †

)⊗M

=

∫

SU(d)
U⊗N+M ⊗

[∫

SU(2)
dV (d− 1)(1− | 〈ψ|V |ψ〉 |2)d−2| 〈ψ|V |ψ〉 |2 |ψ〉〈ψ|⊗N

⊗
(
V |ψ〉〈ψ|V †

)⊗M]
U †
⊗N+M

(6.45)

=
1

d+M

Jmax∑

J=Jmin

J−N
2∑

k=−J−N
2

(
C
d−1+M

2
,− d−3

2
+k

d−1
2
,− d−3

2
;M
2
,k

C
J,N

2
+k

N
2
,N
2

;M
2
,k

)2 IλN+M,J

ω
(d)
λN+M,J

⊗ |JN,M 〉〈JN,M | .

For an observable of the form S =
∑

J c̃(J)ΠJ giving the optimal mean squared error,
we have the unique solution

c̃(J) =
tr[ΠJη]

tr[ΠJΓ]
=

1
d+M

∑J−N
2

k=−J−N
2

(
C
d−1+M

2
,− d−3

2
+k

d−1
2
,− d−3

2
;M
2
,k

C
J,N

2
+k

N
2
,N
2

;M
2
,k

)2

ω
(d)
λN+M,J

ω
(d)
λN,N/2

ω
(d)
λM,M/2

,

(6.46)

ω
(d)
λN+M,J

can be calculated with the Hook formula [Hay17b]. For Young diagrams with
two rows one has

ω
(d)
λN+M,J

= (2J + 1)

(
d+ J + N+M

2 − 1
)
!
(
d− J + N+M

2 − 2
)
!

(d− 1)!(d− 2)!
(
N+M

2 + J + 1
)
!
(
N+M

2 − J
)
!
.

To simplify the numerator we employ the graphical calculus techniques
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in [VMK88]:

1

d+M

J−N
2∑

k=−J−N
2

(
C
d−1+M

2
,− d−3

2
+k

d−1
2
,− d−3

2
;M
2
,k

C
J,N

2
+k

N
2
,N
2

;M
2
,k

)2

= (2J + 1)

d−1+N
2∑

L= d−3+N
2

(
C
L, d−3+N

2
d−1
2
, d−3

2
;N
2
,N
2

)2
{
M
2

d−1
2

d+n−1
2

L J N
2

}2

(6.47)

= (d− 1)(2J + 1)(4d+ 4J + 4J2 + 2N −N2 + 2M + 2NM −M2)

× N !M !(d− 1 + J + N+M
2 )!(d− 2− J + N+M

2 )!

4(d+N)!(d+M)!(−J + N+M
2 )!(1 + J + N+M

2 )!
(6.48)

where the term in curly brackets is the Wigner 6-j symbol. Plugging everything together
the optimal AvMSE estimator for a given measurement outcome J is given by

c̃bayopt (J) =
d+ J + J2 + M+N

2 −
(
M+N

2

)2
+MN

(d+M)(d+N)
, (6.49)

with its corresponding AvMSE

vop = 〈(c̃bayop − c)2〉 =

∫ 1

0
p(c)c2 −

∑

J

p(J)c(J)2 =

∫ 1

0
p(c)c2 −

∑

J

tr[ΠJΓ]c(J)2

=
(d− 1)(d+M +N)

d(1 + d)(d+M)(d+N)
. (6.50)

6.8 Remarks

In this chapter we have computed the ultimate precision attainable in estimating the
overlap of two arbitrary pure quantum states, as a function of the dimension of their
Hilbert space and their number of copies. We showed that the commonly used SWT is
highly inefficient for small values of the overlap and also on average over Haar-distributed
random states. The optimal strategy is a collective measurement on all the copies and
can be implemented efficiently using the Schur transform, although it remains experi-
mentally challenging. A practical alternative is to do Schur sampling on subsets of the
dataset, followed by classical post-processing. In addition, we proposed two intuitive
strategies that estimate separately one or both states and showed that they also outper-
form the SWT. Finally, we showed that the optimal measurement is less invasive than
the SWT and robust to white noise. It would be important to understand the limits to
the estimation of closeness measures of sets of general mixed states. We already pointed
out how to estimate a class of such quantities, based only on the spectra of the states
and on their convex combinations, in Sec. 4.2.2. The Hilbert-Schmidt distance falls in
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one example [BOW19] (see also chapter 7), while the trace distance is an important
exception, which does not fall in this subset. As for the programmable discrimination
problem, pointing out precise limits on the accuracy of the estimation of closeness mea-
sures could be out of reach beyond the simple pure state case. However, it would be
already interesting and non-trivial, to understand how the necessary number of copies of
the states scales with the dimension, for each closeness measure.
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Figure 6.3: (a) Plot of the optimal global MSE vopt vs. the number of copies of one
state N , for a fixed number of copies of the other M = 1000, in dimension d = 2, for
the optimal, EP and EE strategies. (b) Plot of the optimal global MSE vopt vs. the
dimension d, for a fixed number of copies M = N = 1000 for all the strategies studied.
(c) Plot of the average post-measurement fidelity with the initial state F (c) vs. the true
value of the overlap c with a fixed and equal number of copies M = N = 100, for the
optimal strategy and SWT.



Chapter 7

Identity testing of collection of
quantum states

This chapter is largely based on:

• Marco Fanizza, Raffaele Salvia, and Vittorio Giovannetti. Testing identity of col-
lections of quantum states: sample complexity analysis. 2021. arXiv: 2103.14511.

7.1 Introduction

In this chapter we take another look at unitarily invariant quantities, this time from
the point of view of property testing [Gol17a; Can20; MW16] and sample complexity.
We introduced the concept of finite size effects in hypothesis testing in Sec. 2.4.3. The
problem we consider in this chapter is testing if a collection of N d-dimensional states
is such that the states are all equal or they are far from being equal in some motivated
closeness measure. As in previous chapters, we do not have access to a full classical
description of the states but we receive copies of the states. We assume a sample access
to these copies: each time the agent request a state, the agent receives a labeled state ρi
with probability pi. As mentioned in Sec. 1.1, this model is effective to picture a scenario
where a preparation device is modeled as a source of states which are in principle different,
each state corresponding to a different measurement outcome of the preparation stage.
The provider of the preparation device would like to certify that different outcomes of
the preparation stage give equivalent states. At variance with previous chapters, in
this case we are not interested in computing exactly the optimal error probability, but
rather to understand how the necessary number of copies to answer successfully with
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high probability depends on the extensive parameters of the problem, that is N and
d. Our analysis of the problem adapts techniques from [BOW19], dealing with the case
of certification of two unknown states with the same number of copies, and [Gol17b;
DK16], which solved the corresponding classical problem of testing identity between
classical distributions. The measurement for the test is again weak Schur sampling, in
the nested variant discussed in Sec. 4.2.4.

The chapter is structured as follows: we present the model and state the results in
Sec. 7.1.1. We mention related work in Sec. 7.1.2. We discuss the properties of the
distance measures we will need in Sec. 7.2. Sec. 7.3 and Sec. 7.4 are devoted to proofs of
the main statements. Sec. 7.5 shows how to implement the test with nested weak Schur
sampling, while Sec. 7.6 makes final remarks on the relation between the problem that
we consider and testing independence.

7.1.1 Results

Given a collection of d-dimensional quantum states {ρi}i=1,...,N , and a probability dis-
tribution pi (0 < pi < 1), we consider a sampling model [Gol17b; DK16] where we have
access to M copies of the density matrix

ρ =
N∑

i=1

pi |i〉〈i| ⊗ ρi, (7.1)

where {|i〉}i=1,...,N is an orthonormal basis of a N dimensional (classical) register. We
are promised that one of the two following properties holds:

• Case A: ρ1 = ρ2 = ... = ρN , which can be equivalently stated by saying that there
exists a d-dimensional state σ such that

∑
i piDTr(ρi, σ) = 0;

• Case B: For any d-dimensional state σ it holds
∑

i piDTr(ρi, σ) > ε.

Our goal is to find the values of M for which there is a two-outcome test that can
discriminate the two cases with high probability of success. Explicitly, indicating with
"accept" and "reject" the outcomes of the test, we require the probability of getting
"accept" to be larger than 2/3 in case A, and smaller than 1/3 in case B, i.e.





P (test 7→ "accept" |Case A) > 2/3 ,

P (test 7→ "accept" |Case B) < 1/3 .

(7.2)

Note that the values 2/3 and 1/3 are entirely conventional, and can be replaced by any
constant respectively in (1/2, 1) and (0, 1/2). The main result of the paper is to provide
an estimate of necessary and sufficient values ofM to fulfill the above conditions. We use
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the notations O(f(d,N, ε)) and Ω(g(d,N, ε)) to indicate respectively asymptotic upper
and lower bounds to sample complexities. If lower and upper bounds which differ by
a multiplicative constant can be obtained, the sample complexity is considered to be
determined and indicated as Θ(f(d,N, ε)) = Θ(g(d,N, ε)).

Specifically we prove the following results:

Theorem 7.1.1. Given access to O(
√
Nd
ε2

) samples of the density matrix ρ of
Eq. (1), there is an algorithm which can distinguish with high probability whether∑

i piDTr(ρi, σ) > ε for every state σ, or there exists a state σ such that∑
i piDTr(ρi, σ) = 0 (that is, all the states ρi are equal).

Theorem 7.1.2. Any algorithm which can distinguish with high probability whether∑
i piDTr(ρi, σ) > ε for every state σ, or there exists a state σ such that∑
i piDTr(ρi, σ) = 0 (that is, all the states ρi are equal), given access to M copies

of the density matrix ρ of Eq. (1), requires at least M = Ω(
√
Nd
ε2

) copies.

The proof of Theorem 7.1.2 is presented in Sec. 7.4 and it relies on the fact that a
test working with M copies could be used to discriminate between two states which are
close in trace distance unless M = Ω(

√
Nd
ε2

). These states are obtained as the average
input ρ of the form of Eq. (7.1) for two different sets of collections of states: in the
first case the set is made of only one collection consisting in completely mixed states
(thus satisfying case A), and in the second the set of collections is such that its elements
satisfy case B with high probability. The derivation of the upper bound for M given
in Theorem 7.1.1 is instead presented in Sec. 7.3 and it is obtained by constructing
an observable DM whose expected value is the mean squared Hilbert-Schmidt distance
between the states ρi, and we bound the variance of the estimator. By relating the
mean squared Hilbert-Schmidt distance to

∑
i piDTr(ρi,

∑
i piρi) we obtain the test of

the theorem. The analysis exploits a Poissonization trick [Gol17b] where the number of
copies M is not fixed but a random variable, extracted from a Poisson distribution with
average µ, Poiµ(M) := e−µµM

M ! (summarized later on by the notationM ∼ Poiµ). We then
look for a test which can be performed by a two-outcome POVM {E(M)

0 , E
(M)
1 } for each

M . This is a standard technique that allows for some useful simplification of the analysis
by getting rid of unwanted correlations (more on this in Sec. 7.3.1). The equivalence of
the Poisson model with the original one is formalised in Appendix A.6.

Analogously to [BOW19] we can refine the upper bound when the states in the collection
have low rank. Given the state ρ of Eq. (7.1), we define its reduced average density
matrix

ρ̄ :=

N∑

i=1

piρi , (7.3)
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In particular, when ρ̄ is η-close to rank k, that is, the sum of its k largest eigenvalues is
at least 1− η, we can refine Theorem 7.1.1:

Theorem 7.1.3. If the density matrix ρ̄ of Eq. (7.3) is η-close to rank k, given access to
O(
√
Nk
ε2

) samples of ρ there exists an algorithm which can distinguish with high probability
whether

∑
i piDTr(ρi, σ) > ε + η for every state σ, or there exists a state σ such that∑

i piDHS(ρi, σ) < 8(2−
√

2)ε.

7.1.2 Related work

Classical distribution testing

For an overview of learning properties of a classical distribution in the spirit of prop-
erty testing, we refer to [Gol17a; Can20]. We report a partial list of results which are
of direct interest for this chapter, about testing symmetric properties of distribution in
variational distance. We use the notation [d] for the set {1, ..., d}. Learning a classical
distribution over [d] in total variation distance requires Θ(d/ε2) samples [Gol17a], there-
fore the interest in testing properties is to get a sample complexity o(d). The problem
of testing uniformity was addressed in [GR11] and established to be O(

√
d/ε2) in suc-

cessive works [Pan08; VV14]. More generally, the sample complexity of identity testing
to a known distribution has been established to be Θ(

√
d/ε2) [VV14; DKN15]. Iden-

tity testing for two unknown distributions is O(max(d1/2/ε2, d2/3/ε4/3)) [Cha+14]. The
problem of testing identity of collection of N distributions was introduced in the classical
case in [Gol17b] and solved in [DK16], obtaining Θ(max(

√
dN/ε2, d2/3N1/3/ε4/3)) for the

sampling model, where at each sample the tester receives one of N distributions with
probabilty pi, and Θ(max(

√
d/ε2, d2/3/ε4/3)) for the query model, where the tester can

choose the distribution to call at each sample. A problem related to testing identity of
collections is testing independence of a distribution on ×li=1[ni], which was addressed
by [Bat+01; Gol17b; AD15] and solved in [DK16], which showed a tight sample com-
plexity Θ(maxj(

∏l
i=1 n

1/2
i /ε1/2, n

1/3
j

∏l
i=1 n

1/3
i /ε4/3)).

Quantum state testing

We already mentioned several results on the sample complexity of quantum tomogra-
phy 2.4.3 and spectrum estimation 4.2.4, and recall them here for completeness. It has
been shown the reconstruction of the classical description of an unknown state, quantum
tomography, requires Θ(d2/ε2) copies of the state [Haa+17; OW16; OW17]. These algo-
rithms require spectrum learning as a subroutine [ARS88; KW01; HM02; Chr06; Key06],
which has sample complexity O(d2/ε2), although a matching lower bound is available
only for the empirical Young diagram estimator [OW15]. These results have been refined
in the case when the state is known to be close to a state of rank less than k. Quantum



Chapter 7. Identity testing of collection of quantum states 119

entropy estimation has been studied in [AKG19]. In the review of quantum property test-
ing in [MW16] it is shown that testing identity to a pure state requires O(1/ε2) copies.
Testing identity to the completely mixed state requires Θ(d/ε2) copies [OW15], and the
same is true for a generic state and for testing identity between unknown states (with
refinements if the state can be approximated by a rank k state) [BOW19]. In [BOW19],
identity testing between unknown states is done by first estimating their Hilbert-Schmidt
distance with a minimum variance unbiased estimator, developing a general framework
for efficient estimators of sums of traces of polynomials of states. This improves on
the swap test [Buh+01] mentioned in Chapter 6, which can also be used for the same
purpose. In all of these cases, the algorithms considered are classical post-processing
of the measurement used to learn the spectrum of a state, possibly repeated on nested
sets of inputs. This measurement can be efficiently implemented, with gate complexity
O(n, log d, log 1/δ) [BCH06; Har05a; Kro19], where n is the number of copies of the state,
and δ is the precision of the implementation. Testing identity of collections of quantum
states in the query model has been established to be Θ(d/ε2) [Yu19], while the sampling
model complexity was left open and it is addressed in this chapter. Independence testing
(checking if a state is a product state or far from it) is also addressed in [Yu19], obtain-
ing a sample complexity O(d1d2/ε

2), which is tight up to logarithmic factors, using the
identity test of [BOW19] for testing independence of a state on Cd1 ⊗ Cd2 ; similar re-
sults hold for the multipartite case (see also [HT16] for the asymptotic setting). Besides
these optimality results being valid if one allows any measurement possible according to
quantum mechanics, several results have been obtained in the case in which there are
restrictions on the measurements: [BCL20] shows that the sample complexity for testing
identity to the completely mixed state with independent but possibly adaptive measure-
ments is Ω(d4/3/ε2) and Θ(d3/2/ε2) for non-adaptive measurement, while the instance
optimal case for the same problem is studied in [CLO21]; [Haa+17] shows that the sam-
ple complexity for tomography for non-adaptive measurement is Ω(d3/ε2). Algorithms
with Pauli measurements only have been considered [Yu19; Yu20], while a general review
of the various approaches with attention to feasibility of the measurement can be found
in [KR21].

7.2 Distance measures for collection of distributions

In this chapter we will need several relations between classical and quantum closeness
measures. In addition to the trace distance DTr(ρ, σ) between to states, eq. (2.7) we need
the Hilbert-Schmidt distance DHS(ρ, σ)

DHS(ρ, σ) = ||ρ− σ||2 . (7.4)
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These quantities are connected via the following inequalities

1

2
DHS(ρ, σ) ≤ DTr(ρ, σ) ≤

√
d

2
DHS(ρ, σ), (7.5)

where the first inequality comes from monotonicity of Schatten norms [HJ12] and the
second from Cauchy-Schwartz inequality.

For ρ and ρ̄ as defined in Eq. (7.1) and (7.3), we introduce the quantity

MTr(ρ) :=
N∑

i=1

piDTr(ρi, ρ̄) ≤ 1

2

N∑

i=1

pi

√
dD2

HS(ρi, ρ̄) . (7.6)

We also define the mean squared Hilbert-Schmidt distance of the model as

MHS(ρ) :=




N∑

i=1

N∑

j=1

pipjD
2
HS (ρi, ρj)




1/2

, (7.7)

observing that it can be equivalently expressed in terms of ρ̄ as

M2
HS(ρ) :=

N∑

i=1

N∑

j=1

pipjD
2
HS (ρi, ρj) =

N∑

i=1

N∑

j=1

pipj Tr
[
(ρi − ρj)2

]

=
N∑

i=1

N∑

j=1

pipj Tr
[
(ρi − ρ̄+ ρ̄− ρj)2

]

= 2
N∑

i=1

pi Tr
[
(ρi − ρ̄)2

]
− 2

N∑

i=1

N∑

j=1

pipj Tr[(ρi − ρ̄)(ρj − ρ̄)]

= 2
N∑

i=1

piD
2
HS(ρi, ρ̄). (7.8)

Therefore we can derive the following important inequality

MTr(ρ) =
N∑

i=1

piDTr(ρi, ρ̄) ≤ 1

2

N∑

i=1

pi

√
dD2

HS(ρi, ρ̄)

≤ 1

2

√√√√
N∑

i=1

pi

√√√√
N∑

i=1

pidD2
HS(ρi, ρ̄) =

√
d

2
√

2
MHS(ρ) , (7.9)

which will be used in the next section to obtain a test for MTr(ρ) starting from a test
forMHS(ρ).
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If the state σ is close to having rank k, in the sense that the sum of its largest k eigenvalues
is larger than 1 − η, then the following inequality (proven in section 5.4 of [BOW19])
holds

DTr(ρ, σ) ≤
√
k

c
DHS(ρ, σ) + η , (7.10)

with c = 2−
√

2. Therefore, in the special case in which the average state ρ̄ is η-close to
having rank k, the inequality (7.9) can be improved by

MTr(ρ) =
N∑

i=1

piDTr(ρi, ρ̄) ≤
N∑

i=1

pi

(√
k

c2
D2
HS(ρi, ρ̄) + η

)

=
1

c

N∑

i=1

pi

√
kD2

HS(ρi, ρ̄) + η =
1

c

N∑

i=1

√
pi

√
pikD2

HS(ρi, ρ̄) + η

≤ 1

c

√√√√
N∑

i=1

pi

√√√√
N∑

i=1

pikD2
HS(ρi, ρ̄) + η =

√
k

c
√

2
MHS(ρ) + η . (7.11)

In our analysis we will also need the following divergences for classical distributions p,q:
the chi-squared divergence, defined as dχ2(p||q) :=

∑
i

(pi−qi)2
pi

; the Kullback-Leibler di-
vergence, which corresponds the relative entropy in Eq. (2.11) evaluated on states which
have are diagonal in the same basis, defined as dKL(p||q) :=

∑
i pi log2

pi
qi
; and the total

variational distance, defined as dTV (p||q) := 1
2

∑
i |pi− qi|, which also corresponds to the

trace distance between states which are diagonal in the same basis. The following prop-
erties can be found in [CT05; SV16]. From the definition of Kullback-Leibler divergence,
it follows that it is additive, i.e.

dKL




N∏

j=1

p(j)||
N∏

j=1

q(j)


 =

N∑

j=1

dKL(p(j)||q(j)) . (7.12)

The total variational distance is related to the Kullback-Leibler divergence by Pinsker’s
inequality:

dTV (p, q) ≤
√

1

2
dKL(p||q) , (7.13)

and the Kullback-Leibler can be bounded in terms of the chi-squared divergence, as:

dKL(p, q) ≤ ln
[
1 + dχ2(p, q)

]
. (7.14)
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7.3 Upper bound on the sample complexity

In order to prove Theorem 7.1.1 here we show a stronger version of such statement,
i.e.

Theorem 7.3.1. Given access to O(
√
N
δ ) samples of the state ρ of Eq. (7.1), for δ > 0

there is an algorithm which can distinguish with high probability whetherM2
HS(ρ) ≤ 0.99δ

orM2
HS(ρ) > δ.

The connection with Theorem 7.1.1 follows by the relations between the functionals
MHS(ρ) and MTr(ρ) discussed in Sec. 7.2. Specifically we notice that MTr(ρ) = 0

(case A) implies MHS(ρ) = 0, while having MTr(ρ) > ε (a constraint that holds in
Case B) implies M2

HS(ρ) > 8ε2

d by Eq. (7.9). Therefore a test satisfying the requests
of Theorem 7.1.1 can be obtained by taking the algorithm identified by Theorem 7.3.1
with δ = 8ε2

d . [Incidentally we stress that the test can be performed by a two outcome
POVMs {E(M)

0 , E
(M)
1 } when the number of copies of ρ is M (for any M ≥ 1), obtained

as projectors on the eigenvectors of the observable DM defined in the following with
eigenvalues larger or lower than a threshold; therefore, it is of the class of test on which
we can apply Proposition A.6.1].

In a completely analogous way, Theorem 7.1.3 follows by calling the algorithm of Theo-
rem 7.3.1 with δ = 16(2−

√
2)2ε2

k , and using the inequality (7.11).

The reminder of the section is hence devoted to the prove Theorem 7.3.1.

7.3.1 Building the estimator for M2
HS

To prove Theorem 7.3.1 we construct an unbiased estimator forM2
HS , generalizing the

estimator of D2
HS(ρ, σ) discussed in [BOW19]. We start noticing that via permutations

that operate on the quantum registers conditioned on measurements performed on the
classical registers, the density matrix ρ⊗M describing M copies of the state ρ, can be
cast in the following equivalent form

ρ(M) :=
∑

~m∈PM

M(~m)~p,M |~m〉〈~m| ⊗ ρ~m. (7.15)

In this expression the summation runs over all vectors ~m = (m1,m2, · · · ,mN ) formed
by integers that provide a partition of M (i.e. m1 + m2 + · · · + mN = M); M(~m)~p,M is
the multinomial distribution with M extractions and probabilities ~p = (p1, p2, · · · , pN ),
i.e.

M(~m)~p,M :=
M !

m1!...mN !
pm1

1 pm2
2 · · · pmNN ; (7.16)
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the vectors |~m〉 = |m1,m2, · · · ,mN 〉 form an orthonormal set for the classical registers
of the model; while finally

ρ~m := ρ⊗m1
1 ⊗ ρ⊗m2

2 ⊗ ...⊗ ρ⊗mNN , (7.17)

is a state of the quantum registers with mi elements initialized into ρi, which formally
operates on an Hilbert space with tensor product structure ⊗Ni=1Hi, with Hi = (Cd)⊗mi ,
with mi = 0, ...,M . Exploiting the representation of Eq. (7.15) we then introduce the
observable

DM :=
∑

~m∈PM

|~m〉〈~m| ⊗ D ~m,M , (7.18)

with
D ~m,M :=

∑

i 6=j
Dmi,mj ,Mij , (7.19)

and

Dmi,mj ,Mij :=
mi(mi − 1)

µ2pi
pjOmi,mjii +

mj(mj − 1)

µ2pj
piOmi,mjjj − 2

mimj

µ2
Omi,mjij . (7.20)

In the above expression µ > 0 is a free parameter that will be fixed later on. The
operators Omi,mjij are defined to be the average of all possible different transpositions
Smi,mj swapping one of the mi factors of Hi with one of the mj factors of Hj , with i and
j possibly equal, i.e.

Omi,mjij :=
1

|Smi,mj |
∑

S∈Smi,mj

S . (7.21)

Since each transposition is Hermitian, Omi,mjij is Hermitian too.

The expectation values of DM on ρ(M) can be formally computed by exploiting the
relation

Tr
[
Omi,mjij ρ~m

]
= Tr

[
Omi,mjij ρ⊗mii ⊗ ρ⊗mjj

]
= Tr[ρiρj ] , (7.22)

where the first identity follows from the fact that Omi,mjij acts not trivially only on
registers containing copies of ρi and ρj . Accordingly for i 6= j we have

Tr
[
Dmi,mj ,Mij ρ~m

]
=
mi(mi − 1)

µ2pi
pj Tr

[
ρ2
i

]
+
mj(mj − 1)

µ2pj
pi Tr

[
ρ2
j

]
− 2

mimj

µ2
Tr[ρiρj ] ,

(7.23)
which leads to

Tr
[
DMρ(M)

]

=
∑

~m∈PM

M(~m)~p,M
∑

i 6=j

(
mi(mi−1)
µ2pi

pj Tr
[
ρ2
i

]
+

mj(mj−1)
µ2pj

pi Tr
[
ρ2
j

]
− 2

mimj
µ2

Tr[ρiρj ]
)
.

