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We discuss the charge and the spin tunneling currents between two Bardeen-Cooper-Schrieffer
(BCS) superconductors, where one density of states is spin-split by the proximity of a ferromagnetic
insulator. In the presence of a large temperature bias across the junction, we predict the generation
of a spin-polarized thermoelectric current. This thermo-spin effect is the result of a spontaneous

particle-hole symmetry breaking in the absence of any polarizing tunnel barrier.

The two spin

components, which move in opposite directions, generate a spin current larger than the purely
polarized case when the thermo-active component dominates over the dissipative one.

I. INTRODUCTION

Spintronics consists of the active manipulation of the
spin degree of freedom to develop a wide range of solid-
state technologies [1, 2]. In this context, hybrid systems
involving ferromagnets and superconductors have been
exploited for the generation of spin-polarized currents [3—
10] with applications as memory elements [11-14], due
to a nearly perfect spin-valve effect. At the same
time, thermoelectricity in these hybrid devices has
been discussed theoretically [15-19] and experimentally
[20—24] with intriguing results at non-local level [25-31]
and applications as detectors [32]. Yet, in the presence
of temperature gradients, the interplay of the magnetic
field with the superconducting order parameter gives rise
to exotic non-equilibrium phenomena, such as the gener-
ation of pure spin currents (spin-Seebeck effect) [33-38].
Particle-hole (PH) symmetry breaking is a necessary
requirement to generate thermoelectricity in the linear
regime, i.e., 6V, 6T — 0 [39, 40]. In particular, the vio-
lation of this symmetry in ferromagnet-superconductor
systems was theoretically demonstrated in the presence
of magnetic impurities, which strongly enhance the
thermoelectric coefficient [41, 42].

This limitation can be overcome in the presence of a
large temperature bias (nonlinear regime), as recently
demonstrated in tunnel junctions between superconduc-
tors with different energy gaps [43, 44].

Here, we investigate the thermo-spin effect induced by
spontaneous PH symmetry breaking in hybrid ferro-
magnetic insulator/superconductor systems for a large
temperature bias. The effect shares some similarities
with the physics reported in Ref. [43], such as the bipolar
thermoelectric nature. On the other hand, it is very
different in character since the spin-splitting generates
a spin current and charge thermoelectricity even for
superconductors of identical gaps. In these conditions,
counter-intuitively, dissipative and thermo-active oppo-
site spin components coexist, resulting in maximal spin
current efficiency and thermoelectric power generation.
We consider a thermally-biased heterostructure of tunnel
junctions [see Fig. 1(a)]. The system is composed by a

Bardeen-Cooper-Schrieffer (BCS) superconductor (5)
coupled with a ferromagnetic superconductor (S,,) by
an insulating barrier (I). The magnetization of S,, is
induced by an exchange interaction due to the proximity
of a ferromagnetic insulator (FI) when the thickness
of S,, (d) is smaller than the coherence lenght [45, 46].
This geometry has been realized in recent experi-
ments [47, 48]. In this system, the exchange interaction
(hexc) breaks the degeneracy between the spin up (1)
and spin down () components of the superconducting
Density of States (DoS) [49].

