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A B S T R A C T 

Non-equilibrium chemistry is a key process in the study of the interstellar medium (ISM), in particular the formation of molecular 
clouds and thus stars. Ho we ver, computationally, it is among the most difficult tasks to include in astrophysical simulations, 
because of the typically high ( > 40) number of reactions, the short evolutionary time-scales (about 10 

4 times less than the 
ISM dynamical time), and the characteristic non-linearity and stiffness of the associated ordinary differential equations system 

(ODEs). In this proof of concept work, we show that Physics Informed Neural Networks (PINN) are a viable alternative to 

traditional ODE time integrators for stiff thermochemical systems, i.e. up to molecular hydrogen formation (9 species and 46 

reactions). Testing different chemical networks in a wide range of densities ( −2 < log n /cm 

−3 < 3) and temperatures (1 < 

log T /K < 5), we find that a basic architecture can give a comfortable convergence only for simplified chemical systems: to 

properly capture the sudden chemical and thermal variations, a Deep Galerkin Method is needed. Once trained ( ∼10 

3 GPUhr), 
the PINN well reproduces the strong non-linear nature of the solutions (errors � 10 per cent ) and can give speed-ups up to a 
factor of ∼200 with respect to traditional ODE solvers. Further, the latter have completion times that vary by about ∼ 30 per cent 
for different initial n and T , while the PINN method gives negligible variations. Both the speed-up and the potential impro v ement 
in load balancing imply that PINN-powered simulations are a very palatable way to solve complex chemical calculation in 

astrophysical and cosmological problems. 

Key words: methods: numerical – ISM: evolution – ISM: molecules. 
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 I N T RO D U C T I O N  

hermal and chemical evolution are crucial processes in astro-
hysical and cosmological environments. Gas cooling, heating,
onization, and photodissociation are vital drivers of the evolution
f the interstellar (ISM) and intergalactic (IGM) medium. Chemical
rocesses are widely included in theoretical works and numerical
imulations, playing key roles in determining the evolution in the
arly Universe history (Galli & P alla 1998 ; Glo v er & Abel 2008 ),
he IGM during the Epoch of the Reionization (Maio et al. 2007 ;
heuns et al. 1998 ), galaxy formation and evolution (Pallottini et al.
017 ; Lupi 2019 ), and giant molecular cloud (GMC Kim, Kim &
striker 2018 ; Decataldo et al. 2019 ). 
The typical chemical network involves hydrogen, helium, (pos-

ibly individual) metals, and molecules, by further coupling of
ll these various species with the radiation field (i.e. photoheat-
ng and photoionization), dynamics (i.e. shocks), and interaction
ith dust; moreo v er, going to progressiv ely smaller scales, the

hemical processes become more and more complex. To follow
 non-equilibrium chemical and thermal evolution in a numerical
imulation is necessarily an additional set of ordinary differen-
ial equations (ODEs) that describe the coupling of the various 
pecies. 

Various numerical schemes and implementations have been de-
eloped to accomplish this task: KROME (Grassi et al. 2014 ),
 E-mail: lorenzo.branca@sns.it 

t  

(  

i  

Pub
DELOAD (Nejad 2005 ), ASTROCHEM (Kumar & Fisher 2013 ),
LCHEMIC (Semenov et al. 2010 ), GRACKLE (Smith et al. 2017 ),
nd GGCHEMPY (Ge 2022 ). The strategy/approximations adopted in
 specific implementation can v ary, ho we v er, all schemes hav e to
 ace similar k ey problems: (i) the chemical ODE system is often
tiff and (ii) the typical time-scales are much shorter than the
ynamical/hydrodynamic time, e.g. � t chem 

� 10 −4 � t hydro . Thus,
dopting robust multistep implicit schemes is needed in order to
umerically solve the ODEs with procedural methods (Byrne &
indmarsh 1987 ). Such schemes often rely on matrix inversion,
hich – at face value – has a computational complexity that scales

s O( N 

3 
spec ), with N spec being the number of species in the network.

he matrix associated with chemical ODEs is often sparse, which
meliorate the burden of the inversion (Grassi et al. 2021 ); none the
ess, systems experience a fast growth of the computational cost in
ncluding progressively more complex chemical network, ultimately

aking the CPU time spent on chemistry a rele v ant fraction of
 hydrodynamical simulation. Further, the precise computational
ime for the inversion is difficult to estimate given the ODEs,
hich thus can spoil the load balancing of the typical astrophysical

ode. 
Thus – in order to try to o v ercome these limitations – it is

nteresting to consider emulators as possible fast alternatives to a
rocedural resolution of chemical networks. The usage of emulators
n astrophysics, based on machine learning (ML) and deep learning
echniques, has steadily increased its importance in recent years
LeCun, Bengio & Hinton 2015 ). Ho we ver, so far ML applications
n astrophysics are mainly limited to data driven inferences as
© 2022 The Author(s) 
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arameters or classifications; for example Ucci et al. ( 2018 ) use
ecision trees to infer key ISM physical properties from emission 
ine ratios, Chardin et al. ( 2019 ) emulate radiative transfer calcu-
ation using Epoch of Reionization simulations as a training data 
et, Prelogovi ́c et al. ( 2022 ) infer astrophysical parameters from
1 cm light-cone images by adopting recurrent neural networks, 
nd Dropulic et al. ( 2021 ) show how to predict stellar line-of-sight
elocity from Gaia observations of the Milky Way (MW) by training 
n phase space mock data sets. Currently, there are few attempts to
lleviate the cost of computing chemistry by using auto-encoders: 
rassi et al. ( 2021 ) tried to reduce the complexity of chemical
DE with high dimensionality by compression in a latent space 
f a smaller dimension; while Grassi et al. ( 2021 ) showcased the
pproach for isothermal models, its generalization seems non-trivial. 
n the other hand, Holdship et al. ( 2021 ) recently implement a

ast emulator that includes temperature evolution; it works com- 
ining auto-encoders (to reduce the dimensionality) and emulators 
o follow the temperature and abundances evolution. All these 
olutions seem encouraging, promoting future usage of emulators for 
hermochemistry in hydrodynamic simulations. Ho we ver, as these 
re supervised learning strate gies, the y require the creation of data
ets containing the solution of the ODEs system using a traditional 
olver. 

An intriguing alternative consist in direct approximation of the 
olution for the chemical system with a neural network (NN), so
hat once the training is complete, the chemical evolution can be 
irectly computed at lower computational cost. Solving differential 
quations with NN can be done adopting the neural ordinary 
ifferential equation (NODE) model (Chen et al. 2018 ), which 
ses Recurrent Neural Networks with a high number of layers to 
mulate the discretization of a differential operator. A more general 
pproach consists in using Physics Informed Neural Network (PINN) 
Raissi, Perdikaris & Karniadakis 2019 ). The PINN method is very 
exible and has been used to solve a large class of differential
ystem associated with wide range of physical problems, as 2D 

coustic wave equations (Moseley, Markham & Nissen-Meyer 2020 ), 
urbulent fluid-dynamics (Hennigh et al. 2020 ) or full radiative 
ransfer calculation (Mishra & Molinaro 2021 ). 

In this work, we choose to focus on the PINN, in part because
f its flexibility and in part since the mode seems simpler to extend
ith respect to the original implementation presented in Raissi et al. 

 2019 ), by using the eXtended Physics Informed Neural Network (X-
INN; Hu et al. 2022 ). While various implementations of the PINN
rameworks have been developed (Lu et al. 2019 ; Rackauckas et al.
019 ; Hennigh et al. 2020 ; Haghighat & Juanes 2021 ), applications in
he astrophysical and cosmological context have yet to be explored, 
xcept in Chantada et al. ( 2022 ), where PINN [in this work, named
osmological Informed Neural Networks (CINN)] are used to solve 

he background dynamics of the Universe for four different models 
nd then to perform statistical analyses to estimate the values of each
odel’s parameters with observational data. 
To our knowledge, only Ji et al. ( 2021 ) perform an in-depth study

f stiff chemical systems via PINN, by showcasing the solution of
tandard ODE benchmarks, as the ROBER (3 non-linear ODEs) 
nd POLLU problems (20 non-linear ODEs); ho we ver, the adopted 
eaction coefficients are constant, while for the typical ISM network, 
hey can vary by several orders of magnitude, mainly due to 
emperature 1 ; such dependence is key for astrophysical problems 
 Formally, this is correct when only two body reactions are considered; for a 
eneral chemical network, further variations are present, e.g. photoionization 

r
r
2

r
2

nd promotes the system from chemical to thermochemical, thus 
aking its resolution more complex. 
In this proof of concept work, we show that it is possible to train a

INN to emulate a complex and realistic chemical network that can
e used to simulate the ISM. Our aim is to showcase the PINN scheme
n a non-trivial astrophysical context, by proposing an efficient and 
ccurate alternative to the procedural solvers. 