(7.24)
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To simplify the analysis of the performance of a test based on DM we can invoke the
equivalence of Proposition A.6.1 between the original model and its Poissonized version
where the value of M (and hence the density matrix ρ(M) that is presented to us) is
randomly generated with probability Poiµ(M) (notice that the mean value of the dis-
tribution is taken equal to parameter µ which enters the definition (7.20) of Dmi,mj ,M

ij ).
Defining ΓM the set of eigenvalues of the observables DM (7.18), we then introduce a
new estimator D that produces outputs X ∈ Γ :=

⋃
M ΓM with probabilities

PX :=

∞∑

M=0

Poiµ(M)
∑

x∈ΓM

δx,XP
(M)
x , (7.25)

where P
(M)
x is the probability of getting the outcome x from DM when acting on

ρ(M).

The following facts can then be proved:

Proposition 7.3.1 (Unbiasedness). Given E[D] :=
∑

X∈ΓXPX the mean value of the
estimator D we have

E[D] =M2
HS(ρ) . (7.26)

Proof. From Eq. (7.25) and (7.24) we can write

E[D] =

∞∑

M=0

Poiµ(M)
∑

x∈ΓM

xP (M)
x =

∞∑

M=0

Poiµ(M) Tr
[
DMρ(M)

]

=
∞∑

M=0

Poiµ(M)
∑

~m∈PM

M(~m)~p,M

×
∑

i 6=j

(
mi(mi−1)
µ2pi

pj Tr
[
ρ2
i

]
+

mj(mj−1)
µ2pj

pi Tr
[
ρ2
j

]
− 2

mimj
µ2

Tr[ρi, ρj ]
)

=
∞∑

m1=0

· · ·
∞∑

mN=0

Poip1µ(m1) · · ·PoipNµ(mN )

×
∑

i 6=j

(
mi(mi−1)
µ2pi

pj Tr
[
ρ2
i

]
+

mj(mj−1)
µ2pj

pi Tr
[
ρ2
j

]
− 2

mimj
µ2

Tr[ρi, ρj ]
)
,

(7.27)

where in the second identity we used
∑

x∈ΓM
xP

(M)
x = Tr

[
DMρ(M)

]
, while in the last

identity we exploit the fact that under Poissanization the random variables mi become
independent due to the property

∞∑

M=0

Poiµ(M)M(~m)~p,M =
N∏

i=1

Poipiµ(mi) , (7.28)
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with Poipiµ(mi) being a Poisson distribution of mean piµ. Equation (7.26) then finally
follows from the identities

∞∑

mi=0

mi Poipiµ(mi) = µpi ,
∞∑

mi=0

mi(mi − 1)

pi
Poipiµ(mi) = µ2pi . (7.29)

Proposition 7.3.2 (Bound on the variance). The variance of the estimator D,
Var[D] :=

∑
X∈Γ PX(X − E[D])2, satisfies the inequality

Var[D] ≤ O
(
N

µ2

)
+

16M2
HS(ρ)

µ
. (7.30)

Proof. See Appendix A.7.

We can now invoke the modified Chebyshev inequality proved in [BOW19], which we
restate with a notation adapted to this work:

Lemma 7.3.1 (Lemma 2.1 of [BOW19]). Let X(µ) be a sequence of unbiased esti-
mators for a number c > 0, i.e. E[X(µ)] = c for all n. Assume the variance of X(µ) can
be bounded as

Var[X(µ)] ≤ O
(
v(c)

µ
+
b(c)

µ2

)
, (7.31)

and b(c), v(c), c2/b(c) and c2/v(c) are non-decreasing functions of c. Then, for any
θ > 0, provided that

µ ≥ max

{√
b(θ)

θ2
,
v(θ)

θ2

}
(7.32)

one can use X(µ) to distinguish with high probability whether c < 0.99θ or c > θ.

We have now all the ingredients necessary to prove Theorem 7.3.1: in particular the thesis
is obtained by applying Lemma 7.3.1 to the sequence of observables D, implicitly depend-
ing on µ, estimating c =M2

HS(ρ). Proposition 7.3.2 tells indeed that the estimators D
satisfy the hypothesis (7.31) of Lemma 7.3.1, with the identifications, b(c) = N · O(1),
and v(c) = 16c, θ = ε.

7.4 Lower bound on the sample complexity

We now explain the idea for proving the lower bound on M that follows from Theo-
rem 7.1.2. First of all we limit ourselves to even d, since for odd d one can simply use
the lower bound for d − 1. We also choose the probability distribution p to be uni-
form, pi = 1/N . The case N = 2 is a straightforward consequence of the lower bound
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in [OW15], which gives a lower bound of O(d/ε2), noting that with access to M copies
of ρε one can simulate access to M copies of 1

2

(
Id
d ⊗ |1〉 〈1|+ ρε ⊗ |2〉 〈2|

)
:

Lemma 7.4.1 (Corollary 4.3 of [OW15]). Let ρε be a quantum state with d/2 eigen-
values equal to 1+2ε

d and the other d/2 eigenvalues equal to 1−2ε
d . Then any algorithm

that can discern between the states (Id/d)⊗M and ρ⊗Mε with a probability greater than 2/3
must require M ≥ 0.15d/ε2.

This is a lower bound for any N smaller than a constant, say N < 10. Therefore we
consider N ≥ 10 in the following. We define two sets of collections of N quantum states.
The first set A contains only one collection, namely a collection where all the states are
the completely mixed states. Clearly, the only element of A is a collection satisfying the
property of case A. For even d, the second set B contains all the collections of states
having d/2 eigenvalues equal to 1+8ε

d and d/2 eigenvalues equal to 1−8ε
d . This means that

all the states in a collection of B can be written as Uiρ0U
†
i for ρ0 with the prescribed

spectrum and Ui arbitrary. If each Ui is drawn independently according to the Haar
measure of SU(d), we show that the elements of B satisfy property B with probability
larger than a constant. We also show an upper bound on the trace distance between ρA
and ρB, being respectively M samples for a collection of all completely mixed states and
the average input of M samples for collections in B. Explicitly, we have

ρA =

(
1

N

N∑

i=1

|i〉〈i| ⊗ I

d

)⊗M
, (7.33)

ρB =

∫

U1,...,UN∈SU(d)
dU1....dUN

(
1

N

N∑

i=1

|i〉〈i| ⊗ Uiρ0U
†
i

)⊗M
. (7.34)

If a test capable of distinguishing with high probability with case A and B exists, then
it can be used to distinguish between ρA and ρB. Since the probability of success in the
latter task has to be lower than what we obtain from the bound on the trace distance,
we obtain a lower bound on the sample complexity.

Lemma 7.4.2. Let {ρi}i,...,N be a collection of states such that 1
N

∑N
i=1 ||ρi − ρ̄||1 > 4ε.

Then 1
N

∑N
i=1 ||ρi − σ||1 > 2ε for any σ.

Proof. Suppose that we have 1
N

∑N
i=1 ||ρi − σ||1 ≤ 2ε for some σ. By convexity of the

trace norm, ||ρ̄− σ||1 ≤ 2ε. Then

1

N

N∑

i=1

||ρi − ρ̄||1 =
1

N

N∑

i=1

||ρi − σ + σ − ρ̄||1 ≤
1

N

N∑

i=1

||ρi − σ||1 + ||σ − ρ̄||1 ≤ 4ε (7.35)

which is a contradiction.
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Lemma 7.4.3. For N > 10, let {Uiρ0U
†
i }i,...,N be a collection of states in B and ρ as

in Eq. (7.1), with pi = 1/N . If each Ui is drawn independently according to the Haar
measure of SU(d), the probability of havingMTr(ρ) ≥ 4ε is at least

P
U1,...,UN∼U(d)

(MTr(ρ) > 4ε) ≥ 11

15
. (7.36)

Proof. We denote by |k〉k=1,...,d a basis of eigenvectors of ρ0, such that 〈k| ρ0 |k〉 =
1+(−1)k8ε

d and define

Θ :=
d∑

k=1

(−1)k |k〉〈k| . (7.37)

We can write

MTr(ρ) =
1

N

N∑

i=1

‖ρi − ρ̄‖1 =
1

N

N∑

i=1

∥∥∥∥∥∥
ρi −

1

N

N∑

j=1

Ujρ0U
†
j

∥∥∥∥∥∥
1

=
1

N

N∑

i=1

∥∥∥∥∥∥
Uiρ0U

†
i −

1

N

N∑

j=1

Ujρ0U
†
j

∥∥∥∥∥∥
1

=
1

N

N∑

i=1

∥∥∥∥∥∥
ρ0 −

1

N

N∑

j=1

U †i Ujρ0U
†
jUi

∥∥∥∥∥∥
1

≥ 1

N

N∑

i=1

d∑

k=1

∣∣∣∣∣∣
〈k| ρ0 −

1

N

N∑

j=1

U †i Ujρ0U
†
jUi |k〉

∣∣∣∣∣∣

=
1

N

N∑

i=1

d∑

k=1

(−1)k


〈k| ρ0 |k〉 − 〈k|

1

N

N∑

j=1

U †i Ujρ0U
†
jUi |k〉




= 8ε− 1

N2

N∑

i=1

d∑

k=1

(−1)k
N∑

j=1

〈k|U †i Ujρ0U
†
jUi |k〉

= 8ε− 1

N2

N∑

i=1

N∑

j=1

d∑

k=1

(−1)k 〈k|U †i Ujρ0U
†
jUi |k〉

= 8ε− 1

N2

N∑

i=1

N∑

j=1

Tr
[
Θ̂U †i Ujρ0U

†
jUi

]
, (7.38)

where the inequality comes from the monotonicity of the trace norm, applied together
with the channel that projects on the orthogonal basis {|k〉}. The expected value of the
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latter term of (7.38) is

E
U1,...,UN∼U(d)


 1

N2

N∑

i=1

N∑

j=1

Tr
[
Θ̂U †i Ujρ0U

†
jUi

]



=
1

N2

N∑

j=1

N∑

i=1

E
U1,...,UN∼U(d)

[
Tr
[
Θ̂U †i Ujρ0U

†
jUi

]]

=
1

N2

N∑

j=1

N∑

i=1

8εδij = 8
ε

N
. (7.39)

Therefore, using Markov inequality, we can write

P
U1,...,UN∼U(d)


 1

N2

N∑

i=1

N∑

j=1

Tr
[
Θ̂U †i Ujρ0U

†
jUi

]
> 3ε


 ≤ 8

3N
(7.40)

Combining (7.40) with (7.38), we have

P
U1,...,UN∼U(d)

(MTr(ρ) > 4ε) ≥ 1− 8

3N
≥ 11

15
, N ≥ 10 (7.41)

Lemma 7.4.4.

DTr(ρA, ρB) ≤ 16
ε2M

d
√
N
. (7.42)

Proof. We have that

DTr(ρA, ρB) = E~m∼M~p,N,M

[
D

((
I

d

)⊗M
,

∫

Ui∈SU(d)
dU1....dUN

N⊗

i=1

(
Uiρ0U

†
i

)⊗mi
)]

(7.43)

Using Schur-Weyl duality, we can write ρA and ρB as

(
I

d

)⊗M
=

N⊗

i=1


 ∑

λ∈Ymi,d

SWmi
I/d(λ)

Id(λ,mi)×d(λ,mi)

d(λ,mi)


 (7.44)

∫

Ui∈SU(d)
dU1....dUN

N⊗

i=1

(
Uiρ0U

†
i

)⊗mi
=

N⊗

i=1


 ∑

λ∈Ymi,d

SWmi
ρ0 (λ)

Id(λ,mi)×d(λ,mi)

d(λ,mi)


 ,

(7.45)
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where Ymi,d is a set of Young diagrams and SWM
ρ (λ) is a probability distribution over

Young diagrams which depends only on the spectrum of ρ. Defining

D~m
0 = SWm1

d × · · ·SWmi
d , D~m

ε = SWm1
ρ0 × · · ·SWmi

ρ0 , (7.46)

we have
DTr(ρA, ρB) = E~m∼M~p,N,M

dTV (D~m
0 ,D

~m
ε ) (7.47)

First of all we invoke the bound from [OW15]:

dχ2(SWn
ρ ||SWn

I/d) ≤ exp
(
256n2ε4/d2

)
− 1 (7.48)

Our first observation is that, when mi = 1, (7.48) can be improved noticing that
dKL(SW1

ρi ,SW1
d) = 0 for every possible state ρi (since there is only one possible par-

tition of n = 1 - in other words, we gain no information on whether the state is mixed by
measuring a single copy). This observation, together with (7.48) and (7.14), imply that

dKL(SWmi
ρ ||SWmi

I/d) ≤ 256
1mi>1 ·m2

i ε
4

d2
. (7.49)

Using (7.12) and (7.49) we can write

DTr(ρA, ρB) = E~m∼M~p,N,M
dTV (D~m

0 ,D
~m
ε ) ≤ E~m∼M~p,N,M

√
1

2
dKL(D~m

0 ,D
~m
ε )

= E~m∼M~p,N,M

√√√√1

2

N∑

i=1

dKL(SWmi
ρ ||SWmi

I/d)

= E~m∼M~p,N,M

√√√√1

2

N∑

i=1

256
1mi>1 ·m2

i ε
4

d2

≤

√√√√E~m∼M~p,N,M

1

2

N∑

i=1

256
1mi>1 ·m2

i ε
4

d2

≤

√√√√E~m∼M~p,N,M

N∑

i=1

256mi(mi − 1)
ε4

d2

≤ 16
ε2M

d
√
N
, (7.50)

where the first inequality is from Pinsker’s inequality, the second equality is the additivity
of the Kullback-Leibler divergence, the second inequality is from concavity of the square
root.
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It is now immediate to prove Theorem 7.1.2

Proof of Theorem 7.1.2. If an algorithm as in Theorem 7.1.2 exists, one can use it to
try to discriminate between ρA and ρB. By also invoking the Holevo-Helstrom bound
Eq. (2.6), the probability of success has to satisfy

1

2

(
1 + 16

ε2M

d
√
N

)
≥ psucc ≥

1

2

(
11

15
+ 1

)
2

3
. (7.51)

Therefore

M ≥ 4 · 10−3

√
Nd

ε2
. (7.52)

7.5 Implementation of the optimal measurement

The measurement of the test defined in Sec. 7.3 to prove Theorem 7.1.1 can be imple-
mented on a quantum computer with gate complexity O(M, log d, log 1/δ), where δ is
the precision of the implementation, because it can be realized with a sequence of weak
Schur sampling measurements. This was already shown for the observable of [BOW19]
for N = 2 and it can be easily be shown to be true in the general case too. Indeed,
in [BOW19] it is shown that Omi,miii can be written as

Omi,mjii =
∑

λ∈Ymi,d

TN(λ)Π
(i)
λ , (7.53)

where Ymi,d are Young diagrams, Πλ a complete set of orthogonal projectors and TN(λ) =
1

n(n−1)

∑d
i=1((λi − i + 1/2)2 − (−i + 1/2)2). We now define O to be the average of all

transposition on H⊗Md , for which we have:

O =
∑

λ∈YM,d

TN(λ)Πλ. (7.54)

Using that

M(M − 1)

2
O =

1

2

∑

i 6=j
mimjOmi,mjij +

N∑

i=1

mi(mi − 1)

2
Omi,mjii , (7.55)

we have
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D ~m,M :=
∑

i 6=j
Dmi,mj ,Mij =

N∑

i=1

2mi(mi − 1)

µ2pi
Omi,mjii − 2M(M − 1)

µ2
O

N∑

i=1

2mi(mi − 1)

µ2pi
Omi,mjii − 2M(M − 1)

µ2
O. (7.56)

Since [Πλ,⊗Ni=1Π
(i)
λi

] = 0, the measurement can be implemented efficiently by nested weak
Schur sampling.

7.6 Remarks

We have established the sample complexity of testing identity of collections of quantum
states in the sampling model, with a test that can be also implemented efficiently in terms
of gate complexity. Note that for this problem one could have used the independence
tester of [Yu19], based on the identity test of [BOW19], since if the states in the collection
are equal the input of our problem in Eq. (7.1) is a product state, and far from it
otherwise. However, the guaranteed sample complexity in this case would have been
O(Nd/ε2), and to get

√
Nd/ε2 we need to make use of the fact that the state in Eq. (7.1)

is a classical-quantum state and that we know the classical marginal. This is a state of
zero discord [HV01; OZ01; ABC16], and one could ask how the sample complexity differ
if the discord is not zero, for example if the states |i〉 are not orthogonal. This could
be seen as an example of quantum inference problem with quantum flags, proved useful
in other contexts, e.g. the evaluation of quantum capacities [SSW08; LDS18; Fan+20b;
KFG20; WW19b; FKG21]. More generally, an interesting problem would be to study
the sample complexity of independence testing with constraints on the structure of the
state, with a rich variety of scenarios possible.
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Designing degradable extensions

This chapter is largely based on:

• Marco Fanizza, Farzad Kianvash, and Vittorio Giovannetti. “Quantum Flags and
New Bounds on the Quantum Capacity of the Depolarizing Channel”. In: Physical
Review Letters 125.2 (2020), p. 020503. doi: 10.1103/PhysRevLett.125.020503.
arXiv: 1911.01977.

• Farzad Kianvash, Marco Fanizza, and Vittorio Giovannetti. Bounding the quantum
capacity with flagged extensions. 2020. arXiv: 2008.02461.

• Marco Fanizza, Farzad Kianvash, and Vittorio Giovannetti. Estimating Quantum
and Private capacities of Gaussian channels via degradable extensions. 2021. arXiv:
2103.09569.

8.1 Introduction

In this chapter we present a series of upper bounds on the quantum capacity of several
physically motivated quantum channels. We obtain these bounds finding degradable ex-
tensions of the channels, according to the method explained in Sec. 3.3. We also refer
to Sec. 3.3 for an overview of the various approaches to upper bounds, with or without
degradable extensions, and for the definition of flagged extension. The core idea be-
hind these results is to develop a method to easily design degradable extensions, which
is flexible enough to apply to different models and improves bounds beyond the low
noise regime where approximate degradability [Sut+17; LLS18b] gives satisfactory an-
swers. The first attempt to go beyond flagged extensions with non-orthogonal flags is
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in our paper [FKG20], where we found out improved bounds on the quantum capac-
ity of the depolarizing channel using sufficient conditions for degradability of a flagged
extension with non-orthogonal pure flags and mixed commuting non-orthogonal flags.
Later [Wan21] used approximate degradability to improve this bound, finding numeri-
cal evidence that the degradability region of the flagged extension with pure states was
larger. The method was also extended to the BB84 channel and to the generalized am-
plitude damping channel. In [KFG20] we find new sufficient conditions for degradability
that are able to analytically recover the results in [Wan21], and are flexible enough to
give even better bounds. In [FKG21] we extended this approach to phase-insensitive
Gaussian channels, presented in Sec. 4.4.4. In this chapter we will present the content
of [KFG20] (which supersedes [FKG20]), and [FKG21], with the following structure: in
Sec. 8.2 we prove sufficient conditions for degradability of flagged extensions, and com-
ment on their general applicability. In Sec. 8.3 we apply this method to Pauli channels,
evaluating their capacities. In particular, we present upper bounds on the quantum and
private capacities of the depolarizing and BB84 channels. In Sec. 8.4 we discuss degrad-
able extensions of the generalized amplitude damping channel, presenting new bounds.
In Sec. 8.5 we present a degradable flagged extension of the additive noise channel, and
degradable extensions for the thermal attenuator. These results improve the bounds on
the quantum and private capacity of these channels and of the thermal amplifier. In
Sec. 8.6 we comment on possible improvements.

8.2 Sufficient conditions for degradability of flagged exten-
sions

The following proposition shows a method to design degradable flagged extensions
(Def. 3.3.5) for convex combination of channels.

Proposition 8.2.1 (Sufficient conditions for degradability of flagged exten-
sions). Let N =

∑l
i=1 piNi be a convex combination of channels acting on the quantum

system A, and its flagged extension

N̂ =
l∑

i=1

piNi ⊗ |φi〉 〈φi| , (8.1)

with |φi〉 are pure states of an auxiliary flag system F . The channel N̂ is degradable if
there exists an orthonormal basis {|i〉}i for the space of F and a choice of Kraus operators
{K(i)

j }j=1,...,ri for each channel Ni, such that

〈
i′
∣∣φi
〉√

piK
(i′)
j′ K

(i)
j = 〈i|φi′〉

√
pi′K

(i)
j K

(i′)
j′ ∀i, j, i′, j′ . (8.2)
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Proof. The proof follows by explicitly constructing a degrading map. Each channel Ni
admits the following Stinespring dilation

Vi |ψ〉A :=

ri∑

j=1

K
(i)
j |ψ〉A |i〉B |j〉B̄ , (8.3)

for all |ψ〉A states of A, with the systems B and B̄ being traced out to obtain Ni.

A Stinespring dilation of the flagged channel in Eq. (8.1) can be constructed from the
Stinespring dilations Vi

V |ψ〉A :=
l∑

i=1

√
piVi |ψ〉A |φi〉F . (8.4)

On the other hand, the complementary of the flagged channel is defined by

N̂ c[|ψ〉A 〈ψ|] =
∑

i,j

√
pipjF 〈φj |φi〉F TrA[Vi |ψ〉A 〈ψ|V

†
j ] . (8.5)

We consider a channel W which takes as input systems A and F , with the following
Stinespring dilation

V ′ |ψ〉A |i〉F := Vi |ψ〉A . (8.6)

The following state is the purification of the state after the action of W ◦ N̂

V ′V |ψ〉A =
l∑

i=1

√
piV

′Vi |ψ〉A |φi〉F =
l∑

i=1

l∑

i′=1

√
pi
〈
i′
∣∣φi
〉
Vi′Vi |ψ〉A

=
l∑

i=1

l∑

i′=1

ri∑

j=1

ri′∑

j′=1

〈
i′
∣∣φi
〉√

piK
(i′)
j′ K

(i)
j |ψ〉A |i〉B |j〉B̄

∣∣i′
〉
B′

∣∣j′
〉
B̄′
, (8.7)

where for ease of notation 〈i′|φi〉 stands for F 〈i′|φi〉F . On the other hand the states of
subsystem BB̄ is equal to N̂ c[|ψ〉 〈ψ|]. Therefore,W is a valid degrading map if V ′V |ψ〉A
is invariant if we swap subsystem BB̄ with B′B̄′. We now verify that Eq. (8.2) guarantees
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this property. Defining the swap operator as S↔, we have

S↔V
′V |ψ〉A =

l∑

i=1

l∑

i′=1

ri∑

j=1

ri′∑

j′=1

〈
i′
∣∣φi
〉√

piK
(i′)
j′ K

(i)
j |ψ〉A |i〉B |j〉B̄

∣∣i′
〉
B′

∣∣j′
〉
B̄′

=
l∑

i=1

l∑

i′=1

ri∑

j=1

ri′∑

j′=1

〈
i′
∣∣φi
〉√

piK
(i′)
j′ K

(i)
j |ψ〉A

∣∣i′
〉
B

∣∣j′
〉
B̄
|i〉B′ |j〉B̄′

=
l∑

i=1

l∑

i′=1

ri∑

j=1

ri′∑

j′=1

〈i|φi′〉
√
pi′K

(i)
j K

(i′)
j′ |ψ〉A |i〉B |j〉B̄

∣∣i′
〉
B′

∣∣j′
〉
B̄′
,

= V ′V |ψ〉A , (8.8)

where we used Eq. (8.2) in the second equality.

Let us pause to comment on this result. First of all, we note that a special case where
these sufficient conditions are met is the case in which the Kraus operators commute,
in which case we can choose the flags to be all equal, |φi〉 = |φ〉 =

∑
j
√
pj |j〉. The

known fact that channels with commuting Kraus operators are degradable [DS05] is then
recovered. However, our sufficient condition does not cover the case of flagged extensions
of convex combinations of degradable channels with orthogonal flags, whose degradability
was a key result in [SS08]. In the proof, we make a peculiar choice of the degrading map
which is tailored to the sufficient conditions we identify, and the symmetry under the
swap operator is a fairly restrictive sufficient condition. The result of [SS08] is only
recovered by allowing more general degrading maps and checking directly the equality of
the partial traces of the purified state.

We can apply Proposition 8.2.1 to a variety of scenarios. For example, we consider a
channel with one Kraus operator proportional to a unitary:

N [ρ] = (1− p)UρU † + p
r∑

j=1

KjρK
†
j , (8.9)

where √pKi are the other Kraus operators. As far as we are interested in computing the
capacity, by unitary invariance of the capacities we can assume that the unitary operator
is an identity and redefine accordingly the other Kraus operators. Now

N [ρ] = (1− p)ρ+ p

r∑

j=1

KjρK
†
j = (1− p)ρ+ pΛ1[ρ], (8.10)

can be seen as a convex combination of the identity channel and another channel N1

with Kraus operators {Ki}. A flagged extension is

N̂ [ρ] = (1− p)ρ⊗ |φ0〉 〈φ0|+ pN1[ρ]⊗ |φ1〉 〈φ1| . (8.11)
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The degradability conditions in Eq. (8.2) read

〈1|φ0〉
√

1− p = 〈0|φ1〉
√
p , 〈1|φ1〉KjKj′ = 〈1|φ1〉Kj′Kj . (8.12)

Even if Kj operators do not commute, if p ≤ 1/2 we find that the conditions are met
setting 〈1|φ1〉 = 0 and

|φ1〉 = |0〉 , |φ0〉 =

√
1− 2p

1− p |0〉+

√
p

1− p |1〉 . (8.13)

Therefore, we get the upper bound

Q(N ) ≤ Q(N̂ ) = Q1(N̂ ) . (8.14)

In [FKG20] we observed that the following flagged extension of the depolarizing chan-
nel

Φ̂p[ρ] = (1− p)ρ⊗
(
(1− c2) |φ0〉 〈φ0|+ c2 |φ1〉 〈φ1|

)
+ p

I

d
tr[ρ]⊗ |φ1〉 〈φ1| . (8.15)

is degradable for c2 = 1−2p
2(1−p) , 〈φ0|φ1〉 = 0. In fact, this corresponds to a special case of

flagged extension of a convex combination of a unitary operator and a channel. More
generally a flagged extension

N̂c2 [ρ] := (1− c2)(1− p)ρ⊗ |φ0〉 〈φ0|+
(
c2(1− p)ρ+ pN1[ρ]

)
⊗ |φ1〉 〈φ1| , (8.16)

according to Eq. (8.13) is degradable for | 〈φ0|φ1〉 |2 = 1−2(p+c2−pc2)
1−(p+c2−pc2)

, for 0 ≤ c2 ≤ 1−2p
2(1−p) .

