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From Keypoints to Object Landmarks via
Self-Training Correspondence: A novel approach

to Unsupervised Landmark Discovery
Dimitrios Mallis, Enrique Sanchez, Matt Bell and Georgios Tzimiropoulos

Abstract—This paper proposes a novel paradigm for the unsupervised learning of object landmark detectors. Contrary to existing
methods that build on auxiliary tasks such as image generation or equivariance, we propose a self-training approach where, departing
from generic keypoints, a landmark detector and descriptor is trained to improve itself, tuning the keypoints into distinctive landmarks.
To this end, we propose an iterative algorithm that alternates between producing new pseudo-labels through feature clustering and
learning distinctive features for each pseudo-class through contrastive learning. With a shared backbone for the landmark detector and
descriptor, the keypoint locations progressively converge to stable landmarks, filtering those less stable. Compared to previous works,
our approach can learn points that are more flexible in terms of capturing large viewpoint changes. We validate our method on a variety
of difficult datasets, including LS3D, BBCPose, Human3.6M and PennAction, achieving new state of the art results. Code and models
can be found at https://github.com/malldimi1/KeypointsToLandmarks.

Index Terms—Unsupervised Landmark Discovery, Self-Training, Clustering, Correspondence, Keypoints

F

1 INTRODUCTION

O BJECT parts, also known as landmarks, convey infor-
mation about the shape and spatial configuration of

an object in 3D space, especially for deformable objects
like the human face, body and hand. Landmarks represent
the locations of the specific parts with particular semantic
meaning and thus follow an indexed configuration that is
often manually designed.

The goal of landmark detection is to have a model
that, for a particular instance of an object can estimate
the locations of its parts or landmarks. Research in this
field is mainly driven by supervised approaches, where
sufficient amount of human-annotated data is provided.
Common object categories used in part-based detection are
faces [8], [17] or human bodies [38], [66], where thousands of
annotated images with landmarks are available. However,
as in many other Computer Vision disciplines, relying on
human annotations to develop novel detectors is costly, and
hence alternative methods based on unsupervised learning
are being explored.

Unsupervised learning of object landmarks from a first
glance seems an impossible task. A human annotator has
understanding of the notion of objects and their parts,
viewpoint invariance, occlusion and self-occlusion as well as
examples of which landmarks to annotate in their disposal.
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Fig. 1: Contrary to previous works that fail to cope with
large viewpoint changes [22] or that fail to deal with object
symmetries [75], our method finds correspondence across
large viewpoint changes, leading to the discovery of land-
marks that better represent the object’s geometry.

On the contrary, unsupervised learning often relies on an
auxiliary or proxy task, whereby the target task naturally
arises as a latent process. Some techniques are either based
on learning strong representations that can be mapped to
manual landmarks using few images [61] or on discovering
the landmarks from raw images through auxiliary proxy
losses, such as equivariance [60], [61], [62], or tasks such
as image generation [22], [53], [75]. Methods based on the
principle of equivariance observe that a detector must be
consistent under known synthetic image deformations and
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attempt to optimise such objective. Methods based on image
generation rely on reconstructing a deformed image through
a generator that is conditioned on the detector’s output; the
detector and generator communicate through a bottleneck
aimed to distill the object’s geometry. For the generator to
recover the input image from a deformed version of itself,
the detector needs to produce meaningful landmarks.

While these approaches have shown good performance
in limited scenarios where objects showcase little rigid de-
formation (frontal faces or bodies, shoes, cat faces, etc), they
are limited, by definition, in two critical aspects. First, a
proxy task does not enforce the explicit learning of object
landmarks, and thus are prone to generate landmarks that
would unlikely be selected by a human annotator. Second,
these methods require synthetically generated deformations
since local correspondences for unpaired images are not
known in the unsupervised case. Learning from pairs of
images where one is a synthetic deformation of the other re-
sults in representations with limited robustness to intraclass
variation that may not generalise well to highly articulated
objects like the human body, complicated backgrounds or
large viewpoint changes (i.e. 3D rotations).

In this paper, we observe that, while landmark detectors
are difficult to train in an unsupervised manner, generic
keypoint detectors, on the contrary, are much simpler to
obtain and thus propose a novel method that can convert
the latter into the former. Generic keypoints, often also
referred to as salient or interest points, are simply points
in an image representing the locations where “something
occurs”, i.e. where there is a variation on the appearance,
an edge, etc. Beyond representing a geometric position in
an image, keypoints are represented by a feature descriptor,
which is often used to find correspondences across different
images (e.g. parts of two different images corresponding
to different views of a building). Generic keypoints can
be directly computed using Sobel filters (e.g. SIFT) or by
training a detector on synthetic image deformations and
homographic recovery (e.g. SuperPoint [16]).

Based on the similarities and differences between key-
points and landmarks, our goal in this paper is to convert a
series of keypoints automatically detected for a given object
category into semantically coherent landmarks that describe
the object parts, filtering and refining during the training
process the corresponding landmark locations. To this end,
we propose a novel approach that a) discovers landmarks
through self-training instead of auxiliary objectives and b)
captures intraclass variation from random image pairs.

Our main starting point consists of populating a dataset
of images belonging to a target object category (e.g. faces,
birds) with a set of keypoints. It is expected that some of
these points will show some consistency and will systemat-
ically overlap with what we would refer to as landmarks.
From this initial setup, our goal is to develop a self-training
approach that can be used to learn a landmark detector
in a fully unsupervised manner. In particular, this paper
proposes a network akin to that of SuperPoint [16] (i.e. with
a detector head and a descriptor head) that learns iteratively,
through self-training, to locate a set of keypoints and to
assign to each a distinctive descriptor that is landmark-
consistent. Our goal is then to turn a keypoint detector into
a landmark detector where the points capture the semantic

meaning of a particular object in an unsupervised manner
and re-label the training data accordingly. Then, a simple
landmark detector based on heatmap regression can be
trained as the final network. To this end, we propose to
iteratively alternate between pseudo-labelling of keypoints
along with correspondence recovery, through descriptor
clustering, and model self-training with produced pseudo-
labels.

We observe that, compared to previous works, our pro-
posed approach is capable of learning landmarks that are
more flexible in terms of capturing changes in 3D view-
point. See for example Fig. 1. We demonstrate some of the
favourable properties of our method on a variety of difficult
datasets including LS3D [7], BBCPose [12], Human3.6M [20]
and PennAction [74], notably without utilizing temporal
information.