In Section 2 , we introduce chemical networks and their usage in
strophysical context (Section 2.1 ), we present the general frame- 
ork of the PINN method (Section 2.2 ), and we benchmark PINN

or simplified ODE systems (Section 2.3 ). Then, in Section 3 , we
etail and implement the further modelling needed to adopt the 
INN framework to treat realistic ISM chemical networks. Section 4 
resents the results of our models in terms of accurac y, efficienc y,
nd in comparison with procedural solvers. In Section 5 , we give our
onclusions. 

 M E T H O D S  OV ERVI EW  

n this section, we provide a summary of the thermal and chemical
volution of the ISM (Section 2.1 ), present the procedural tool used as
eference to test our results, and introduce the usage of neural network
olvers, in particular focusing on PINN algorithm (Section 2.2 ), we
enchmark the model for a chemical and thermochemical like ODEs 
ystem (Section 2.3 ). 

.1 Chemistry of the Interstellar medium 

iven a chemical network, following its evolution entails knowing 
he density of each species and the temperature at each time step.
his chemical and thermal evolution can be described by an ODEs
ystem, with one equation for each species involved and one for the
emperature evolution. Each equation is given by a sum of terms that
epends on the chemical reaction involved. 
In general, reactions depend on the number density of each 

pecies ( n = n 1 , . . . , n N spec ), the temperature ( T ) and the radiative
ux (ionizing photons, photodissociation photons, cosmic rays,...) 
he ODEs system for the chemical species can be written as (e.g.
rassi et al. 2014 ) 

˙ k = 

∑ 

j∈ reaction k 

⎛ 

⎝ a j 
∏ 

r∈ reactant j 

n r( j ) 

⎞ 

⎠ , (1) 

here n k is the k-th species, and a j are the rate coefficients for all the
eactions considered in the chemical network. 

Considering only 2-body reactions and photoreactions, 2 equa- 
ion ( 1 ) can be rewritten as: 

˙ k = A 

ij 

k n i n j + B 

i 
k n i , (2) 

here A 

ij 

k = A 

ij 

k ( T , n ) are 2-body reaction coupling coefficients,
 

i 
k = B 

i 
k ( F ) describe the photoreactions rates, with F quantifying

he photon and cosmic ray flux in various energy bins. 
The evolution of the thermal state of the gas is accounted evolving

he gas temperature, which depends on the heating and cooling 
MNRAS 518, 5718–5733 (2023) 

eactions are proportional to the radiation field and, in cosmic ray induced 
eactions, their flux plays a similar role. 
 Neglecting secondary higher order processes, also reaction involving cosmic 
ays can be approximated with the same formalism, (see e.g. Bovino et al. 
016 ). 
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M

Figure 1. Sketch of the chemical networks adopted in this work. Circles 
represent the chemical species, while dashed and solid lines connected with 
arrows represent the two-body and photoreactions (including cosmic rays). 
The dashed lines underline reactions involving molecular hydrogen. 
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rocess (chemical, radiative,...): 

˙
 = 

( γ − 1) 

k b 
∑ 

i n i 
( � − � ) , (3) 

here k b is the Boltzmann constant, γ is the gas adiabatic index,
 = �( T , n , F ) and � = � ( T , n , F ) are the heating and cooling

unctions, respectively. 
In this work, we focus on an ISM chemical network originally

resented in Bovino et al. ( 2016 ) and that has been used for studies
n molecular cloud scales (Decataldo et al. 2019 , 2020 ) and the
n evolution of high-redshift galaxies (Pallottini et al. 2017 , 2019 ,
022 ). The network has N spec = 9 species: e −, H 

−, H, H 

+ , He, He + ,
e ++ , H 2 , and H 

+ 

2 . Following Bovino et al. ( 2016 ), the evolution
f the species is regulated by 46 reactions (for a schematic view,
ee Fig. 1 ), involving dust processes, i.e. H 2 formation on dust
rains (Jura 1975 ), photochemistry, and cosmic rays ionization.
n particular, the rates are taken from Bovino et al. ( 2016 ): from
eactions 1 to 31, 53, 54, and from 58 to 61 in their tables B.1 and
.2, photoreactions P1 to P9 in their table 2. 
For the temperature evolution (equation 3 ), we account for the

ollowing processes: photoelectric heating from dust (Bakes &
ielens 1994 ), cosmic rays heating (Cen 1992 ), photo heating,
eating/cooling due to exothermic/endothermic reactions, metal
ine cooling (Shen et al. 2013 ), Compton cooling from the CMB,
olecular H 2 cooling (Glo v er & Abel 2008 ), and atomic cooling

Cen 1992 ). For simplicity, in this work, we adopt a constant solar
alue for the metallicity ( Z = Z �; Asplund et al. 2009 ) and dust to
as ratio ( f d = 0.3; Hirashita & Ferrara 2002 ). 

Recall that, the two body reactions ( A 

ij 

k , equation 2 ) depends only
n density n and the temperature T , ho we ver the coef ficients of ( B 

i 
k ,

quation 2 ), and the heating and cooling terms ( � and � , equation 3 )
dditionally depends on the flux F . 

For simplicity, in this work, we consider a spectral energy distribu-
ion (SED) of UV/X-ray background from Haardt & Madau ( 2012 )
t redshift z = 0 and adopt MW like cosmic ray flux with rate ζ cr =
 × 10 −17 s −1 . This SED is not completely appropriate for the typical
SM conditions, (e.g. see Draine 1978 , for the MW), ho we ver, we
dopt it so that all photoionizations (H + γh ν> 13 . 6eV → H 

+ + e,...) in
ur chemical network are active, i.e. this choice allows us to robustly
est all the reactions in the model. 
NRAS 518, 5718–5733 (2023) 
Various implementations/schemes can be adopted to solve a
hemical network. As a reference for this work, we adopt the flexible
ode KROME 3 (Grassi et al. 2014 ), which is a framework that –
iven an input chemical network – generates the code to solve the
ssociated ODE system. To solve the system KROME use LSODES ,
hich is included in ODEPACK (Hindmarsh 2019 ). LSODES is an

mplicit robust multistep iterative high order solver (5 by default)
hat can take advantage of the sparsity of the Jacobian matrix of the
DEs. The default KROME relative and absolute tolerances are fixed

t 10 −4 and 10 −20 , respectively. 
In this work, we adopt KROME (i) to build the ODEs structure

equations 2 and 3 ) for our PINN scheme (Section 3 ) and (ii) to test
ur results during the validation phase (Section 4 ). 

.2 Physics Informed Neural Network 

n general, we can write a set of partial differential equa-
ions (PDE)/ODE 

4 in the form 

( u ( x )) = f ( x ) , ∀ x ∈ 	, (4a) 

( u ( x )) = g( x ) , ∀ x ∈ ∂	 , (4b) 

here x is the set of independent variables, D is the differential
perator of the PDE/ODE, B is a constrain operator – i.e. it represents
he boundary/initial conditions (BC/IC) – and u ( x ) is the solution of
he PDE/ODE system. 