We can rewrite the extension of [FKG20] in this form. The optimal degradable exten-
sion with pure flags, determined numerically by [Wan21], is found putting c2 = 0. Each
of these extensions gives an upper bound, and the best bound is found by minimiza-
tion.

Q(N ) ≤ min
0≤c2≤ 1−2p

2(1−p)

Q(Nc2) . (8.17)

Beyond the case of a convex combination of two channels, the power of Proposition 8.2.1
is to treat the case with multiple non-orthogonal flags. The reason why this is crucial is
that the case of two flags is easily addressed with approximate degradability applied to
flagged channels [Wan21], which is completely satisfactory in terms of numerical bounds:
there are only two parameters to optimize, the overlap between the flags and c2. However,
we will show that better bounds can be found if one allows for more refined decomposition
which uses more than two flags. In particular, for a channel which is a convex combination
of unitary channels (again we can choose one of them to be the identity)
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N [ρ] = (1− p)ρ⊗ |φ0〉〈φ0|+
r∑

j=1

pjUjρU
†
j ⊗ |φj〉〈φj | , (8.18)

and any flag choice such that

〈i|φj〉 = 0 if i 6= 0 and j 6= 0 and i 6= j , (8.19)

gives a non-trivial degradable extension. A more general structure is allowed if one takes
into account the commutation properties of the set of unitaries. Indeed, we explore
this possibility for Pauli channels. However, the best upper bounds for the depolarizing
channel and BB84 channel using this method have exactly this flag structure.
Finally, we remark that even general extensions with mixed flags can be considered
in this framework, by adapting the convex combination considered. For example, a
rank two flag can be introduced by splitting a term KρK† ⊗ (q |0〉〈0| + (1 − q) |1〉〈1|) =√
qKρ
√
qK† ⊗ |0〉〈0| + √1− qKρ√1− qK† ⊗ |1〉〈1|, where we now flag a channel with

new Kraus operators √qK and
√

1− qK, each with a pure flag associated.

8.3 Degradable extensions of Pauli channels

Pauli channels, as defined in Def. 4.72, are convex combinations of unitary operators
corresponding to elements of Wn

d . As we already pointed out in Sec 3.3, the coherent
information of Pauli channels is known to be generically non-additive [SS96; DSS98; SS07;
FW08], with the most recent and comprehensive analysis of non-additivity being [BL19].
This makes computing their quantum capacities still prohibitive in most interesting cases.
In fact, even for the most symmetric non-unitary channel that can be conceived, the
depolarizing channel (Eq. 4.74), the quantum (and private) capacity cannot be computed.
The most important progress on the upper bounds has been achieved by exploiting
degradable extensions [SS08; Ouy14] and approximate degradability [Sut+17; LLS18b]
in the low noise regime, antidegradability [Bru+98; Cer00; Smi08; Ouy14] in the high
noise regime, and a method that connects the two regimes [LDS18] which can still be
understood as using degradable orthogonal flagged extensions. While it has been shown
that in the low noise regime the upper bound given by approximate degradability is
tangent to the lower bound given by the coherent information for Pauli channels [LLS18b],
the gap between the best lower bounds and the best upper bounds is still large for
finite diamond norm distance from the identity channel. This work tries to follow the
established road of constructing degradable extensions to find improvements in the upper
bounds. The bounds we propose are still much better in the low noise regime than in the
high noise one, but the improvement is consistent. Moreover, by setting out a method to
design degradable extensions that go beyond our current analysis, we make an argument
for continuing to explore this method.
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For these channels, our sufficient conditions for degradability allow for a wider set of
solutions than in the general case, because of the relations (4.68) occurring for any pair
of Pauli unitaries. The flagged version of these channels can be constructed by choosing
flags in a Hilbert space HF of dimension d2n, with computational basis {|x〉}x∈Z2n

d
. We

also consider the space HC ⊗ HF , with HC ∼= HF , and denote the partial trace with
respect to HF as TrF [·].
Consider a flagged Pauli channel ΦΨ

ΦΨ[ρ] =
∑

x∈Z2n
d

wxWxρW
†
x ⊗ |φx〉〈φx| , (8.20)

where the label Ψ determines ΦΨ through the definition of the state |Ψ〉 ∈ HC⊗HF :

|Ψ〉 =
∑

x∈Z2n
d

√
wx |x〉C ⊗ |φx〉F =

∑

x∈Z2n
d ,y∈Z2n

d

√
wx 〈y|φx〉 |x〉C ⊗ |y〉F . (8.21)

We define the projectors Πj onHC⊗HF projecting on span{|x〉 |y〉−ej 2πid |y〉 |x〉 : 〈x, y〉 =

jmod d}. With these definitions, we are equipped to establish the following proposition:

Proposition 8.3.1 (Upper bound on the quantum capacity of Pauli channels).
Given a Pauli channel Φw, for any |Ψ〉 ∈ HC ⊗HF satisfying

Tr[Πj |Ψ〉〈Ψ|] = 0 ∀j ∈ {0, ..., d− 1} Tr[|x〉〈x| ⊗ I |Ψ〉〈Ψ|] = wx ∀x ∈ Z2n
d .

(8.22)

the quantum and private capacities of Φw satisfy

Q(Φw)≤ P (Φw) ≤ n log d− S(w) + S(TrC [|Ψ〉〈Ψ|]). (8.23)

In particular, the optimal upper bound is obtained by minimizing S(TrC [|Ψ〉〈Ψ|]) with the
constraints (8.22).

Proof. Any state |Ψ〉 on HC ⊗HF satisfying

Tr[|x〉〈x| ⊗ I |Ψ〉〈Ψ|] = wx ∀x ∈ Z2n
d . (8.24)

can be written as

|Ψ〉 =
∑

x∈Z2n
d

√
wx |x〉C ⊗ |φx〉F =

∑

x∈Z2n
d ,y∈Z2n

d

√
wx 〈y|φx〉 |x〉C ⊗ |y〉F , (8.25)
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identifying a flagged extension ΦΨ of Φw. Moreover, the degradability conditions for ΦΨ

can be rewritten as

Tr[Πj |Ψ〉〈Ψ|] = 0 ∀j ∈ {0, ..., d− 1}, (8.26)

therefore ΦΨ is degradable. For flagged degradable Pauli channels, Q(ΦΨ) = Ic(ΦΨ)

has a very simple form. By the covariance property of (flagged) Pauli channels, i.e.
ΦΨ[WxρW

†
x ] = (Wx⊗I)ΦΨ[ρ](W †x⊗I) for allWx ∈ Wn

d . Moreover, we can also write the
coherent information as Ic(ΦΨ, ρ) = S(ΦΨ[ρ])− S(ΦΨ ⊗I[|ρ〉〉〈〈ρ|]), for any purification
of ρ, denoted by |ρ〉〉, and I identity channel, therefore using unitarily invariance of the
von Neumann entropy and the covariance property we have Ic(ΦΨ, ρ) = Ic(ΦΨ,WxρW

†
x).

By concavity of coherent information for degradable channels [YHD08], we thus get

Ic(ΦΨ, ρ) =
1

d2n

∑

x∈Z2n
d

Ic(ΦΨ,WxρW
†
x) ≤ Ic(ΦΨ,

1

d2n

∑

x∈Z2n
d

WxρW
†
x) = Ic(ΦΨ,

I

dn
).

(8.27)
Therefore, the maximum of coherent information corresponds to the maximally mixed
state, which is purified by the maximally entangled state |Ξ〉 = 1

dn/2

∑
j=0,...,d−1 |j〉⊗ |j〉.

It holds that 〈Ξ|W †xWy ⊗ I |Ξ〉 = 1
dn Tr

[
W †xWy

]
= δx,y, therefore

Ic(ΦΨ) = S

(
ΦΨ

[
I

dn

])
− S(ΦΨ ⊗ I[|Ξ〉〈Ξ|]) = n log d+ S(

∑

x∈Z2n
d

wx |φx〉〈φx|)− S(w)

= n log d− S(w) + S(TrC [|Ψ〉〈Ψ|]). (8.28)

Some comments are in order: the minimization problem defined by Proposition 8.3.1 is
non-convex, therefore it is hard to treat numerically. Its solution is also not unique in
general. In our analysis we restricted our attention to subsets of states |Ψ〉 satisfying the
degradability conditions which can be expressed in terms of a few parameters, so that it is
easy to solve the the minimization problem numerically. Moreover, Proposition 8.3.1 does
not cover the flagged extension with the structure of Eq. (8.16), used for the depolarizing
channel in [FKG20; Wan21]. As explained in the comments after Eq. (8.14), this is easily
amended by splitting the Kraus operator proportional to the identity in Eq. (4.74) into
two Kraus operators with suitable probabilities, and assigning a different flag to each of
them, respecting the sufficient conditions for degradability. This approach gives an easy
generalization of Proposition 8.3.1.

Another important point to make is that one can also consider the flagged extension of
N⊗k, which would still give an upper bound on the quantum and private capacity, which
can be better than looking just at extensions of N : a degradable flagged extension of
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N gives also a degradable flagged extension of N⊗k but the converse is not true. For
Pauli channels this is even more relevant since the Φ⊗kw is still a Pauli channel, and the
quantum capacity of its flagged extensions has a closed form. We have not found better
bounds in this way, but it is possible that that this approach could be fruitful.

Let us now see how these results can be applied to two important Pauli channels.

8.3.1 Depolarizing channel

We remind the definition of the depolarizing channel on one qudit (def. 4.74):

Φ(d)
p [ρ] = (1− d2 − 1

d2
p)ρ+

p

d2

∑

x∈Z2
d\{0}

WxρW
†
x . (8.29)

The symmetries of this channel causes some potential redundancies in the states that
achieve the optimal upper bound according to Proposition (8.3.1). Consider the unitary
operation Uσ indexed by permutations σ ∈ Sd2−1 which act by permuting the orthogo-
nal set {|x〉}x∈Z2

d\{0}
while leaving |0〉 invariant. Then, for any state |Ψ〉 satisfying the

constraints, Uσ ⊗ Uσ |Ψ〉 also satisfies the constraints, and it has the same entanglement
entropy S(TrC [|Ψ〉〈Ψ|]) = S(TrC [Uσ ⊗Uσ |Ψ〉〈Ψ| (Uσ ⊗Uσ)†]). We cannot establish if the
minimization problem has a unique solution, but if this was the case, then we could re-
strict the candidate states to those which are invariant under Uσ⊗Uσ for every σ ∈ Sd2−1.
We just take this observation as a suggestion for a guess, and we minimize S(TrC [|Ψ〉〈Ψ|])
on this restricted family of states. This is convenient because S(TrC [|Ψ〉〈Ψ|]) can be de-
termined analytically and we can reduce the problem to a one-parameter minimization.

Proposition 8.3.2. For |Ψ〉 satisfying |Ψ〉 = Uσ ⊗ Uσ |Ψ〉, we can parametrize |Ψ〉 with
three complex variables α = 〈0, 0|Ψ〉, β = 〈0, x|Ψ〉 for x 6= 0, γ = 〈x, x|Ψ〉 for x 6= 0, and

S(TrC [|Ψ〉〈Ψ|]) = −(d2 − 2)|γ|2 log
(
|γ|2
)
− v+ log v+ − v− log v− (8.30)

with

v± =
1

2
(|α|2 + |γ|2 + 2|β|2(d2 − 1)±

√
(|α|2 − |γ|2)2 + 4(d2 − 1)|β|2|α+ γ∗|2) (8.31)

Proof. From the constraints we have that β = 〈0, x|Ψ〉 = 〈x, 0|Ψ〉, and from the action
of a permutation Uxy that exchanges x, y 6= 0 we have 〈0, x|Uxy ⊗ Uxy |Ψ〉 = 〈0, y|Ψ〉.
From the constraints we have that 〈x, y|Ψ〉 = e−

2πi
d
〈x,y〉 〈y, x|Ψ〉 for x 6= y , x, y 6= 0, then

〈x, y|Uxy⊗Uxy |Ψ〉 = 〈y, x|Ψ〉 = e−
2πi
d
〈x,y〉 〈y, x|Ψ〉 = 0. Also, 〈x, x|Ψ〉 = 〈x, x|Uxy |Ψ〉 =

〈y, y|Ψ〉 = γ when x, y 6= 0. This completes the parametrization. The eigenvalues of
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TrC [|Ψ〉〈Ψ|] can be determined from the singular values of the matrix Mxy of coefficients
of |Ψ〉 =

∑
x∈Z2n

d ,y∈Z2n
d ,Mxy |x〉C ⊗ |y〉F . We have that the coefficients of M †M are

M †M0,0 = |α|2 + |β|2(d2 − 1) M †M0,x = αβ∗ + βγ∗, x 6= 0 (8.32)

M †Mx,y = |β|2, x 6= y, x, y 6= 0 M †Mx,x = |β|2 + |γ|2, x 6= 0 . (8.33)

Then M †M −|γ|2I has rank 2 and the nonzero eigenvalues can be determined by solving
a quadratic equation.

Proposition 8.3.3. For |Ψ〉 satisfying |Ψ〉 = Uσ ⊗ Uσ |Ψ〉, the minimization of
S(TrC [|Ψ〉〈Ψ|]) is a one-parameter minimization problem.

Proof. From the expression of S(TrC [|Ψ〉〈Ψ|]) in Eq. (8.30) and from Eq. (8.31) it is
evident that the result does not depend on the phases of α, β and γ except for the term
|α + γ∗|, which should be maximized. This happens without loss of generality if α and
γ∗ are real and positive. Then the two constraints |α|2 + (d2 − 1)|β|2 = (1− d2−1

d2
p) and

|β|2 + |γ|2 = p
d2

eliminate the remaining two parameters.

The bound Qfmin obtained from this one-parameter minimization can be combined with
the no-cloning bound [Bru+98; Cer00; Smi08; Ouy14]

Q(Φ(d)
p ) ≤

(
1− 2p(d+1)

d

)
log d . (8.34)

using the fact that the convex hull of upper bounds from degradable extensions of the
depolarizing channel is itself an upper bound [Smi08; Ouy14]. A comparison between the
most competitive upper bounds for d = 2 is shown in Figure 8.1, where we can see that
the bound we obtained outperforms all previous bounds in the whole parameter region.
An improvement with respect to previous bounds can be obtained also for generic d, and
we show as an example the bound for d = 4 in Figure 8.2. In this latter case, the bound
from the convex hull is improved considering also the bound from Eq. (8.17).

8.3.2 BB84 channel

In this section we consider the channel that describes the famous quantum key distribu-
tion protocol by Bennett and Brassard [BB14]. In its general form the channel is

BpX ,pZ [ρ] = (1− pX − pZ + pXpZ)ρ+ (pX − pXpZ)XρX + (pZ − pZpX)ZρZ

+ pXpZY ρY, (8.35)
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Figure 8.1: Bounds on the quantum capacity of the depolarizing channel for d = 2. Here
Qconv is the convex hull of the available upper bounds from degradable extensions, Qfmin

is the upper bound obtained from Eq. (8.23) by plugging in the expression Eq. (8.30)
and minimizing over γ, eliminating the other parameters as explained in the proof of
Proposition 8.3.3. Q1 is the lower bound given by the coherent information of one use of
the channel. QLDS is the bound from [LDS18] and QW is the bound from [Wan21].
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Figure 8.2: Bounds on the quantum capacity of the depolarizing channel for d = 4.
Here Qconv is the convex hull of the available upper bounds from degradable extensions,
Qfmin is the upper bound from non-orthogonal flagged extensions, and Q1 is the lower
bound given by the coherent information of one use of the channel. QFKG is the bound
from [FKG20] and QOU is the bound from [Ouy14]. Note that in the main plot Qfmin is
the bound in Eq. (8.17), since at scale used the bound with more flags is not noticeably
better; the situation is different for very small p, in the regime plotted in the inset. In the
inset Qconv is effectively the bound obtained from Eq. (8.23) by plugging in the expression
Eq. (8.30) and minimizing over γ, eliminating the other parameters as explained in the
proof of Proposition 8.3.3.



Chapter 8. Designing degradable extensions 144

As in [Sut+17] and [Wan21] we restrict to the case pX = pZ = p. The flagged extension
we consider is

Bp,Ψ[ρ] = (1− p)2ρ⊗ |φ0〉〈φ0|+ p(1− p)XρX ⊗ |φ1〉〈φ1|+ p(1− p)ZρZ ⊗ |φ2〉〈φ2|
+ p2Y ρY ⊗ |φ3〉〈φ3| . (8.36)

We choose the following parametrization for the flags

|φ0〉 =
√

1− 2α2 − β2 |0〉+ α |1〉+ α |2〉+ β |3〉
|φ1〉 = a |0〉+

√
1− a2 − γ2 |1〉 − γ |3〉

|φ2〉 = a |0〉+
√

1− a2 − γ2 |2〉 − γ |3〉
|φ3〉 = b |0〉+ c |1〉+ c |2〉+

√
1− b2 − 2c2 |3〉 , (8.37)

where the degradability conditions in Eq. (8.2) imply that α = a
√

p(1−p)
(1−p)2 , β = bp

1−p and

γ = c
√

p
1−p . This is not the most general parametrization for the flags, however, because

of the symmetry between the bit flip and phase flip error in Eq. (8.35), we chose this
parametrization. Any set of flags in the form of Eq. (8.37) will result in a degradable
extension of BB84 channel. Therefore, to get the best upper bound for the quantum
capacity or private capacity of BB84 we should minimize the coherent information of
its flagged channel with respect to three free parameters a, b, c. We have compared the
result of the optimization with the previous bounds in Figure 8.3. The bound in [Wan21]
by Wang can be reproduced in our framework just by choosing a = b = 1, c = 0.

8.4 Degradable extensions of the generalized amplitude
damping channel

In this section we consider a bound on the quantum capacity of the generalized amplitude
damping channel, which is a model of thermal loss on a qubit, relevant for quantum super-
conducting processors [CB08]. It can be seen as the analogue of the thermal attenuator
in Eq. (4.115) for a discrete variable system.

The generalized amplitude damping channel can be written as

Ay,N [ρ] := N Ay[ρ] + (1−N)X ◦ Ay ◦X[ρ], (8.38)

where Ay,N is the conventional amplitude damping channel, with Kraus operators K1 =

(|0〉〈0| + √1− y |1〉〈1|) and K2 =
√
y |1〉〈0|. For N = 0, as for the Gaussian thermal

attenuator for N = 0, Ay,0 = Ay is degradable and its quantum and private capacity
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Figure 8.3: Bounds on the quantum and private capacity of BB84 channel. Q1 is the
coherent information of BB84 channel. Qfmin is the new upper bound obtained by
the degradable extension, from Eq. (8.23), using the parametrization for the flags in
Eq. (8.37), for a suitable choice of the parameters. QW is the upper bound obtained
in [Wan21]. QSS is the upper bound derived in [Smi08].
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can be computed [GF05]. For N 6= 0, while Ay, and X ◦ Ay ◦ X are degradable, their
convex combination is not, and its quantum and private capacities are not determined.
Previous upper bounds have been obtained by [RMG18; KSW20; GP+09; Wan21]. In
particular [Wan21] observed that the best bound from approximate degradability of the
flagged extension for this decomposition is obtained from the flagged extension with
orthogonal flags:

AFy,N [ρ] = N Ay[ρ]⊗ |0〉〈0|+ (1−N)X ◦ Ay ◦X[ρ]⊗ |1〉〈1| , (8.39)

In fact this extension is exactly degradable, since it is a flagged convex combination
of degradable channels, with orthogonal flags [SS08]. The quantum capacity of this
extension can be upper-bounded as Q(AFy,N ) ≤ (1−N)Ic(Ay, ρ) +NIc(X ◦Ay ◦X, ρ) =

Q(Ay). This simple bound seem to not have been pointed out previously, and the actual
quantum capacity Q(AFy,N ), which can be evaluated numerically, appears very close to
it. An additional family of bounds can be obtained from a different decomposition of
the generalized amplitude damping channel. First of all we find a convex hull argument
for the generalized amplitude damping channel, following the proof of [SS08] for the
depolarizing channel:

Proposition 8.4.1 (Combining bounds of degradable extensions of generalized
amplitude damping). For any collection of degradable extensions Aext,iy,N , i = 1, ..., l,
for any y0 the quantum and private capacities of Ay0,N are upper bounded by the convex
hull of Q(Aext,iy0,N

), i = 1, ..., l, as functions of the variable N .

Proof. For any N1, N2 such that N = qN1 + (1− q)N2, 1−N = 1− qN1 + (1− q)N2 =

q(1−N1) + (1− q)(1−N2), we have

Ay,N [ρ] = q(N1Ay[ρ]+(1−N1)X ◦Ay ◦X[ρ])+(1−q)(N2Ay[ρ]+(1−N2)X ◦Ay ◦X[ρ])

(8.40)

If Aext,iy,N1
and Aext,jy,N2

are degradable extensions of Ay,N1 and Ay,N2 respectively, then
qAext,iy,N1

⊗ |0〉〈0| + (1 − q)Aext,jy,N2
⊗ |1〉〈1| is a degradable extension of Ay,N with quantum

capacity less than qQ(Aext,iy,N1
)+(1− q)Q(Aext,jy,N2

). The argument can be iterated to obtain
that the convex hull of all degradable extensions is an upper bound.

In addition to the extension proposed by [Wan21], we find two other degradable exten-
sions using Proposition 8.2.1. The first is obtained observing that the following set is
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also a valid choice of Kraus operators

A1 =
√
N(1−N)(

√
1− y + 1)(|0〉〈0|+ |1〉〈1|) =

√
N(1−N)(

√
1− y + 1)I,

A2 =
√

(1−N)y |1〉〈0| ,
A3 = ((1−N)−N

√
1− y) |0〉〈0|+ ((1−N)

√
1− y −N) |1〉〈1| ,

A4 =
√
Ny |0〉〈1| . (8.41)

We notice that A1 is a rescaled unitary operator, therefore we can directly apply the
bound of Eq. (8.14) with (1 − p) = N(1 − N)(

√
1− y + 1)2. This bound is applicable

if N(1 − N)(
√

1− y + 1)2 > 1/2. Moreover, at N = 1/2, the generalized amplitude
damping becomes a Pauli channel:

Ay,0.5[ρ] =
1− y/2 +

√
1− y

2
ρ+

1− y/2−√1− y
2

ZρZ +
y

4
(Y ρY +XρX) (8.42)

and we get a more refined bound Qfmin(y), using the techniques of the previous sections,
in particular with the same flag structure of BB84 Eq. (8.37). Putting all together, we
observe that the bound by [Wan21] remains the best one at high y, but at low y it is
beaten by the following bound allowed by the convex hull argument:

Qconv(y,N) = 2NQfmin(y) + (1− 2N)Q(Ay) (8.43)

and using the full convex hull bound does not give substantial improvements. We plot
the results in Figure 8.4.

8.5 Degradable extensions of single mode gauge-covariant
Gaussian channels

We begin this section by recalling the state-of-the-art about the quantum and private
capacities of single-mode gauge-covariant Gaussian channels, presented in Sec. 4.4.4.
We already mentioned these results in Sec. 3.3, and we now make them explicit. The
attenuator and amplifier for N = 0, that is Eη,0 in Eq. (4.115) and Φg,0 in Eq. (4.121)
are either degradable or antidegradable [WPG07], and their quantum capacities can be
computed as the infinite energy limit of the coherent information of a thermal state:

Q(Eη,0) = max{log2

(
η

1− η

)
, 0} Q(Φg,0) = log2

(
g

g − 1

)
. (8.44)

For N 6= 0 and for the additive noise channel, we only know upper and lower bounds.
A lower bound is again given by the infinite energy limit of the coherent information
evaluated on a thermal state [HW01]. We denote these lower bounds by QL(...) and we
have
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Figure 8.4: Bounds on the quantum capacity of the generalized amplitude damping,
for three values of N . Q1 is the lower bound given by the coherent information of one
use of the generalized amplitude damping channel (note that superadditivity has been
observed for these channel in [BL20], but the improvement of the lower bound is not quite
noticeable at this scale). Qconv is the new upper bound from Eq. (8.43), QW is the upper
bound obtained by Wang [Wan21], QDP and QR are obtained in [KSW20] respectively
from data-processing and Rains information. Previous upper bounds [RMG18; GP+09]
are worse and not plotted.
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Q(Λβ) ≥ QL(Λβ) := max{log2 β − 1/ ln 2, 0} , (8.45)

Q(Eη,N ) ≥ QL(Eη,N ) := max{log2( η
1−η )− h(2N + 1), 0}. (8.46)

Q(Φg,N ) ≥ QL(Φg,N ) := max{log2( g
g−1)− h(2N + 1), 0} . (8.47)

As for the upper bounds, the quantum capacity is zero when these channels become
entanglement-breaking, and thus anti-degradable. The entanglement-breaking regions
give the following characterizations of the quantum and private capacities [Hol08]:

Q(Λβ) = P (Λβ) = 0 if β ≥ 1, (8.48)

Q(Eη,N ) = P (Eη,N ) = 0 if
η

1− η ≥ N, (8.49)

Q(Φg,N ) = P (Φg,N ) = 0 if
g

g − 1
≥ N. (8.50)

(8.51)

A larger area of zero quantum and private capacity can be obtained using a data-
processing argument, and the fact that attenuators with η ≤ 1/2 are anti-degradable.
Indeed, when the aforementioned channels are not entanglement breaking, they can be
decomposed as

Eη,N = Eη′,0 ◦ Φη/η′,0, η′ = η − (1− η)N, (8.52)

Φg,N = Eη′,0 ◦ Φg/η′,0, η′ = 1− (g − 1)N, (8.53)

Λβ = Eη′,0 ◦ Φ1/η′,0, η′ = 1− 1/β. (8.54)

(8.55)

Therefore, the following upper bounds, valid outside the entanglement-breaking regions,
extend the zero capacity regions:

Q(Λβ) ≤ P (Λβ) ≤ Ic(E1−1/β,0) (8.56)

Q(Eη,N ) ≤ P (Eη,N ) ≤ Ic(Eη−(1−η)N,0) (8.57)

Q(Φg,N ) ≤ P (Φg,N ) ≤ Ic(E1−(g−1)N,0) (8.58)

These bounds can be obtained from the techniques of [Sha+18; RMG18; NAJ19]. Other
bounds can be obtained by exchanging the order of amplifier and attenuator in the
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decomposition, which where first investigated, and gave worse results [Sha+18] (although
this is only true for the unconstrained energy regime, see comment later). In particular,
the decomposition with amplifier followed by attenuator was introduced in [RMG18], and
Eq. (8.56) was pointed out in [NAJ19].