This manuscript extends and modifies our prior work
[36] both methodologically and experimentally. In particu-
lar, while in [36] the number of landmarks to be discovered
was part of the algorithm, we opt for keeping them fixed
as in prior work [22], [53], [62], [72] by using a two-way
K-means clustering algorithm (Sec. 3.6). In addition, we
observe that the negative pair selection in [36] might lead to
the sampling of negative pairs that only differ in their cluster
assignment because they encode different viewpoints of the
same landmark. To avoid such an effect, we modify the neg-
ative pair selection to account only for samples that come
from the same image, ensuring negative pairs refer not only
to different clusters, but also to negative landmarks. Finally,
rather than originally populating the descriptors with those
of the keypoint detector, we opt for a warm-up strategy that
removes the dependency of our method in the quality of the
initial descriptors. Experimentally, we conduct a thorough
ablation study and include results in the challenging human
pose dataset PennAction [74] as well as CatFaces [73] and
Caltech-UCSD Birds [65]. The contributions of our work can
be summarised as follows:

• We propose a novel view on the unsupervised
discovery of geometrically meaningful landmarks
that, instead of relying on proxy or auxiliary losses,
uses a self-training strategy that refines an initial
set of unindexed keypoints to endow them with
geometrically-aware descriptors.

• To the best of our knowledge, our approach,
which alternates between correspondence recovery
for pseudo-labelling and a contrastive loss for feature
learning, is the first to directly propose a geomet-
rically aware objective for unsupervised discovery
through pseudo-labelling.

• Contrary to previous works, our method can deal
with viewpoint changes thanks to an over param-
eterisation of the feature space that accounts for
viewpoint-specific descriptors of the same landmark.

• We conduct extensive ablation studies and deliver
competitive results in various challenging tasks and
object categories.

2 RELATED WORK

This paper brings the reasoning behind clustering algo-
rithms for self-supervised representation learning to iter-
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atively refine generic keypoints, and endow them with
semantic meaning, in a process commonly known as unsu-
pervised landmark discovery. As such, we provide a brief
review on these three topics, departing from the latter, as it
constitutes the main goal of this paper.

2.1 Landmark Discovery

Our goal in this paper is to build a landmark detector Ψ
that can be learned without human supervision. Landmarks
convey semantic information about a particular object and
serve the modelling of rigid and non-rigid deformations.
Because of this, a landmark detector must be equivariant to
geometric transformations g, i.e. if an image x undergoes
an image deformation defined by g(x), the detector must
follow suit: Ψ(g(x)) = g(Ψ(x)). Such a simple yet essential
requirement was the driving force behind the first method
on unsupervised landmark discovery [62], where a network
is trained to produce K heatmaps from which the corre-
sponding landmark locations are derived through a differ-
entiable softargmax operator [70]. By imposing the equivari-
ant constraint on images and known deformations, as well
as by adding auxiliary losses to avoid trivial solutions, the
network can discover a set of K meaningful landmarks. The
concept of equivariance can also be extended and used to
learn networks that are designed to output dense feature
maps rather than heatmaps [61]. While such extension does
not aim at “discovering” object landmarks, it is possible to
learn, on a few-shot basis, a per-landmark regressor, i.e. a re-
gressor from feature maps to landmarks from a handful set
of annotated samples. A similar approach was also extended
to learn object symmetries without regard to the specific
task of landmark discovery [63]. The equivariance constraint
was also used to learn dense feature representations that
cope with intra-class variation by exchanging features [60]
between images before applying equivariance.

The use of equivariance as a proxy task to learn land-
mark detectors is usually prone to finding landmarks that
do not have a proper semantic meaning (e.g. in the back-
ground). To avoid this issue, a different alternative consists
of considering the proxy task of image generation, whereby
a landmark detector is a necessary intermediate step to
capture the geometry of an object for a decoder to generate
a version of the input image [22], [53]. These frameworks
share a common structure, consisting of a landmark detec-
tor, a “geometry distillation” bottleneck, and a conditional
image generation. The detector and the bottleneck are meant
to represent the object’s geometry, which is forwarded to the
conditional image generator along with a deformed version
of the image. The whole pipeline is trained end-to-end with
an image reconstruction loss. An alternative version [72]
advocates for a differentiable autoencoder framework. Sim-
ilar methods have also appeared, combining both equiv-
ariance and image generation for object feature representa-
tion [14], [28], [55], [57], or that attempt to disentangle pose
from appearance [32], [56], which do not explicitly aim at
learning object landmarks. These methods also suffer from
the drawback of not being explicitly designed to produce
semantically meaningful landmarks. On the contrary, our
framework sets a novel direction whereby generic keypoints
are transformed into semantically meaningful landmarks.

2.2 Keypoint detection

Keypoints, also known as salient or fiducial points, are
used to represent the locations in an image that are of
interest without regard to any semantic meaning. Keypoint
detection is a critical step for any sparse image matching
algorithm (Structure-from-Motion, Simultaneous Localisa-
tion and Mapping, 3D reconstruction, etc). Keypoints are ac-
companied by descriptors that allow their matching across
different images, i.e. that allow correspondence recovery. Early
works in keypoint detection and description were primarily
based on computing local image variations, such as the
histograms of the magnitude and orientation of image gra-
dients (e.g. HOG [34], SIFT [35], SURF [5], and variants [1],
[37], [52]) or the binary comparisons between neighbouring
pixels(e.g. LBP [45]).

Lately, a there is an increasing interest in “learning”
keypoint detectors and descriptors, using CNN-based ap-
proaches that can produce dense features [16], [29], [46].
Given that (in most cases) there is no concept of “ground-
truth” keypoints, learning-based approaches work on an
unsupervised setting, defining a proper proxy or auxil-
iary objective, e.g. invariance to viewpoint changes [29],
[70], or feature discriminativeness [46]. In this paper, we
study the feasibility of the keypoints detected by some of
these methods to be converted into landmarks, observing
that the strongest initialisation comes from those given by
SuperPoint [16], which uses a three-stage approach with
synthetic pre-training, homographic recovery, and discrimi-
native matching.

2.3 Self-training via clustering

Self-training refers to a set of methods where a model’s own
predictions are used as pseudo-labels for model training.

Common methods for self-training can include convert-
ing the highly confident predictions into hard-labels [58],
[67], the opposite [47], or applying a model ensemble [39].
Most self-training approaches focus on the task of image
classification [47], [58], [67] whereby each training image
is considered a particular class. Self-training is also ap-
plied for unsupervised segmentation [15], [25], foreground-
background segmentation [18], [59] and salience object de-
tection [71].