Our aim is to approximate the solution of the system with a neural
etwork (see Wang & Raj 2017 , for a re vie w analysing the theoretical
nd practical aspects). In principle, this is possible because of the
niversal approximation theorem (Cybenko 1989 ), since multilayer
eed-forward neural networks are capable of approximating any
orel measurable function (Hornik, Stinchcombe & White 1989 ).
amely, it is formally possible to replace the PDE/ODE solution
 ( x ) with the output of the neural network u net ( x , θ ), which can be
ritten as 

 net ( x , θ ) = W n ( φn −1 ◦ φn −2 ◦ ... ◦ φ1 φ0 )( x ) + b n , (5) 

.e. the composition of the action of successive layers φi 

i ( x ) = σ ( W i x + b i ) , (6) 

here σ is the acti v ation function, W i is the matrix of the weights,
nd b i is the bias vector. It is convenient to cluster W i and b i as 

= { W , b } , (7) 

.e. the set of the parameters to be trained. For the PINN method,
he necessary condition is that u net is deri v able at least p times – i.e.
 net ( x , θ ) ∈ C p – with p being the maximum deri v ati ve order for the
perator D in equation ( 4a ). 
Using the auto-differentiation (Gunes Baydin et al. 2015 ), it is

ossible to define the partial (or total) deri v ati ve ∂ i u net ( x i , θ ) by
electing a proper acti v ation function σ , e.g. a typically a sigmoid
r hyperbolic tangent. The acti v ation functions are often chosen
mong smooth ( C ∞ ) analytical functions, so that the deri v ati ves
alculated by auto-differentiation are correct at machine precision,
hich is important for the numerical stability in the e v aluation of the
DE/ODE terms. 

art/stac3512_f1.eps
https://bitbucket.org/tgrassi/krome/src/master/
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Figure 2. General scheme for a feed-forward Neural Network (NN) archi- 
tecture. The aim is to resolve the PDE/ODE system (equation 4) of the set 
of variables x . These variables are used as the input for the NN: x passes 
through the Physics Informed NN (PINN) layers defined by the acti v ation 
functions σ (equation 6 ) and the set of parameters θ (equation 7 ). The NN 

returns the emulated solution u , which is tested against the PDE/ODE system 

(equation 4) by e v aluating the residuals via the loss function (equation 8). 
Parameters θ are updated and the process is repeated until convergence is 
reached (equation 11). 
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The core of the PINN scheme consists in e v aluating the residual
n the space of the neural network parameters θ (equation 4a ). The
im is to optimize the loss function L , that can be defined as follows:

 f ( θ ) = d 	( D( u net ( x , θ )) − f ( x , θ )) , (8a) 

 g ( θ) = d 
′ 
∂	( B( u net ( x , θ )) − g( x , θ )) , (8b) 

 tot ( θ ) = L f ( θ) + L g ( θ ) (8c) 

here d 	 and d 
′ 
∂	 are positive metrics that can be used to e v aluate the

istance to the exact solution u and IC/BC, e.g. the L 2 norm ( ‖ · ‖ 2 2 ).
ncluding the ODE/PDEs residuals in the loss function is the reason 
hy the algorithm is called physics informed . 
In this context, the residuals take the place of what labels would be

n a context of supervised learning, making the algorithm completely 
ata independent (i.e. in this case, the solutions obtained with a 
umerical solver). Note that the metrics in equations (8) can be very
eneral, e.g. for a ODE/PDE system each equation (and associated 
C/BC term) can be weighted individually (see later Section 3.3 , in
articular equation 25 ). 
Once the loss function is defined, an optimization algorithm is ap- 

lied on the parameters set θ . Various solution have been proposed for 
ifferent problems, the most classical being the stochastic gradient 
escent (SGD), i.e. a gradient descent (GD) algorithm applied on 
 random subset of the parameter space (Robbins & Monro 1951 ).
he general idea beyond the GD method is to e v aluate the gradient

n a set of points of the domain and then mediate on them to find
he optimal direction to minimize the loss function. Ho we ver, when
he domain is huge (in terms of memory or in computational cost
or the loss function gradient e v aluation) or when the algorithm is
istributed on more than one device (i.g. multiGPUs), the SGD is
referable: the method is equi v alent to GD but on a subset of points
usually named batch ). The parameters are update as follows: 

i+ 1 = θ i − η∇L ( θ i ) , (9) 

here η is a scalar called learning rate. In this work, we use the
ore sophisticated SGD variant with adaptive learning and gradient 
omentum rate ADAM (Kingma & Ba 2014 ) where the parameters 

pdate is defined as: 

i+ 1 = θ i − η
m √ 

v + ε
, (10) 

here m and v are the first and second moments of the gradient, and
is the smoothing term. The procedure can be considered concluded 

f the algorithm finds a set of parameters named θ∗ such that for a
i ven positi ve scalar δ, the following condition is met: 

 tot ( θ
∗) < δ , (11a) 

hich implies that: 

 net ( x , θ∗) � u ( x ) , (11b) 

here δ is the required tolerance, that could be fixed a priori or
etermined on the fly, i.e. if the loss function is not decreasing for a
arge number of epochs. 

In Fig. 2 , we show the sketch of the feed-forward architecture
f the PINN that is used in this work. To summarize, the proposed
ethod follows these steps: 

(i) We define a sampling of the input parameter space X and we
andomly initialize the PINN parameters θ . 

(ii) Given θ , we evaluate the solution of the PDE/ODEs system 

equations 4) on the input space X using the PINN, i.e. u = NN θ ( X )
(iii) We compute the partial deri v ati ves that appear in the
DE/ODEs via automatic differentiation, thus we evaluate the 
esiduals in the loss function defined in equation (8). 

(iv) We update the values of parameters θ with the optimizer in 
quation ( 10 ), repeating (1)–(3) until the convergence is reached
equation 11). 

The architecture is shown in Fig. 2 is the first introduced in the
iterature, and therefore the simplest. Ho we ver, in recent years, more
omplex schemes have been drawn, such as: Fourier Network (FN; 
ancik et al. 2020 ) and its variations Modified Fourier Network
MFN; Wang, Teng & Perdikaris 2021 ), Highway Fourier Network, 
nspired by Highway Network first introduced in Sri v astav a, Gref f &
chmidhuber 2015 , that are designed explicitly to take in account
igh frequency variations of the solution. Other variants are: sinu- 
oidal representation network (SIREN; Sitzmann et al. 2020 ), mainly 
esigned for periodic-like solutions, ( MESHFREEFLOWNET; Jiang et al. 
020 ), designed for super-resolution tasks, and the Deep Galerkin 
ethod (DGM; Sirignano & Spiliopoulos 2018 ) which is inspired 

y long short term memory (LSTM) architecture but optimizes for 
DEs computing. 

.3 Model benchmark 

efore trying to solve the ISM chemistry via the PINN method,
e validate the algorithm on a simplified and easily reproducible 
roblem. 
For this benchmark, we select an ODE system similar in shape to

quation ( 2 ). To have a formal description of the system, we rearrange
he coefficient tensor as follows: 

 

j 

k = A 

ij 

k n i + B 

i 
k , (12) 

o that we write the ODE system in a compact (and standard) way 

˙ k = M 

j 

k n j , (13) 

here n = (n 1 , n 2 , n 3 ) is a three-dimensional vector of fake species ,
nd M is the rate coefficients matrix. 
MNRAS 518, 5718–5733 (2023) 
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To give a proof of the performance of the model, we adopt the
ollowing shape for the matrix of coefficients 

 = 

⎛ 

⎝ 

−( k 1 + k 3 n 3 ) 0 k 3 n 1 
k 1 + + 2 k 3 n 3 −k 2 2 k 3 n 1 

−k 3 n 0 k 1 −k 3 n 0 

⎞ 

⎠ (14a) 

nd consider two different cases. For case (1), we select rate
oefficients as 

k cons = [0 . 8 , 0 . 5 , 0 . 2] , (14b) 

.e. the coupling matrix depends only on density M = M ( n ), which
imics a temperature-independent system. For (2), we adopt 

k t−dep = [0 . 8 − sin ( t) , 0 . 5 + cos ( t) , 0 . 2 + sin (2 t)] , (14c) 

o that M = M ( n , t), which mimics a temperature-dependent system.
he initial conditions of the f ak e species for both models are n in 1 = 1,
 

in 
2 = 0 . 001, and n in 3 = 0 . 1. For both models, we consider the fake
ime interval [0,5). 

A key obstacle in solving a chemical (or thermochemical) evolu-
ion of a system is represented by stiffness. The ratio S can be used
o quantify the stiffness of the system 

 = 

| Re ( λ) | max 

| Re ( λ) | min 
, (15) 

here Re( λ) max/min are the largest/smallest value of the real part of
igenvalues of the matrix. For both our test cases, the coefficients
hange as the system evolves, thus we compute the mean stiffness
atio in the fake time interval, obtaining 〈 S( M ( n )) 〉 � 2 . 8 × 10 3 

nd 〈 S( M ( n , t)) 〉 � 2 . 9 × 10 5 for (1) and (2), respectively. The
ifference in the stiffness ratio reflects the increase in complexity
or a variable temperature system. 