These upper bounds all use degradability, antidegradability and data-processing tech-
niques, and are state-of-the-art in the high noise regime. In the low noise regime, other
upper bounds which are generically valid for the two way quantum and private capacities
give better results [Pir+17]. We have the following bounds

Q(Λβ) ≤ QPLOB(β) = log2 β − 1/ ln 2 + 1/(β ln 2) , (8.59)

Q(Eη,N ) ≤ QPLOB(η,N) = − log2((1− η)ηN )− h(2N + 1) , (8.60)

Q(Φg,N ) ≤ QAmPLOB(g,N) := log2(g
N+1

g−1 )− h(2N + 1) . (8.61)

with h(x) = x+1
2 log2

(
x+1

2

)
− x−1

2 log2

(
x−1

2

)
, as in Eq. (4.104).

Note that, at variance with the classical capacity of these channels [GHGP15], which
requires an energy constrained to be finite, the quantum and private capacity are finite
whenever the channel do not coincide with the identity [HW01]. Nonetheless, there is
interest in estimating the optimal quantum and private rates when there is an energy
constraint on the output of the encoding map [WQ16; Sha+18; NAJ19; NPJ20], which
is a setting closer to a realistic scenario. The bounds we present in this chapter can
also be evaluated in the finite energy setting, but we will perform this analysis in future
work.

8.5.1 Flagged extension of the additive gaussian noise

Generalizing the procedure introduced in [KFG20] to infinite dimensional channels we
consider the following flagged extension of Λβ of Eq. 4.123, i.e.

Λeβ[ρ̂] :=
β

2π

∫

R2

dre−
β
2
rTrD̂(r)ρ̂D̂(r)† ⊗ |φr〉〈φr| , (8.62)

where setting r := (x, p), the states |φr〉 are product of displaced squeezed states defined
by the identity

|φr〉 := D̂(0,−p/2) |β/2〉 ⊗ D̂(0, x/2) |β/2〉 , (8.63)

with |β/2〉 being a single-mode squeezed vacuum with mean values m = 0 and covariance
matrix V =

(
2/β 0

0 β/2

)
.
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This channel is Gaussian, as it is an example of Gaussian mixing channels, (see Eq. 4.126),
acting on first and second moments as

m
ΛY−−→m′ = m , V

ΛY−−→ V ′ = V + Y . (8.64)

By direct comparison with Eq. 4.126 it follows that the flagged additive Gaussian noise
of Λeβ is a classical mixing channel applied to the state ρ̂⊗ |β/2〉〈β/2| ⊗ |β/2〉〈β/2| with
the matrix Y equal to

Y =




2
β 0 0 0 0 − 1

β

0 2
β 0 1

β 0 0

0 0 0 0 0 0

0 1
β 0 1

2β 0 0

0 0 0 0 0 0

− 1
β 0 0 0 0 1

2β




, (8.65)

and thus Gaussian.

As explicitly shown in Appendix B.1, Λeβ is degradable, with a Gaussian degrading map:
here we notice that the intuition for choosing the flags states as in (8.63) comes from
Proposition 8.2.1. Indeed, in the special case of Kraus operators proportional to unitary
operators, we proved that if {√piÛi}i=1,...,n are unitary Kraus operators of a CPTP
map N and {|i〉}i=1,...,n is an orthonormal basis for flags, sufficient conditions for the
degradability of N e[ρ̂] :=

∑n
i=1 piÛiρ̂Û

†
i ⊗ |φi〉 〈φi| are the following

〈
i′
∣∣φi
〉√

piÛi′Ûi = 〈i|φi′〉
√
pi′ÛiÛi′ ∀i, i′ . (8.66)

If we have a continuous set of flags, and we pretend that Proposition 8.2.1 still works if we
replace the orthonormal basis for the flag space with the (two-mode) pseudo-eigenbasis
{|x1, x2〉}x1,x2∈R of the position operators of the ancillary modes, the sufficient condition
for degradability for Λeβ reads

〈
γx′, γp′

∣∣φr

〉
e−

β
4
rTrD̂(r′)D̂(r)= 〈γx, γp|φr′〉 e−

β
4
r′Tr′D̂(r)D̂(r′) , (8.67)

for all r′ = (x′, p′), r = (x, p) ∈ R2 with γ a suitable rescaling factor to determine. With
the choice (8.63) of the flags we have explictly

〈
γx′, γp′

∣∣φr

〉
=

√
β

2π
e−β

γ2x′2+γ2p′2
4

−γ ip
′x−ix′p

2 , (8.68)

which satisfies the condition in Eq. (8.67) with γ = 1. Moreover, Λeβ is gauge-covariant
(in the generalized sense as in Def. 4.4.2). Indeed we have

Λeβ[Û(θ)ρ̂Û(θ)†] = Û ′(θ)Λeβ[ρ̂]Û ′(θ)†, (8.69)
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with Û ′(θ) being a three mode Gaussian unitary acting on r̂ = (x̂1, p̂1, x̂2, p̂2, x̂3, p̂3)

as

Û ′(θ)r̂Û ′(θ)† = R′(θ)r̂, (8.70)

with

R′(θ) :=




cos θ sin θ 0 0 0 0

− sin θ cos θ 0 0 0 0

0 0 cos θ 0 sin θ 0

0 0 0 cos θ 0 sin θ

0 0 − sin θ 0 cos θ 0

0 0 0 − sin θ 0 cos θ



. (8.71)

According to the remarks after Theorem 4.4.3, we can then evaluate the quantum ca-
pacity as the infinite energy limit of the coherent information of thermal states (see
Appendix B.2):

Q(Λβ) ≤ P (Λβ) ≤ Q(Λeβ) = log2 β − 1/ ln 2 + 2h
(√

1 + 1/β2
)
, (8.72)

As shown in Fig. 8.5, Eq. (8.72) is better than (8.59) where Q(Λβ) is supposed to be
non-zero, i.e. for 1/β ≤ 0.5. In the high 1/β regime, both bounds are surpassed by the
bound in [NAJ19], which comes directly from Eq. (8.56):

Q(Λβ) ≤ QNAJ(β) = max{log2(β − 1), 0}. (8.73)

8.5.2 Extension of the thermal attenuator

In this section we present a degradable extension of Eη,N .

We first define the passive unitary operator

Ŵη := ÛηAE ⊗ ÛηA′E′ , (8.74)

where ÛηAE and ÛηA′E′ are beam splitter transformations acting respectively on the
couple of modes A,E and A′, E′. We introduce hence the channel

Fη,N [ρAA′ ] := TrEE′ [Ŵη(ρAA′ ⊗ |τ〉〈τ |EE′)Ŵ †η ], (8.75)
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Figure 8.5: Quantum capacity region for the AGNC Λβ : comparison of the up-
per bound Q(Λeβ) of Eq. (8.72) with QPLOB in Eq. (8.59) [Pir+17] and QNAJ(β) in
Eq. (8.73) [NAJ19]. QL(Λβ) is the lower bound of Eq. (8.45).
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and define the extension of Eη,N as

Eeη,N [ρA] := Fη,N (ρA ⊗ |0〉〈0|A′). (8.76)

The map Fη,N is manifestly Gaussian, and its action on the first and second moments
is

m
Fη,N−−−→m′ =

√
ηm , (8.77)

V
Fη,N−−−→ V ′ = ηV + (1− η)V|τ〉 , (8.78)

With the Stinespring representation in Eq. (8.75) the complementary channel can now
computed as Fcη,N = F1−η,N . Simple algebra shows that if η > 1/2 then

Fcη,N = F1−η,N = F(1−η)/η,N ◦ Fη,N , (8.79)

implying that in such regime Fη,N (and thus Eeη,N ) is degradable, with a Gaussian de-
grading map.

Eeη,N is also gauge-covariant in the generalized sense of Def. 4.4.2:

Eeη,N [Û(θ)ρ̂Û(θ)†] = Û ′′(θ)Eeη,N [ρ̂]Û ′′(θ)†, (8.80)

with Û ′′(θ) being a two mode Gaussian unitary acting on r̂ = (x̂1, p̂1, x̂2, p̂2) as

Û ′′(θ)r̂Û ′′(θ)† = R′′(θ)r̂, (8.81)

with

R′′(θ) :=




cos θ sin θ 0 0

− sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ


 . (8.82)

The quantum capacity of Eeη,N can be thus calculated by evaluating the infinite en-
ergy limit of coherent information evaluated on a thermal state, leading to (see
App. B.3)

Q(Eη,N ) ≤ Q(Eeη,N )

= log2( η
1−η ) + h((1− η)(2N + 1) + η)− h(η(2N + 1) + 1− η) . (8.83)
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Figure 8.6: Thermal attenuator: ratio between the upper bounds
Q(Eη−N(1−η),0) [RMG18], QPLOB(η,N) [Pir+17] , Q(Eeη,N ) (this work), and QL(Eη,N )

(Eq. 8.46) for N = 0.05. In the inset we plot a close-up in the region where
Q(Eη−N(1−η),0) and Q(Eeη,N ) intersect. The purple line is the improved bound using the
argument of Eq. (8.87).
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A comparison between all these curves is reported in Fig. 8.6, showing that while our
inequality (8.83) performs worse than Eq. (8.57) for low η, it gives an improvement with
respect to (8.60) for high η.

We finally remark that in our construction the choice of |0〉〈0|A′ in the definition Eq. (8.76)
of the extended attenuator is not necessarily optimal. Other Gaussian states could be
chosen and the analysis could be done in the same way. In particular, the extension
Fη,N ⊗I[ρA⊗ |τ ′〉〈τ ′|A′B] gives a slightly better upper bound (optimizing over the single
parameter in |τ ′〉 states), not noticeable on the plot in Fig. 8.6.

8.5.3 Upper bounds for the thermal amplifier

A construction completely analogous to the one in the previous section can be done for the
thermal amplifier, but it does not give good upper bounds. It is possible that it is useful
in the energy constrained regime, and we will report it in future work. Instead, using
the bound on the quantum capacity of the additive noise, and the decomposition

Φg,N = Λβ̃ ◦ Φg,0 (8.84)

with β̃ = 1
(g−1)N , we get an upper bound which is which is the best known bound to

date in the regime N > 5 and for intermediate values of g, as seen in Fig. 8.7. As an
alternative upper bound we also plot the the upper bound from [NAJ19] on the additive
Gaussian noise. We have

Q(Φg,N ) ≤ P (Φg,N ) ≤ Q(Λe
β̃
) , (8.85)

Q(Φg,N ) ≤ P (Φg,N ) ≤ P (Λβ̃) ≤ QNAJ(β̃) , (8.86)

which is immediately obtainable also from the bound for the amplifier given by
Eq. (8.58).

8.5.4 Combining data-processing and direct bounds

As we observed, the various bounds available are not directly comparable on the whole
parameter region. However, taking into account all the possible data-processing decom-
positions

Eη,N = Eηa,Na,1 ◦ Φga,Na,2 = Φg′a,N
′
a,1
◦ Eη′a,N ′a,2 , (8.87)

Φg,N = Eηb,Nb,1 ◦ Φgb,Nb,2 = Φg′b,N
′
b,1
◦ Eη′b,N ′b,2 , (8.88)

using available direct bounds on the channels appearing in the decompositions, and
minimizing over the decompositions, one can combine all the direct bounds availabe.
An example is seen in the inset of Fig. 8.6, where the purple line corresponds to
minηa,Na,1 Q(Eeηa,Na,1) from the decomposition of Eη,N in Eq. (8.87).
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Figure 8.7: Quantum capacity region for the thermal amplifier channel Φg,N : comparison
between the upper bound Q(Λe

β̃
) of Eq. (8.85) with QAmPLOB(g,N) of Eq. (8.61) [Pir+17]

and QNAJ(β̃) in Eq. (8.73) for N = 10. QL(Φg,N ) is the lower bound in Eq. (8.47).
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8.6 Remarks

In this chapter we presented a method for finding bounds on the quantum and private
capacities of physically motivated channels. We do not exhaust the possibilities of this
method: for the finite dimensional channels, we did not try to numerically optimize in
the whole parameter region allowed by the sufficient conditions for degradability. Indeed,
the minimization of the upper bound is not a convex optimization problem and would
require brute force search, but there are already many parameters for Pauli channels
and d = 2, n = 1. However, we stress the fact that the family of upper bounds for
the quantum and private capacity of a channel Λ is even larger in principle, as one can
consider the flagged extension of Λ⊗k. It is an intriguing possibility that considering
more uses could improve the upper bounds towards the high noise regimes, where the
gap between the lower bounds and the upper bounds is larger. For infinite-dimensional
channels, the construction of degradable extensions is still not systematic, and this is
open for future work. Moreover, the results presented here could be easily applied also
for the case of energy constrained quantum and private capacity, which will be analyzed
elsewhere.



Chapter 9

Classical communication in absence
of a shared phase reference

This chapter is largely based on:

• Marco Fanizza, Matteo Rosati, Michalis Skotiniotis, John Calsamiglia, and Vit-
torio Giovannetti. Classical capacity of quantum Gaussian codes without a phase
reference: when squeezing helps. 2020. arXiv: 2006.06522.

9.1 Introduction

This chapter is devoted to study how the impossibility of maintaining a shared phase
reference frame [BRS07] affects classical communication with continuous variable sys-
tems. We have mentioned that the classical capacity of phase-insensitive channels can
be exactly computed, since for these channels coherent states are known to minimize the
output entropy [Gio+04; MGH14; Gio+14; GHGP15]. However, these models implicitly
assume the existence of a shared phase reference, so that the sender and the receiver
are phase-locked with a common source. Proposed communication protocols rely on this
phase-locking, followed by information encoding into the amplitude and the phase of a
coherent state [CGZ11; RMG16; Ban+20], easily generated by a classical source. In
this setting, the use of non-classical sources provides no communication advantage. The
classical capacity of continuous variable channels requires an energy constraint to be
physically meaningful (and finite), therefore it is reasonable to include the energy cost
of the phase-locking phase in the energy cost of the communication protocol. This cost
is negligible if phase-locking can be done at the start of the protocol and the shared
reference can be maintained for the whole duration of the protocol, since in the limit of
infinite uses of the channel the energy used for communication goes to infinity. However,
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Figure 9.1: Two uses of the phase-noise memory channel Φm analyzed in this work,
modeling communication in the absence of a phase-reference. The relative phase θ ∈
(0, 2π] between Alice and Bob is fixed but unknown. Alice exchanges a total of m pulses
with Bob, each lasting a time δt, in the form of a quantum state ρ̂(x) ∈ B(L2(Rm))

encoding the classical message x ∈ X. After a time T = mδt, the relative phase between
Alice and Bob’s local oscillators changes as a result of each party’s local oscillator phase-
drifting.

in realistic scenarios the phase reference can be lost or deteriorated. This can happen
when the relative phase drifts during transmission due to a physical mechanism in the
medium, e.g., Kerr non-linearities and temperature fluctuations in optical fiber [GM90;
Wan92; KPB18] or turbulence effects in free space [Sin+14]; but it can also be an effec-
tive result of other mechanisms, e.g., the use of a photodetector to measure the signals or
the presence of a malicious eavesdropper [DL15; Qi+15]. Indeed, several works analyzed
the effect of phase noise on common communication methods based on coherent states
encodings [Oli+13; JBDD14; Jar+16; ATP19; DiM+19; COP18]. Since channels mod-
eling phase-noise are not Gaussian channels, computing the capacity is a difficult task.
We directly address this problem using a simplified model of phase-noise channel.
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Figure 9.2: Depiction of several communication strategies on phase-noise memory chan-
nels studied in the article. Covariant strategies employ a Haar-random passive inter-
ferometer Û to increase the communication rate of any initial ensemble. The input
ensembles we consider are discrete constellations comprising the vacuum state and one
or more pulse signals, including Fock, coherent and squeezed-coherent states.

We consider a non-Gaussian memory channel [Car+14] that describes the lack of a com-
mon frame of reference (see Fig. 9.1). Specifically, we focus on the realistic scenario where
decoherence takes place in a finite time T [GM90; Wan92; Sin+14; JBDD14; KPB18]
during which the sender can send a total of m = b Tδtc signals before the onset of deco-
herence. An alternative is to send a finite number of signals in parallel using different
frequency slots. Here δt is the duration of each signal. The channel can be composed
with a phase-insensitive attenuator, to have a better representation of both important
noise effects on actual communication lines. In absence of loss it is simple to show that
the classical capacity for such channels can be achieved using Fock states, while the same
is not true in presence of losses. Here we are interested in evaluating the maximum rates
achievable via more experimentally friendly encoding schemes. Throughout this chap-
ter we will be interested in transmission rates subject to an average energy constraint
and explore strategies that utilize Gaussian state encodings or Fock state with low pho-
ton number obeying an average energy constraint (see Fig. 9.2 for a depiction of some
analyzed strategies).

In absence of loss, the channel we consider is a special case of the channel studied
in [JBDD14], which considers a more general phase noise. There, the authors derived
approximations to achievable rates of coherent-state encodings with fixed energy in the
low-photon-number sector. Here instead, in the particular case we consider, we analyze
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the performance of more general Gaussian encodings, we find exact upper bounds for
the optimal coherent state rates, characterize the optimal coherent state rate at low and
high energy, and evaluate rates of explicit encodings.

In particular, we show that the addition of squeezing can greatly enhance the communica-
tion rate compared to coherent-state encodings, for this family of phase-noise channels.
In particular, in the case of complete dephasing (m = 1, coinciding with the chan-
nel seen by a photodetector), we exhibit an explicit squeezed-coherent-state encoding
whose rate surpasses any coherent-state communication strategy for suitable values of
the average energy of the signals. Our results provide a clear departure from the case of
phase-covariant Gaussian channels and prove the unconditional advantage of using non-
classical Gaussian light in a physically motivated communication setting. We note that
several works observed an enhancement in discrimination and communication in pres-
ence of phase noise via the addition of squeezing to coherent states, though with several
restrictions on sources and measurements [YS78; ST87; VR94; Yue04; CCP14; COP18].
To our knowledge, our work is the first to prove an unconditional advantage.

Furthermore, we show that the advantage of squeezed-coherent encodings is robust with
respect to the addition of channel losses, contrarily to Fock-state encodings. In this way
we identify a regime where the use of a source producing up to two-photon Fock states
is sub-optimal with respect to a much simpler squeezed-coherent source with reasonable
squeezing values, e.g., ∼ 5.8dB at energy E ∼ 2 vs the 8-15dB attainable at the state of
the art [Vah+16; Zha+21].

Finally, we show that the use of part of the signals to establish a common phase refer-
ence [SS91; BW00; BRS07] on these channels is in general detrimental for the communi-
cation rate, even at large signal energies.

The chapter is structured as follows. In Sec. 9.2 we recap the general communication
problem and introduce the channel model. In Sec. 9.3 we first compute the channel
capacity in the lossless case, showing it is attained by Fock encodings; we then prove the
optimality of covariant encodings, and finally specify the results to Gaussian encodings.
In Sec. 9.4 we first determine upper bounds on coherent-state encodings, applying recent
advances in bounding the classical Poisson channel capacity [WW14; CR19]; we then
we compute attainable lower bounds on coherent and squeezed-coherent encodings via
explicit discrete-pulse alphabets. Moreover, in Sec. 9.5 we consider the effect of losses,
while in Sec. 9.6 we prove the strict sub-optimality of phase-estimation strategies at large
energies. Finally, in Sec. 9.7 we discuss the relevance of our results.
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9.2 Phase-noise model

In this section we introduce the mathematical model describing the effective channel
associated with the lack of a common phase reference, and establish the notation used
throughout the remainder of our work. The sender A wants to communicate classical
information to the receiver B. Both A and B are in possession of their own phase reference
in the form of local oscillators, i.e., high-intensity laser light with respective phases θS
and θR; in general θS 6= θR. The mismatch between the two phase references can be
represented as a unitary channel connecting A and B, such that any state ρ̂ ∈ B(L2(Rm)),
prepared by A is described from B’s point of view as e−iθN̂ ρ̂eiθN̂ , where N̂ is the total
photon number operator of Eq. 4.93. If the phase mismatch is random, we obtain the
channel Φm of Eq. 4.108,

Φm(ρ̂) =

∫ 2π

0

dθ

2π
e−iθN̂ ρ̂ eiθN̂ =

∞∑

n=0

p(n)ρ̂n (9.1)

where now p(n) := tr
[
Π̂nρ̂

]
, ρ̂n := Π̂nρ̂Π̂n/p(n) and Π̂n is the projector on the subspace

of H with total photon number n. The channel Φm is a non-Gaussian memory channel
and outputs gauge-invariant states. Φm models a situation where any phase-variation
mechanism will take place after a finite amount of time T , during which the unknown rel-
ative phase, θ ∈ (0, 2π], will remain fixed. Therefore, A and B are capable of exchanging
m = b Tδtc signals, if each of them has duration δt.

In the special case m = 1 , Φ1 is equivalent to a photodetector measurement.

Φ1(ρ̂) =

∫ 2π

0

dθ

2π
e−iθn̂1 ρ̂eiθn̂1 =

∞∑

n1=0

|n1〉〈n1| ρ̂ |n1〉〈n1| , (9.2)

Observe that whereas A and B cannot use the global-phase degree of freedom of light to
encode information—there are no coherences between states with different total photon
number—they can still utilise the relative phase between m-mode states with a fixed
total photon number since Φm commutes with the action of energy-preserving Gaussian
unitaries, i.e., m-mode passive interferometers.

An intuitive communication strategy for A and B would be to use part of the energy to
perform a standard phase estimation in order to phase-lock their lasers [BW00] and then
perform a standard communication protocol. As we will show in Sec. 9.6, this possibility
is sub-optimal in practice when A and B’s average energy resources are finite, and also
asymptotically strictly suboptimal with respect to using a thermal ensemble of coherent
states.
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A simple model to account for losses is to precede the phase noise channel Φm with a
lossy bosonic channel E⊗mη,N . Since E⊗mη,N is phase-insensitive, it commutes with Φm and
the order in which the channels are placed its irrelevant. We will consider only the case
N = 0, in Sec 9.5.

9.2.1 Constrained rates

The Holevo quantity of the output of an ensemble gives an achievable rate for the channel
(Sec. 3.2.1). In addition to the energy constraint, other constraints on the ensemble can
be motivated by practicality. If one is restricted to use a specific type of signals ρ̂(x) ∈ S,
then

RS(Φ) := max
E s.t. ∀x ρ̂(x)∈S

χ(Φ, E) (9.3)

determines the maximum rate attainable by sending sequences of signals extracted from S
over multiple uses of the channel and decoding them with an optimal collective quantum
measurement. The realization of such measurement is still not trivial in practice, even
for coherent-state codes [CGZ11; RG16; RMG16; RMG17; Ban+20], and typical low-
energy communication methods commit to specific single-system quantum measurements
M := {M̂y ≥ 0,

∑
y M̂y = I}, which, in conjunction with a specific type of signals S,

induce a classical channel with maximum information transmission rate given by its
Shannon capacity:

RS(Φ;M) := max
q

∑

x,y

q(x)p(x)(y) log
p(x)(y)∑

x′ q(x
′)p(x′)(y)

, (9.4)

where the object to maximize is the classical mutual information between the input x,
with probability distribution q, and the output y, with conditional probability distribu-
tion p(x) such that p(x)(y) := tr

[
M̂yΦ(ρ̂(x))

]
.

9.3 Phase-noise channel: capacity, covariant and Gaussian
rates

In this section we compute the phase-noise memory channel capacity and several maxi-
mum information transmission rates with Gaussian encodings. We make use of covariant
encodings [Kor+19], which randomize any given encoding, and we show that they attain
larger or equal rate for our channel. An important disclaimer: at variance with previous
chapters, here the entropies, and therefore the capacities, are computed with natural
logarithms instead of base two.
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9.3.1 Classical capacity of the phase-noise channel and Fock encod-
ings

In this section we show that the classical capacity of Φm is C(Φm, E) = mg(Em), where
g(E) := (E + 1) log(E + 1) − E logE is the entropy of a single-mode thermal state of
average energy E.