A recent line of methods for self-training rely on the
concept of clustering to generate pseudo ground-truth an-
notations [3], [10], [11], [23], [30], [41], [68], [78]. These
approaches are based on computing a set of clusters that
can be used to “label” the training images. An optimization
objective can be derived from these pseudo-labels, e.g. the
typical cross-entropy [10], [40], a cluster identification [30],
or even optimal transport problem [3], [11]. In all these
cases, the ultimate goal is to learn a network that produces
strong feature representations in an unsupervised setting to
be applied to a downstream task thereafter. The generated
pseudo-labels are not expected to convey any meaning or be
kept after the training. To the best of our knowledge, we are
the first to propose a self-clustering approach from pseudo-
labels that are driven towards having a semantic meaning
so as to populate the training set with the corresponding
target labels.
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Fig. 2: Stage 1 of our proposed framework. A neural network is learned with two separate output heads (detector and
descriptor head). During training, we alternate between correspondence recovery via clustering and self-training using the
recovered correspondences. Training is bootstrapped by generic keypoints. In contrast to recent approaches, our framework
enables learning of local features from unpaired image data. Correspondence is recovered via clustering following our
Modified-KMeans algorithm. Our method is able to recover missing landmark locations and converge to well-separated
features that can be used for accurate correspondence recovery. Dataset feature visualisation created through t-SNE [64].

3 METHOD

In this section we describe the different components of our
approach.

3.1 Problem statement
Let X = {x ∈ RW×H×3} be a set of N images of a
specific object category (e.g. faces, human bodies etc.). After
running a generic keypoint detector on X , our training set
X becomes {xj , {pji}

Nj

i=1}, where pji ∈ R2 is a keypoint
and Nj the number of detected keypoints in image xj . The
original keypoints pj for the j-th image are not ordered or in
any correspondence with object landmarks. Also, multiple
object landmarks will not be included in pj . Finally, some
keypoints will be outliers corresponding to irrelevant back-
ground. Using only X , our goal is to train a neural network
Ψ : X → Y , where Y ∈ RHo×Wo×K is the space of output
heatmaps representing confidence maps for each of the K
object landmarks we wish to detect. Note that the structure
of Y implies that both order and landmark correspondence
is recovered.

We will break down our problem into two stages. In the
first stage, we will train a network Φ producing a set of
keypoints with landmark-aware descriptors, which aims to
establish landmark correspondence, recover missing object
landmarks and filter out irrelevant background keypoints.
Then, we will use the output of this stage to train Ψ in a
“supervised” way, using the pseudo-labels produced by Φ.
Sections 3.2, 3.3, 3.4 and 3.5 are devoted to describing the
first stage (Stage1) of our method, also depicted in Fig. 2.
Section 3.6 describes the second stage (Stage2), and Section
3.7 introduces our flipping augmentation strategy.

3.2 Network Architecture

Our first stage comprises learning a network Φ in a similar
fashion to those of keypoint detectors, with a shared back-
bone Φb : X → F producing a set of intermediate features
F and two heads: one for detecting the object landmarks Φd

and one for landmark-distinctive feature descriptor Φf .
The detector head Φd will produce, for image xj , a

single-channel spatial confidence map Hj = Φd(Φb(xj)) ∈
RHo×Wo×1 representing the presence/absence of an object
landmark at a given location, without regard to any or-
der or correspondence. We use non-maximum suppression
to extract from Hj the landmark locations pji . The main
purpose of Φd is to recover the originally missed object
landmarks, as well as to assign to each subsequent pseudo-
label a corresponding spatial location.

The feature extractor head Φf will produce for image
xj a dense feature map Fj = Φf (Φb(xj)) ∈ RHo×Wo×d

that will be used for recovering correspondence. At each
landmark position pji activated by the detector head, we
will extract a d-dimensional feature descriptor f ji from F.
We use local features for recovering the correspondence of
each individual keypoint through clustering.

3.3 Correspondence recovery

After applying Φ on the training set, X becomes
{xj , {pji , f

j
i }
Nj

i=1}. Then, our first step in the iterative algo-
rithm becomes using the features f to assign each keypoint
a pseudo-label. We refer to this operation as correspondence
recovery, as it allows us to identify correspondence of object
parts across different images. To assign to each detected
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keypoint a pseudo-label, we follow [10] and perform K-
means clustering on the collection of features f . However,
different from [10] where the clusters are used to make
similar images have similar descriptors in an unsupervised
way, our cluster assignment is indeed assigning a meaning
label to a given keypoint. For this reason, we observe that it
is important not to assign two different keypoints on a given
image to the same cluster.

The clustering operation is then defined as:

min
C∈Rd×M

1

N

N∑
i=1

Nj∑
j=1

min
yj
i∈{0,1}M

‖f ji −Cyji ‖
2
2

s.t. 1TMyji = 1 and ‖
∑
j

yji ‖0 = Nj , (1)

where M is the number of clusters, yij is the cluster
assignment for landmark pij and C is the d ×M centroid
matrix. While in [36] the cluster assignment was performed
using the Hungarian algorithm [27], here we opt for a
simpler solution that does not compromise performance.
For a given image i, we find {yji }, {f

j
i } by simply keeping,

for each cluster k, the keypoint whose descriptor is closest
to the centroid, i.e. we remove duplicate occurrences of the
same cluster k on a single image. Enforcing a single keypoint
per cluster for each image also provides a natural way of
filtering out noisy keypoints. Given that a keypoint with a
more representative feature has already been found for a
cluster k in a particular image, it is likely that the second
occurrence would be a noisy point.

We use this modified K-means formulation to recover
correspondences for each detected keypoint. We note that it
is crucial to use M � K : the resulting over-segmentation
of the feature space enables the possibility of having several
clusters per landmark, which is necessary for cases where
viewpoint changes introduce large appearance changes.
This differentiates our approach from prior works, which
do not account for large out-of-plane rotations.

In addition to this modification, we also constrain our
method to detect at most K landmarks per image. While in
[36] the number of object landmarks was automatically dis-
covered after progressive merging of similar clusters, here
we restrict the detection to at most K clusters per image,
in accordance with other recent unsupervised landmark
detectors [22], [53], [62], [72]. We do that by additionally
constraining Φd to detect at most K keypoints per image
(one per detected landmark). To that end, the modified K-
means algorithm is executed twice: the first time, we cluster
to K clusters to filter out duplicate occurrences of the same
cluster in a single image (constraining out training set to at
most K points per image). Note that the detection of less
than K keypoints is allowed due to factors like occlusion.
The second time we cluster the reduced set of features to M
clusters to over segment the feature space and enable our
method to recover multiple clusters per object landmark.
An illustration of this in the form of a t-SNE [64] visuali-
sation is shown in Fig. 2. Note that even though clustering
is performed twice, using an accelerated similarity search
method [24] this step can be executed very fast.

