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ABSTRACT:  

The simplification of the incompressible but variable 
density jet is based on the visualization of data 
similarity. Given the initial encouraging results 
obtained in the past, we extend, in the present 
paper, this hypothesis to a broader range of 
conditions to ascertain its applicability and its role 
as an alternative to the more commonly fully-
compressible formulations encountered in the 
literature. Transcritical and supercritical injection 
conditions are considered for nitrogen, which works 
as a surrogate for the oxygen-hydrogen mixture 
combination, characteristic of liquid rocket 
propulsion. A close agreement is found between 
experiments and numerical results in terms of axial 
profiles and jet spreading rates.  
 
1. INTRODUCTION 

The growing performance needs of rocket engines 
have resulted in combustion chamber conditions 
that exceed the critical point of both fuels and 
oxidizers, entering the realm of supercritical fluids. 
In the case of pure fluids, the critical point delimits 
the supercritical regime and is defined by pressure 
and temperature values that serve as identifiers. 
Any numerical effort dedicated to the successful 
description of supercritical fluid flows must precisely 
mimic thermodynamic singularities, which refer to 
the unique behaviour of thermodynamic 
characteristics at the critical point. 
 
Further increases in pressure and temperature after 
the critical point is reached may cause the fluid to 
enter the so-called Widom region [1], which 
separates supercritical liquid- and gas-like 
behaviour. Several Widom lines [1,2] have been 
investigated as a result of singularities in various 
thermodynamic response functions. A local maxima 
or an inflection point might be used to describe 
them. 
 
The Widom region, also known as pseudo-boiling in 
the literature [1], is the area where a small change 

in pressure or temperature causes a big response. 
Crossing the Widom area from liquid to gas-like 
conditions is analogous to a subcritical phase shift, 
but without the phase change and with the 
temperature change occurring over a restricted 
temperature range [1]. 
 
The simplification of the incompressible but 
variable­density jet is based on the visualization 
data's similarity. [4] examined and analyzed the 
theory, and the results were encouraging enough to 
warrant further testing in other, more general 
contexts. The seemingly vast range of CFD 
(computational fluid dynamics) codes, as detailed 
by [6], is misleading, since successful approaches 
and methodologies are utilized as nearly standard 
procedures. 
 
The variable-density behaviour of supercritical jets 
can then be modelled using real gas relationships 
for density (in the form of an equation of state-EoS) 
and transport properties like dynamic viscosity and 
thermal conductivity, detailing ideal gas behaviour 
and departure functions to account for high-
pressure effects, based on the amount of 
experimental evidence. In contrast, numerical 
modelling of supercritical fluid flows has traditionally 
relied on compressible solvers; however, as [7] 
point out, flows at such conditions fall below the 
significant Mach number threshold of 0.3, imposing 
severe restrictions on the numerical solver in 
combination with the low injection velocities. 
Variable density behaviour is, nevertheless, well-
known in the literature. For example, [8] uses large 
eddy simulation (LES) in the nitrogen into nitrogen 
injection configuration, [9] recognizes the similarity 
to variable-density mixing in the mixing layer 
configuration oxygen-methane, and [10] uses direct 
numerical simulation (DNS) of temporal mixing 
layers of heptane-hydrogen should show similarities 
between vortex dynamics of the most unstable 
compressible and incompressible wavelengths. 
 

In the present work, we consider transcritical and 
supercritical conditions representative of liquid 
propelled rocket engines’ operational range. If we 
consider a mixture of oxygen-hydrogen injected into 
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the combustion chamber separately and at 
supercritical conditions, the resulting mixing 
behavior can be characterized by variations of 
temperature that are locally lower than the critical 
mixing temperature, putting the mixture in the 
transcritical regime, from where the conditions in the 
chamber could lead to an increase in the mixing 
temperature, eventually crossing the critical point 
into supercritical liquid-like conditions, be subjected 
to pseudo-boiling effects, and ultimately cross the 
Widom line into supercritical gas-like conditions. 
 