It is straightforward to see that for an ensemble Ek with energy constraint kE

χ(Φ⊗km , Ek) ≤ S(ρ̂th(kE)) =
mk∑

j=1

g(Ej) = kmg

(
E

m

)
, (9.5)

where the first inequality follows from discarding negative terms in the Holevo quantity
and using the fact that the entropy is maximized, under an average-energy constraint, by
a thermal state [YO93; CD94]. This follows from 0 ≤ D(ρ̂||ρ̂th(E)) = S(ρ̂th(E))− S(ρ̂)

whenever tr
[
ρ̂N̂
]

= E, with equality if and only if ρ̂ = ρ̂th(E). Here N̂ is the total photon
number of mk modes and ρ̂th(kE) is a thermal state of mk modes with total average
energy kE, which can always be written as tensor product of single-mode thermal states
with average energies Ej = E/m. Finally, kmg(Em) is monotonic in E, therefore it is
not restrictive to constrain the total energy to be exactly kE.

Now note that the upper bound of Eq. (9.5) is achievable using an ensemble of tensor-
product Fock states on m modes, i.e., mapping x ∈ X 7→ ⊗m

i=1 |n
(x)
i 〉. Indeed, Fock

states are pure, giving a zero contribution to the second term of the Holevo quantity,
and invariant under the action of Φm, so that with a thermal probability distribution of
total average energy E, the average output state of the channel is exactly ρ̂th(E). Hence
we conclude that C(Φm, E) = mg(Em). Moreover, the same arguments above apply to
any phase-noise channel with arbitrary phase distribution, provided that the phase-shift
is identical on each mode, and their capacity is given by the same expression.

We stress that this is the same rate attainable by m uses of the identity channel with
average energy per mode E

m , implying that, if the sender and receiver can produce and
detect Fock states, then Φm is essentially noiseless.

Finally, as Fock states with increasing photon number are increasingly difficult to pro-
duce, it makes sense to consider the rate obtainable by sending ensembles of Fock states
with fixed maximum photon number. Repeating the proof of this section, the optimal
rate of these ensembles as defined in (9.3) is readily characterized as

Rt(E) = max
s<E

g(s, t), (9.6)

where g(s, t) = β(s)s − log
(

1−e−β(s)(t+1)

1−e−β(s)

)
is the entropy of the thermal state of the
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truncated Hilbert space with photon number up to t, with average photon number s,
with inverse temperature β(s).

Note that for any ensembles of t states the maximum rate is bounded by the maximum
value of the Holevo quantity, i.e., log t. For restricted Fock ensembles with photon number
up to 1 or 2 states the Holevo quantity saturates to respectively log 2 and log 3 as the
energy constraint grows.

9.3.2 Covariant encodings

Since photon-number states are hard to produce, one can be interested in constraining
the ensembles to more accessible states. Note that, although the channel is additive, i.e.,
its capacity is attained with product encodings over different uses, superadditivity may
arise due to the constrained input. For simplicity, we will restrict to product encodings
in the paper. For coherent states, this restriction is actually free since they are always
product states. A drastic simplification in the optimization over any family of states
can be obtained by exploiting the symmetry of the channel (see [Kor+19] for a general
resource-theoretic treatment of encoding-restricted communication).

We use the fact that the average on Haar-random energy-preserving Gaussian unitaries
Û , which act as the group U(m) in phase space [Ser17] (see Sec. 4.4.3), completely
depolarizes the state in blocks of fixed total photon number n, which have dimension(
n+m−1
m−1

)
:

∫

U(m)
dU Ûρ̂Û † =

∞∑

n=0

p(n)
Π̂n(

n+m−1
m−1

) . (9.7)

This is a consequence of Schur’s lemma applied to the decomposition into irreducible
representations of U(m) of the Hilbert space of m modes. The decomposition in turn
can be understood as a consequence of the connection between coherent states of an
infinite-dimensional system with spin-coherent states of finite dimension [Per72; ZFG90],
detailed in the Appendix B.4. We also use the term passive interferometers (PI) to refer
to these unitary operators, since they can be implemented with simple passive linear
optics elements.

Exploiting this property, the rate achievable with an arbitrary ensemble E = {q(x), ρ̂(x)}
is then bounded by

χ(Φm, E) ≤
[
S

(∫
dx q(x)

∫

U(m)
dUΦm(Û ρ̂(x)Û †)

)

−
∫
dx q(x)

∫

U(m)
dUS(Φm(Û ρ̂(x)Û †))

]
= χ(Φm, EHaar)

(9.8)
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where the inequality follows from the concavity and unitary-invariance of the von Neu-
mann entropy and the fact that Û and Φm commute, while in the last equality we defined
EHaar as the ensemble obtained by applying a Haar-random Û to the states extracted
from E . The inequality means that one can always restrict the maximization of the
Holevo quantity to ensembles of the form EHaar, which are invariant under total-phase
shifts and thus constitute what we refer to as covariant encodings.

It follows that for any ensemble of states E with total photon number distribution p(x),
where p(x)(n) = tr

[
Π̂nρ̂

(x)
]
, using Eq. (9.7) the Holevo quantity can be computed

as

χ(Φm, EHaar) =

[
H

(∫
dx q(x)p(x)

)
−
∫
dx q(x)H(p(x))

+

∞∑

n=0

∫
dx q(x)p(x)(n)

(
log

(
n+m− 1

m− 1

)
− S(ρ̂(x)

n )

)]

= mg(
E

m
)−D

(∫
dx q(x)p(x)||pth

)
−
∫
dx q(x)

(
H(p(x)) +

∞∑

n=0

p(x)(n)S(ρ̂(x)
n )

)
,

where D(·||·) is the Kullback-Leibler divergence, H(·) the Shannon entropy (in this chap-
ter we use a different notation for H(...) and S(...), the von Neumann entropy, since the
first appears prominently) and

pth(n) =

(
n+m− 1

m− 1

)(
E

E +m

)n( m

E +m

)m
(9.9)

is the total-photon-number distribution of the thermal state on m modes with average
energy per mode E

m .

From this expression it is intuitively apparent that states with total-photon-number
distribution more concentrated around the mean are preferable as they make H(p(x))

smaller without necessarily increasing D(
∫
dx q(x)p(x)||pth). Indeed, as already men-

tioned above, the capacity of the channel is attained by a thermal ensemble of Fock
states. This fact will be crucial in understanding why sub-Poissonian squeezed states of-
fer an enhancement (see Sec. 9.4.2), where sub(super)-Poissonian means that the variance
of the photon number distribution is smaller (larger) than the variance of the Poissonian
with the same mean.

9.3.3 Gaussian encodings

In the rest of the chapter we will restrict to Gaussian encodings, which are easily realizable
in practice. Note that, thanks to the concavity of the entropy and the fact that any
Gaussian state can be written as a mixture of pure Gaussian states, it is straightforward
to further restrict the optimization to pure Gaussian states (see Appendix B.5).
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Any pure Gaussian state |ψ〉 can be written as

|ψ〉 = Û Ŝ(r) D̂(s) |0〉⊗m (9.10)

where D̂(s) is a product of single-mode displacements defined in Eq. (4.79), while
Ŝ(r) = Ŝ(r1) . . . Ŝ(rm) is a product of single-mode squeezing operators, defined as in
Eq. (4.101).

We are then left to consider Gaussian ensembles of the form EHaar
G := {q(r, s) dU, Û |r, s〉},

which can be generated by producing a tensor product of m squeezed-coherent states
|r, s〉 := Ŝ(r)D̂(s) |0〉⊗m with probability q(r, s) and then acting with a m-mode Haar-
random PI Û . Consequently, the optimal Gaussian rate, as defined by Eq. (9.3) for S
being the set of Gaussian states, is obtained by maximizing Eq. (9.9) over q(r, s):

RG(Φm) = max
q(r,s)

[
H

(∫
dr ds q(r, s)Q(r,s)

)
−
∫
dr ds q(r, s)H(Q(r,s))

+

∞∑

n=0

∫
dr ds q(r, s)Q(r,s)(n) log

(
n+m− 1

m− 1

)]
,

(9.11)

where Q(r,s) is the total-photon-number distribution of |r, s〉 obtainable from that of a
single-mode squeezed-coherent state [Yue76; GA90] (see Appendix B.7).

9.4 Bounds on Gaussian communication rates

In this section we determine upper and lower bounds on Gaussian communication rates
on Φm. We recall that a more general phase-noise model encompassing our Φm has
been studied in [JBDD14], where the authors derived approximations to the Holevo
information of coherent-state ensembles with fixed energy in the low-photon-number
sector. By restricting our attention to Φm, we perform a wider analysis, extending the
attention to general encodings. In particular, in this section we

• evaluate an exact upper bound for the rate of coherent state encodings;

• present explicit strategies with covariant encodings and discrete energy pulses;

• study the high and low energy behaviour of the optimal coherent state rate and
show how to achieve them;

• show the advantage of using squeezing with respect to coherent states.

9.4.1 Maximum coherent-state rate and its upper bounds

If we restrict to coherent-state encodings (r = 0 in Eq. 9.10), we can provide a general
expression for the optimal rate using the fact that the total-photon-number distribution of
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a coherent state |s〉 := D̂(s) |0〉⊗m is a PoissonianP(s) with probabilitiesP(s)(n) := e−s s
n

n!

and depends only on its total energy s := |s|2.

The optimization in Eq. (9.9) can be restricted to input distributions on the total energy
only, q(s), and the optimal coherent-state rate

Rc(Φm, E) := max
q(s)

χ(Φm, EHaar
c )

= max
q(s)

[ ∞∑

n=0

∫ +∞

0
ds q(s)P(s)(n) log

(
n+m− 1

m− 1

)

+H

(∫ +∞

0
ds q(s)P(s)

)
−
∫ +∞

0
ds q(s)H(P(s))

]
(9.12)

is attained by producing a single-mode coherent state of energy s with probability q(s)
and distributing it with a Haar-random PI. For m = 1, only the last two terms of
Eq. (9.12) contribute and we recover the well-known discrete-time classical Poisson chan-
nel with input distribution q(s). Its capacity is still an open problem in classical informa-
tion theory for which only upper and lower bounds are known [Mar07; Lap+08; LM09;
WW14; CR19]. For m > 1, the first term adds a positive contribution depending on the
number of modes m and the output photon-number distribution.

Employing the connection with the Poisson channel, we can upper-bound the optimal
coherent-state rate by bounding separately the expressions in the second and third rows
of Eq. (9.12).

Proposition 9.4.1. For any upper bound Rc(Φ1, E) < f(E) (where Rc(Φ1, E) is the
capacity of the Poisson channel) we have

Rc(Φm, E) < f(E) +

∞∑

n=0

P(E)(n) log

(
n+m− 1

m− 1

)
. (9.13)

Proof. In order to prove Proposition 9.4.1 we need to upper bound the first term in the
coherent-state rate. We observe that

∑∞
n=0 P

(s)(n) log
(
n+m−1
m−1

)
is a concave function of

s. Indeed its second derivative evaluates to
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d2

d2s
{
∞∑

n=0

P(s)(n) log

(
n+m− 1

m− 1

)
}

= s−2
∞∑

n=0

P(s)(n)((s− n)2 − n) log

(
n+m− 1

m− 1

)
+ s−2

∞∑

n=0

P(s)(n)(s2 log

(
n+m− 1

m− 1

)

+ s(n+ 1) log

(
n+m

m− 1

)
− s(2s+ 1) log

(
n+m

m− 1

)
)

=

∞∑

n=0

P(s)(n)(log

(
n+m− 1

m− 1

)
+ log

(
n+m+ 1

m− 1

)
− 2 log

(
n+m

m− 1

)
)

≤
∞∑

n=0

P(s)(n)
m∑

i=1

log
(n+ i)(n+ i+ 2)

(n+ i+ 1)2
< 0

(9.14)
where we used P(s)(n)nα = sP(s)(n − 1)nα−1, log

(
x+m−1
m−1

)
=
∑m

i=1 log x+i
i , and

log x(x+2)
(x+1)2

< 0 by monotonicity of the function x
x+1 . Therefore, by applying again Jensen’s

inequality on the integral in s, as well as recalling that
∫
ds q(s)s = E, we obtain the

following inequality:

∫
ds q(s)

∞∑

n=0

P(s)(n) log

(
n+m− 1

m− 1

)
≤
∞∑

n=0

P(E)(n) log

(
n+m− 1

m− 1

)
, (9.15)

Hence the optimal coherent-state rate can be upper bounded for all E and m by
Eq. (9.13).

Note that the second term in Eq. (9.12) equals the Holevo quantity of an ensemble of
coherent states at fixed expected value of the energy, which [JBDD14] evaluated for
encodings which are not covariant, therefore suboptimal. In the rest of the article, we
employ two upper bounds based on the bounds of Ref. [WW14] and Ref. [CR19], on the
capacity of the Poisson channel. Explicitly, the bound Rup

c (Φm, E) is given by Eq. (9.13)
with [CR19]:

f(E) := E log

(
1 +

(
1 + e1+γ

)
E + 2E2

e1+γE + 2E2

)
(9.16)

+ log

(
1 +

1√
2e

(√
1 + (1 + e1+γ)E + 2E2

1 + E
− 1

))

≥ max
q(s)

[
H

(∫ +∞

0
ds q(s)P(s)

)
−
∫ +∞

0
ds q(s)H(P(s))

]
,

where γ is the Euler-Mascheroni constant.
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The bound obtained using [WW14] reproduces correctly the expansion of the channel
capacity C(Φm, E) at the first two leading orders, but it appears to be larger than
Rup

c (Φm, E) everywhere but for extremely low energies. Therefore, we employ the former
bound only to derive the low-energy expansion of the coherent-state rate, see Sec. 9.4.3,
while the latter bound is employed throughout the rest of the chapter.

9.4.2 Lower bounds on Gaussian rates via discrete-pulse encod-
ings

Randomized on/off modulation (ROOM)

For general m, we can determine an achievable lower bound on both the coherent and
squeezed-coherent maximum rates by employing a simple randomized on/off modulation
(ROOM) at the encoding: with some probability p we send a Haar-random pulse Û |r, s〉
and the vacuum otherwise. The resulting lower bound for general r, s, p respecting the
mean-energy constraint is

R(Φm, E; r, s, p) = p
∞∑

n=1

Q(r,s)(n) log

(
n+m− 1

m− 1

)
+ η

(
1− p+ pQ(r,s)(0)

)

+

∞∑

n=1

η
(
pQ(r,s)(n)

)
− p

∞∑

n=0

η
(
Q(r,s)(n)

)

= p
∞∑

n=1

Q(r,s)(n) log

(
n+m− 1

m− 1

)
+ η

(
1− p+ pQ(r,s)(0)

)

+
(

1−Q(r,s)(0)
)
η(p)− p η

(
Q(r,s)(0)

)
, (9.17)

where Q(r,s) is the total-photon-number distribution of a tensor product of squeezed-
coherent states |r, s〉 [Yue76; GA90] and η(p) := −p log p. In particular, as explained
above, for the coherent encoding it always suffices to start with a single-mode pulse, i.e.,
~r = 0 and s = (s, 0, · · · , 0), so that Q(r,s) reduces to a Poissonian P(|α|2).

Consequently, in accordance with Eq. (9.3), we define the best lower bounds on the
maximum rate of coherent and squeezed-coherent encodings as

Rroom
c (Φm, E) := max

s,p
R(Φm, E; s, 0, p), (9.18)

Rroom
sc (Φm, E) := max

r,s,p
R(Φm, E; r, s, p), (9.19)

where the optimization is over values of the parameters respecting the energy constraint.
Clearly, in a ROOM communication strategy, the larger the energy of the Haar-random
pulses is, the smaller is their joint probability 1 − p. This fact is particularly clear
for coherent encodings, where, as already noted, the problem depends exclusively on
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the absolute value of s. Since the energy constraint E = (1 − p)|s|2 imposes s = s0 :=

(
√
E/p, 0, · · · , 0), the optimization of Eq. (9.18) essentially reduces to a single-parameter

one:
Rroom

c (Φm, E) := max
p∈[0,1]

R(Φm, E;
√
E/p, 0, p). (9.20)

On the contrary, for the squeezed-coherent encoding it is difficult to optimize Eq. (9.19) in
general. Numerical evidence suggests to concentrate all the energy in one pulse before Û ,
i.e., r = (r, 0, · · · , 0) and s = (s, 0, · · · , 0), with s ∈ R and r > 0. Intuitively, this choice
is aimed at reducing the photon-number variance as pointed out after Eq. (9.9).

On/off modulation plus photodetection (OOP)

As explained in Sec. 9.2.1, attaining the maximum rate Rroom
c/sc (Φm, E) of a ROOM encod-

ing still requires the realization of collective quantum measurements across several uses of
the channel. Hence we consider further a fully explicit communication scheme, employ-
ing a non-randomized on/off modulation with coherent, Ac := {|0〉 , |s〉}, or squeezed-
coherent signals, Asc := {|0〉 , |r, s〉}, plus on/off photodetection measurements (OOP),
Mpd := {|0〉〈0| , I − |0〉〈0|}, whose rate Roop

c/sc(Φm, E;Ac/sc,Mpd) can be computed via
Eq. (9.4).

Two or more pulses

It is clear that the ROOM encoding can be generalized by considering more than one
covariant pulse, obtaining similar expressions to Eq. (9.17). Providing analytical intuition
about the behaviour of these strategies is challenging. However, in our numerics we do
consider ternary coherent and squeezed-coherent encodings, composed of the vacuum
state and two randomized pulses with distinct parameters (see Fig. 9.2 for a depiction of
these strategies). As for ROOM, the maximum rate of these encodings can be obtained
by optimizing all the parameters subject to the average-energy constraint.

9.4.3 Limiting behaviour of the maximum coherent-state rate

High-energy regime

Let us discuss the high energy regime for coherent-state strategies. The second term of
the upper bound in Eq. (9.13) can be further bounded using Jensen’s inequality, obtaining
the coarser bound

∞∑

n=0

P(E)(n) log

(
n+m− 1

m− 1

)
≤ log

(
E +m− 1

m− 1

)

= (m− 1) logE +O(1), (9.21)
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which, together with the well-known fact that at high energies the capacity of the Poisson
channel is 1

2 logE +O(1) [CR19], establishes the following:

Proposition 9.4.2. The maximum rate of transmission of classical information through
the channel Φm using high-energy coherent state encodings is given by

Rc(Φm, E) = (m− 1

2
) logE +O(1). (9.22)

We check that this asymptotic rate is achievable with a thermal ensemble of coher-
ent states. An ensemble for which the average state is the thermal state can be
obtained by encoding with probability distribution given by a Gamma distribution

q(s) =
(
m
E

)m e
− s
E/m sm−1

(m−1)! , indeed

∫ +∞

0
ds q(s)P(s)(n) =

(
n+m− 1

m− 1

)(
E

E +m

)n( m

E +m

)m
= pth(n). (9.23)

For this distribution one needs to evaluate only the average-output-entropy term. From
the well-known fact that H(P(s)) ≤ 1

2 log 2πe(s + 1
12) [LM09; ALY10], and from Jensen

inequality, we have

∫ +∞

0
ds q(s)H(P(s)) ≤

∫ +∞

0
ds q(s)

1

2
log 2πe(s+

1

12
) ≤ 1

2
log 2πe(E +

1

12
). (9.24)

We then obtain a rate

Rth = mg(E/m)−
∫ +∞

0
ds q(s)H(P(s)) ≥ mg(E/m)− 1

2
log 2πe(E +

1

12
)

= (m− 1

2
) logE +O(1). (9.25)

Moreover, by fixing E/m = k and sending m to infinity, we get a rate per use of the
transmission line which approaches the identity-channel capacity with energy constraint
k:

Rth

m
= g(E/m)−

∫ +∞

0
dsp(s)H(P(s)) ≥ g(k)− 1

2m
log 2πe(km+

1

12
)

= C(Φ, k) +O

(
logm

m

)
. (9.26)
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Low-energy regime

Let us now discuss the low-energy regime for coherent-state strategies. The series that
appears in the bound Eq. (9.13) can be rearranged as a power series in E, and at the
leading order (at fixed m) it reads

∑∞
n=0 P

(E)(n) log
(
n+m−1
m−1

)
= E logm + o(E). Hence

the full low-energy expansion of the upper bound Eq. (9.13) reads

Rup
c (Φm, E) = E log

1

E
+ E(c− γ + logm) + o(E), (9.27)

where c = e
1
2+γ

2
√

2
− 1 ≈ 0.038, and γ is the Euler-Mascheroni constant.

However, at extremely low energies (10−60 to 10−40) and for all m, one can use the
alternative bound R̃up

c (Φm, E), which provides the following asymptotically-tighter upper
bound for the rate of our channel:

R̃up
c (Φm, E) = E log

1

E
− E log log

1

E

+ E(2 + log 13− γ + logm) + o(E). (9.28)

An achievable lower bound is instead provided by a corresponding one for the Poisson
channel. In the following we will adapt an on/off modulation that attains the Poisson
channel capacity with unconstrained decoding at the leading order in E and in general
provides a good lower bound for E . 1 [WW14]. Note that this bound can be surpassed
at larger energies by that of [Mar07]. The strategy we consider is a randomized on/off
modulation (ROOM) and consists in sending a vacuum pulse |0〉 with probability 1−p and
otherwise a Haar-random coherent pulse Û |s〉 ⊗ |0〉⊗m−1 of energy |s|2 = E

p . Following
the same reasoning to obtain the optimal coherent-state rate, it is straightforward to see
that the net effect of this encoding is that of inducing an on/off total energy distribution
in Eq. 9.12, i.e., {q(0) = 1− p, q(Ep ) = p}. The corresponding rate is

R(Φm, E, p) := p

∞∑

n=1

P(E/p)(n) log

(
n+m− 1

m− 1

)
+ η

(
1− p+ pP(E/p)(0)

)

+

∞∑

n=1

η
(
pP(E/p)(n)

)
− p

∞∑

n=0

η
(
P(E/p)(n)

)

= p

∞∑

n=1

P(E/p)(n) log

(
n+m− 1

m− 1

)

+ η
(

1− p+ pP(E/p)(0)
)

+
(

1−P(E/p)(0)
)
η(p)− pη

(
P(E/p)(0)

)
,

where we used the property η(xy) = xη(y)+yη(x). One can then maximize this function
over p ∈ [0, 1] to obtain the best lower bound Rroom

c (Φm, E) := maxpR(Φm, E, p).

We have already seen that, independently of the value of p, we have
p
∑∞

n=1 P
(E/p)(n) log

(
n+m−1
m−1

)
≤ E logm + o(E). Then we use the fact that for the
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remaining terms in Eq. (9.29), at low energies, the maximum is attained for p = E log 1
E ,

see [WW14]. By inserting this value of p we get p
∑∞

n=1 P
(E/p)(n) log

(
n+m−1
m−1

)
=

E logm+ o(E) and therefore

Rroom
c (Φm, E) = E log

1

E
− E log log

1

E
+ E logm+ o(E). (9.29)

Moreover, note that at low energies one can attain this rate at order O(E) by explicit
on/off modulation plus photodetection (OOP) that sends in each mode independently a
fixed coherent pulse of energy E

pm with probability p and the vacuum otherwise [WW14]
(see also [VR94] for a worse-performing generalized PPM strategy). The rate for this
strategy is immediately obtained from the on/off rate for the case m = 1 [WW14]:

Roop
c (Φm, E) = mRoop

c (Φ1, E/m) = E log
1

E
− E log log

1

E
+ E logm+ o(E). (9.30)

We can summarize the low energy analysis with the following:

Proposition 9.4.3. The rate of transmission of classical information through the channel
Φm using low-energy coherent state encodings is bounded by

Rc(Φm, E) ≥ E log
1

E
− E log log

1

E
+ E logm+ o(E) (9.31)

Rc(Φm, E) ≤ E log
1

E
− E log log

1

E

+ E(2 + log 13− γ + logm) + o(E). (9.32)

9.4.4 Comparison of all strategies and squeezing advantage

Quantum advantage via squeezing

In Fig. 9.3 we plot the coherent and squeezed-coherent lower bounds Rroom
c/sc and the

coherent upper bound Rup
c per unit of channel capacity for several values of m, as a

function of the mean energy E. First of all, we observe a general increasing trend of
the rate with m, implying that one can make use of correlations in the phase noise to
increase the Gaussian communication rate.

More importantly, the plot also shows that the use of squeezing provides a large increase
of the communication rate for allm and E with respect to its direct coherent counterpart.
This is particularly evident for m = 1, where there even exists a small range of energies
such that Rroom

sc (Φ1, E) > Rup
c (Φ1, E). Since for m = 1 it also holds that Rroom

sc (Φ1, E) =

Roop
sc (Φ1, E) (see Sec. 9.4.4), we conclude that the fully explicit OOP squeezed-coherent

communication scheme surpasses any coherent-state scheme, answering a question that
can be traced back to [ST87]. This proves the existence of an unconditional quantum
advantage with respect to classical communication strategies, which can be demonstrated
using only experimental-friendly resources such as squeezing and photodetectors.
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Figure 9.3: Plot (log-linear scale) of several rates per unit of channel capacity C(Φm, E)

vs. the average energy E for several values of m: upper (dashed lines) and lower (dot-
dashed lines) bounds on the optimal coherent-state rate, Rup/room

c (Φm, E), lower bound
(continuous line) on the optimal squeezed-coherent-state rate, Rroom

sc (Φm, E). The opti-
mal coherent-state rate lies in the shaded region. Note that as m increases, the coherent-
state rate becomes comparable with the capacity. Moreover, squeezing always provides
a notable advantage over simple coherent encoding and it can even surpass the coherent-
state encoding upper bound for m = 1.