Fig. 3: Proposed negative pair mining strategy compared
to [36]. In [36], negative pairs are sampled on keypoint
locations with different clustering assignments. Since mul-
tiple clusters can track the same landmark, this can lead to
inaccurate negative pairs (red line). Sampling negatives from
the same image, guarantees accurate pairs given that by
definition, each landmark can only appear once per image.

3.4 Training Losses

After the correspondence recovery step described in Sec.3.3,
the training set has now been augmented to include two
different sets of pseudo-labels: the keypoint positions pj
and the corresponding cluster assignments yj . The next
step consists then of training the network Φ, with both its
backbone Φb and heads Φd and Φf , using the generated
pseudo-labels. At the end of this step, the training set
will be re-populated with the output’s network: a new set
of keypoints and descriptors will be generated, and new
clustering assignments will be calculated.

The loss corresponding to the detector head is the stan-
dard MSE loss, defined as

Ld(xj) = ‖H(xj)−Φd(Φb(xj))‖2, (2)

where the ground-truth heatmap H for a given image
xj is formed by placing 2D-Gaussian maps on each of
the keypoint locations {pij}i=1...Nj

. Our self-training ap-
proach confirms recent findings [2], [48] that show that
over-parameterized neural networks tend to learn noiseless
classes first, before overfitting to noisy labels in order to
further reduce the training error. We observe such a pattern
in learning object landmarks: a true landmark that com-
monly appears in the training set results in high detection
confidence. Similarly, background locations that do not re-
currently follow a specific pattern tend to be filtered out.

For the feature extractor head we propose the use of a
contrastive loss. Note that this differs from [10] that uses a
classifier to generate the pseudo-labels and a cross-entropy
loss to update the network. Given the augmented training
set at some training iteration t, Xt = {xj , {pji ,y

j
i }
Nj

i=1}
our goal is to update Φf to produce features that, when
extracted at some keypoints pij and pi

′

j′ for some locations
j, j′ on images i and i′, respectively, are similar if and only
if the corresponding pseudo clusters match, i.e. if yji = yj

′

i′ .
To do so, we resort to a contrastive loss, where the goal is
to bring pairs of features corresponding to the same cluster
close whilst pulling features from different clusters apart.
For a given pair of images xj and xj′ , and output locations
i and i′, the contrastive loss is formulated as:
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Lf (xji ,x
j′

i′ ) =

1
[yji=y

j′
i′ ]
‖f ji − f j

′

i′ ‖
2 + 1[yji 6=y

j

i′ ]
max(0,m− ‖f ji − f ji′‖

2),

where recall f ji = Φf (Φb(xj))
i is the d-dimensional feature

vector extracted, for image j at the position pi, from the
output of the feature head. A margin m is used to enforce
features corresponding to negative pairs to be far apart.

As is common in unsupervised learning methods that
build on contrastive learning, the choice of positive and
negative pairs plays an important role in the learning pro-
cess. Positive pairs can now be formed from different images
where two keypoints are assigned the same cluster, as well
as from two images where one is a synthetic deformation of
the other. On the other side, negative pairs can be chosen
in many different ways. While in [36] the negative feature
pairs were selected randomly from the keypoint locations
at different images (excluding those for which the pseudo-
label was the same), in this work, we improve our negative
mining by choosing all the negatives from the same image
only. Given the over-segmentation of the underlying land-
marks to M clusters, the same landmark in two different
images could be assigned to different clusters, which would
hinder the learning process. On the other hand, as noted
above, each object landmark can only appear once per im-
age. Thus, features extracted at any other location j′ far from
j, even when not corresponding to any proper keypoint p,
is a good, informative negative pair. An illustration of our
negative pair mining strategy compared to that in [36] is
show in Fig. 3.

Denoting by θb, θd and θf the parameters of Φb, Φd and
Φf , respectively, the full training procedure for Stage 1 is
summarised in Algorithm 1.

Algorithm 1: Stage 1 training

Data: X0 = {xj , {pji}
Nj

i=1}
1 Compute yji using Eqn. 1
2 Set X0 = {xj , {pji ,y

j
i }
Nj

i=1}
3 for t = 1 : T do
4 for n = 1 : Niters do
5 Sample batch
6 (θb, θd)← (θb, θd)−∇θb,θdLd
7 (θb, θf )← (θb, θf )−∇θb,θfLf
8 end
9 Update F and pj using frozen Φ

10 Compute yji using Eqn. 1
11 Update Xt = {xj , {pji ,y

j
i }
Nj

i=1}
12

13 end

3.5 Bootstrapping

Initially, at round t = 0 the training set X0 only includes
{xj , {pji}

Nj

i=1} without point correspondences f ji , needed
for correspondence recovery as described in Sec. 3.3. In
[36] the initial features were given by the generic keypoint
descriptor, from where an initial clustering step could be

performed. In this paper, we opt for a warm up pre-training
stage where we train the feature extractor using only pairs of
images in which one is a synthetic deformation of the other.
We form known point correspondences through synthetic
augmentations that can be used as initial positive pairs.
This corresponds to initialising our backbone and feature
extractor head using equivariance.

3.6 Learning an object landmark detector

At the end of Stage 1, the training set X is composed
of a series of keypoints with landmark-aware descriptors.
However, our goal is to train a network that can detect a
fixed number of K landmarks.

Provided that the training set is now composed of
M � K clusters, training a landmark detector on K
classes is not trivial because it is unknown which clusters
correspond to the same landmark. In [36] this process was
tackled by using a progressive merging step that was even-
tually reducing the number of clusters. However, thanks to
the fact that the number of keypoints per image is now
limited to K , as well as to the negative mining strategy,
we observe that the learned features automatically form K
well-separated clusters (as can be seen in Fig. 8 for K = 30).
This observation thus eliminates the need for a progressive
cluster merging step.

To finally populate our training set with K clusters only,
we perform a last K-means clustering with K clusters only.
Then, we can train Ψ using standard Heatmap Regression.
For each image xj , we will produce a set of K heatmaps
Hi, k = 1, . . . ,K each of which is a Gaussian placed at the
pseudo-ground truth landmark location for that image. An
empty Heatmap is placed for the missing landmarks. The
model is trained with an MSE loss over all output channels
for which there is landmark-to-cluster assignment for that
image: Ld =

∑
k ‖H(xk)−Ψ(xk)‖2.