Thus, for the model with no explicit time dependence, we choose
 neural network architecture with 6 layers of 64 neurons each.
e adopt 2 10 � 10 3 training points and – to assure conver-

ence of the loss function – we run the training for 1.5 × 10 4 

pochs, which takes ∼0.2 CPUhr on an INTEL i7-9700 CPU using
he ADAM algorithm introduced in Section 2.2 . Instead, for the
odel with explicit time dependence, the set-up consists of 6

ayers of 128 neurons each, 2 13 � 8 × 10 3 training points, and
 × 10 4 epochs ( ∼1.1 CPUhr), reflecting the increased complexity.
or this benchmark, we have selected a feed-forward architec-

ure, that is the simpler set-up which can achieve satisfactory
esults. In order to compare our model with a procedural solver,
e solve the systems with the backward differentiation formula

BDF) method adopting the SCYPY implementation (Virtanen et al.
019 ). 
In Fig. 3, we show the benchmark validation. Qualitatively, the

econstruction of the trained models (dashed line) seems good in
oth cases. Quantitatively, we can define the errors as 5 

 = y BDF − y NN . (16) 

he evolution of the error is show in the bottom panels of Fig. 3 . For
he model without/with explicit time dependence, the mean errors
re 〈 � 〉 � 10 −3 and 2 × 10 −3 , respectively, which we consider a
atisfactory result for our benchmark. Interestingly, Fig. 3 shows
o evidence of a growth of the error during the time evolution,
s it might be expected from a regular procedural method. Such
ehaviour is intrinsic of the PINN method, as the training algorithm
NRAS 518, 5718–5733 (2023) 

 For the simple benchmark, it is convenient to a v oid using relative error, since 
ll the fake species densities are order unit. 

t  

t  

t  

–  
ims to minimizing the residuals on the entire time domain 
imultaneously. 

 N E U R A L  N E T WO R K S  F O R  ISM  CHEMIS TRY  

hile the benchmark shows good potential in applying of the PINN
ethod for ISM chemistry, multiple aspects need additional con-

iderations. Specifically, the initial conditions must be generalized
Section 3.2 ), the chemical network requires further consideration
Section 3.1 ), the loss function requires modifications (Section 3.3 ),
he neural network must be impro v ed, and the training process needs

ore careful attention (Section 3.4 ). 

.1 ODE structure of the chemical networks 

or the selected chemical network (Section 2.1 ), the associated
DEs system has non-trivial dependence of the coefficients on the

emperature. This is determined by the elements of the interaction
atrix M 

i 
k (defined in equation 12 ): an example is shown in

ig. 4 , where we plot a subset of the matrix element as a function
f temperature. In the allowed temperature range, the selected
 

i 
k can vary by more than about 10 order of magnitude. The

tiffness of the system is higher with respect to the benchmark
equation 14); for instance, for normal ISM densities (i.e. the IC
sed in Section 3.2 ), the stiffness can reach values of S ∼ 10 16 for
 < 2.5 × 10 4 K and S ∼ 10 4 for T > 2.5 × 10 4 K. This is a hint

hat (i) the network architecture must be expanded (ii) the training
ill be more e xpensiv e, also because of the generalized initial 

onditions. 
Given these expectations and in order to explore different strategies

or both the neural network and training, for the chemical system, we
onsider both a molecular network (introduced in Section 2.1 ) and a
educed atomic network. The atomic network is a simplified version
f the molecular one, namely, it does not include the chemistry of
olecular hydrogen and its cooling, simplifying both the reaction

etwork and the temperature evolution. With respect to molecular ,
n atomic, the number of species decreases from 9 to 7 and the number
f reactions decreases from 46 to 24. 

.2 Setting up the initial conditions 

he PINN model adopted in the benchmark (Section 2.3 ) is solved
nly with a specific set of fixed initial conditions: this is a major
imitation. Adopting the same approach for ISM chemistry would
onsiderably limit the applicability of the model, since training is
 xpensiv e and would be needed for each different thermodynamic
onfiguration. We can o v ercome this limit by generalizing the model
s follows. 

Recalling equation (4), in the case of ODEs the operator, it follows
hat B( x ) = ( x 1 ( t 0 ) , x 2 ( t 0 ) , ..., x k ( t 0 )). Formally, to generalize for
rbitrary initial conditions, we can promote the initial values from
 scalar to a function x i ( t 0 ) → f i ( t 0 ) that map the ICs in a desire
ange, e.g. for temperature, f T ( t 0 ) = [20, 10 6 ] K. The procedure has
een proposed by Flamant, Protopapas & Sondak ( 2020 ) and greatly
ncreases the dimensionality of the problem; ho we ver, as sho wn by

ishra & Molinaro ( 2020 ), the PINN does not suffer too much
rom the curse of dimensionality , e.g. can be trained in a hundred-
imensional space in case of heat equation. Summarizing, we can use
his strategy to vary both the initial thermodynamic state ( T in , n in ) and
he fractions of each species, C k . We expect the procedure to increase
he training time, ho we ver, note that – once the training is completed

the computational time for predictions is mostly unaltered, since
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Figure 3. Benchmarks between the PINN and a procedural solver (backward differentiation formula, BDF) for two simple ODEs systems with coefficients 
matrices given in equation ( 14a ). Left-hand (right) panel shows the system without (with) explicit time dependence that is given in equations 14b and 14c . For 
each system, in the upper panel, we show the comparison between our model (solid line) and BDF solver (dashed line), while the lower panel shows the absolute 
errors between the two methods (equation 16 ). 

Figure 4. Example of temperature (T) dependence of matrix elements ( M 

i 
k , 

definition in equation 12 ) of the adopted chemical network. We select 6 
representative M 

i 
k out of the 62 total non-null element (see Section 2.1 ). 
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he latter depends only on the network architecture, i.e. the number 
f neurons and links. 
Once trained our model maps, the input space (time and initial 

onditions) to the evolution of the desired quantities: 

 t, IC ) → PINN ( t, IC ) = ( n ( t, IC ) , T ( t, IC )) . (17) 

Stating equation ( 17 ) dif ferently, kno wing the initial densities and
emperature at the initial time t = t in , the PINN return the evolved
uantities at t = t out : 

[ n k ( t = t in ) , T ( t = t in ) ] → PINN ( t out , n k ( t = t in ) , T ( t = t in )) = 

= [ n k ( t = t out ) , T ( t = t out ) ] (18) 

ith k indexing the species. 
Note that the adopted generalization for the IC (equation 17 ) is

ot directly applicable to arbitrary PDE systems, which require more 
ophisticated and problem dependent techniques (i.e. Nakamura et al. 
021 ). 
Therefore, in this paper, we distinguish 2 types of model: single 

odels , that have fixed initial condition, and general model . Although 
ingle models are subclasses of the general models, in the spirit
f proof of concept, it is convenient to keep the cases separate,
ince different strategies are adopted to achieve convergence in the 
raining. 

For single models , we adopt T = 10 3 K as the initial temperature
or both networks ( atomic/molecular ), while the total density ( n tot ∑ 

k n k ) and individual abundances ( C k ≡ n k / 
∑ 

k n k ) are set as
ollows. atomic : n tot = 90.4 cm 

−3 , C H − = 0 . 0015, C H = 0.69,
 He = 0.288, C H + = 0 . 0069, C He + = 0 . 0029, and C He ++ = 0 . 0008;
olecular : n tot = 100 cm 

−3 , C H = 0.6241, C H − = 0 . 001, C H 2 =
 . 104, C He = 0.26, C H + = 0 . 0062, C H + 2 

= 0 . 001, C He + = 0 . 0026,
nd C He ++ = 0 . 0007. In both cases, C e − is set to ensure charge 
eutrality. 
F or gener al models , the initial values for the temperature, total

ensity, and individual abundances span the following ranges: 

0 ≤ T 
K ≤ 10 6 (19a) 

0 −2 ≤ n tot 

cm 

−3 ≤ 10 3 (19b) 

0 −6 � C k � 1 , (19c) 

here C k are chosen such that global charge neutrality is respected
nd the total hydrogen (helium) fraction is X � 70 per cent ( Y �
0 per cent ). 