We first give an intuitive description of the effect by
analyzing the charge current (I,) and the spin current
(Is) in the presence of a thermal bias, i.e., Tg > Tg, ,
where Ts (Ts,,) is the quasiparticle temperature of S
(Sm). Figure 1(b) shows I, (solid curves) as a function
of the bias voltage (V) in the absence [black, see also
left energy diagram in the box of Fig. 1(a)], and in the
presence [aquamarine, see also right energy diagram in
the box of Fig. 1(a)] of a sizeable hexc. In both cases, I,
is linear in the voltage bias (I; o V') for large V' (Ohmic
response). For low values of V, the trace is highly non-
linear and current peaks appear, corresponding to the
matching between the singularities in the superconduct-
ing DoS [50]. Note that each of the two antisymmetric
peaks in the I, (V') characteristics for hexe = 0 is doubled
for hexe # 0, since the spin-degeneracy is broken by
the exchange interaction. In the inset, we magnify
the low-voltage behaviour (dashed-rectangle), and we
include the corresponding spin current (dashed lines).
Clearly, I, is exactly zero for heye = 0, and finite for
hexe # 0. Moreover, I, flows against the bias voltage
for small values of V' when hey. # 0, i.e., the junction
produces thermoelectric power, while it is always dis-
sipative for hexc = 0. When the active thermo-spin
current is generated, it results |I;| > |I,|. This in-
equality is never realized in a perfect spin-polarized
barrier (i.e. 100% polarization), where |I5| = [I,4] [1].
Indeed, in our structure, the two finite spin-current
components (I+ and I}) flow in opposite directions.
Moreover, when the thermo-active component domi-
nates, a net thermoelectric spin-polarized current occurs.
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FIG. 1. (a) Top: S—I— Sy, junction building blocks. The top
hot [bottom cold] superconductor is indicated with S (Sp),
and the exchange field is present in S, only. Bottom: energy
band diagrams of the superconductors are shown in the ab-
sence (hexc = 0, left panel) and presence (hexc = 0.4A0, right
panel) of an exchange field (hexc). For hexe = 0, the DoS of S,
exhibits two peaks. For hexc = 0.4A¢, the spin-split DoS (blue
1 and green | for the up and down spin components, respec-
tively) shows four peaks. The difference between the chemical
potential of the two leads is pus — ps,, = eV. The temper-
ature of the S (Sm) superconductor is set at Ts = 0.77¢
(Ts,, = 0.01T¢). (b) Quasiparticle current-voltage character-
istics for hexe = 0 (black) and hexe = 0.44¢ (aquamarine) dis-
play two and four matching peaks, respectively. Inset: Blow-
up of the charge (I, solid lines) and spin currents (I, dashed
lines) at low bias voltage.

II. MODEL

We assume S,,, to be much thinner than its supercon-
ducting coherence length (d < &), in order to con-
sider a homogeneous exchange interaction in S, [45].
The normalized DoS of the spin-o component [with ¢ =
+(1),—({)] for the a superconducting electrode (with

a=S,85,,) is expressed as

E,+ ohy + il
\/(Ea + 0hg +10)2 — A2

Naa(Ea) =R ) (1)

where h,, is the exchange field, E, = FE — u,, is the quasi-
particle energy measured with respect to the chemical po-
tential o [51], Ag is the self-consistent superconducting
energy gap for the a-lead [52], and I is the phenomeno-
logical Dynes parameter [53] [54]. The sum of the two
spin contributions gives the total DoS of a spin-split su-
perconductor No(E) =3 _ | Nao(E)/2. We will adopt
the usual approximations found to be valid in many ex-
periments [55]. For oo = S, we assume hg = 0. Note that,
even in the presence of an exchange field, the DoS is PH
symmetric, i.e., No(Eq) = No(—Ey) [56], and spin com-
ponent satisfies Ny (Eq) = Nos(—Ey), with 6 = —o.

The quasiparticle current of the spin-o component reads

Ic, = %/dE NSU(E - GV)NSmJ(E)FSSm (E), (2)

—00

where e is the electron charge, Gr is the normal-
state conductance of the tunnel junction [57], and
Fss, (E) = fs(E — eV) — fs, (E) is the difference
between the Fermi-Dirac quasiparticle distributions of
two electrodes fo(E,Ty) = [1 + exp(E/kpT,)]~" with
a = 85,5, We assume to work in quasi-equilibrium
regime, where each electrode is separately at the
thermal equilibrium and the electronic temperature
can differ from the phononic one, as experimentally
demonstrated [58-61]. The charge current and the spin
current are defined as I, = Iy + I and I, = Iy — I,
respectively. By exploiting the PH symmetry, we note
that the charge current is odd (even) in V (hexe) with
I,(Vihexe) = —Ig(=V, hexc) = Ig(V,—hexc), while the
spin current is an even (odd) function in V' (hexc) with
Is(‘/a hexc) = Is(_u hexc) = _Is(‘/z _hexc)7 as shown in
Fig. 1(b)[62].