3.7 Flipping augmentation

Flipping is a common augmentation strategy when training
a landmark detector. In the supervised case, one can flip
an image and mirror the ground-truth landmarks, given the
naturally known correspondence between landmarks and
their mirrored counterparts. In the unsupervised learning
case, such correspondence is not known. In methods based
on generative modelling or equivariance, one can only resort
to flipping both the original and the synthetically generated
image. This paper proposes to recover the symmetric land-
mark correspondences using clustering. At the correspon-
dence recovery step (Sec. 3.3), pairs of features are sampled
on both an image and its flipped version. We treat these
features independently and produce 2 cluster assignments
for each keypoint (one for the original and one for the
flipped image). During the training of Stage 1, the cluster
assignments of the flipped features are used when an image
is randomly flipped. For Stage2, we find cluster symmetries
by measuring maximal correspondence between clusters in
the original and flipped images over the whole dataset. Note
that in Stage2, flipping can be used both in training and test
time as usually done with supervised landmark detectors.
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4 EXPERIMENTAL DETAILS

We first begin with describing the employed datasets
(Sec. 4.1) as well as the general implementation details
(Sec. 4.2). We then analyse the different parts of our method
in Sec. 5, and compare the performance of our approach
w.r.t. competing methods in Sec. 6.

4.1 Datasets
Facial datasets. We evaluate our method on the commonly
used CelebA-MAFL [31], [76] and AFLW [26] datasets, as
well as on the challenging LS3D [7]. The CelebA dataset
contains ∼ 200K facial images manually annotated with 5
facial landmarks. We follow prior work and remove from
the training the 1000 images corresponding to the MAFL
partition [76] which is used for evaluation. The AFLW
contains 10, 112 training images and 2, 991 test images
annotated with 21 landmarks. Both CelebA and AFLW are
annotated with a limited number of points which in practice
limit the evaluation of unsupervised methods to capture
proper geometric deformations. For this reason, we opt for
re-annotating both datasets with 68 landmarks using the
2D detector of [7]. We evaluate both our and competing
methods using the same set of detected points. The LS3D [7]
dataset contains images of faces with large pose variations.
It is constructed by re-annotating the images from 300W-
LP [77], AFLW [26], 300VW [54], 300W [50] and FDDB [21]
in a consistent manner with 68 points using the automatic
method of [7]. Note that LS3D dataset is annotated with 3D
points. Evaluation is performed on the LS3D-W Balanced
test set, comprising 7200 images, including an equal number
of images for each of the range of yaw angles [0o − 30o],
[30o − 60o], [60o − 90o].

Human Body datasets. We evaluate our method on
BBCPose [12], Human3.6M [20] and PennAction [74]. BBC-
Pose [12] is a dataset of 20 sign language videos (10 for train-
ing, 5 for validation and 5 for testing) annotated with 7 hu-
man pose landmarks (head, wrists, elbows, and shoulders).
We form the training set by selecting 1 of every 10 frames
leading to a set of 60885 images. Evaluation is performed
on the standard test set (1000 images). Human3.6M [20] is
an activity dataset with a constant background containing
videos of actors in multiple poses under different view-
points. We follow the evaluation protocol of [75] and use
all 7 subjects of the training set (6 subjects were used
for training and 1 for testing) on six activities (direction,
discussion, posing, waiting, greeting, walking). We form
our training set by extracting 1 every 50 (48240 training
images) and 1 every 100 frames for testing (2760 images).
Contrary to [75] we do not perform background subtraction
to simplify landmark detection. PennAction [74] is a dataset
of 2326 videos of humans participating in sports activities.
For this experiments, we use the same 6 categories as in
[33] (tennis serve, tennis forehand, baseball pitch, baseball
swing, jumping jacks, golf swing). For this experiment, we
do not use the provided 50%−50% train-test split to ensure
sufficient training data. We opt for using the 5 first videos
for each category to form a separate test set. This results in
51661 training and 1776 testing images.

Other datasets: In addition to the above categories, we
also evaluate our method on the Cat Heads [73] dataset,

which consists of 9k images of cat heads annotated with
9 landmarks. We use the test-train split of [75] with 7747
training and 1257 testing images. Finally, we present a qual-
itative evaluation in the CUB-200-2011 [65] dataset, which
contains 11778 images of birds belonging to 200 species. We
use the same setting as [33] and remove the seabird species.

4.2 Implementation Details

Network architecture: We use the Hourglass architecture
of [38] with the residual block of [6] for both Ψ and Φ. The
image resolution is set to 256 × 256. For network Φ, the
localisation head produces a single heatmap with resolution
64 × 64, and the descriptor head produces a volume of
64× 64× 256, i.e. a volume with the same spatial resolution
containing the 256-d descriptors. The network Ψ produces
a set of K heatmaps, each 64× 64.

Training: Keypoints are initially populated by Super-
Point [16]. Before the training starts, we apply an automatic
outlier removal step to filter out keypoints most likely to be
of no use. We use the Faiss library [24] for this preliminary
step, as well as for the K-means clustering. We perform
warm-up for 30, 000 iterations as described in 3.5. Then, we
apply clustering and update the pseudo-ground truth every
5, 000 iterations. The number of clusters M is set to 100 for
all datasets. The algorithm takes around 200,000 iterations to
converge in all datasets. For Stage2, we initialise the model
Ψ from the weights of the model Φ resulting after Stage1,
except for the weights of the last layer that are trained from
scratch. To train the models, we used RMSprop [19], with
learning rate equal to 2 ·10−4, weight decay 10−5 and batch-
size 16. All models were implemented in PyTorch [42]. Sim-
ilarly to other recent methods, [22], [75] we also boost the
training on video datasets by adding temporal supervision.
To that end, image pairs for contrastive training are sampled
both randomly (clustering correspondence) as well as from
nearby frames (keypoint correspondence between frames is
recovered through sparse optical flow calculation as in [75]).
Note that our approach achieves good performance without
temporal supervision, and optical flow is used only when
explicitly stated.