.3 Loss function definition 

 crucial aspect in any ML approach is the design of the loss
unction. Directly e v aluating the mean square errors using the metric
n equation (8) cannot capture the fine structure of the underlying
olution. This is mainly driven by the large dynamical range spanned
y the density of different species. For instance, for typical ISM
onditions, H 

− is usually about 8 order of magnitude lower than H:
sing a simple (e.g. uniformly weighted) loss function would ignore 
he variation of H 

−. Ideally, to maximize the convergence efficiency, 
ll components of the loss function must be of the same order of
agnitude. Ho we ver, unlike in a supervised learning problem, the

ode does not know in advance the abundances (and temperature) 
uring the evolution. 
With this in mind, we have adopted the following strategy to
odel the loss function. The first step consists in considering the

volution of the logarithm of the abundances (equation 2 ) and
emperature (equation 3 ); this ‘feature normalization’ is a relatively 
tandard technique for ML. Moreo v er, we solv e the ODEs system
MNRAS 518, 5718–5733 (2023) 
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n a logarithmic time scale; with this precaution, we can better
apture the sudden ( t � 10 2 yr) large (more than one order of
agnitude) variations that species can experience for some initial 

onditions. 
To summarize, in linear space, the ODE in equation ( 2 ) has the

ollowing residuals: 

 n k = ṅ k −
(
A 

ij 

k n j + B 

i 
k 

)
n i . (20) 

e perform the change of variables: 

 k = log 
(
n k / cm 

−3 
)

(21a) 

˜ 
 = log ( T / eV ) (21b) 

= log ( t/ s) . (21c) 

hus equation ( 2 ) can be rewritten as 

˙ k = 

10 τ

10 y k 

(
A 

ij 

k n j + B 

i 
k 

)
n i . (22) 

nd the residuals are naturally defined as 

 y k = ẏ k − 10 τ

10 y k 

(
A 

ij 

k n j + B 

i 
k 

)
n i . (23) 

The relation between the residuals computed in the logarithmic
pace and in the linear space is 

 y k = 

t 

n k 
R n k . (24) 

Dividing the residuals by n k , the loss function should be balanced,
ven when the sum is extended to species with order of magnitude
ifference between abundances (e.g. H 

− versus H ). 
Despite these precautions, the loss function remains complex and

onsequently, the training procedure can present mythologies, e.g.
 xcessiv e stiffness in the parameters update. To mitigate this problem,
he weights λi are modified during the training, using the procedure
etailed in Wang et al. ( 2021 ). Summarizing, we write the loss
unction as 

 ( θ ) = 

N ∑ 

i= 1 

λi L i ( θ ) , (25) 

here the sum is extended to N = 2( N spec + 1) to account for the ODE
esiduals for the chemical species and the temperature (equation 8a )
nd initial conditions (equation 8b ). The terms λi are adaptively
egulated utilizing the back-propagated gradient statistics during
odel training. By experimenting different approaches, we noticed

hat it is convenient to adopt such adaptiv e re gulation of the weights
f the loss, mainly because it impro v es the convergence during the
nitial phases of training; this is later discussed in Section 4.1 . 

.4 Network ar chitectur e and training strategy 

n general, the optimization of neural network topology and the
yperparameters tuning is a complex task. Although there are tools
esigned for hyperparameters optimization, an accurate calibration
f these is usually not practical, especially if the training procedure
s time e xpensiv e. So, we perform an optimization based on small
ariations of a fiduciary setting. 

For our models, we adopt either a simple Feed-forward Neural
etwork (FNN, Fig. 2 ) or a more advanced DGM architecture

Sirignano & Spiliopoulos 2018 ). A DGM follows essentially the
ame (0)–(3) steps described in Section 2.2 , ho we ver, the parameters
pdate is more complex (see sketch in Fig. 5 ). At depth i th , first, we
NRAS 518, 5718–5733 (2023) 
alculate the output of a standard dense layer 

i ( x ) = σ ( W i x + b i ) . (26) 

he result is then processed through a DGM layer by computing Z i ,
 i , R i , and H i as follows: 

Z i = σ
(

U 

( z) 
i x + W 

( z) φi + b ( z) 
i 

)
(27a) 

G i = σ
(

U 

( g) 
i x + W 

( g) φi + b ( g) 
i 

)
(27b) 

R i = σ
(

U 

( r) 
i x + W 

( r) φi + b ( r) 
i 

)
(27c) 

H i = σ
(

U 

( h ) 
i x + W 

( h ) ( φi � R i ) + b ( h ) i 

)
, (27d) 

where U and W 

( ... ) are weight matrices, b are biases, and � represent
he Hadamard (element-wise) product. For depth ( i + 1) th , the outputs
re then combined via 

i+ 1 ( x ) = (1 − G i ) � H i + Z i � φi (28) 

o define the next dense layer. A DGM layer requires roughly eight
imes more memory than standard FNN, since there are eight weight

atrices per layer. The main advantage is the ability to capture the
harp turns of the underlying solution, as argued in Sirignano &
piliopoulos ( 2018 ). 
For the acti v ation function, we have chosen an adaptive version of

he sigmoid function, σ ( a , x ): 

( a, x) = 

1 

1 + e −ax 
(29) 

here x is the input value and a is an NN adaptive parameter, which
s an additional parameter that is optimized during the training. As
hown in Jagtap, Kawaguchi & Karniadakis ( 2020 ), this is a useful
trategy for dynamical problems that present a wide range of time-
cales, thus particularly in our case, where the reaction rate that
an vary by several order of magnitude (see Fig. 4 ). The o v erall
rchitecture design is summarized in Fig. 5 . 

To fully exploit our hardware, the learning procedure is distributed
n multiGPUs (up to 4) and the train domain is divided in several
ini-batches (4–32 per GPU). The optimizer is ADAM, with

nitial learning rate, η and decaying scheduling dependent on the
pecific model, 6 which needs a gradient aggregation correction for
he parameters update. Furthermore, the initial learning rate, η, is
ubjected to a gradual w arm-up, following Go yal et al. ( 2018 ), which
akes η less dependent on the user initialization. 
The final aspect to address is set-up for the training points. The

igher the number of training point, the better the variability of the
olution is captured. Ho we ver, increasing such number does increase
he training time and/or the required memory. It is therefore necessary
o find a good trade-off between the amount of training points and
omputational cost. The number is chosen empirically, ho we ver,
n the most general case of variable initial conditions described in
ection 3.2 , is shown in (De Ryck & Mishra 2021 ) that it grows less

hen exponentially. This result makes us confident that, net of our
ardware availability, it is theoretically possible to make equation (8)
onverge as the number of chemical species increases. In this work,
e find that ∼10 4 –10 5 points per GPU for a single batch gives
 reasonable balance. The training points distribution follow the
alton sequence (Halton & Smith 1964 ); to increase the sampling
ensity, we change the points cloud during the training after a fixed
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Figure 5. Representation of the PINN model to solve ISM chemistry. On the surface, the PINN takes the densities ( n k ) and temperature ( T ) at initial time t in and 
returns the evolved quantities at time t out (equation 18 ); the NN architecture is detailed as follows. Top: the model inputs X (logarithmic time τ and logarithmic 
initial conditions IC, equations 21) pass through the network layers (DMG φi ) and gives the outputs u (the logarithm of abundances and temperature, y k ), which 
is trained to minimize the loss function ( L ), which is as a linear combination of weighed (equation 25 ) residuals (equation 23 ). Bottom left: inset representing 
the Deep Galerkin Network (DGM) layer (equations 27); X represents the input data that enters the first layer φi if i = 1 (dashed line, equation 26 ). Bottom 

right: inset showing the action of the dense layer φ, that is designed using an adaptive sigmoid function (equation 29 ), which depends on the weights W , the 
biases b , and the adaptive hyperparameter a . 