While nitrogen is not used as a propellant in liquid 
rocket propulsion, its handling easiness during 
experimental campaigns, and the similar 
characteristics in relation to the mixture of oxygen-
hydrogen, commonly used in liquid rocket 
propulsion, make it an excellent working fluid for the 
study of supercritical fluid behavior, without the 
inclusion of chemical equilibrium or combustion 
effects. 
 
The experimental test conditions [1] detail the 
injection of nitrogen at transcritical and supercritical 
gas-like conditions into a chamber filled with 
supercritical nitrogen. An incompressible but 
variable density approach is employed in the study 
[2], which arose from the similarity of visualization 
data. 
 
The remaining of the manuscript is organized as 
follows: The mathematical/physical models that 
form the foundation of the RANS technique are 
examined and discussed in order to determine their 
performance, benefits and drawbacks, and function 
in the whole process. Then results are presented for 
supercritical and transcritical conditions in terms of 
axial density quantities, jet spreading rates and 
shape of the profiles. Lastly, the main findings are 
summarized in the conclusions. 
 
2. MATHEMATICAL MODEL 

2.1. Fundamental Laws 

The conservation principles of mass, momentum 
and energy per unit volume are represented in Eqs. 
1, 2 and 3, respectively, following the hypothesis of 
incompressible but variable density flow [5] through 
the application of Favre averaging procedure. In 
Eqs. 1 to 3 x is the distance in the ith directions i and 
j, u the velocity, ρ the density, H the total enthalpy 
per unit volume, q the heat flux, 𝜏 the stress tensor 
and 𝑝 the pressure. 
 

                                       
𝜕𝜌̅𝑢𝑖̃

𝜕𝑢𝑖
= 0                                  Eq.1 

 

𝜕

𝜕𝑡
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𝜕
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 (𝑞𝑗̅ + 𝜌̅𝑢′′𝑗ℎ′′̃ )Eq.3 

 

Boussinesq’s approximation of Eq.4 relates the 
Reynolds stresses with the average rate of strain, 
similarly to the Newtonian relationship between 

viscous stresses and the rate of strain.  In Eq. 4 𝛿𝑖𝑗 

is the Kronecker’s delta function and 𝜇𝑡 the eddy 
viscosity. 
 

−𝜌̅𝑢𝑖
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2

3
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𝜕𝑢𝑖̃

𝜕𝑥𝑗
+

𝜕𝑢𝑗̃

𝜕𝑥𝑖
−

2

3

𝜕𝑢𝑘̃

𝜕𝑥𝑘
𝛿𝑖𝑗)  Eq.4 

 
The turbulent heat flux is modeled following Eq. 5, 
where Prt is the turbulent Prandtl number 
expressing the effect of momentum eddy diffusivity 
to that of heat, T the temperature, h the enthalpy 
and 𝑐𝑝 the isobaric specific heat. 

 

              𝜌̅𝑢𝑗
′′ℎ′′ ̃ =  −

𝑐𝑝

Pr𝑡

𝜕𝑇̃

𝜕𝑥𝑗
=  − 

𝜇𝑡

𝑃𝑟𝑡

𝜕ℎ̃

𝜕𝑥𝑗
                Eq.5 

 
Eddy viscosity results from a combination of a 
length (l) and velocity (q) characteristic scale, as 
indicated in Eq. 6. The characteristic scales are 
evaluated through the κ-ε turbulence model [11], 
where the eddy viscosity of Eq.6 is explicitly 
evaluated through Eq.7 and the turbulence kinetic 
energy (κ) and its dissipation rate (ε) are given in 
Eqs. 8 and 9, respectively, with production, 
destruction and transport terms. The remaining 
parameters in Eqs. 8 and 9 are tabulated constants 
given in Tab.1. In a preliminary study [12] several 
turbulence models commonly used in the modeling 
of subcritical flows were evaluated for supercritical 
conditions. These ranged from one-equation to two-
equation and second-order models, where no 
correspondence was found between model 
complexity and quality of the results. 
 