We assume the two superconductors (S and S,,)
to have the same zero-temperature energy gap
(Aso = Ag,,. 0 = A and, hence, the same critical
temperature T.). Therefore, no thermo-electric effect
occurs for hex. = 0 [43, 44].

III. CHARGE THERMOELECTRIC EFFECT

Here, we investigate thermoelectric effects in the S —
I — S, junction as a function of the thermal bias and ex-
change field. Typical current-voltage characteristics for
different values of hexc at Ts = 0.71. and Tg, = 0.017,
are shown in Fig. 2(a). For hexc = 0 (black solid line),
the system is dissipative [I,(V)V > 0], and the cur-
rent displays sub-gap peaks at V = £V, = £|A(Ty) —
A(Ts, )|/le|. It is enough a weak exchange field (hexc =
0.1A, magenta solid line) to observe the splitting of the



peaks at V = £V,F = +|A(Ts) — A(Ts,,) £ hexcl/lel-
For larger values of the exchange field (hexe = 0.24¢), a
thermoelectric power is generated [I,(V)V < 0]. Ther-
modynamic analysis [43] shows that in a thermally biased
non-equilibrium system the generation of thermopower in
the junction is possible, which corresponds to an Abso-
lute Negative Conductance (ANC) [62]. The exchange
field generates spontaneously a thermo-spin effect (dis-
cussed in more details below). The spin-splitting in Sy, is
fundamental to activate this effect when Ago = Ag,, 0.
Indeed, the spin-splitting in the bottom electrode DoS
reduces effectively the gap, and, at the same time, local-
izes purely spin-polarized states between Ag  — hexc and
Ag, + hexc. These combined mechanisms determine a
spontaneous spin-Seebeck effect, leading to thermoelec-
tricity and ANC, that is G(V) = [,(V)/V < 0. For
V — 0, the conductance can be approximated by

2 (E)fs,.(E,Ts,,)
A Z/ [(E+ zI‘ + Ohexc)? — A]3/2° ®)

See for instance the dashed violet line (I, = GoV) for
hexe = 0.2A¢ in Fig. 2(a). Eq.3 holds only for A(Ts) >
A(Ts,,) — hexe, that is when thermoelectricity appears.
Figure 2(b) displays G¢ computed through numerical dif-
ferentiation of I, as a function of Ts/T. and hexe/Ao.
We can distinguish thermoelectric (Go < 0, blue) and
dissipative (G > 0, red) areas. For a fixed heyxc, thermo-
electricity is present only in a limited range of T's. In par-
ticular, the maximum value of Ts providing a thermoelec-
tric effect is due to the condition A(Ts) > A(Ts,,) — Pexc
(dashed white line). This constrain corresponds to the
requirement to have the hot electrode with the largest
" effective” gap [43, 44].
The thermoelectric power is typically maximum at the in-
ternal peak voltages V' = £V~ = £|A(Ts) — (A(Ts,,) —

hexe)|/|e]. Being A(Ts) < A(Tsm) we note that [V~
can be increased by raising hexc. As a consequence,
the generated maximum thermopower —1,(V,")V," is ex-
pected to increase accordingly.

Note that heye cannot
be freely increased, due to the Chandrasekhar-Clogston
limit (Rexe < Ao/V/2) [63-65].