Table 1. Reference parameters for the chemical and neural network adopted 
in this work. The difference between atomic and molecular chemical networks 
is detailed in Section 3.1 . The difference between single and general model 
lays in the type of initial conditions, and is introduced in Section 3.2 . The 
different combinations give a total of 4 models. 

atomic molecular atomic molecular 
single single general general 

chemical system 

N s 7 9 7 9 
N rea 24 46 24 46 
IC fix yes yes no no 

NN architecture 

N layers (DGM) 6 8 8 10 
N batch 16 32 64 128 
training points 1.4 × 10 5 1.4 × 10 5 2 × 10 5 2 × 10 5 

(per batch) 
convergence time 120 820 1224 1920 
(GPUhr) 
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umber of iterations, here fixed to 1000 epochs. In total, we consider
 cases, which originate from the combination of single / general 
odels (IC) with molecular / atomic chemical networks. A summary 

f the parameters for each model is given in Table 1 . The development
f our codes, was perfermod using MODULUS (Hennigh et al. 2020 ),
 TENSORFLOW (Abadi et al. 2015 ) based tool specific for PINN
esign. 
 RESULTS  

o present our results, first we analyse the training procedure, by
tudying the convergence of the various model (Section 4.1 ) and
etailing the trends for individual ions (Section 4.2 ). Then, we
alidate our models against procedural solvers by adopting KROME 

s our ground truth: first, we focus on the single atomic network
Section 4.3 ), then we give a comparative analysis of the remaining
odels (Section 4.4 ). 

.1 Training: conv er gence 

n o v erview of the PINN training can be appreciated in Fig. 6 . In
he upper panel, we plot L as a function of the training epochs for all

odels. For all models, the trend of loss functions during the training
hase appears qualitatively similar in shape, in particular with a sharp
ecline in the early epochs. In general, more complex models (from
ingle atomic to general molecular ) require more training resources 
o reach an acceptable con vergence. In particular , the single atomic
odel is much easier to emulate, in fact the convergence is about

wo orders of magnitude better with ∼5 × 10 5 less training epochs.
urthermore, 
Recall that the training is stopped when L is below a certain

hreshold, ho we ver, there is no generally accepted value for such
hreshold. Being able to check the residual interactively, it is 
ossible to have an on-the-fly e v aluation of the reliability of the
pproximation. Additionally, note that if the loss function is stable 
or a long period ( ∼10 5 epochs), it is possible – and convenient –
o stop the training and change some hyperparameters. In particular, 
MNRAS 518, 5718–5733 (2023) 
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M

Figure 6. Summary of the neural network training. Top panel: Loss function ( L , equation 8) evolution as a function of the training epoch. Each model is 
indicated with a different colour, according to the caption. See Table 1 for the main parameters of the models. Botton panel: probability distribution functions 
(PDF) of sum of the residuals ( 

∑ 

k | R k | , equation 23 ) after the training. PDFs are computed by using a kernel density estimation of the absolute value of the 
logarithm of the residual. 
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his is an important optimization strategy to adopt in the final stages
f the training: when the ADAM algorithm is no longer able to lower
he loss function, it is possible to switch to the second order method
-BFGS that uses the hessian matrix; this algorithm is slower but
ore powerful in the minimization, thus can be used during the last

pochs to refine the convergence (Liu & Nocedal 1989 ; Schraudolph,
u & G ̈unter 2007 ); we adopt such strategy and report the effect later

n Section 4.3 . further, to quantify the importance of the adaptive
eights (see Section 3.3 ), we perform a control training for the

ingle molecular model; without adaptive weights, after ∼3.2 × 10 5 

pochs, the loss function value is ∼20 × larger with respect to results
hown in Fig. 6 . 

In the lower panel of Fig. 6 , we plot the PDF of the sum of
he residuals at the last training epoch. In general, the peak is
round ∼10 −1.5 for all models except, with high value tails that
an reach up to ∼10 −1 , with larger residuals for models with higher
omplexity. Table 1 summarizes the main hyperparameters and the
onvergence time for each model. Apart from the single atomic
odel, the training time is around thousands of hours (despite the

igh performance of the GPU used). Ho we ver, real time can be
inearly reduced with the use of multiGPUs. We also noticed that the
ingle molecular and general atomic models exhibit similar results
n terms of convergence (same number of layers and similar training
ime). While it is a convenient and compact comparison, summing
he residual for each chemical species does hide some interesting
spects of the convergence. 

.2 Species by species conv er gence 

nlike the most ML applications, a simple e v aluation of the loss
unction (both for training and validation points), it is not enough to
NRAS 518, 5718–5733 (2023) 
uarantee the goodness of the model for PINN algorithm. Indeed, the
oss function gives a domain-wide average, thus does not imply local
onvergence; this aspect is particularly important since we adopt
ulticomponents loss function thus – despite the precautions taken

Section 3.3 ) – some chemical species or a particular set of IC might
e not well reconstructed. 
Fig. 7 shows an example of the training of each of the components

f the loss function in the general molecular case. Up to � 1.2 × 10 6 

raining epochs, all the different components follow a similar de-
reasing trend. After � 4 × 10 6 , the model start to converge, and
he different components saturates at different values; in particular,
e can see that the temperature reconstruction dominates the loss

unction for this specific model. To assess the situation, it is
onvenient to look at the distribution of residuals when the training
s completed. 

In the upper panels of Fig. 8 , we show the various com-
onents of the loss function for both atomic and molecular
ingle model cases. For the single atomic model, all individual
esiduals are smaller than about 10 −2 , with the exception of a
egligible contribution for the high values tail of the distributions.
or the single molecular model, in general, similar values are
resent, but the high values tails are in general larger, as expected
rom different values of the loss function when the training is
topped; in particular, the high values tail of temperature evolution 
urpasses 10 −2 . 

Recall that, for general models , ICs span 20 ≤ T in /K ≤ 10 5 

nd 10 −2 ≤ n in /cm 

−3 ≤ 10 3 , and the fraction of each species is
elected to respect charge neutrality and the constraint X � 0.7 and
 � 0.3, i.e. the y hav e larger number of dimension with respect to
ingle models . Looking on the bottom-left-hand panel of Fig. 8 , the
esidual distributions for all species in the case of general atomic

art/stac3512_f6.eps
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Figure 7. Species by species loss function during the training of the general molecular model. Notation is analogue to the one in upper panel of Fig. 6 , ho we ver, 
the sampling of the loss at different epoch is finer. 

Figure 8. Species by species residuals ( R k ) after the training. In each panel, we show the PDF for a different PINN model, as indicated in the inset. PDF of 
different contributions to R k are grouped with different colours, according to the legend (top right-hand panel). See Table 1 for references. 
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odel are centred around (or below for ne gativ e particles) 10 −2 

ith tails that does not exceed 10 −1 . For general molecular model,
bottom right-hand panel of Fig. 8 ), the residuals have shown a similar
ehavior except temperatures show similar errors except temperature
istribution, centred at ∼10 −0.5 (compare with Fig. 7 ). From Fig. 8 ,
e can draw the following conclusions: (i) except for single model ,

he temperature evolution residuals are the most difficult to minimize
nd (ii) the residual distributions for different species are about the
ame order of magnitude, which implies a good balance of the loss
unction. 

.3 Validation of the single atomic network 

o validate the training, we compare with the results from KROME

Grassi et al. 2014 ), that it is used to build the procedural solvers for
oth the atomic and molecular chemical networks (see Section 2 for
 description of the code). 

In Fig. 9 , we show the evolution of the single atomic model for
 Myr. We note a qualitative good agreement with procedural solvers
n terms of logarithm of the density except for He ++ and H 

−. We have
btained a very good reconstruction of the initial conditions (which
re a soft constraint in the model) and in general, the algorithm
ixes the variations in density with precision that decreases in cases

f species with sharp turns (in log-space). 
The choice of adopting logarithmic time (equation 21c ) plays an

mportant role here; while it has no immediate advantage in terms of
he loss function (equation 24 ), it helps in the reco v ery of abundance
volution which starts far from the equilibrium, which consequently
as a very steep – and thus difficult to reproduce – evolution. In
ractical terms, the logarithmic time-scale has a smoothing effect
n these sharp turns and convergence is thus facilitated. Ho we ver,
espite the smoothing effect, the fastest varying species have the
argest relative errors. 