Evaluation: Quantitative evaluation of unsupervised
landmark detectors is often assessed by quantifying the
degree of correlation between manually annotated land-
marks and those detected by the proposed approach. This
is accomplished by learning a simple regressor with no
bias that maps the discovered landmarks to those manually
annotated, using a variable number of images in the training
set. Numerical evaluation is often measured by means of
the Normalised Mean-squared Error (NME). In addition, we
follow [53], and complement this measure (herein referred
to as Forward-NME) by measuring the performance of a
reverted regressor, i.e. one that maps the manual annota-
tions into the discovered landmarks. As found by [53], this
measure, known as Backward-NME, helps identify unstable
landmarks. We also present Cumulative Error Distribu-
tion (CED) curves for these metrics, which permit a per-
landmark comparison w.r.t. state-of-the-art methods. We use
interocular distance to normalise errors in facial datasets
(CelebA, AFLW and CatHeads), and shoulder distance for
human pose datasets (BBCPose and Human3.6). Due to the
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Fig. 4: Forward-NME (shown for the first 10 iterative
rounds) of training the first stage of our method with
varying ratios of real and random points. Experiment is
performed on CelebA [31]. Real points are sampled from 15
facial landmarks and further perturbed spatially by a small
offset sampled from [−3px,+3px].

Keypoint Detector Forward Backward

SIFT [35] + ANMS [4] 4.07 7.79
ORB [49] + ANMS [4] 3.85 7.70
R2D2 [46] 3.71 7.97
SuperPoint [16] 3.25 6.65

TABLE 1: Evaluation of landmarks learned on the first
stage of our framework on CelebA under different keypoint
initialisation methods. Models are trained to for K = 30.

large pose variation on LS3D and PennAction datasets, we
opt for normalising the errors using the squared root of the
bounding box area, where the bounding box is defined as
the smallest rectangle that fits the ground-truth points.

We are also interested in assessing the quality of the
discovered landmarks after Stage 1. Because not all the
landmarks will be activated in each image after Stage 1,
we need to complete the missing values before being able
to compute the aforementioned metrics. To do so, we gather
all discovered landmarks in a matrix X ∈ RK×N , with N
the number of training images and K the number of discov-
ered landmarks, and use the Singular Value Thresholding
method for Matrix Completion [9], leaving the detected
points unchanged. At test time, we fill the missing land-
marks with their corresponding mean positions, computed
from the training set.

5 ABLATION STUDIES

We perform a series of ablation studies to evaluate differ-
ent aspects of our proposed method. In particular, we are
interested in measuring how the initial conditions affect the
training of our proposed approach, as well as the impact of
the training components introduced in our method.

5.1 On the initial conditions
Robustness to noise We are firstly interested in measuring
to which extend our method can recover semantic corre-
spondence from noisy initialisations. A good initialisation

Precision (%) w.r.t 68 facial landamrks (d = 10px)

Keypoint Detector Precision

SIFT [35] + ANMS [4] 35.2
ORB [49] + ANMS [4] 43.7
R2D2 [46] 50.7
SuperPoint [16] 51.8

Fig. 5: (figure-top) Examples of generic keypoints captured
by SuperPoint on facial images along with the correspond-
ing 68 ground-truth landmarks. Generic keypoints capture
several object landmark locations (red keypoints) as well
as non-corresponding background points (blue keypoints).
(table-bottom) Precision of various generic keypoint detec-
tors w.r.t 68-ground-truth landmark locations (on CelebA).
As true positives we consider keypoints within 10px of a
landmark location (image resolution 256× 256).

is expected to have some consistent keypoints that overlap
to some extend with proper landmarks; a huge number of
random keypoints will hinder the learning of landmark cor-
respondence. To evaluate such impact, we first conduct an
experiment with synthetic initialisations, i.e. by initialising
our training set with a mixture of ground-truth landmark
locations and noisy points randomly sampled from the
image domain. In particular, we populate each image with
a set of 15 points that are either sampled from the ground-
truth locations of 15 facial landmarks (eyes, eyebrows, nose,
mouth, chin) or chosen at random, uniformely distributed
over the image space. Our model is trained to detect 15
object landmarks, and we conduct experiments with vary-
ing mixture ratios to evaluate the effect of different noise
levels. Fig. 4 shows the result of this experiment in terms
of forward error. Interestingly we find that even with as
much as only 20% of real object landmarks in the keypoint
initialisation, our method can still perform reasonably well.
Increases in the percentage of real points over 40% only
result in slight performance gains.

Keypoint initialisation: We now evaluate the depen-
dency of our method on initialisations as provided by
real keypoint detectors. To this end, we compare the per-
formance of our method, both by means of forward and
backward errors, for the case where the initial keypoints are
provided by SuperPoint [16], R2D2 [46], SIFT [35] and ORB
[49]. Note that all these methods either are trained in an
unsupervised manner (SuperPoint, R2D2), or do not even
require training (SIFT, ORB), i.e. neither the initialisation
nor our method require any manual supervision. Given that
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# of clusters Forward-NME Backward-NME

M = 30 10.26 9.41

M = 50 7.99 6.99

M = 100 7.95 6.55

M = 250 8.58 6.26

M = 500 9.53 6.19

TABLE 2: Evaluation of landmarks learned from the first
stage of our approach on LS3D [7] under various number
of training clusters. M . All models are trained for K = 30.
We see that M >> K results in better performance as it
allows appearance and viewpoint variantions of the same
landamark to be captured by several clusters

# Negative-Pairs Correspondence NME

1 different clusters Clustering 11.15
2 same image only Equivariance 10.02
3 different clusters Equivariance 9.56
4 same image only Clustering 7.95

TABLE 3: Ablation study of the proposed negative pair se-
lection strategy (compared to the strategy of [36]), combined
with either clustering or equivariance training. Experiment
performed in the challenging LS3D [7] dataset. We report
forward-NME error values.

Dataset p.p.e NME(%)
Stage1 Stage2 Stage1 Stage2

CelebA (K = 30) 25.8 30 3.3 3.2
AFLW (K = 30) 23.4 30 8.1 7.4
LS3D (K = 30) 23.5 30 7.9 5.2

TABLE 4: Comparison of the first and second stages of
our framework in terms of Forward-NME. We also report
average number of points detected per image (p.p.e) on each
stage. The full landmark detector on the second stage detects
one landmark per K channels so p.p.e is 30.

SIFT and ORB tend to detect large numbers of spatially clus-
tered points (that is suboptimal for our purpose of detecting
object landmarks), we combine them with Adaptive Non-
Maximal Suppression (ANMS [4]) to ensure a homogeneous
spatial distribution. The results shown in Table 1 show
that all detectors allow our method to deliver competitive
results, with SuperPoint proving to be the best choice.