A typical thermoelectric figure of merit is the Seebeck
voltage (Vs), which represents the bias that stops the
thermocurrent I,(Vs) = 0 [see the orange circles in
Fig. 2(a)]. |Vs| grows monotonically with hexc, as shown
in Fig. 2(c) for different values of T, and its maximum is
limited again by the Chandrasekhar-Clogston limit [62].
Moreover, |Vg| increases by lowering Ts, which corre-
sponds to a decrease of the thermal gradient. This odd
behavior shows that thermoelectricity is purely nonlin-
ear [43], and notably different from thermoelectricity in
linear regime [34]. Another significant figure of merit is
the ratio between the maximum thermoelectric current
and the corresponding voltage, i.e., G™** ~ I;t(Vp_)/V_
[see aquamarine dotted line for Ay = 0.44 in Fig. 2(a§].
This quantity plays a crucial role when the thermoelectric
element is connected to a load. More precisely, —G™?*
represents the maximal conductance of the load sup-
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FIG. 2. (a) Quasiparticle current-voltage I,(V) character-

istics are shown for different values of hexc/Ag. In the lin-
ear regime, the IV curves can be approximated by the linear
I, = GoV of Eq. (3) (dashed violet line), while, in the nonlin-
ear regime in bias, the G™*® evaluated at the thermoelectric
peaks (dotted aquamarine line). The Seebeck voltages (£Vs)
(orange circles) and the matching peaks values (:I:Vpi) are re-
ported for hey = 0.4A¢. (b) In the linear regime, the zero-bias
conductance (Go) as a function of hexc and Ts is shown, dis-
tinguishing thermo-active areas (blue tones) from dissipative
ones (red tones). (c) Absolute value of the Seebeck voltage
as a function of hexc is shown for different values of the ther-
mal bias (Ts). (d) Maximum conductance evaluated at the
matching peak V™ is displayed as a function of Ts and hexc
in the nonlinear regime. The blue tones are linked to the neg-
ative conductance (thermoelectricity), while the red area is
referred to the positive one (dissipation).

ported by the thermoelectric junction, such as no net
thermopower can be generated if the load conductance is
bigger than —G™** [44, 62]. Figure 2(d) shows G™*
as a function of heyx. and Ts. We can identify again ther-
moelectric (G™* < 0, blue) and dissipative (G™** > 0,
red) regimes. We find that the temperature range where
the junction is thermo-active widens by increasing hexc.
Indeed, for a given hexc, the maximum value of Ty is still
limited by the above-mentioned relation for Gy [dashed
white line of Fig.2(b)-2(d)]. For low temperatures, ther-
moelectricity disappears arising from the nonlinear na-
ture of the effect in temperature [66]. Some other dif-
ferences between Fig. 2(b) and Fig. 2(d) are discussed in
more details in [62].

IV. SPIN THERMOELECTRIC EFFECT

Here, we investigate the thermo-spin current, which
represents another peculiar consequence of spin symme-
try breaking in the setup considered.



Figure 3(a) shows typical charge current (I,, aqua-
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FIG. 3. (a) The charge current (I,) is separated into up (I4)
and down (I}) spin components for hexe = 0.4Ag. Only one
spin component (I, for V. > 0, I+ for V < 0) generates a
thermo-active peak. The spin current (Is) is reported in the
dashed orange line. (b) The IV characteristics of the charge
current (I,) and spin current (/) and the curve of the spin
current generation efficiency (SGE) are displayed for hexc =
0.4A¢. The yellow area between the Seebeck voltages (+V5)
highlights the thermo-active spin current generation, while in
the violet area the system is dissipative behaving as a spin-
filter. (c) The spin current evaluated at +V,~ is reported
as a function of Ts and hexc. Fixing Ts (colored lines), the
maximal value of I is reached for the optimal value of hexc
such as Ag = Ag,, — hexc (dashed white line). With a black
dashed line, we show the approximation of hf... The violet
transparent zone highlights the dissipative behavior of the
system. (d) The maximum spin current, evaluated at the
matching peak voltage (4+V, ™), corresponding to the colored
cuts of the previous panel(c) (dashed lines for the dissipative
regime and solid lines for the thermoelectric regime), is shown
as a function of hexc for different values of Ts.