Note that in the case show in Fig. 9 , a non-negligible benefit comes
rom refining the training with an L-BFGS optimizer (Liu & Nocedal
989 ; Schraudolph et al. 2007 ). This change lowered the training
urve only by a factor � 1/3; this is expected: with respect to ADAM,
-BFGS is of higher order but is more prone to get stuck in local
inima when the ODEs are stiff (Lu et al. 2019 ). Importantly, the

doption of the L-BFGS refinement has significantly impro v ed the
alidation with KROME . In particular, before He ++ and H 

− showed
rrors two order of magnitude larger. Further, by using L-BFGS,
he reconstruction of the species at early time and at equilibrium is
mpro v ed. 

To be more quantitative, it is convenient to define both relative
 � r ) and fractional ( � f ) differences: 

 f = 

| n NN −n KR | 
n tot 

(30a) 

 r = 

| n NN −n KR | 
n KR 

, (30b) 

here n NN are the values predicted with the trained models and n KR 

re computed with KROME . In the bottom panel of Fig. 9 , we show
he distribution of relative and fraction errors. While for most of the
pecies, the relative errors are reasonably small ( � r � 10 −1 ), the
elative errors are dominated by H 

−, which peaks at � r ∼ 1 and
e ++ , which has a very high values tail. However, these two species
a ve low ab undances, thus the fractional errors of all species are
mall, i.e. � f � 10 −2 . 

In terms of usage, it seems encouraging that the dominant relative
rrors affect the less abundant species, since they lead to negligible
ractional errors; ho we ver, lo w abundance species can be important
NRAS 518, 5718–5733 (2023) 
n some situations, i.e. H 

− abundance is critical in computing H 2 in
ow metallicity/dust environments. For a proper usage, such errors
hould be remo v ed with further training and/or by reconsidering the
rchitecture via a change of hyperparameters set-up. 

.4 Model comparison 

ur other models are compared with KROME in Fig. 10 , where we
how the PDF of the relative error � r . For convenience, a summary
f the quantiles of the distributions is reported in Table 2 . 
Results for the single molecular model are shown in the left-hand

anel of Fig. 10 . Overall, we found a good reconstruction, with the
5 per cent of the points with a relative error log ( � r ) < −0.84.
o we ver, the goodness of the reconstruction presents a species to

pecies variance, in particular, we found � r � 1 in the most of cases
or He ++ , similarly to what we found in the single atomic model.
s this feature is present for both chemical network, it might be a

ign that our models fail to accurately capture the ionization of He + ,
hich has a very small rate given the hardness of the impinging

adiation field. 
Focusing on general atomic model (central panel of Fig. 10 ),

e note that o v erall the 75 per cent of the predictions have relative
rrors smaller than log ( � r ) < −0.89; this behaviour is similar to the
ingle molecular model, which has been trained for about the same
umber of epochs. While general atomic has a wider range of IC,
ingle molecular has more reactions; ho we ver, with respect to other
echniques, ML is less affected by the curse of dimensionality, thus
t is not straightforward to predict a hierarchy of complexity between
ifferent models, i.e. larger reactions set versus larger IC parameter
pace. 

In the right-hand panel of Fig. 10 , we show the relative errors dis-
ribution for the general molecular model. We note an o v erall greater
ifficulty to emulate the procedural solvers, with the 75 per cent of
rediction is smaller than log ( � r ) < 0.05, with larger errors on
emperature, ne gativ ely charged ions and hydrogen. For most of
he species, errors for general molecular are higher with respect
o previously seen models, as a consequence of the increase of
omplexity for both the number of reactions and parameter space
or IC; ho we v er, He ++ presents v ery small errors, thus o v erall, the
INN convergence rate of individual species seems to be not to be
irectly linked to the reaction rate of the chemical system. 
While up to this point, we have considered only 1D PDF, it is

nteresting to see if the emulation power of general models is different
epending on the initial position in the T–n plane (Figs 11 and 12 ).
ompared to atomic models, we have a better reconstruction of the
volution of H and H 

+ in the molecular models. Although we do
ot have a definitive explanation for this improvement, we are led to
hink that the inclusion of H 2 and H 

+ 

2 has some black-box effect that
llows the model to better reconstruct the evolution of hydrogen. 

In Fig. 11 , we show the � r distribution of general atomic computed
t ∼1 Myr as a function of the temperature and gas density. In Fig. 11 ,
e note a good reconstruction o v er the entire parameter space for
e gativ e ions, while for what concerns hydrogen (H and H 

+ ) and
elium (He, He + , and He ++ ) we have a good agreement at high
ensities which gradually worsens at low densities. While this is not
hown in the figure, the error at low density is dominated by positively
harged ions for both hydrogen and helium. Regarding the evolution
f the temperature, we generally have a very good reconstruction,
xcept when the initial temperature is T in � 6 × 10 3 K. 

Similarly to general atomic , in Fig. 12 , we show the relative errors
o the general molecular model. 
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Figure 9. Model comparison between our PINN and KROME for the singol atomic model. Upper panel: number density ( n k ) as a function of time ( t ) for each 
species. Solid lines represent the solution from KROME , while the dotted lines show the PINN predictions. Bottom panels: PDF of the differences between the 
PINN and KROME . In the left-hand (right) panel, we show the absolute (relative) � f ( � r ) difference for each species. For the definitions, equations (30). 
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Relative to general atomic , the errors for general molecular are 
arger (as also expected from Fig. 10 ), but have a very different
ehaviour in the n–T plane. Both the H, H 

+ and He, He + , He + +
roups have flat distributions of errors, and show relatively a good 
greement with KROME . Electrons have in general higher errors, 
ith two n–T narrow stripes of lower errors, likely caused by a
igher concentration of training points. The molecular hydrogen has 
igh relative errors in the low density regime, where its density is
egligible, and the temperature shows a tension that gradually rises 
ith density. Overall, there seem to be no causal connection between

egions with large errors and the underlying chemical system. 
Summarizing, despite the inherent difficulty of the problem 

especially in general cases) for a proof of concept work, these
re encouraging results, as regions where errors are high can be
ured with a longer training. In view of a coupling with numerical
imulations and to ease the convergence rate of the training, an
MNRAS 518, 5718–5733 (2023) 
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M

Figure 10. Relative errors distribution between KROME and the following trained PINN models: single molecular (left-hand panel), general atomic (central 
panel), and general molecular (right-hand panel). As done Fig. 9 , different species grouped for clarity. 

Table 2. Quantiles of stacked distributions shown in Fig. 10 . We utilize 
quantiles instead of mean and standard deviation because of the non-trivial 
shape of the errors distribution. The quantile is defined as in Hyndman & 

Fan ( 1996 ). The numbers are the logarithm of the relative error value that 
corresponds to the x% element of the sorted entire ensemble. 

Quantile atomic molecular atomic molecular 
single single general general 

50% −1.51 − 2 .91 −3.87 − 1 .5 
75% −1.05 − 0 .84 −0.89 − 0 .15 
90% −0.77 0 .16 −0.15 0 .38 
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xploration the hyperparameters space of the network architecture
s needed, along with an adaptive addition of training points in the
egions of parameter space where errors are higher. 

It is interesting to conclude our analysis by comparing the timing
f the PINN network compared to procedural solv ers. F or these
est,s both codes run on similar machines, specifically PINN runs
sing a single INTEL XEON Gold 6240 CPU with a frequency of
.60 GHz, the procedural solver KROME adopts a single INTEL i7-
700 CPU with a frequency 3.00 GHz. For single models, we checked
he evolution of system using 10 5 different end time t end from 10 yr
o 1 Myr. With KROME , we find that single atomic ( single molecular )
odels have a completion time 7 of from 0.05 (0.09s) to 10.56 s

11.16s) with increasing t end . With the PINN, we obtain a speed up
f a factor ∼207 ( ∼116) for single atomic ( single molecular ). For
he general models, we prepare a 3D grid that is uniformly sampled
n log-spaced: the grid features different initial species fractions,
 k ∈ [10 −6 , 1) (100 points), T in ∈ [20, 10 6 ] K (512 points), and
NRAS 518, 5718–5733 (2023) 

 Note that a non-negligible amount of time is spent in the warm-up of the 
olver. 

c  

t  

c  

(

 in ∈ [10 −2 , 10 3 ] cm 

−3 (512 points); different initial conditions are
volved up to t end = 1Myr. With respect to the KROME solver, for
he PINN we have a speed-up of a factor of ∼108 and ∼91 for the
eneral atomic and general molecular , respectively. The speed-up
s better in cases of the simpler thermochemical system. Ho we ver,
ith exploration of the hyperparameter space of the PINN, it should
e possible to obtain lighter networks, i.e. needing fewer algebraic
perations to compute the output, to achieve a further speed-up for
omplex chemical networks. 