Attainability of ROOM rate with fully explicity OOP scheme

We start by observing that, for m = 1, the OOP scheme attains the lower bound
Eq. (9.17) at all energies both for coherent and squeezed-coherent encodings, i.e.,
Rroom

c/sc (Φ1, E) = Roop
c/sc(Φ1, E), implying that both (m = 1)-ROOM rates are attainable

with an end-to-end explicit protocol.

For m > 1 instead we have Rroom
c/sc (Φ1, E) > Roop

c/sc(Φ1, E) in general (see e.g. Fig. 9.4).
Interestingly, in the low-energy regime this gap closes and the same lower bound of (9.31)
can be attained by a fully explicit OOP strategy for all m.

Comparison with Fock and ternary encodings

The advantage of a ROOM squeezed-coherent encoding is quite small with respect to
that obtained with an on/off encoding using the vacuum and a one-photon Fock state |1〉,
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Figure 9.4: Plot (log-linear scale) of several rates per unit of channel capacity: coherent
and squeezed-coherent ROOM rate (continuous) and explicit OOP scheme rate (dashed),
for m = 2.

which is, admittedly, not particularly challenging to produce nowadays. For this reason,
we are driven to consider discrete encodings comprising more than two signals.

As we already pointed out, for any ensembles of t states the maximum rate is bounded
by log t. The restricted Fock ensembles with photon number up to 1 or 2 states rapidly
saturate to respectively log 2 and log 3. Still, as shown in Fig. 9.5, the advantage of
squeezed-coherent encodings is enhanced by considering ternary constellations, which can
surpass the performance of 0/1 Fock encodings. Importantly, the amount of squeezing
required by these optimal encodings is relatively modest, e.g., at E = 1.1 the largest
r ' 0.62 corresponds to a squeezing of 5.4dB, while at E = 2 the largest r ' 0.68

corresponds to a squeezing of 5.8dB. Hence our squeezed-coherent encoding is fully
within reach of current experimental platforms [Vah+16] (up to 15dB), even for on-chip
production [Zha+21](up to 8dB).

Clearly, one can surpass the ternary squeezed-coherent encoding with a ternary Fock
encoding, as shown in Fig. 9.5. However, the difficulty of producing Fock states with
photon number larger than 1, makes encodings with multiple squeezed-coherent states
preferable over those relying on Fock states. Such advantage is further enhanced in the
presence of loss, as we will discuss in the next section.
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Figure 9.5: m = 1, Binary (dashed) and ternary (dot-dashed) rates achievable with
Fock encodings with up to two photons (orange), coherent states (violet), and squeezed
coherent states (green). The violet solid line is the upper bound on the coherent state
rate Eq. (9.33).

9.5 Comparison with Fock encodings in presence of loss

We account for losses by preceding the phase-noise channel Φm with a lossy bosonic
channel E⊗mη,nth . At the level of the rates, this means replacing ensembles E = {q(x), ρ̂(x)}
with Eη = {q(x), E⊗mη,nth(ρ̂(x))} in the rate expression Eq. (9.9).

Since the action of loss on coherent states is Eη,0(|α〉〈α|) =
∣∣√ηα

〉〈√
ηα
∣∣, we can imme-

diately compute the maximum coherent-state rate in the presence of loss as

Rc(Φm ◦ Eη,0, E) = Rc(Φm, ηE), (9.33)

and employ upper and lower bounds adapted from Sec. 9.4.

To compute the rates of encodings generated by applying a random PI to single-mode
squeezed-coherent states, we need instead the photon-number distribution of a generic
Gaussian state, which is reported in Appendix B.8, Eq. (B.32). Finally, to compute the
rates of encodings generated by Fock states we can use that for N = 0 the action of the
attenuator on Fock states is
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Eη,0(|n〉〈n|) =
n∑

i=0

(
n

i

)
ηi(1− η)n−i |i〉〈i| . (9.34)

In Figs. 9.6,9.7 we plot these rates in the case m = 1 and m = 2 and zero-temperature
environment, nth = 0, showing that squeezed-coherent encodings outperform both co-
herent and Fock encodings with photon number up to 2 in the presence of a moderate
amount of loss, in the regime E ≈ 1.

9.6 Communication cost of establishing a phase refer-
ence

The optimality of covariant encodings makes strategies with phase reference states sub-
optimal in principle, but it is still worth to compare them with covariant encodings. We
consider an encoding employing Ex energy in the first mode to prepare a fixed phase
reference state and E(1−x) on the remaining m−1 modes with arbitrary encoding, with
0 < x < 1. By a data-processing argument for the capacity, clearly this rate cannot be
better than that of the identity channel on m−1 modes with energy constraint E(1−x).
Asymptotically at high energy, the leading term of this upper bound is (m − 1) logE,
independently of x and of the reference state, which is less than the coherent-state rate
achieving Eq. (9.22) by 1

2 logE. We give an expression of the rate with phase synchroniza-
tion in Appendix B.6, showing that a coherent states encoding achieves this upper bound
asymptotically. In Fig. 9.8 we show the comparison in the finite energy regime between a
covariant coherent encoding with an average thermal input state and encodings using a
truncated phase state |ψ〉 = [2xE+ 1]−1/2

∑2xE
n=0 |n〉 as reference and a thermal ensemble

of coherent states for coding. In fact, while phase estimation procedures [Cav81; Mon06;
Yon+12; ŠAF15; SOP15] benefit from super-Poissonian photon-number statistics, the
advantage we report in this paper is obtained by trading signals characterized by Poisso-
nian photon-number distribution with sub-Poissionian squeezed-coherent states.

9.7 Remarks

We have analyzed the performance of Gaussian encodings in the presence of phase-noise
with a finite decoherence time, such that m successive signals can be sent before losing
the phase reference. This is a physically-motivated example of non-Gaussian channel,
and we showed that good encodings make an intelligent use of the relative degrees of free-
dom, rather than trying to synchronize a common phase. Indeed, phase synchronization
schemes with quantum-enhanced phase estimation appear to be unfavored with respect
to general coherent-state strategies, if the global energy cost is taken into account.
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Moreover, we showed that squeezing can greatly enhance the communication rate, as an
effect of reducing the entropy of the total-photon-number distribution. In particular for
m = 1 we proved that, for the first time to our knowledge, an explicit strategy, alternat-
ing between the vacuum and a squeezed-coherent state, together with photodetection,
outperforms any coherent-state code. This is particularly interesting considering that
it can be easily realized with current technology, although the as-yet-unknown optimal
coherent-state rate will need in general the use of entangled measurements at the receiver
side, which are still challenging.

Finally, we showed that the squeezing advantage over coherent states is robust with
respect to additional loss effects in the communication line and that, in this case,
squeezed-coherent encodings with multiple pulses can even outperform Fock-state encod-
ings. This fact, in conjunction with the difficulty of realizing photon-number states and
the relatively small amount of squeezing required by our strategies, establishes squeezed-
coherent states as a robust and efficient coding method for communication without phase-
reference.

We leave as open questions: the optimality of strategies employing non-zero squeezing
among Gaussian states for any m and E; the sub-optimality of ensembles using states
with super-Poissonian statistics, which is good for phase synchronization, with respect
to coherent-state strategies. Moreover, we did not consider the possibility of sending en-
tangled squeezed states across the channel uses, which could in principle further enhance
the communication rates due to superadditivity.



Chapter 9. Classical communication in absence of a shared phase reference 181

η = 0.9

η = 0.8

η = 0.5

Figure 9.6: m = 1, Binary (dashed) and ternary (dot-dashed) rates achievable with
Fock encodings with up to three photons (orange), coherent states (violet), and squeezed
coherent states (green). The violet solid line is the upper bound on the coherent state
rate Eq. 9.33.
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η = 0.9

Figure 9.7: m = 2, upper bounds on rate with Fock encodings with up to three pho-
tons (removing energy constraint), randomized binary (dashed) and randomized ternary
(dot-dashed) rates achievable with coherent states (violet), and squeezed coherent states
(green). The violet solid line is the upper bound on the coherent state rate Eq. 9.33.

Figure 9.8: Plot (log-linear scale) of several rates per unity of channel capacity: Gaussian
coherent-state ensembles on all the m = 2 modes or with a fixed reference on one mode.



Chapter 10

Conclusions

The landscape of quantum statistical inference problems is vast and widely uncharted.
The fundamental nature of the questions that can be posed, and the potential trans-
formative implications of the answers, make the venture fascinating. We explored some
corners in this landscape, where many other interesting problems are in sight. As a
common theme across the chapters, we made use of symmetry principles to unravel op-
timizations and computations.

The first part of our results, Chapters 5, 6, 7 focus on the estimation of unitarily invariant
properties of sets of states. In Chapter 5 we computed several asymptotic corrections to
the probabilities of error in classifying quantum states with large number of training ex-
amples, as an instance of quantum supervised learning. In Chapter 6, we investigated the
ultimate limits in the estimation of the overlap between two unknown pure states, com-
paring the performances of the optimal strategy with several alternatives. This analysis
puts on firmer grounds the quantitative understanding of these important primitives. In
both Chapters 5, 6, the goal has been to have the most precise answer in the asymptotic
regime of large number of copies. This is compelling when the analytic computation
of the optimal performance can be actually done. This is the case for Chapter 5, 6,
where we concentrate on pure states or qubit states. It would be much more complicated
to follow the same approach for general mixed states. However, in realistic situations
one could be happy to have a guarantee on the quality of the estimation, rather than
the most stringent analysis. Moreover, the asymptotic regime of large number of copies
may be not significant if other extensive parameters have to be considered. Indeed, in
Chapter 7, we take a different approach, and we evaluate how many copies of labeled
states we need to certify if they are all equal or they differ for more than an arbitrary
threshold, as a function of the number of states and the dimension. We compute this

183
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dependence up to a multiplicative constant: this is enough to quantify the complex-
ity of the inference problem. In the same way, one could ask how many copies of the
template states are needed and are sufficient for realizing a learning machine for state
discrimination, such that the difference between the probability of error of the protocol
and the optimal probability of error for discriminating between the template states is at
most a small quantity. This sample complexity would depend on the number of different
template states and the dimension of the template states. If many copies of the test
state are also available, one could also determine the sample complexity for identifying
the correct classification with high probability. The sample complexity of estimating the
trace distance between two states or the Holevo quantity of a set of states is also open.
Another important development would be to study the many variations of independence
testing [Yu19; HT16]. We also mention other related open sample complexity problems.
Spectrum estimation [OW15] and von Neumann entropy estimation [AKG19] are still not
completely solved; in [OW15] and [AKG19] it is shown that the sample complexity for
both problems is O(d2), while the sample complexity for quantum tomography is Θ(d2)

and it is reasonable that spectrum and Von Neumann estimation should be easier. For
a comparison, in the classical case the sample complexity of learning the spectrum and
the Shannon entropy is Θ(d/ log d), which is less than the complexity Θ(d) for learning
the distribution in total variation distance. Another open problem is establishing the
sample complexity of shadow tomography [Aar18; HKP20], a very interesting approach
to learning properties of states. Also in this case, upper and lower bounds exists but do
not match. In addition to the model in which the measurement takes as input copies of
the states, one could also consider a quantum query model, where the agent can access
an unknown circuit producing the states [GL20]. This model could be more appropriate
in some situations, and still to be fully explored.

In the second part of this thesis, we improve bounds on optimal classical and quantum
communication rates with physically motivated models. In Chapter 8 we developed a
method for constructing degradable extensions of convex combination of channels, for
which the quantum and private capacity can be easily computed, establishing upper
bounds on the quantum and private capacity of the original channel. This method is
very flexible, and gives the best upper bounds on a large family of channels, at the
time of writing. We do not exhaust the possibilities of this method, since we do not
perform a full numerical optimization over the extensions we find. Moreover, there is
the possibility that degradable extensions of several uses of the channel can give even
better bounds. While this approach is not definitive, since we know that the quantum
and private capacity do not coincide in general, it is still interesting to pursue this
route. The most pressing theoretical puzzle is to have better bounds on the quantum
and private capacity for channels which are far from the identity channel. The current
implementations of our method are still more satisfactory in the low noise region, but the
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question needs further study. It is also desirable to make the construction of degradable
extensions for Gaussian channels more systematic: it is possible that better extensions of
the thermal attenuator and amplifier, more akin to the flagged degradable extension of
the additive noise channel than to weak-degradability constructions, give tighter bounds
in the low noise regime.

In Chapter 9 we started a systematic investigation of the optimal classical communication
rates in presence of phase noise and loss. We present conclusive numerical evidence that
squeezing helps in these communication settings, at variance with what happens with
phase-insensitive noise models. We also find several analytical and asymptotic results on
optimal rates with coherent states. The model we consider can be a useful mathematical
tool to devise good codes in realistic setting. At the same time, it is very difficult
to obtain analytical answers. It would be important to improve the upper bounds on
coherent states rates for long coherence times, and to find evidence of advantage of
squeezing in higher energy regimes.



Appendix A

Appendix: statistics of quantum
invariant measurements

In this appendix we collect computations which we needed in the main text, in Chap-
ters 5, 6, 7.

A.1 Spectrum of the average operator of states at fixed
overlap

In this section we compute the spectrum of

ρ(c) =
∫

SU(d) dU U⊗M+N
[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]
U †
⊗(M+N) (A.1)

=
∑

J PM,N (J |c) IλJ
ω
(d)
λJ

⊗ |JM,N 〉〈JM,N | . (A.2)

with | 〈ψ|φ〉 |2 = c. As explained in Theorem 4.2.6, we can compute the spectrum for
d = 2, which suffices to determine it for any dimension. Let us define Jmax = M+N

2

and Jmin = |M−N |
2 . Using the addition rules for angular momentum on H⊗M+N

2 we can
write

|ψ〉⊗N ⊗ |φ〉⊗M =

∣∣∣∣
N

2
,
N

2

〉
⊗

M
2∑

k=−M
2

D
(M2 )
k,M

2

(2 arccos
√
c)

∣∣∣∣
M

2
, k

〉

=

Jmax∑

J=Jmin

M
2∑

k=−M
2

C
J,N

2
+k

N
2
,N
2

;M
2
,k
D

(M2 )
k,M

2

(2 arccos
√
c)

∣∣∣∣J,
N

2
+ k

〉
, (A.3)
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where C
J,N

2
+k

N
2
,N
2

;M
2
,k

=
〈
J, N2 + k

∣∣N
2 ,

N
2 ; M2 , k

〉
are the Clebsch-Gordan coefficients and

|J,m〉, and |M−N |2 ≤ J ≤ M+N
2 are a basis for UλJ (SU(d))⊗VλJ (SM+N ), λJ = (M+N

2 +

J, M+N
2 − J, 0, ..., 0), and they are eigenvectors of ρ(c) with eigenvalue PM,N (J |c)

ω
(d)
λJ

.

Evaluating these matrix elements we obtain:

PM,N (J |c) =

M
2∑

k=−M
2

(
C
J,N

2
+k

N
2
,N
2

;M
2
,k
D

(M2 )
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(2 arccos
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)2
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(J − Jmin)!(Jmax − J)!(Jmax + 1 + J)!

×
J−N

2∑

k=−M
2

(M2 − k)!(J + N
2 + k)!

(J − N
2 − k)!(M2 + k)!

(
D

(M2 )
kM

2

(2 arccos
√
c)

)2

(A.4)

=
(2J + 1)(J + Jmin)!N !M !

(J − Jmin)!(Jmax − J)!(Jmax + 1 + J)!

×
J−N

2∑

k=−M
2

(J + N
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(J − N
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(1− c)M2 −kcM2 +k (A.5)

=
(2J + 1)N !M !(1− c)M

(Jmax − J)!(Jmax + 1 + J)!
P

(0,−2Jmin)
J+Jmin

(
1 + c

1− c

)
, (A.6)

where we used the following expression of the Wigner D matrix in going from the second
to the third line in Eq. (A.6)

D
(J)
z′,z(θ) =

√
(J + z)!(J − z)!
(J + z′)!(J − z′)! sin(z−z′)

(
θ

2

)
cos(z+z′)

(
θ

2

)
P

(z−z′,z+z′)
(J−z) (cos θ), (A.7)

with P (α,β)
n (x) the Jacobi polynomials, defined in general as

P (α,β)
n (x) =

Γ(α+ n+ 1)

n!Γ(α+ β + n+ 1)

n∑

m=0

(
n

m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
x− 1

2

)m
. (A.8)

In the particular case M = n+ 1, N = n, c = sin2 θ
2 , we obtain

Pn+1,n(J |c) =
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A.2 Averaged multiqubit states

By Schur-Weyl duality, for ρ with Bloch vector of modulus r one has the identity
∫
dU
(
UρU †

)⊗n
= ⊕jf (n)

j (r)Ij ⊗ Ij,n, (A.10)

where Ij is the identity opertor on Uj and Ij,n is the identity operator on Vj,n, as defined
in Eq. (5.18)

Let ρ a qubit density matrix characterized by Bloch vector of length r which, without
loss of generality we shall assume to be oriented in the positive ẑ direction, i.e. ρ =(

1+r
2

)
|↑〉 〈↑|+

(
1−r

2

)
|↓〉 〈↓| with |↑〉, |↓〉 being the eigenvectors of σz. We notice that its

n-th tensor power can be expressed as

ρ⊗n =
n∑

l=0

(
1 + r

2

)l (1− r
2

)n−l
B

(n)
l , (A.11)

with

B
(n)
l ≡

∑

τ∈Sn

sn(τ)
(
|↑〉 〈↑|⊗l ⊗ |↓〉 〈↓|⊗n−l

)
sn(τ)† ,

By construction B(n)
l is the projector on the eigenspace at fixed total angular momentum

Jz, therefore it is diagonal in every basis of eigenvectors of J2, Jz. In particular its support
is given by the vectors

∣∣j, l − n
2

〉
i
in each irreducible representation with total angular

momentum J2 = j(j+ 1) and l ∈ {n2 − j, · · · , n2 + j}, the index i labelling accounting for
the multiplicity of the representation, i.e.

B
(n)
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〉
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〈
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2

∣∣ . (A.12)

We can thus write

ρ⊗n =
n∑

l=0

(
1 + r

2

)l (1− r
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)n−l
⊕j≥|l−n2 | ⊕i
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2

∣∣ , (A.13)

Consider then the operator

P
(n)
l :=

∫
dUU⊗nB

(n)
l U †

⊗n
. (A.14)

Performing the integral, we obtain

P
(n)
l = ⊕j≥|l−n2 |

Ij
2j + 1

⊗ Ij,n, (A.15)
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where Ij is the identity opertor on Uj and Ij,n is the identity operator on Vj,n.

Accordingly we have

∫
dU
(
UρU †

)⊗n
= ⊕j

n
2 +j∑

l=
n
2−j

(
1 + r

2

)l (1− r
2

)n−l Ij
2j + 1

⊗ Ij,n

= ⊕jf (n)
j (r)Ij ⊗ Ij,n, (A.16)

with f (n)
j (r) as in (5.35).

A.3 Asymptotic expansion of weighted sums

Lemma A.3.1. Consider a sequence of probability distributions {Pn} for a sequence of
random variables Qn taking integer values from an to bn, with mean µn, satisfying a
concentration inequality around the mean:

Pn(|Qn − µn| > nt) <
C

nα
, (A.17)

for some positive constant C, and a sequence of functions {fn(x)} with the following
properties:

• i) fn(x) is analytic in the region |x− µn| ≤ nt,

• ii) |fn(x)| ≤ Cnβ in the region |x− µn| > nt,

• iii) For integers 0 ≤ k < k0, k0 even, |dkfn
dxk

(µn)|xk < Cnβ in the region |x− µn| >
nt.

• iv) |dk0fn(x)

dxk0
|E[(Qn − µn)k0 ] < C 1

nα−β
in the region |x− µn| ≤ nt.

Then we have the following asymptotic expansion, for any a′n, b′n such that a′n < µn−nt,
b′n > µn + nt,.

b′n∑

q=a′n

Pn(q)fn(q) =
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k=0
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dxk

(µn)E[(Qn − µn)k] +O

(
1
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)
(A.18)
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Proof. We have the following chain of equalities
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, (A.19)

where in the first equality we just split the summation, in the second we use ii) to bound
the tail contribution, in the third we Taylor expand fn(x) around µn, using the Lagrange
remainder for some q∗, satysfying |q∗ − µn| < nt. In the fourth we use iv) to bound the
Lagrange remainder contribution, and in the fifth we extend the summation to an, bn by
adding tails which can be bounded using iii).

We use this lemma repeatedly to evaluate several nested weighted sums in Chapters 5
and 6, albeit we do not show here that all the conditions are met for all the cases.
As an example, in scenario iii) (??), in Chapter 5, we have that putting h = ns
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1+r

2 = cos
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2

)
we notice that the distribution
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2
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defined in Eq. (5.81) is a binomial distribution in the variable ns, with moments

µ1 = E[s] = r ,

µ2 = E[(s− µ1)2] =
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n
,
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n
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and satisfying a tail bound [CT05]

∑

|ns−nr|>nε

P
(n)
θ (s) ≤ (n+ 1)2e−nmin|ns−nr|>nεD(s||r), (A.22)

where D(s||r) is the relative entropy between distributions (s, 1 − s), (r, 1 − r), and
D(s||r) > |r−s|2

ln 2 by Pinsker’s inequality [CT05].

Instead, setting h = ns
2 , we notice that the moments of the distribution

P
(n)
h (q) ≡ 2(n2−h)!(n+1)!

(n2 +h)!
× (n2 +h+q+ 1

2)!

(q− 1
2
−n

2
−h)!(n−q+ 1

2)!(n+q+ 3
2)!

,

(A.23)

defined in (5.81), can be expressed in terms of Euler gamma functions as follows
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1

2
(1 + n)(2 + 2h+ n)− Γ(3/2 + h+ n/2)2Γ(2 + n)2

Γ(1 + h+ n/2)2Γ(3/2 + n)2

=
1

8
n(1− s) +

−1 + 2s− s2

64(1 + s)
+O

(
1

n

)

(A.25)



Appendix A. Appendix: statistics of quantum invariant measurements 192
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8Γ(3/2 + h+ n/2)3Γ(2 + n)3

4Γ(1 + h+ n/2)3Γ(3/2 + n)3
=

(−1 + s)2n

32
√

2
√

1 + s
+O (1) ,

(A.26)

µ4 = E[(q − µ1)4] =
(1 + n)(4 + 10n+ 4h2n+ 6n2 + n3 + 4h(1 + 3n+ n2))

4

− 3Γ(3/2 + h+ n/2)4Γ(2 + n)4

Γ(1 + h+ n/2)4Γ(3/2 + n)4

+
(2 + 2n+ n2 + 2h(2 + n))π2Γ(2 + 2h+ n)2Γ(3 + 2n)2

43+2h+3nΓ(1 + h+ n/2)4Γ(3/2 + n)4

=
3

6
4(1− 2s+ s2)n2 +O (n) . (A.27)

µ5 = E[(q − µ1)5]

= −{[
(
h2
(
64n2 + 80n+ 4

)
+ 4h

(
16n3 + 64n2 + 71n+ 19

))

+ 16n4 + 108n3 + 241n2 + 218n+ 64]

× Γ

(
n+

3

2

)4

Γ(n+ 2)Γ
(
h+

n

2
+ 1
)4

Γ

(
h+

n

2
+

3

2

)

+ 64Γ(n+ 2)5Γ

(
h+

n

2
+

3

2

)5

+ 40(n− 2h)Γ

(
n+

3

2

)2

Γ(n+ 2)3Γ
(
h+

n

2
+ 1
)2

Γ

(
h+

n

2
+

3

2

)3

}

× 1

16Γ
(
n+ 3

2

)5
Γ
(
h+ n

2 + 1
)5

=
5n2(1− s)3

128
(√

2
√
s+ 1

) +O(n) (A.28)
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µ6 = E[(q − µ1)6]

=
1

8

(
−20

(
n2(s+ 1)− n(s− 5) + 2

)
Γ(n+ 2)4Γ

(
1
2(sn+ n+ 3)

)4

Γ
(
n+ 3

2

)4
Γ
(

1
2(sn+ n+ 2)

)4

)

+
3

8

(
6n4(s+ 1)2 + 2n3

(
5s2 + 24s+ 19

)
+ n2

(
s2 + 62s+ 81

)
+ 6n(3s+ 13) + 24

)

× Γ(n+ 2)2Γ
(

1
2(sn+ n+ 3)

)2

Γ
(
n+ 3

2

)2
Γ
(

1
2(sn+ n+ 2)

)2

+
n+ 1

8

(
n5(s+ 1)3 − n4(s− 11)(s+ 1)2 + n3

(
−2s2 + 40s+ 42

))

− n+ 1

8

(
16n2(s+ 4) + 4n(s+ 9) + 8

)

− 1

8

(
40Γ(n+ 2)6Γ

(
1
2(sn+ n+ 3)

)6

Γ
(
n+ 3

2

)6
Γ
(

1
2(sn+ n+ 2)

)6

)

=
1

512

(
15n3

(
1− s3 + 3s2 − 3s

))
+O

(
n2
)
. (A.29)

From the concentration inequality applied to the sixth moment [BLM13]

P (|Qn − E[Qn]| > nt) ≤ µ6

n6t6
. (A.30)

We use this concentration bound to apply Lemma A.3.1 and obtain an expansion up to
order O

(
1
n2

)
.

A.4 Asymptotics of the Fisher information

We begin by recalling the definition of the Fisher information for the overlap estimation
problem

H(c) =

Jmax∑

J=Jmin

PM,N (J |c)
(

dPM,N (J |c)
dc

PM,N (J |c)

)2

=

Jmax∑

J=Jmin

(
dPM,N (J |c)

dc

)2

PM,N (J |c) . (A.31)

Using the identity

dmP
(α,β)
n (x)

dxm
=

(α+ β + n+m)!