marine line) and spin current (I, orange dashed line)
as a function of V in the presence of thermoelectricity.
In addition, we consider the two spin components of
I, i.e., I+ (spin up, blue line) and I; (spin down, light
green line). At V = 0, I,(V = 0) = 0, due to PH
symmetry. Still, the two spin components are finite,
and exactly opposite, since hexe 7# 0. Therefore, one
of the spin components is thermoactive [in Fig. 3(a)
L(V)V <0for V <0, I(V)V <0 for V > 0], while
the other one is dissipative. Thus, the system produces
spin-polarized thermoelectricity when the thermoactive
component is larger than the dissipative one. Interest-
ingly, the Seebeck voltage represents the bias where the
thermoactive and dissipative components compensate,
ie., I1+(+Vs) = —I,(+Vs) such as I,(£Vs) = 0, thus
obtaining a purely spin current. Moreover, the maximum
spin current is located at the internal matching peaks
(V,7).

Hence, it is convenient to introduce a new figure of
merit, which compares the spin current generated by
the system with respect to all the carriers moving across
the junction. We define the Spin current Generation
Efficiency as SGE = Is/(|I1| + |I}]). Note that when
the two spin components flow in opposite directions,
|Is| > |I;| and the system is globally thermo-active
[I,(V)V < 0], necessarily SGE = 1. Figure 3(b)
displays SGE as a function of V., for the curves in
Fig. 3(a). For |V| > Vg, where the junction is dissipative
(violet area), we can distinguish two behaviors. The
first is characterized by SGE = 1 with a thermoactive
spin component but lower than the dissipative oneii.e.,
no charge thermopower is generated. In the second case,
SGE < 1. Here, both spin components are dissipative
and the total charge current flows in the same direction
of the bias. The current is still spin-polarized, but
|Is| < |I,| similarly to a spin-polarizer [34-36]. For
large |V|, the total current is almost independent of the
spin-splitting, and the two components give the same
contribution, leading to I, — 0.

In Fig. 3(c), we analyse the maximal spin current
evaluated at the peak Is(j:Vp*) as a function of hexe
and Tg. At fixed heye, Is increases with the thermal
bias 0T = Ts —Tg, ~ Ts. By contrast, for a given
thermal gradient (67T, colored cuts), the spin current
is non-monotonic in heyc, reaching the maximum value
for hexe = A(Ts, ) — A(Ts). This condition coincides
with the threshold value of the exchange field [hL (Ts)]
to generate thermoelectricity, which can be estimated

as hi, = A(lftanh {1.74\/WD [62]. Tts

approximate value is displayed in Fig. 3(c) with a
black dashed line. In particular, for a fixed Ts, spin-
thermoelectricity occurs only for hexe > hi, . (solid part
of the colored cuts), otherwise, it is dissipative (dashed
part). Finally, Fig. 3(d) shows I;(£V},) as a function
of heye for selected values of Ts. In particular, Is(Vp*)
grows with Tg, reaching its maximum at hl.,.. We
observe that the maximum value of the thermocurrent
is of the order of I ~ 0.5GTAp/e. Assuming the
aluminium gap of Ay = 200 peV and tunneling conduc-
tance of Gpr = 0.1 mS, we expect spin currents of the
order of 10 nA. Spin currents cannot be easily detected
without further elaborating on the design. Possible
methods are measuring spin accumulation phenomena

or employing spin-filtering.

V. CONCLUSIONS

In summary, we discussed the nonlinear thermo-spin
effect, generated in a thermally-biased S —1I —.5,,, Joseph-
son junction in the presence of an exchange interaction.
This effect is generated by the spontaneous particle-hole
symmetry breaking activated by spin-splitting in S,,.
By exploiting the two spin current components that the



system naturally drives in opposite direction, we observe
the coexistence of one spin thermo-active with one
dissipative component. Notably, the spin thermoelec-
tricity is relevant when the thermoactivated component
dominates, thus obtaining |Is| > |I,|. Our results
suggest interesting applications in thermoelectricity [40],
low-dissipative and thermoactive spintronics [1, 35], and
radiation detection [67].
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SUPPLEMENTARY INFORMATION
I. SYMMETRIES OF THE CHARGE CURRENT AND THE SPIN CURRENT