Landmarks captured as keypoints: To further evaluate
how the different initialisations affect the performance of
our method, we measure to which extend each detector
provides keypoints that are consistently close to a manually
annotated landmark. To do so, we compute the precision
of each of the detectors, measured as the percentage of
keypoints that lie within a radius of 10 pixels around a
ground-truth landmark. Fig.5 shows some visual examples
of keypoints that overlap with manually annotated land-
marks (red), as well as the computed precision. These results
align with those in Table 1, showing that SuperPoint is a

Dataset Flip(Train) Flip(Test)1 Stage1 Stage2

CelebA
5 5 3.88 3.42
3 5 3.32 3.40
3 3 3.32 3.25

LS3D
5 5 8.69 5.81
3 5 7.95 5.45
3 3 7.95 5.26

TABLE 5: Experiments on the effect of flipping as a training
augmentation and at test time. Results are given for both
stages of our approach in terms of Forward-NME.

better choice to populate the training set.

5.2 On the training design
Impact of number of clusters: We investigate the effect
on the number of clusters in the training of our proposed
approach. The results shown in Table 2 indicate that the
best performance is attained for a larger number of training
clusters. This over-segmentation of feature space is required
for optimal clustering assignment as it allows for multiple
clusters that capture different appearance variations of the
same landmark, enabling the discovery of more stable land-
marks (as demonstrated by smaller values of the backward
error in Table 2). On the other extreme, for very big
M values, the same underlying landmark is tracked by
several clusters, each containing only very similar features.
This hinders our method’s ability to learn representations
robust to viewpoint or appearance variations, and more
diverse landmarks get filtered out (leading to an increase in
Forward-NME). Note that our method essentially equates
to equivariance training in extreme cases where M is equal
to the number of detected keypoints (each cluster contains
only one feature).

Negative-Pair Selection: We evaluate the proposed neg-
ative pair selection strategy (referred to as same image only),
compared to that of [36] (referred as different cluster)
where negative pairs were selected as keypoints with dif-
ferent clustering assignments. We also evaluate the effect of
learning from unpaired images (enabled by correspondence
recovery) compared to training on synthesised views of
the same underlying image (equivariance training). Note
that the experiments that use equivariance still utilise deep
clustering (constraint the detector in detecting at most K
landmarks and filtering out noisy keypoints). Results can be
seen in Table 3.

We observe that our improved negative pair selection
strategy is the best performing method when correspon-
dence is recovered through clustering (line 4). The different
cluster strategy separates features to M clusters (line 1) and
results in poor performance when is not combined with an
additional merging step (as in [36]). Also, our negative pair
selection strategy is only beneficial when correspondence is
recovered through clustering (not with equivariance). This is
expected since, with equivariance training, point correspon-
dences are known, and inaccurate negative pairs (similar to
the ones shown in Fig. 3) do not emerge. As a result negative
pairs from different cluster are more informative and result in
better performance (line 3 vs. line 2).
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Fig. 6: Qualitative results of our proposed approach on
various object categories

CatHeads Forward-NME (%)

Thewlis [62] Zhang [75] Lorenz [33] Ours
26.94 14.84 9.30 9.31

TABLE 6: Performance on the CatHeads dataset [73]. All
methods detect K = 20 unsupervised landmarks. Results
for other methods are taken directly from the papers. Same
as other methods, we regress 7 of the 9 annotated landmarks
for this experiment (excluding landmarks on the ears).

Impact of Stage 2: For the first stage of our method, a set
of points are detected per image for which correspondence
is recovered through clustering. In the second stage, these
points and correspondences are used to train a landmark
detector with K output channels. The number of detected
points per image on the first stage is ≤ K since there is no
guarantee that each would appear in each image. On the
contrary, our full landmark detector (output of the second
stage) learns K unsupervised landmarks (one per output
heatmap). In Table 4 we compare performance of the first vs
second stage in terms of forward NME while also report the
average number of points detected per image. We observe
that the full landmark detector recovers the missing clusters
in the second stage, resulting in lower error values. Perfor-
mance increase is most notable on LS3D, where occlusion is
extended due to large jaw angles.

Flipping: Finally, we conduct an ablation study on the
proposed flipping augmentation strategy. Results for both
CelebA and the more challenging LS3D database are given
in Table 5. We observe that both flipping as a training
augmentation and flipping at test time result in consistent
performance improvement.

Fig. 7: Comparison between landmarks discovered by our
approach and those of [22], [75] on LS3D facial images across
the whole spectrum of facial pose.

Fig. 8: T-SNE [64] visualisation of local features. Comparison
with features produced by SuperPoint [16] and our previous
work [36].

6 OVERALL EVALUATION

This Section presents the experiments carried out to validate
the proposed approach against state of the art alternatives
based on equivariance or image generation.

6.1 Qualitative results

We report qualitative results on various datasets in Fig. 6.
We also present in Fig. 8 the t-SNE [64] representations of
the features returned by SuperPoint (left), by [36](center),
and by our method (right). Our method produces features
that are clearly distinctive for each landmark, making the
correspondence recovery effective.

6.2 Evaluation on facial datasets

Fig. 9 shows the results of our method on facial datasets. We
report in the Table the commonly used forward error w.r.t.
the 5 ground-truth facial landmarks. For the cumulative
curves, the error is calculated w.r.t. 68-standard facial land-
marks. As discussed in [53], for a method to work well, both
forward and backward errors should be small. From our
results on all datasets (Figures), we can see that overall our
method provides the best results in terms of meeting both
requirements. Notably, our method delivers state-of-the-art
results for the challenging LS3D dataset, which contains
large pose changes.

We also find that our approach surpasses other methods
when evaluation is performed w.r.t all 68-facial landmarks
(compared to standard 5 landmark evaluation on MAFL and
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Method MAFL AFLW

Lorenz [33] (K=10) 3.24 -
Shu [56] 5.45 -
Jakab et al. [22] (K=10) 3.19 6.86
Zhang et al. [75] (K=10) 3.46 7.01
Sanchez [53] (K=10) 3.99 6.69
Sahasrabudhe [51] 6.01 -
Mallis [36] 4.12 7.37

Ours (K=10) 3.83 7.18

Fig. 9: Evaluation on facial datasets. (Table): Standard comparison on MAFL and AFLW, in terms of forward error. The
results of other methods are taken directly from the papers (for the case where all MAFL training images are used to train
the regressor and the error is measured w.r.t. to 5 annotated points). (Figures): CED curves for forward and backward
errors. We compare our method with [22], [75] (for K = 10, 30). Where possible, we used pre-trained models, otherwise
we re-trained these methods using the publicly available code. A set of 300 training images is used to train the regressors.
Error is measured w.r.t. the 68-landmark configuration typically used in face alignment.