2m(α+ β + n)!
P

(α+m,β+m)
n−m (x), (A.32)
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it follows that

dPM,N (J |c)
dc

=
(2J + 1)M !N !(1− c)M−2

(Jmax − J)! (J + Jmax + 1)!

×
(

(J − Jmin + 1)P
(1,1−2Jmin)
J+Jmin−1

(
1 + c

1− c

)
− (1− c)MP

(0,−2Jmin)
J+Jmin

(
1 + c

1− c

))
,

(A.33)

and

1

PM,N (J |c)

(
dPM,N (J |c)

dc

)2

=
(2J + 1)M !N !(1− c)M−4

(Jmax − J)! (J + Jmax + 1)!

×


(J − Jmin + 1)2P

(1,1−2Jmin)
J+Jmin−1

(
1 + c

1− c

) P
(1,1−2Jmin)
J+Jmin−1

(
1+c
1−c

)

P
(0,−2Jmin)
J+Jmin

(
1+c
1−c

)

− 2(J − Jmin + 1)(1− c)MP
(1,1−2Jmin)
J+Jmin−1

(
1 + c

1− c

)

+(1− c)2M2P
(0,−2Jmin)
J+Jmin

(
1 + c

1− c

))
, (A.34)

For x ≥ 1 the following asymptotic expansion for the Jacobi polynomials holds [Ell71]
(note that we use a different asymptotics than the one used in the original pa-
per [Fan+20a], taken from [Sze59], since it lets us to compute the next to leading order).
Defining the function

Q(α,β)
n (x) =

(√
x2 − 1 + x

) 1
2

(α+β+1)+n
Γ(α+ β + 2n+ 1)

2
1
2

(α+β+1)+2n
(

(x− 1)
1
4

(2α+1)(x+ 1)
1
4

(2β+1)
)

(Γ(n+ 1)Γ(α+ β + n+ 1))
,

(A.35)
one has

P
(α,β)
n (x)

Q
(α,β)
n (x)

=
∞∑

s=0

fs(α, β, x)

(2n+ α+ β + 1)s
, (A.36)

where we should understand this expression as asymptotic expansion valid on x ∈ [1 +

δ,+∞), δ > 0. We have
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f0

(
α, β,

1 + c

1− c

)
= 1 (A.37)

f1

(
α, β,

1 + c

1− c

)
=

(
√
c− 1)

(
4a2 +

(
1− 4b2

)√
c− 1

)

8
√
c

f2

(
α, β,

1 + c

1− c

)
=

c− 1

128
(
c3/2 + c

)

×
(
−16a4 −

(
4b2 − 1

)
c
(
8a2 + 4b2 + 5

)

+
(
4a2 − 1

)√
c
(
4a2 + 8b2 + 5

)

+40a2 +
(
16b4 − 40b2 + 9

)
c3/2 − 9

)
, (A.38)

and also

Q
(1,1−2Jmin)
J+Jmin−1 (1+c

1−c)

Q
(0,−2Jmin)
J+Jmin

(1+c
1−c)

=
(1− c)(J + Jmin)√
c(J − Jmin + 1)

, (A.39)

Moreover, introducing the following binomial distribution

q(Jmax, J, c) := Bin(2Jmax,
1−√c

2
, Jmax − J)

=

(
2Jmax

Jmax − J

)(
1−√c

2

)Jmax−J (1 +
√
c

2

)Jmax+J

, (A.40)

in the variable Jmax − J , we have that

Q
(0,−2Jmin)
J+Jmin

(
1+c
1−c

)

q(Jmax, J, c)
=

(1− c)−M
(

1+
√
c

2

)
22Jmax−2J(2J)!(Jmax − J)!(J + Jmax)!

4
√
c(2Jmax)!(J − Jmin)!(J + Jmin)!

. (A.41)

we thus find the following asymptotic expansion,
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1

PM,N (J |c)

(
dPM,N (J |c)

dc

)2

=
(2J + 1)M !N !(1− c)M−4

(Jmax − J)! (J + Jmax + 1)!

×
(1− c)−M

(
1+
√
c

2

)
22Jmax−2J(2J)!(Jmax − J)!(J + Jmax)!

4
√
c(2Jmax)!(J − Jmin)!(J + Jmin)!

×


(J − Jmin + 1)2

(
(1− c)(J + Jmin)√
c(J − Jmin + 1)

)2

(∑∞
s=0

fs(1,1−2Jmin,
1+c
1−c )

(2J+1)s

)2

(∑∞
s=0

fs(0,0−2Jmin,
1+c
1−c )

(2J+1)s

)

− 2(J − Jmin + 1)(1− c)M
(

(1− c)(J + Jmin)√
c(J − Jmin + 1)

)( ∞∑

s=0

fs(1, 1− 2Jmin,
1+c
1−c

(2J + 1)s

)

+(1− c)2M2

( ∞∑

s=0

fs(0, 0− 2Jmin,
1+c
1−c)

(2J + 1)s

))
, (A.42)

which can be recast as

1

PM,N (J |c)

(
dPM,N (J |c)

dc

)2

= q(Jmax, J, c)

×

(
1+
√
c

2

)
M !N !(1− c)−22−2J+2Jmax(2J + 1)

4
√
c(2Jmax)!(J + Jmax + 1)

(
2J

J

)
(J − 1)...(J − Jmin)

(J + 1)....(J + Jmin)

×
(
g0(J, Jmin, c) +

g1(J, Jmin, c)

2J + 1
+
g2(J, Jmin, c)

(2J + 1)2
+O

(
1

(2J + 1)3

))
, (A.43)

where

g0(J, Jmin, c) =
(J + Jmin −

√
cM)2

c
=

(J −√cJmax)2

c

+ 2
(J −√cJmax)(1−√c)Jmin

c
+ (1−√c)2J

2
min

c
, (A.44)

g1(J, Jmin, c) =
(1−√c) (Jmin + J −√cJmax)

8
√
c

×
(√
c(−8Jmax + Jmin(16Jmin(Jmin + J −√cJmax − 2) + 32s+ 15) + 7(J −√cJmax))

+8c(4Jmin − 1)(Jmin − Jmax)− 7Jmin − 7(J −√cJmax)
)
. (A.45)

We use the asymptotic expansion [Ele14] for the central binomial coefficients, for which
we need the first three terms
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(
2J

J

)
=

4J√
π(J + 1/2)

(
1 +

1

4(2J + 1)
+

1

32(2J + 1)2
+O

(
1

(2J + 1)3

))
(A.46)

Using the techniques of Lemma A.3.1, we obtain that for some C > 0

Jmax∑

Jmin

q(Jmax, J, c)
1

(2J + 1)k+1/2

(J − 1)...(J − Jmin)

(J + 1)....(J + Jmin)

1

J + Jmax + 1
(J −√cM)2

≤ C

J
k+1/2
max

, (A.47)

Jmax∑

Jmin

q(Jmax, J, c)
1

(2J + 1)k+1/2

(J − 1)...(J − Jmin)

(J + 1)....(J + Jmin)

1

J + Jmax + 1
(J −√cM)

≤ C

J
k+3/2
max

, (A.48)

Jmax∑

Jmin

q(Jmax, J, c)
1

(2J + 1)k+1/2

(J − 1)...(J − Jmin)

(J + 1)....(J + Jmin)

1

J + Jmax + 1

≤ C

J
k+3/2
max

. (A.49)

With the aid of these estimates and the explicit forms of g0(J, Jmin, c) and g1(J, Jmin, c),
we can see that there is only a leading contribution from g0(J, Jmin, c), while the remaining
terms are subleading by power counting

Jmax∑

Jmin

q(Jmax, J, c)

(
2J

J

)
22J (J − 1)...(J − Jmin)

(J + 1)....(J + Jmin)

1

J + Jmax + 1

×
(
g0(J, Jmin, c) +

g1(J, Jmin, c)

2J + 1
+
g2(J, Jmin, c)

(2J + 1)2
+O

(
1

(2J + 1)3

))

Jmax∑

Jmin

q(Jmax, J, c)
(2J + 1)1/2

√
π/2

(J − 1)...(J − Jmin)

(J + 1)....(J + Jmin)

1

J + Jmax + 1

(J −√cJmax)2

c

+O

(
1

J
1/2
max

)
=
J

1/2
max(1−√c)√

πc3/4
+O

(
1

J
1/2
max

)
. (A.50)

Putting all together, we find
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1

PM,N (J |c)

(
dPM,N (J |c)

dc

)2

= q(Jmax, J, c)

×

(
1+
√
c

2

)
M !N !(1− c)−22−2J+2Jmax(2J + 1)

4
√
c(2Jmax)!(J + Jmax + 1)

(
2J

J

)
(J − 1)...(J − Jmin)

(J + 1)....(J + Jmin)

×
(
g0(J, Jmin, c) +

g1(J, Jmin, c)

2J + 1
+
g2(J, Jmin, c)

(2J + 1)2
+O

(
1

(2J + 1)3

))

=
Jmax

2c(1− c) +O (1) . (A.51)

The next to leading terms can be obtained in the same way. For example, the term of
order O(1) can be found with the terms up to order O

(
1

(2J+1)2

)
. We do it for the case

Jmin = 0, where the computations are still tractable by Mathematica, obtaining

1

PN,N (J |c)

(
dPN,N (J |c)

dc

)2

=
N

2c(1− c) −
1

8c2
+O

(
1

N2

)
.

Finally, we do not make evaluations of the remainder terms. However, since we use
asymptotic expansions which are valid for large 2J + 1, by definition we can bound the
remainders at order k − 1 with a term Ck

(
1

(2J+1)k

)
if J is larger than some Jk. Since

the lower extreme of the region where q(Jmax, J, c) concentrates grow linearly to Jmax,
we can always find Jmax such that we can control the sum of the remainder terms with
a term which is O

(
1

Jkmax

)
. On the other hand, outside the region of concentration we

have

PM,N (J |c)
q(Jmax, J, c)

=
(2j + 1)22Jmax(1− c)J+Jmin(1 +

√
c)−2JM !N !P

(0,−2Jmin)
J+Jmin

(
1+c
1−c

)

(J + Jmax + 1)(M +N)!

=
(2J + 1)22JmaxM !N !(1 +

√
c)−2J

∑J−Jmin
s=0

(
J+Jmin

s

)(
J−Jmin

s

)
cs

(J + Jmax + 1)(M +N)!
, (A.52)

and
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(1 +
√
c)−2J

J−Jmin∑

s=0

(
J + Jmin

s

)(
J − Jmin

s

)
cs =

J−Jmin∑

s=0

(
J + Jmin

s

)( √
c

1 +
√
c

)s(
1

1 +
√
c

)J+Jmin−s

×
(
J − Jmin

s

)( √
c

1 +
√
c

)s(
1

1 +
√
c

)J−Jmin−s

≤
J−Jmin∑

s=0

1 = J − Jmin. (A.53)

By bounding also the remaining terms we get that PM,N (J |c)
q(Jmax,J,c)

is bounded by a power law in
J , meaning that if q(Jmax, J, c) concentrates exponentially also PM,N (J |c) concentrates
exponentially in the same region. We already knew that this concentration should hold
by Theorem 4.2.7. We are left to bound

(
dPM,N (J |c)

dc

PM,N (J |c)

)
= −(Jmax − J)

1− c +
(1− c)Jmax−J∑J−Jmin

s=0 s
(
J+Jmin

s

)(
J−Jmin

s

)
cs

cPM,N (J |c)

≤ −(Jmax − J)

1− c +
J − Jmin

c
, (A.54)

it follows that for J ≤ J0,
∣∣∣∣∣

(
dPM,N (J |c)

dc

PM,N (J |c)

)∣∣∣∣∣ ≤
cJmax + J0 + (1− c)Jmin

c(1− c) . (A.55)

therefore, since the binomial distribution has exponential tails, the region where we
cannot apply the asymptotic expansion does not contribute to our asymptotic series for
the Fisher information.

A.5 Overlap estimation with depolarizing noise

In this appendix we derive the optimal estimator and corresponding mean squared error
for the case where we are given N and M copies of depolarized qubits. We shall restrict
our attention to qubit mixed states and for ease of notation we use a purely SU(2)

description of the average states, since the multiplicities are not relevant.
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The mixed states whose overlap we wish to estimate are

ρ⊗Nψ (r0) =

(
r0 |ψ〉 〈ψ|+ (1− r0)

I

2

)⊗N
,

ρ⊗Mφ (r1) =

(
r1 |φ〉 〈φ|+ (1− r1)

I

2

)⊗M
, (A.56)

where r0(1) denotes the corresponding purity of the states. From Eq. A.13 these states
can be written in the total angular momentum basis, after tracing out multiplicities,
as

ρ̃⊗Nψ =

M
2∑

J0=0

pJ0 τ
(0)
J0

(~n0)

ρ̃⊗Mφ =

N
2∑

J1=0

pJ1 τ
(1)
J1

(~n1), (A.57)

where

τ
(0)
J0

=
1

Z
(0)
J0

J0∑

k=−J0

Rk0 |J0, k〉〈J0, k|

τ
(1)
J1

=
1

Z
(1)
J1

J1∑

l=−J1

Rl1

J1∑

α,β=−J1

D
(J1)
α,l (h)D

(J1)
l,β (h) |J1, α〉〈J1, β| (A.58)

with Ri = 1+ri
1−ri , Z

(i)
Ji

=
R
Ji+1
i −R−Jii
Ri−1 , and just as for the case of pure states, h is such that

h |ψ〉 = |φ〉. We have chosen ~n0 = ~z without loss of generality. Moreover,

pJ0 =

(
1− r2

4

)N
2

(
N

N
2 − J0

)
2J0 + 1

N
2 + J0 + 1

ZJ0 (A.59)

and similarly for pJ1 . Integrating over SU(2) we obtain

ρ(c, r0, r1) :=

∫
U⊗N+Mρ⊗Nψ ⊗ ρ⊗Mφ U †

⊗N+M

=
∑

J

∑

J0,J1

pJ0pJ1
∑

k,l

Rk0R
l
1

Z
(0)
J0
Z

(1)
J1

J1∑

α=−J1

(
CJ,k+α
J0,k;J1,α

D
(J1)
α,l (h)

)2 IλJ
2J + 1

⊗ σ(J0,J1),

(A.60)

where σ(J0,J1) ∈ Σ(VλJ (SN+M )) and they are orthogonal for different pairs (J0, J1). To
calculate the AvMSE we need to compute the operators Γ, η of Eq. (2.20). A similar



Appendix A. Appendix: statistics of quantum invariant measurements 201

calculation as in Eq. (6.41), (6.43) gives

Γ =

N
2∑

J0=0

M
2∑

J1=0

pJ0pJ1
(2J0 + 1)(2J1 + 1)

J0+J1∑

J=|J0−J1|

IλJ ⊗ σ(J0,J1),

For η one obtains the following expression:

η =

∫

SU(2)
U⊗(N+M)




N
2∑

J0=0

M
2∑

J1=0

J0∑

k=−J0

J1∑

l=−J1

Rk0R
l
1

Z
(0)
J0
Z

(1)
J1

|J0, k〉〈J0, k|

⊗
∫

SU(2)
dh |D( 1

2)
1
2

1
2

(h)|2D(J1)(h) |J1, l〉〈J1, l|D(J1)(h)†

)
U †⊗(N+M). (A.61)

We finally obtain

η =

N
2∑

J0=0

M
2∑

J1=0

pJ0pJ1
(2J0 + 1)(2J1 + 1)

J0+J1∑

J=|J0−J1|


1− (2J0 + 1)(2J1 + 1)

pJ0pJ1

J0∑

k=−J0

J1∑

l=−J1

Rk0R
l
1

Z
(0)
J0
Z

(1)
J1

×
J1+ 1

2∑

L=|J1− 1
2
|

J1∑

h=−J1

(
C
L,− 1

2
+h

1
2
,− 1

2
;J1,h

C
L, 1

2
+l

1
2
, 1
2

;J1,l
CJ,k+h
J0,k;J1,h
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(2L+ 1)


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IλJ
(2J + 1)

⊗ σ(J0,J1)

=

N
2∑

J0=0

M
2∑

J1=0

pJ0pJ1
(2J0 + 1)(2J1 + 1)

J0+J1∑

J=|J0−J1|


1− (2J0 + 1)(2J1 + 1)

pJ0pJ1

J1+ 1
2∑

L=|J1− 1
2
|

J0+ 1
2∑

L′=|J0− 1
2
|

×
J0∑
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J1∑

l=−J1

Rk0

(
C
L′, 1

2
+k

1
2
, 1
2
,J0,k
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(
C
L, 1

2
+l

1
2
, 1
2
,J1,l

)2

Z
(0)
J0
Z

(1)
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{
J1

1
2 L

L′ J J0

}2


 IλJ ⊗ σ(J0,J1).

(A.62)

For a given J, J0, J1 and overlap c the estimator is given by

c̃(J, J0, J1) =
tr[ΠJ (ΠJ0 ⊗ΠJ1η)]

tr[ΠJ (ΠJ0 ⊗ΠJ1Γ)]
(A.63)

and the AvMSE reads

vop,mix =

∫ 1

0
p(c)c2 −

∑

J,J0,J1

p(J, J0, J1)c(J, J0, J1)2. (A.64)

The sums in L,L′,m, k can be done exactly, the result being polynomials in J . The sums
in J can be done exactly too. The final sum in J0 and J1 can be done using the fact that

pJ0
R
J0
(0)

ZJ0
can be written as



Appendix A. Appendix: statistics of quantum invariant measurements 202

pJ0
RJ0(0)

ZJ0
=

2J0 + 1
N
2 + J0 + 1

Bin(N,
N

2
− J0,

1 + r

2
), (A.65)

and in the limit M = αZ, N = βZ, Z →∞ one can approximate the AvMSE expanding
in moments around the mean of the binomial distribution, applying Lemma A.3.1. The
final result reads

vop,mix =
1

6Mr2
0

+
1

6Nr2
1

+ o(Z−1) (A.66)

in agreement with the pure state case for d = 2, r0 = r1 = 1.

A.6 Equivalence of sampling model and Poissonized
model

The equivalence of the Poisson model with the original one can be formalised in the
following proposition.

Proposition A.6.1. Suppose that given access to M copies of the state ρ of Eq. (7.1),
where M is extracted from a Poisson distribution with mean µ, there is a test Ptest such
that





P (Ptest 7→ "accept" |Case A) > 3/4 ,

P (Ptest 7→ "accept" |Case B) < 1/4 ,

(A.67)

and it can be performed by a two-outcome POVM {E(M)
0 , E

(M)
1 } for each M . Then,

provided that µ is larger than a fixed constant, there is a test in the sampling model using
2µ copies of ρ satisfying





P (test 7→ "accept" |Case A) > 2/3 ,

P (test 7→ "accept" |Case B) < 1/3 .

(A.68)

Proof. Given 2µ copies of ρ, we construct the following test. We extractM from a Poisson
distribution with mean µ. If M < 2µ, we perform the measurement {E(M)

0 , E
(M)
1 },

otherwise we declare failure. The difference of the acceptance probabilities of test and



Appendix A. Appendix: statistics of quantum invariant measurements 203

Ptest is

P (Ptest 7→ "accept")− P (test 7→ "accept")

=

2µ∑

M=0

Poiµ(M)
(

Tr
[
E

(M)
0 ρ⊗M

]
− Tr

[
E

(M)
0 ρ⊗M

])

+

∞∑

M=2µ+1

Poiµ(M)
(

Tr
[
E

(M)
0 ρ⊗M

]
− 0
)

=

∞∑

M=2µ+1

Poiµ(M) Tr
[
E

(M)
0 ρ⊗M

]
, (A.69)

which implies

0 ≤ P (Ptest 7→ "accept")− P (test 7→ "accept") ≤
∞∑

M=2µ+1

Poiµ(M)

= PM∼Poiµ(M > 2µ). (A.70)

Invoking hence the Cramér-Chernoff tail bound on the Poisson distribution [BLM13], i.e.

PM∼Poiµ(M > t) ≤ e−th(t/µ) h(x) = (1 + x) log(1 + x)− x , (A.71)

and setting µ > 1, from Eq. (A.70) we then get

0 ≤ P (Ptest 7→ "accept")− P (test 7→ "accept") ≤ e−µh(2) < 1/10 , (A.72)

from which the statement of the proposition follows.

A.7 Proof of Proposition 7.3.2

As in the proof of Proposition 7.3.1 we can invoke Eqs. (7.25), (7.24) and the identity∑
x∈ΓM

x2P
(M)
x = Tr

[
D2
Mρ

(M)
]
to write

Var[D] =
∞∑

M=0

Poiµ(M) Tr
[
D2
Mρ

(M)
]
− E[D]2

=

∞∑

M=0

Poiµ(M)
∑

~m∈PM

M(~m)~p,M Tr
[
(D ~m,M )2ρ~m

]
− E[D]2 , (A.73)

where the last passage involves (7.18) and (7.15). Replacing Eqs. (7.15), (7.19), and
(7.20) into Tr

[
(D ~m,M )2ρ~m

]
reveals that such term can be written as a linear combination

of the expectation values of the operators Omi,mjij Omk,mlkl on ρ~m which are complicated
functions of of the random variable mi and traces of powers of the ρi reported in the next
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subsection. Invoking hence (7.28) to decouple the averages over the mi we can finally
write

Var[D] = V1 + V2 , (A.74)

where setting Varρ[O] := Tr
[
(O − Tr[Oρ])2ρ

]
, we defined

V1 = E
ml∼Poi(plµ)
l=1,...,N

Varρ~m
[
D ~m,M

]
, (A.75)

V2 = E
ml∼Poi(plµ)
l=1,...,N


Tr

[
D ~m,Mρ~m

]
−
∑

i,j

pipjD
2
HS(ρi, ρj)




2

, (A.76)

(we remind that the expression ml ∼ Poi(plµ) indicates that the random variables ml

are extracted from a Poisson distribution of mean plµ).

A.7.1 Bound on V1

The covariance of two observables O, O′on a state ρ is defined as

Covρ[O,O′] := Tr
[
(O − Tr[Oρ])(O′ − Tr

[
O′ρ
]
)
]
. (A.77)

The covariances of the observables Omi,mjij on ρ~m, read:

Varρ~m [Omi,mi(ii) ] =
2

mi(mi − 1)
(1− (Tr

[
ρ2
i

]
)2) +

4(mi − 2)

mi(mi − 1)
(Tr
[
ρ3
i

]
− (Tr

[
ρ2
i

]
)2),

(A.78)

Varρ~m [Omi,mj(ij) ] =
1

mimj
+

1−mi −mj

mimj
Tr[ρiρj ]

2,

+
1

mi

(
1− 1

mj

)
Tr
[
ρ2
i ρj
]

+
1

mj

(
1− 1

mi

)
Tr
[
ρiρ

2
j

]
i 6= j

(A.79)

Covρ~m [O(ii),O(ij)] =
2

mi

(
Tr
[
ρ2
i ρj
]
− Tr

[
ρ2
i

]
Tr[ρiρj ]

)
i 6= j, (A.80)

Covρ~m [O(ij),O(jk)] =
Tr[ρiρjρk]− Tr[ρiρj ] Tr[ρiρk]

mi
i 6= k, (A.81)

Covρ~m [O(ij),O(kl)] = 0 i 6= k ∧ j 6= l. (A.82)
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Replacing the above expressions into Eq. (A.75), we can rewrite it as

V1 = E
ml∼Poi(plµ)
l=1...N

Varρ~m


∑

i 6=j

mi(mi − 1)

µ2pi
Omiii +

mj(mj − 1)

µ2pj
piOmjjj − 2

mimj

µ2
Omi,mjij




=
∑

i

4 E
mi∼Poi(piµ)

m2
i (mi − 1)2

µ4p2
i

(1− pi)2Var[O2
(ii)]

+ 8
∑

i 6=j
E

mi∼Poi(piµ)
mj∼Poi(pjµ)

m2
im

2
j

µ4
Var[O(ij)]

− 16
∑

i 6=j
E

mi∼Poi(piµ)
mj∼Poi(pjµ)

m2
i (mi − 1)mj

µ4pi
(1− pi)Cov[O(ii),O(ij)]

+ 8
∑

i 6=j 6=k
E

mi∼Poi(piµ)
mj∼Poi(pjµ)
mk∼Poi(pkµ)

m2
imjmk

µ4pi
Cov[O(ij),O(ik)]. (A.83)

Now we proceed to evaluate separately each term of Eq. (A.83).

From (A.78) we get

E
mi∼Poi(piµ)

[
m2
i (mi − 1)2

µ4p2
i

(1− pi)2Var[O2
(ii)]

]

= E
mi∼Poi(piµ)

[
mi(mi − 1)

µ4p2
i

(1− pi)2[2(1− (Tr
[
ρ2
i

]
)2) + 4(mi − 2)(Tr

[
ρ3
i

]
− (Tr

[
ρ2
i

]
)2]

]

=
µ2p2

i

µ4p2
i

(1− pi)2[2(1− (Tr
[
ρ2
i

]
)2) + 4µipi(Tr

[
ρ3
i

]
− (Tr

[
ρ2
i

]
)2]

≤ 4pi(1− pi)2

µ
(Tr
[
ρ3
i

]
− (Tr

[
ρ2
i

]
)2) +O(N/µ2). (A.84)

where in the third line we used the fact that E[mi(mi − 1)] = µ2
i p

2
i and E[mi(mi −

1)(mi − 2)] = µ3
i p

3
i for a Poisson distribution with mean µipi.
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Analougously, from (A.79) we have

E
mi∼Poi(piµ)
mj∼Poi(pjµ)

m2
im

2
j

µ4
Var[O(ij)]

= E
mi∼Poi(piµ)
mj∼Poi(pjµ)

mimj

µ4
(1 + (1−mi −mj) Tr[ρiρj ]

2

+ (mi − 1) Tr
[
ρ2
i ρj
]

+ (mj − 1) Tr
[
ρiρ

2
j

]
)

≤
pip

2
j Tr

[
ρiρ

2
j

]
+ pjp

2
i Tr

[
ρjρ

2
i

]
− pipj(pi + pj) Tr[ρiρj ]

2

µ
+O(1/µ2), (A.85)

where in the leading 1/µ term we kept only E[mα
i ] = µαpαi +O(µα−1pα−1).