We discuss the symmetries of the charge current (I;) and the spin current (Is), which directly derive from the
particle-hole (PH) symmetry of the superconducting density of states (DoS). As discussed in the main text, the
spin-o (with ¢ = +) DoS of the a superconductor (with o = S, S,,) in the junction is [56]

E,+ohy +1i0

Nuo(Eo) = |R
V(Ea + ohg +i0)2 = A2

; (S1)

where h, is the exchange field, £, = F — u, is the quasiparticle energy measured with respect to the chemical
potential o, and A, is the self-consistent gap for the a-lead, I' is the Dynes parameter. The full DoS is given by the
sum No(E) = >, _, Nao(E)/2. In the presence of an exchange (or Zeeman) field heyc, even if the spin degeneracy
of S, is broken, the superconducting state of S, still satisfies the PH symmetry, which implies the symmetry
Noo(Ey) = Nos(—E,), where & = —o. Anyway, the PH symmetry of the BCS superconductors is reflected in the
BCS DoS by its even symmetry with respect to the energy, i.e. No(Ey) = No(—FEy).

In the following, we assume to have the exchange field only in the bottom lead, and consequently hg = 0, as discussed
in the setup S — I — S;;,, shown in Fig.1 of the main text. Correspondingly, the current for the o-spin component
becomes

L(V) = % / dE Ney(E — eV)Ns, o(E; hese) Fss.. (E, V), (S2)

as reported in the main text. In the above expression, Fsg, (E,V) = fs(E —eV,Ts) — fs, (E,Ts,, ) is the difference
between the Fermi-Dirac quasiparticle distributions of two electrodes fo(E,T,) = [1 + exp(E/kgT,)]~*. Note that
the PH symmetry of the Fermi function with respect to the energy gives fo(F) = 1 — fo(—F) and determines also
the symmetry Fsg,  (—FE,V) = —Fgsg, (F,—V). By changing the integration variable E — —F’ in Eq. (S2) and using
the symmetries of N, (E) and Fsg, (—E, V'), we obtain

(B, =V) = -Is(-V), (S3)

m

G o
I, (V)= —2—: / dE' Ngo(E' 4+ eV)Ng, 5(E' hexe)Fss

where the second identity is obtained by direct comparison with Eq. (S2). By exploiting the symmetry of I, it is
easy to show that charge (I; = > _, I,) and spin (Iy = > _, 0l,) currents are odd and even functions in V/,
respectively. For instance, in the case of the symmetry with respect to the voltage bias V', one gets

L(=V)==> I, (V)=-I,(V)
o=+

(54)
L(-V)==> 0l;(V)= > &I;(V) = I(V)
o=% o=%

Similarly, one can easily show that charge (spin) current is even (odd) with respect to the exchange field
Iq(vv hezc) = Iq(‘/a _hezc) [IS(V, hezc) = _Is(‘/v _hemc)}~

II. EVALUATION OF V,” AND THE hc,c THERMOELECTRICAL THRESHOLD

In the presence of thermoelectricity, and assuming that the critical temperature T, of the superconductors is
T. 2 Ts > Ts, , the value of the voltage bias where the thermoelectric current is maximum reads

eV, = A(Ts) — [A(Ts,, hese) — hese). (55)

For low temperatures (Ts, < T.) and low exchange fields, we can approximate A(Ts, , heze) = Ag. We can estimate
the maximum value of the peak voltage (V,,"™") by considering the maximum exchange field allowed, i.e., heze <

har = A/v/2, given by the Chandrasekhar-Clogston limit [63, 64]. We obtain

exc

eV M~ Ag(tanh[1.74/T, /T — 1] — 0.29), (56)



where we approximate A(Ts) = Agtanh[1.744/T./Ts — 1] [56], which overall differs only up to a few percent from the
results obtained through self-consistent calculation of Ar. This limit provides also a rough estimation of the Seebeck
voltage values, being Vg 2 V,7"™%®. By using a similar approximation, we can compute the minimum threshold value
for hexe necessary to generate thermoelectricity in the system. We observe that the matching peak is located at
zero bias, i.e., V7 = 0, when the system switches from dissipative to thermoactive behavior. Thus, using again the
Eq. (S5) we find

ht .= Ap(Ts, ,ht..) — Ar(Ts, hexe = 0). (S7)

exc exc

Using previous approximations, we find

Ao(tanh[1.74+/T,/Ts — 1] — [1 — Al ./Ao]) =0 (S8)
and the threshold h!