AFLW presented in Fig. 9 (Table) where we maintain com-
petitive performance). One reason is that 5 facial landmarks
include points in uniform areas and not repeatable edges or
corners (centre of the eye, centre of the nose) that are not
commonly tracked by generic keypoint detectors. On the
contrary, our method is better suited to track the 68 com-
monly used facial landmarks. To further demonstrate that,
we evaluate how accurately raw unsupervised landmarks
track supervised landmark locations in Fig. 10. Each of the
68-facial landmarks is matched to the best corresponding
unsupervised landmarks (K = 30 is used for all methods)
through the Hungarian algorithm. We observe that most of
our detected unsupervised landmarks track actual semantic
object locations with high accuracy. In contrast, landmarks
detected by [22], [75] are mostly uniformly spread over the
objects’ surface (to ensure stronger image generation/re-
construction) and do not tend to track manually annotated
landmark locations.

Evaluation in terms of Forward-NME for the CatsHead
dataset is shown in Table. 6. Our method reaches a simi-
lar error value as the best performing method of [33]. In
addition, a set of qualitative examples is shown in Fig. 7
for the challenging LS3D data. We observe that landmarks
produced by [22], [75] are not stable under 3D rotations and
fail to capture large pose variations.

6.3 Evaluation on human pose datasets
Performance of our method on the BBCPose and Hu-
man3.6M datasets is shown in Fig. 11. Note that in this
experiment, all methods are trained without temporal su-
pervision. For both datasets, our approach demonstrates
significantly better performance. As it can be seen from the
forward error in Human3.6M, all three methods experience
a sharp error increase when more than 22 landmarks are
considered. We attribute this higher error to the fact that the
hands are not captured by any method.

In Table 7 we measure the accuracy of regressed land-
marks on the BBCPose database. For this experiment tem-
poral supervision is available for all unsupervised meth-
ods. Even though this enables other approaches to achieve
stronger performance, our model outperforms all other
methods. Fig. 12 shows some examples of discovered land-
marks that maximally correspond to ground-truth points.

We also note that due to the large degree of pose
variation for human bodies, a simple linear layer does not
suffice to learn a strong mapping between unsupervised
and supervised landmarks. Hence, the forward errors are
very high for all methods. To address this, we follow [22]
and measure the accuracy of unsupervised landmarks that
are found to maximally correspond to the provided ground-
truth points (calculated through the Hungarian Algorithm)
for Human3.6 and PennAction databases (Table 8). We ob-
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Fig. 10: Evaluation of the ability of raw unsupervised landmarks to capture supervised landmark locations on CelebA.
Each unsupervised landmark is mapped to the best corresponding supervised landmark using the Hungarian Algorithm.
Then accuracy is calculated for a distance threshold of d = 10px. Accuracy is shown for each of the 68-facial landmarks
sorted by ascending order of index. Different landmark areas are highlighted with different colours (1-17 are facial contour
landmarks, 18-27 are landmarks tracking the eyebrows, etc.)

Fig. 11: Evaluation on BBCPose and Human3.6 datasets. CED curves for the forward and backward errors, computed for a
regressor trained with 800 samples. We compare our method with [22], [75] (re-trained using the publicly available code).
All methods are trained to discover 30 landmarks.

serve that our approach can discover unsupervised land-
marks that robustly track several parts of the human body
(except the hands for both Human3.6M and PennAction)
and show much higher accuracy values compared to the
other methods. Particularly for the challenging PennAction
database that includes large pose variation and complicated
backgrounds, we demonstrate strong performance, whereas
[22] completely underperforms in this setting. Note that for
both databases we do not utilise temporal supervision to
train any examined method.

7 CONCLUSION

We presented a novel path for unsupervised discovery of
object landmarks based on two ideas, namely self-training

and recovering correspondence. The former helps our sys-
tem improve by using its own predictions and constitutes a
natural fit for training an object landmark detector starting
from generic, noisy keypoints. The latter, although being a
key property of object landmarks detectors, has not been
previously used for unsupervised object landmark discov-
ery. Compared to previous works, our approach can learn
view-based landmarks that are more flexible in terms of
changes in 3D viewpoint, providing superior results on a
variety of challenging facial and human pose datasets.
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Fig. 12: Examples on Human3.6 and BBCPose databases. We show the unsupervised landmarks that maximally corre-
sponding to the provided ground-truth (selected through the Hungarian Algorithm).
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BBCPose Regressed Landmark Accuracy (%)

Method Head Shldrs Elbws Hands Avg

Supervised
Yang [69] 63.40 53.70 49.20 46.10 51.63
Pfister [44] 74.90 53.05 46.00 71.40 59.40
Chen [13] 65.90 47.90 66.50 76.80 64.10
Charles [12] 95.40 72.95 68.70 90.30 79.90
Pfister [43] 98.00 88.45 77.10 93.50 88.01

Unsupervised
Jakab [22](selfsup) 81.01 49.05 53.05 70.10 60.79
Jakab [22] 76.10 56.50 70.70 74.30 68.44
Lorenz [33] - - - - 74.50

Ours 97.89 49.65 71.26 84.90 75.93

TABLE 7: Accuracy of regressed landmarks on BBCPose
measured as %-age of points within d = 6px from the
ground-truth for a resolution of 128px. Results for other
methods taken directly from the papers. All unsupervised
methods in this experiment utilise temporal information.

Human3.6 Raw Landmark Accuracy (%)

Method Head Shldrs Elbws Waist Knees Legs Avg

Zhang [75] 20.9 53.1 51.0 43.7 85.6 2.0 42.7
Jakab [22] 0.5 52.2 32.4 26.1 3.7 24.6 23.2

Ours 81.1 89.8 39.7 94.2 93.6 64.4 77.1

PennAction Raw Landmark Accuracy (%)

Method Head Shldrs Elbws Hands Waist Knees Legs

Jakab [22] 6.36 9.23 7.85 0.59 22.27 17.85 6.48
Ours 74.27 57.91 33.00 8.36 64.81 69.54 75.84

TABLE 8: Accuracy of raw discovered landmarks that cor-
respond maximally (calculated through the Hungarian al-
gorithm) to each ground-truth point measured as %-age of
points within d = 6px from the ground-truth [22] (image
resolution of 128px). For this experiment, examined meth-
ods do not utilise temporal information.
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