It is important to note that varying the initial conditions, the general
tomic ( general molecular ) KROME yields a model to model standard
eviation of ∼ 24 per cent ( ∼ 30 per cent ) with respect to the mean
ompletion time. For the PINN, the variance is negligible, i.e. less
han 10 −5 per cent . If exploited, this is a critical advantage o v er
rocedural solvers, since the latter are prone to yield load balancing
roblems, while the usage of the PINN can impro v e the scaling of
arallel numerical codes with hydrodynamic coupled with chemistry.
Finally, we compare with other works have tried to adopt machine

earning techniques to solve the chemical evolution, i.e. LATENT ODE

Grassi et al. 2021 ) and CHEMULATOR (Holdship et al. 2021 ).
ith respect to the chemical network adopted here, these models

mulate more complex chemical networks in a higher density range
log n /cm 

−3 � 1), i.e. with 33 and 29 species for CHEMULATOR

nd LATENT ODE , respecti vely, e ven though LATENT ODE has no
emperature dependence nor e volution. Dif ferently to these methods,
ur PINN is completely unsupervised, i.e. the PINN does not
equire a pre-computed data set for the solutions ( CHEMULATOR ) or a
rocedural solver in latent space ( LATENT ODE ). Further, while both
he present and LATENT ODE are developed with hydrodynamic code
oupling in mind, CHEMULATOR is thought to be a faster alternative
o photoionization models (R ̈ollig et al. 2007 ), i.e. its structure is too
omputationally demanding to be included in numerical simulations
Holdship et al. 2021 ). 
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Figure 11. Relative errors for all species in temperature-density ( T − n ) plane for general atomic model. Results are grouped in different panels and computed 
after ∼1Myr of evolution from the initial condition. To help the visualization � r has been cut at the lower (upper) min log � r = −1 (max log � r = 1) bound. 

Figure 12. Relative errors for all species in temperature–density ( T –n ) plane for general molecular model. Results are grouped in different panels and computed 
after ∼1 Myr of evolution from the initial condition. To help the visualization, � r has been cut at the lower (upper) min log � r = −1 (max log � r = 1) bound. 
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Overall our PINN method has better validation errors with respect 
o LATENT ODE and comparable to CHEMULATOR . For the speed-up, 
he PINN yields performances that are slightly abo v e the one of
ATENT ODE ( ×65), with both ML techniques being tested against 
rocedural ODE solvers. The speed-up for CHEMULATOR is much 
etter ( ×50000), but it is obtained against the photoionization 
ode UCLCHEM (Holdship et al. 2017 ), which is a much more
omplex program with respect to an ODE solver. Final caveat, these
omparisons should be taken with care, as all these models are still
t a proof of concept stage, thus further optimizations are possible. 
MNRAS 518, 5718–5733 (2023) 
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 C O N C L U S I O N  

hemical processes are key in regulating the evolution of the
nterstellar and intergalactic medium. Ho we ver, in cosmological
nd astrophysical simulations, finding solutions for thermochemistry
etworks is numerically costly: the systems are stiff and there
re orders of magnitude of differences between the time-scale of
hemical reactions and the ones of astrophysical processes (e.g.
ravity and fluid dynamics). This requires the usage of robust high-
rder multistep backward integrator for ODE, potentially leading to
omputational bottlenecks for the numerical simulations. 

In this work, we explored the possibility to use trained unsuper-
ised PINN, as an alternative to solve or ameliorate such problems.
he main idea consists in expressing the underlying ODEs solution
ith an NN and treat the problem in a variational way, i.e. by
inimizing the residuals of the chemical system. This procedure

Section 2 ) has been first introduced in Raissi et al. ( 2019 ) but
as never been adopted in the context of thermochemistry for
strophysical problems. 

We first tested the method using benchmark cases (Section 2.3 ),
hen we developed the necessary technical solutions for our case
tudy (Section 3.1 ). We adopted two different thermochemical net-
orks that can solve the ISM chemistry with and without molecular
ydrogen formation. We build PINN with fixed and arbitrary initial
onditions in single and general models, respectively. Our main
esults can be summarized as follows. 

(i) A simple feed-forward architecture cannot reconstruct the
volution of a realistic thermochemical network. The minimal set-
p to achieve good results consists in adopting: a Deep Galerkin
ethod as Neural Network architecture coupled with adaptive

igmoid acti v ation function, adapti ve weights in the loss function,
n annealing learning rate, and ADAM optimization algorithm
possibly followed by L-BFGS, see Sections 3.3 and 3.4 ). Moreo v er,
 considerable benefit consists in solving the equations in log-
pace, both for the abundance and time; while the former is a
tandard normalization technique, a logarithmic time helps for far-
rom equilibrium situations, as it increases the time sampling. 

(ii) Even when running on state-of-the-art GPUs, for all models,
he training time for convergence is relatively large when compared
o typical PINN cases of study that are in the literature. We train the
odels for ∼3 × 10 6 epochs, with a total computational time that

an vary from � 10 2 GPUhr to � 2 × 10 3 GPUhr. Unless dedicated
esources are allocated, these relative long training times make
t e xpensiv e to scan the hyperparameter space of the network to
mpro v e the convergence and validation. 

(iii) As expected, the simplest realistic case ( single atomic ) costs
uch less respect to the most complex case ( general molecular ), both

n terms of training time, number of training points, and dimension
f the network itself (and thus associated memory). Ho we ver, the
ierarchy of complexity between the other models is not clear. On
he one hand, the general atomic model is multidimensional, thus
i) the problem becomes more stiff as the reaction rates vary more
ildly and (ii) the curse of dimensions starts to play a role, even tough

raditionally ML is less affected with respect to other techniques. On
he other hand, in the case of single molecular model, there are about
ouble the reactions and molecular heating, and cooling processes.
t is unclear which of these two factors is dominant in hindering a
ast convergence. 

(iv) We find o v erall a good agreement with procedural solver.
or almost all models, more than 75 per cent of the points with
elative errors less than 15 per cent and 50 per cent of the prediction
maller than 1 per cent; for single atomic , we have errors smaller than
NRAS 518, 5718–5733 (2023) 
7 per cent in 90 per cent of cases. In the case of general models, we
btain better results in the high-density region of the thermodynamic
arameter space. 
(v) For all models, we obtained a significant speed-up respect

o the procedural solvers, from ∼200 for the more simple model
o ∼90 for the more complex. Furthermore, the very low variance
f computational time in different thermodynamic conditions can
otentially solve load balancing problems that can occur in the
ontext of massively parallel codes. 

Although the chemical networks emulated in this work are
elatively small (up to 9 ions and 46 reactions), we do not expect
o have excessive problems in increasing the number of species,
ainly because, with respect to other methods, the PINN suffer less

rom the curse of dimensionality (i.e. see Mishra & Molinaro 2020 ,
or the PINN method in up to ∼100 dimensions). Thus, it would be
nteresting to test the PINN for possible application to wider chemical
etworks, i.e. explicit non-equilibrium metals evolution following
arbon and oxygen chemistry (Glo v er et al. 2010 ): it would entail
racing the evolution of 32 chemical species and 218 reactions; this
ould represent an interesting possibility for future developments,
hich should also give a fairer benchmark with respect to other

ttempts done in emulating chemistry with different ML techniques
Grassi et al. 2021 ). 

Limited to our knowledge, this work is the first case of PINN
pplication for systems of ODEs with this level of complexity.
hus, this proof-of-concept work is a necessary step before using

he trained models as emulators in simulations. In the range of
pplicability tested here, we can conclude that the models can be
sed as emulator without a significant loss of precision, as long as
urther refinement is included for those n–T regions where some of
he species tracked by the network experience a loss of precision.
or the future, the promising speed-up (up to ∼200) and the absence
f variance in the completion time of the calculation make the
INN a very palatable tool for the solution of chemical networks

n astrophysical simulations. 
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