‘2 becomes

hiye = Ao

1 — tanh <1.74 To _ 1>] . (S9)
Ts

The relation implies that by increasing the temperature (Ts), hi . rises as shown by the Seebeck voltage Vg of Fig.

2(c) of the main text. From the previous results, we expect that the Seebeck voltage Vg depends linearly on heyx. and
ht. .(Ts). We can provide a very rough estimation of the Seebeck voltage with

1 — tanh (1.74@ / Ie _ 1)] . (S10)
Ts

III. THE NEGATIVE CONDUCTANCE IN LINEAR AND NON LINEAR REGIME

eV & hexe — Mo (Ts) = hexe — A

Before discussing in details the absolute negative conductance in linear and nonlinear regime, we wish to recollect
here some general consequence of the physical significance of a negative conductance. Firstly we observe that, as dis-
cussed in Ref.[43], the Absolute Negative Conductance (ANC) G = I(V)/V < 0 is necessarily present when the power
is produced in the system (such as in the thermopower generation), i.e. the current flows against the bias I(V)V < 0.
This is thermodinamically admissible, if there is a gradient of temperature in the junction, similar to what happen
in thermoelectrical systems. Notably the system present also a Negative Differential Conductance (NDC), which can
be present both in the dissipative G > 0 and, also, in the thermoactive regime with ANC, G < 0. This fact has
important consequences on the electrical stability. Indeed, for a certain operating points, when ANC and NDC are
present contemporaneously, an electrical instability occurs and it can be kept stable only by applying an external
generator (power source) to the system. In other words, in such cases, if the junction is electrically connected to
a load (dissipative element), the junction progressively increases the bias until the differential conductance becomes
positive. In such condition, with positive differential conductance, the system may be again electrically stable. Thus,
in the absence of an external sources, assuming that the junction is connected only to a passive load, the circuit nat-
urally flows outside from the unstable electrical configuration toward a stable one, where the differential conductance
is positive. This peculiar behaviour reflects the spontaneous particle-hole breaking property of the junction, which
is a purely intrinsic mechanism of the junction. Note that when the load conductance G, satisfies the condition
G, < |G™2*|, this stable point can be found also in the presence of ANC. The junction, in that case, operates as a
thermoelectric generator and the thermopower is dissipated in the load, as a thermoelectric engine[44]. Thus, we note
the rich character of the electrical behaviour of the junction. It presents thermoactive or dissipative behaviour, which
can be electrically stable or unstable, depending on the internal conditions such as lead temperatures or external one
due to the circuit connected to the junction.

In the main text, we discussed the negative conductance (Gy) in the linear regime and the maximal conductance
(G™2x) in the nonlinear regime as a function of hex. and Ts [Fig. S1(a-b)]. We observed the condition for thermo-
electricity (blue tones) and its limits in temperature at fixed hexe-

Here, we focus on the differences that appear between the linear and nonlinear regimes. In particular, observing the
central area of both figures (T's /T, ~ 0.4), the system is dissipative Gy > 0 around V' ~ 0 [Fig. S1(a)], while it exhibits
thermoelectric effects G™** < 0 at the matching peak V' = £V~ [Fig. S1(b)].