The corresponding contribution from Eq. (A.80) is

E
mi∼Poi(piµ)
mj∼Poi(pjµ)

m2
i (mi − 1)mj

µ4pi
(1− pi)Cov[O(ii),O(ij)]

= E
mi∼Poi(piµ)
mj∼Poi(pjµ)

mi(mi − 1)mj

µ4pi
(1− pi)2

(
Tr
[
ρ2
i ρj
]
− Tr

[
ρ2
i

]
Tr[ρiρj ]

)

=
(1− pi)pipj

µ
2
(
Tr
[
ρ2
i ρj
]
− Tr

[
ρ2
i

]
Tr[ρiρj ]

)
. (A.86)

Finally, from (A.81) we have

E
m2
imjmk

M4pi
Cov[O(ij),O(ik)]

= E
mi∼Poi(piµ)
mj∼Poi(pjµ)
mk∼Poi(pkM)

mimjmk

µ4pi
(Tr[ρiρjρk]− Tr[ρiρj ] Tr[ρiρk])

=
pipjpk
µ

(Tr[ρiρjρk]− Tr[ρiρj ] Tr[ρiρk]). (A.87)



Appendix A. Appendix: statistics of quantum invariant measurements 207

Inserting (A.84), (A.85) and (A.87) into (A.83) we can finally write

V1 = 16
∑

i

pi(1− pi)2

µ
(Tr
[
ρ3
i

]
− (Tr

[
ρ2
i

]
)2)

+ 8
∑

i 6=j

pip
2
j Tr

[
ρiρ

2
j

]
+ pjp

2
i Tr

[
ρjρ

2
i

]
− pipj(pi + pj) Tr[ρiρj ]

2

µ

− 32
∑

i 6=j

(1− pi)pipj
µ

(
Tr
[
ρ2
i ρj
]
− Tr

[
ρ2
i

]
Tr[ρiρj ]

)

+ 8
∑

i 6=j 6=k

pipjpk
µ

(Tr[ρiρjρk]− Tr[ρiρj ] Tr[ρiρk]) +O(N/µ2). (A.88)

A.7.2 Bound on V2

We start defining the quantities

oii =

(
mi(mi − 1)

µ2pi
− pi

)
Tr
[
ρ2
i

]
, oij =

(
mimj

µ2
− pipj

)
Tr[ρiρj ], i 6= j. (A.89)

Noticing that

Tr
[
D ~m,µρ~m

]
−
∑

ij

pipjD
2
HS(ρi, ρj) =

∑

i 6=j
pjoii + piojj − 2oij , (A.90)

we can rewrite Eq. (A.76) as

V2 =
∑

i

4(1− pi)2 E
mi∼Poi(piµ)

[o2
ii] + 8 E

mi∼Poi(piµ)
mj∼Poi(pjµ)

[o2
ij ]

+ 8
∑

k 6=i 6=j
E

mi∼Poi(piµ)
mj∼Poi(pjµ)

[oijoik]− 16
∑

i 6=j
(1− pi)2pi E

mi∼Poi(piµ)
mj∼Poi(pjµ)

[oiioij ]. (A.91)

The expected values which appear in (A.91)can be easily computed:

E
mi∼Poi(piµ)

[o2
ii] =

2(1 + 2µpi)

µ2
Tr
[
ρ2
i

]2
, (A.92)

E
mi∼Poi(piµ)
mj∼Poi(pjµ)

[o2
ij ] =

(µpipj(pi + pj) + pipj)

µ2
Tr[ρiρj ]

2, i 6= j, (A.93)

E
mi∼Poi(piµ)
mj∼Poi(pjµ)
mk∼Poi(pkµ)

[oijoik] =
pipjpk
µ

Tr[ρiρj ] Tr[ρiρk], i 6= j, k, (A.94)

E
mi∼Poi(piµ)
mj∼Poi(pjµ)

[oiioij ] =
2pipj
µ

Tr[ρiρj ] Tr
[
ρ2
i

]
, . i 6= j (A.95)
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Replacing Eqs. (A.92), (A.93), (A.94) and (A.95) into Eq. (A.91), and then isolating
the leading order, we can conclude that

V2 =
∑

i

8(1 + 2µpi)

µ2
(1− pi)2 Tr

[
ρ2
i

]2
+
∑

i 6=j

8(µpipj(pi + pj) + pipj)

µ2
Tr[ρiρj ]

2

+
∑

i 6=j

∑

k 6=j

8(pipjpk)

µ
Tr[ρiρj ] Tr[ρiρk]−

∑

i 6=j

32pipj
µ

(1− pi) Tr[ρiρj ] Tr
[
ρ2
i

]

≤
∑

i

16

µ
(1− pi)2pi Tr

[
ρ2
i

]2
+
∑

i 6=j

8pipj(pi + pj)

µ
Tr[ρiρj ]

2

+
∑

i 6=j

∑

k 6=j

8(pipjpk)

µ
Tr[ρiρj ] Tr[ρiρk]

−
∑

i 6=j

32pipj
µ

(1− pi) Tr[ρiρj ] Tr
[
ρ2
i

]
+O(N/µ2) .

(A.96)

A.7.3 Bound on V1+ V2

We start by observing that

0 ≤ Tr
[
(ρi
√
ρj − ρk√ρj)†(ρi√ρj − ρk√ρj)

]

=⇒ 2 Tr[ρiρjρk] ≤ Tr
[
ρ2
i ρj
]

+ Tr
[
ρ2
kρj
]
.

(A.97)

Applying Eq. (A.97) to the sum and summing

∑

i 6=j 6=k

pipjpk
µ

Tr[ρiρjρk] ≤ 2
∑

i 6=j

pipj(1− pi − pj) Tr
[
ρiρ

2
j

]

µ
. (A.98)
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Combining Eqs. (A.88), (A.96) and using (A.98) we have

V1 + V2 = O

(
N

µ2

)
+ 16

∑

i

pi(1− pi)2

µ
Tr
[
ρ3
i

]
+ 8

∑

i 6=j

pip
2
j Tr

[
ρiρ

2
j

]
+ pjp

2
i Tr

[
ρjρ

2
i

]

µ

− 32
∑

i 6=j

(1− pi)pipj
µ

(
Tr
[
ρ2
i ρj
])

+ 8
∑

i 6=j 6=k

pipjpk
µ

(Tr[ρiρjρk]) +O(N/µ2)

≤ O
(
N

µ2

)
+ 16

(∑

i

pi(1− pi)2

µ
Tr
[
ρ3
i

]

+
∑

i 6=j

pipj [(pj + 1− pi − pj) Tr
[
ρiρ

2
j

]
− 2(1− pi) Tr

[
ρ2
i ρj
]
]

µ




= O

(
N

µ2

)
+

16

µ

∑

i 6=j
pipj Tr

[
((1− pi)ρi)(ρi − ρj)2

]

≤
∑

i 6=j
pipj Tr

[
‖(1− pi)ρi‖∞(ρi − ρj)2

]

≤ O
(
N

µ2

)
+

16

µ

∑

i 6=j
pipj Tr

[
(ρi − ρj)2

]

= O

(
N

µ2

)
+

16

µ

∑

i 6=j
pipjD

2
HS(ρi, ρj) = O

(
N

µ2

)
+

16M2
HS

µ
. (A.99)



Appendix B

Appendix: miscellanea on Gaussian
states and channels

In this appendix we collect computations which we needed in the main text, in Chap-
ters 8, 9.

B.1 Degradability of flagged additive gaussian noise

In this section we show that Λeβ is degradable. We consider the following Stinespring
representation, realized with a Gaussian unitary Ŝ acting on a space of five modes. The

input state of the channel is a state with covariance matrix σA =

(
x z

z p

)
. The joint

input state to Ŝ has a covariance matrix

σAE :=




x z 0 0 0 0 0 0 0 0

z p 0 0 0 0 0 0 0 0

0 0 2
β 0 0 0 0 0 0 0

0 0 0 β
2 0 0 0 0 0 0

0 0 0 0 2
β 0 0 0 0 0

0 0 0 0 0 β
2 0 0 0 0

0 0 0 0 0 0 2
β 0 0 0

0 0 0 0 0 0 0 β
2 0 0

0 0 0 0 0 0 0 0 2
β 0

0 0 0 0 0 0 0 0 0 β
2




. (B.1)

Ŝ acts as the symplectic matrix

210
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S =




1 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 −1
2 0

0 0 0 0 −1 0 0 0 0 0

0 0 −1
2 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 −1 0 1 1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

−1 0 −1 0 0 0 −1
2 0 0 1




. (B.2)

It is verified that this dilation produces the correct channel output covariance ma-
trix

σAF =




2
β + x z 0 0 0 − 1

β

z 2
β + p 0 1

β 0 0

0 0 2
β 0 0 0

0 1
β 0 β

2 + 1
2β 0 0

0 0 0 0 2
β 0

− 1
β 0 0 0 0 β

2 + 1
2β




(B.3)

and the complementary channel output is

σF ′ =




2
β 0 0 − 2

β

0 β
2 + 1

2β + p 0 z

0 0 2
β 0

− 2
β z 0 β

2 + 5
2β + x


 . (B.4)

The degrading map is obtained applying the symplectic Gaussian Ŝ′ corresponding
to

S′ =




1 0 1 0 0 0

0 1 0 0 1 0

0 0 1 0 0 0

0 −1 0 1 0 0

0 0 0 0 −1 0

−1 0 −1 0 0 −1




(B.5)
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and discarding the first mode. This is an explicit degrading Gaussian map and we can
apply Theorem 4.4.3.

B.2 Coherent information of flagged additive gaussian
noise

To compute the coherent information of the flagged additive noise we have to find the
covariance matrix VM of Λeβ[ρ̂M ] and the covariance matrix V ′M of (Λeβ ⊗ I)[|ρM 〉〉〈〈ρM |]
where ρ̂M is the thermal state with average photon number M and |ρM 〉〉 is its purifica-
tion, which can be taken to be the two-mode squeezed state |τ〉.

We obtain

VM =




2M + 1 + 2
β

0 0 0 0 − 1
β

0 2M + 1 + 2
β

0 1
β

0 0

0 0 2
β

0 0 0

0 1
β

0 β
2

+ 1
2β

0 0

0 0 0 0 2
β

0

− 1
β

0 0 0 0 β
2

+ 1
2β


 (B.6)

V ′M =




2M + 1 + 2
β

0 0 0 0 − 1
β

2
√
M(M + 1) 0

0 2M + 1 + 2
β

0 1
β

0 0 0 −2
√
M(M + 1)

0 0 2
β

0 0 0 0 0

0 1
β

0 β
2

+ 1
2β

0 0 0 0

0 0 0 0 2
β

0 0 0

− 1
β

0 0 0 0 β
2

+ 1
2β

0 0

2
√
M(M + 1) 0 0 0 0 0 2M + 1 0

0 −2
√
M(M + 1) 0 0 0 0 0 2M + 1



.

(B.7)
The eigenvalues of iΩVM are

± 2M +O(1), ±
√

1 + β2

β
+O(1/M) , ±

√
1 + β2

β
+O(1/M) , (B.8)

while the eigenvalues if iΩV ′M are

± 2
1

β1/2

√
M +O(1), ±2

1

β1/2

√
M +O(1) , ±1 , ±1 . (B.9)

Therefore we have

Q(Λeβ) = lim
M→∞

S(Λeβ[ρM ])− S((Λeβ ⊗ I)[|τ〉〈τ |M ]) = log2 β − 1/log 2 + 2h

(√
1+β2

β

)
,

(B.10)
as indicated in Eq. (8.72).

B.3 Coherent information of extended thermal attenua-
tor

To compute the coherent information of the extended thermal attenuator Eeη,N we have
to find the covariance matrix VM of Eeη,N [ρ̂M ] and the covariance matrix V ′M of the
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complementary channel Ee,cη,N [ρ̂M ] = Ee1−η,N [ρ̂M ] where ρ̂M is again the thermal state
with average photon number M . We obtain

VM =

(
η(2M + 1) + (1− η)η(2N + 1) 0 (1− η)2

√
N(N + 1) 0

0 η(2M + 1) + (1− η)(2N + 1) 0 −(1− η)2
√
N(N + 1)

(1− η)2
√
N(N + 1) 0 η + (1− η)(2N + 1) 0

0 −(1− η)2
√
N(N + 1) 0 η + (1− η)(2N + 1)

)
.

(B.11)

while V ′M is obtained from the above expression by exchanging η → 1−η. The eigenvalues
if iΩVM are hence

± ηM +O(1), ±(η + (1− η)(2N + 1)) +O(1/M) , (B.12)

while the eigenvalues if iΩV ′M are

± (1− η)M +O(1), ±((1− η) + η(2N + 1)) +O(1/M) . (B.13)

Therefore we have

Q(Eeη,N ) = lim
M→∞

S(Eeη,N [ρ̂M ])− S(Ee1−η,N [ρ̂M ])

= − log2

(
η

1−η

)
+ h(η + (1− η)(2N + 1))− h((1− η) + η(2N + 1)) ,

as indicated in Eq. (8.83).

B.4 Decomposition into irreducible representations of
U(m)

In this section we determine the decomposition into irreducible representations of U(m)

of the Hilbert space of m modes. In the following we switch to a complex notation for
coherent states, i.e., |α〉 := eαâ

†−α∗â |0〉.

Since coherent states are an overcomplete set, we can first restrict to study the action
of U(m) on coherent states and then straightforwardly extend the result to arbitrary
bosonic states via the decomposition

ρ̂ =

∫
d2m~α Pρ(~α) |~α〉 〈~α| , (B.14)

where Pρ(~α) is the Glauber-Sudarshan P -representation [Gla63; Ser17] of the m-mode
bosonic state ρ̂.

We will make use of a crucial property that connects coherent states of an infinite-
dimensional system with spin-coherent states of finite dimension [Per72; ZFG90]. First,
note that an m-mode coherent state can be decomposed as

|~α〉 =
∞∑

n=0

√
P(s)(n) |ψn(~α)〉 , (B.15)
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where s := |~α|2 the mean energy of the state, and Π̂n |~α〉 =
√

P(s)(n) |ψn(~α)〉. Explic-
itly

|ψn(~α)〉 =
∑

∑m
i=1 ni=n

√(
n

{ni}

) m∏

i=1

unii |~n〉

where we have introduced the multi-mode Fock state |~n〉 = |n1〉⊗· · ·⊗|nm〉, and ~u := ~α
|~α| .

Now observe that each |ψn(~α)〉 lives in a finite-dimensional subspace and it can be mapped
to the state of n copies of a m-level system state with coefficients ~u:

(
m∑

i=1

ui |i〉)⊗n =
∑

∑m
i=1 ni=n

m∏

i=1

unii
∑

σ∈Sn

U(σ)
∣∣∣~n(m)

〉

∼= |ψn(~u)〉 , (B.16)

where
∣∣~n(m)

〉
is the tensor-product state

∣∣~n(m)
〉

= | 1, · · · , 1︸ ︷︷ ︸
n1

, · · ·m, · · · ,m︸ ︷︷ ︸
nm

〉, with ni

repetitions of the i-th basis element, U(σ) is a permutation of the m-level sys-
tems and the isomorphism is defined on the basis of permutation-symmetric states(
n
{ni}
)−1/2∑

σ∈Sn U(σ)
∣∣~n(m)

〉
→ |~n〉. Finally, thanks to this mapping, the action of

an energy-preserving Gaussian unitary Û corresponding to U ∈ U(m) in phase space,
can also be written as

Û |~α〉 = |U~α〉 =

∞∑

n=0

√
P(s)(n)d̂

(n,m)
U |ψn(~u)〉 , (B.17)

where d̂(n,m)
U is the image of U with respect to the irreducible representation of U(m)

on the permutation-symmetric subspace of n m-level systems. This is enough to con-
clude that each block with total photon number n hosts the irreducible representation of
U(m) corresponding to the Young diagram of one row of length n, which has dimension(
n+m−1
m−1

)
[Hay17b].

By Schur’s lemma it then follows that the Haar average decoheres blocks with different
total photon numbers and, inside each block with fixed total photon number, it acts as
a U(m)-twirling:

∫

U(m)
dUÛ |~α〉 〈~α| Û † =

∞∑

n=0

P(s)(n)

∫

U(m)
dUd̂

(n,m)
U |ψn(~u)〉 〈ψn(~u)| d̂(n,m)†

U

=
∞∑

n=0

P(s)(n)
Π̂n(

n+m−1
m−1

) . (B.18)

This result can then be applied to each coherent-state term in the decomposition of
Eq. (B.14), obtaining Eq. ((9.7)) of the main text.
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B.5 Pure-state ensembles are always optimal among Gaus-
sian encodings

Consider an ensemble comprising general Gaussian states of the form ρ̂G =

Û Ŝ(~r)D̂(~α)ρ̂thD̂
†(~α)Ŝ†(~r)Û †, where ρ̂th is an m-mode thermal state , Û is an m-

mode PI and D̂(~α), Ŝ(~r) are the tensor product of single-mode displacement opera-
tors D̂(αi) = exp

(
αiâ
†
i − α∗i âi

)
and squeezing operators Ŝ(ri) = exp

(
ri
2 (â2

i − â†2i )
)
,

respectively. Now recall that any thermal state can be decomposed as a mixture of co-
herent states with Gaussian weights, i.e., ρ̂th =

∫
d2m~β pG(~β)|~β〉〈~β| [Ser17] and hence

every Gaussian state ρ̂G can be written as a mixture of pure Gaussian states with
Gaussian weight. Then for any mixed-state Gaussian ensemble EG := {q(x), ρ̂G(x)},
respecting the mean-energy constraint, one can consider an equivalent pure-state Gaus-
sian ensemble ẼG := {q(x)pG(~β|x), Ψ̂G(~β, x)}, comprising all the pure states Ψ̂(~β, x) =∣∣∣ψ(~β, x)

〉〈
ψ(~β, x)

∣∣∣, with
∣∣∣ψ(~β, x)

〉
= ÛxŜ(~rx)D̂(~αx)

∣∣∣~β
〉
, that take part in the decom-

position of some ρ̂G(x), with proper weights. Then by the equivalence of these two
ensembles and the concavity of the entropy we obtain, for any channel Φ acting on m

bosonic modes,

χ(Φ, EG) = S

(∫
dx q(x)Φ(ρ̂G(x))

)
−
∫
dx q(x)S (Φ(ρ̂G(x)))

≤ S
(∫

dx d2m~β q(x)pG(~β|x)Φ(Ψ̂(~β, x))

)

−
∫
dx d2m~β q(x)pG(~β|x)S

(
Φ(Ψ̂(~β, x))

)

= χ(Φ, ẼG).

(B.19)

This implies that, when optimizing the Holevo quantity over Gaussian encodings, one
can always restrict to pure states.

B.6 Communicate with phase reference

Consider now the scenario where Alice and Bob use a fraction of the total available energy
xE to prepare a single mode state suitable for estimating the phase of the channel and
(1 − x)E is the average energy of the ensemble of coherent states on the remaining
m − 1 modes. The input states have thus the form |ψ〉 ⊗ |~α〉, with |~α〉 = ⊗mi=2 |αi〉,
〈ψ| n̂1 |ψ〉 = xE, 〈~α| ∑̂m

i=2n̂i |~α〉 = |α|2. Since Φm commutes with energy-preserving
Gaussian unitaries on the last m − 1 modes, one can adapt the argument in the main
text to obtain an optimal rate
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χph
c (Φm, E, x) =

[
S

(∫
dp(~α)Φm(|ψ〉 〈ψ| ⊗

∫
dU Û |~α〉 〈~α| Û)

)

−
∫
dp(~α)

∫
dUS(Φm(|ψ〉 〈ψ| ⊗ Û |~α〉 〈~α| Û))

]

=

[
S

(∫
dp(~α)Φm(|ψ〉 〈ψ| ⊗

∞∑

n=0

P(|α|2)(n)
Π̂

(m−1)
n(

n+m−2
m−2

))

)

−
∫
dp(~α)S(Φm(|ψ〉 〈ψ| ⊗ |~α〉 〈~α|))

]
. (B.20)

where Π̂
(m−1)
n is the projector on the space of m− 1 modes with total photon number n.

The first term is the entropy of

Φm(|ψ〉 〈ψ| ⊗
∞∑

n=0

P(|α|2)(n)
Π̂

(m−1)
n(

n+m−2
m−2

))

=
∞∑

l=0

q(xE)(l) |l〉 〈l| ⊗
∞∑

n=0

P(|α|2)(n)
Π̂

(m−1)
n(

n+m−2
m−2

) , (B.21)

where q(xE)(n) := tr
[
Π̂n |ψ〉 〈ψ| ⊗ |0〉 〈0|

]
, and the second term can be computed by

noting that tr
[
Π̂n |ψ〉 〈ψ| ⊗ |~α〉 〈~α|

]
=
∑n

l=0 q
(xE)(l)P(|α|2)(n − l). Therefore, denoting

P(s,E) the probability distributions such that P(s,xE)(n) =
∑n

l=0 q
(xE)(l)P(s)(n− l), the

rate is

χph
c (Φm, E, x) = S[q(xE)] + S[

∫ ∞

0
ds p(s)P(s)]

+
∞∑

n=0

∫ ∞

0
ds p(s)P(s)(n) log

(
n+m− 2

m− 2

)
−
∫ ∞

0
ds p(s)S[P(s,xE)] (B.22)

Using a coherent state as reference, and coding with a thermal ensemble for m−1 modes,
at high energies we obtain, for fixed x, 0 < x < 1,

χph
c (Φm, E, x) = (m− 1) logE +

1

2
logE − 1

2
logE +O(1) (B.23)

which is already sufficient to reach the upper bound at leading order. Other phase
reference states are not useful at this level.
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B.7 Squeezed-coherent encodings

The photon-number distribution of a coherent squeezed state Ŝ(r)D̂(α) |0〉, r ∈ R and
α ∈ C, is given by p(n|r, α) = |c(n|r, α)|2, where [Yue76; GA90]

c(n|r, α) = (n! cosh(r))−
1
2

(
1

2
tanh(r)

)n/2

×Hn

[
α sinh(2r)−1/2

]
exp

[
−1

2
|α|2 − 1

2
tanh(r)α2

]
(B.24)

and Hn(γ) is the Hermite polynomial of order n. Taking α ∈ R, the average energy of
the state is E + 1

2 = 1
2 cosh(2r) + e−2rα2. Substituting for α we then obtain

c(n|r, E) = (n! cosh(r))−
1
2

(
1

2
tanh(r)

)n/2

×Hn

[√
(2E + 1− cosh(2r))e2r

2 sinh(2r)

]

× exp

[
−(2E + 1− cosh(2r))e2r

4
(1 + tanh(r))

]
. (B.25)

An achievable rate using these states for the encoding is obtained via the following on/off
modulation:

Ep,~r,~α,U =
{

(1− p) |0〉 〈0|⊗m ,
p dU ÛŜ(~r)D̂(~α) |0〉 〈0|⊗m D̂(~α)†Ŝ(~r)†Û †

}
, (B.26)

where the vacuum state is sent with probability (1 − p), while a pulse is sent with
probability p. The latter is generated by a product of displacements and single-mode
squeezing with fixed parameters on each mode, ~r, ~α ∈ Rm, followed by a Haar-random
passive Gaussian unitary Û on the m modes. All the parameters p, ~r, ~α are chosen so
as to satisfy an average-energy constraint for the ensemble and the total photon number
distribution is Q(~r,~α), with probabilities

Q(~r,~α)(n) =
∑

∑
i ni=n

m∏

i=1

p(ni|ri, αi). (B.27)

Following the same reasoning leading to Eq. (9.29), the rate achievable with this encoding
is

R(Φm, E, ~α,~r, p) = p
∞∑

n=1

Q(~r,~α)(n) log

(
n+m− 1

m− 1

)

+ η
(

1− p+ pQ(~r,~α)(0)
)

+
(

1−Q(~r,~α)(0)
)
η(p)

− p η
(
Q(~r,~α)(0)

)
.

(B.28)
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The rates of covariant ensembles generated from ternary encodings can be obtained by
Eq. (9.9) simply putting Q(~r,~α)(n) as total photon-number distribution.

B.8 Photon number distribution of single mode Gaussian
states

Single-mode Gaussian states ρ̂ are characterized by the vector m = (x, p) and the co-
variance matrix σ.

Their photon number distribution can be computed as follows [XHF10]. Redefining x̂
and p̂ with a rotation in the phase space, σ can be put to diagonal form. Define the
variables:

2τ2
1 := σ11 + 1 2τ2

2 := σ22 + 1, (B.29)

A =
1

2τ2
1

+
1

2τ2
1

B =
x√
2τ2

2

+
ip√
2τ2

2

, (B.30)

C = − 1

4τ2
2

+
1

4τ2
2

D = − x2

2τ2
2

− p2

2τ2
2

. (B.31)

Then the probability of photon number n is

p(n,m, V ) := tr[ρ̂ |n〉〈n|]

=
eD

τ1τ2

n∑

i=0

n!(1−A)i|C|n−i
i![(n− i)!]2

∣∣∣∣Hm

(
iB

2
√
C

)∣∣∣∣
2

. (B.32)
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