For clarity, we report IV characteristics of the charge current at fixed temperature (T's/Tc = 0.4) for different val-
ues of hexe [Fig. S1(c)], as indicated by the colored dots in the Fig. S1(a). We can note the dissipative behavior
[14(V)/V > 0] around V' ~ 0 and thermoelectricity [I,(V')/V < 0] around +V,~. This difference between linear and



nonlinear in bias behavior has been reported also in absence of heye for nonlinear thermoelectric systems [44]. For a
more complete discussion, we show also the spin current for the same values. Note that the curves display a different
functional shape with respect to the case analyzed in the main text at Ts/T. = 0.7 and for hex. = 0.4Ag, which
represents the typical behavior [Inset of Fig. 1(b)].

We observe that the reverse behavior is also observed. Indeed, for high values of heyx. at Ts/T. ~ 0.2 , the thermo-
electricity is present only in the linear regime (V' ~ 0) [Fig. S1(a)]. In this case, the thermoelectric currents are very
small and strongly dependent on the Dynes parameter representing a non typical feature.

G /G max/G 0.015 hTAT . 0.015 . .
0.8 o T
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FIG. S1. (a) The negative conductance Gy is reported as a function of T's and hexc. Blue tones (red tones) show a thermoelectric
(dissipative) behavior. The colored points are referred to the IV characteristics of Fig. S1(c) at T's/Tc = 0.4 and hexc fixed.
(b) The maximal conductance G™** evaluated at £V, is reported as a function of Ts and hexc. In the same way, blue tones
(red tones) show thermoelectricity (dissipative regime). The colored points are referred to the IV characteristics of Fig. S1(c)
at T's and hexc fixed. (¢) The I4(V) characteristics of the charge current are shown at Ts/Tc = 0.4 for different values of hexc.
(d) The I,(V) characteristics of the spin current are displayed at Ts/T¢c = 0.4 for different values of hexc.

IV. DEPENDENCE OF THE IV CURVES ON THE VALUES OF THE DYNES PARAMETERS T"

The phenomenological Dynes parameter introduced in the main text is usually exploited to include non-universal

effects due to the junction quality [53] and/or interactions with the electromagnetic environments [71], which affect
the quasi-particle lifetime introducing subgap states. These effects are typically observed by the presence of a subgap
resistance both in normal-insulator-superconductors (NIS) and superconductor-insulator-superconductor (SIS). In the
paper we adopted a typical value I'/A = 1073, in agreement with experimental analysis [47], which have reported
even lower values up to 10~ in such hybrid ferromagnetic-superconductor junctions.
In Fig. S2, we investigate the evolution of the charge I,(V') (solid lines) and spin I;(V') (dashed lines) current with
(hewe/A = 0.4, red lines) and without (heze/A = 0, blue lines) spin-splitting for three different values of the Dynes
parameter I'/A = 1072(panel a), 10~3(panel b) and 10~*(panel ¢). For comparison, we report in the panel (b)
the inset of Fig. 1b of the main text. We note immediately that, even if this parameter changes of two orders of
magnitude, the general behavior of the IV characteristics is not crucially affected. The quantity mostly affected by
the change of the I' parameter is the current value at the matching peak V' = £V,,, which changes roughly of a factor
two from panel (a) to panel (c). This is quite expected, since one of the most important role of I" parameter is to
re-normalize phenomenologically the singularity at the matching peaks. Outside of that bias value, the characteristics
are not crucially modified, neither the values of the NDC in the linear regime G neither the Seebeck voltage. Thus,
the spin-thermoelectric effect we reported is not crucially affected by the non-universal effects described by Dynes
parameter. However, if the quality of the junction is too low and the Dynes parameter becomes too high, it introduces
too many dissipative subgap states, which can even suppress the thermoelectric effect (not shown).
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FIG. S2. Dependence of the charge I,(V) (solid lines) and spin current Is(V) (dashed lines) in the thermoelectrical regime
from the variation of the Dynes parameters. The figure represents the inset of Fig.1 where the currents are taken for hegze =0
(blue lines) or hege/A = 0.4 for different values of T'/A = 107%(a), 10™3(b) and 10™*(c). Panel (b) coincides with the inset of

Fig. 1.
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