                                    𝜇𝑡 = 𝜌𝑙𝑞                                Eq.6 
 

                                 𝜇𝑡 = 𝐶𝜇𝑓𝜇
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𝜕
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𝜀

𝜅
𝑃 − 𝐶𝜀2𝑓2

𝜌𝜀2

𝜅
+

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
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)
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Eq.9 
 
Table 1. κ-ε turbulence model constants [11]. 

Parameter Value 

𝜎𝑘 1.0 

𝜎𝜀 1.3 

𝐶𝜇 0.09 

𝐶𝜀1 1.35 

𝐶𝜀2 1.8 

𝑓1 1.0 

 
The production term 𝑃 in Eqs. 8 and 9 is given 
according to Eq.10. 
 

                                 𝑃 = 𝜏𝑖𝑗
𝜕𝑢𝑖̃

𝜕𝑥𝑗
                             Eq.10 
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The initial turbulence field namely the turbulence 
kinetic energy (κ0) and its dissipation (ε0) are set 
according to Eqs.11 and 12, respectively. While the 
turbulence intensity (𝐼) of the experimental facility is 
not reported [3] a level of 5% is used, which was 
found to be reasonable according to preliminary 
calculations. Moreover, the length scale is 
considered to be 0.014𝑑, where 𝑑 is the jet diameter 

and the velocity scale (𝑢) equal to the jet velocity. 
 

                                𝜅0 =
3

2
(𝐼𝑢)2                            Eq.11 

 

                               𝜀0 =
𝑐𝜇

3/4
𝜅3/2

0.014𝑑
                              Eq.12 

 
2.2. Equation of State 

The Peng-Robinson (PR) [12] equation of state 
(EoS) is used in the present work to close the 
system of equations, since it represents a 
compromise between simplicity, computational cost 
and accuracy. The PR EoS formulation is 
reproduced in Eq.11, where 𝑅 is the universal gas 
constant, 𝑣𝑚 the molar volume, 𝑎 represents the 

molecular attractive potential and 𝑏 the repulsive 
potential. 
 

                𝑝 =
𝑅𝑇

𝑣𝑚−𝑏
−

𝑎(𝑇)

𝑣𝑚(𝑣𝑚+𝑏)+𝑏(𝑣𝑚−𝑏)
         Eq.13 

 
The attractive potential dependence on 
temperature, 𝑎(𝑇), is retrieved from Eq. 14, explicit 
for the critical point (c) in Eq.15, while the function 
of the acentric factor (𝜔), representing the non-
spherical degree of the molecules and the reduced 
temperature (𝑇𝑟), describing the ratio between the 
temperature to its critical point value is given by Eq 
16. Lastly the molecular repulsive potential at the 
critical point is evaluated according to Eq. 17. 
 
                        𝑎(𝑇) = 𝑎(𝑇𝑐). 𝑓(𝑇𝑟 , 𝜔)                  Eq.14 
 

                         𝑎(𝑇𝑐) = 0.45724
𝑅2𝑇𝑐

2

𝑝𝑐
                  Eq.15 

 
𝑓(𝑇) = [1 + (0.37464 + 1.5422𝜔 − 0.26992𝜔2)(1 −

√𝑇𝑟)]2                                                               Eq.16 

 

                         𝑏 = 𝑏𝑐 = 0.07780
𝑅𝑇𝑐

𝑝𝑐
                    Eq.17 

 
2.3. Transport Properties 

Transport properties such as dynamic viscosity and 
thermal conductivity are evaluated following the so-
called departure function formalism, in which to the 
ideal gas sate component are added departure 
functions that account for real gas effects such as in 
the case of viscosity and critical divergence in 
relation to the thermal conductivity behavior at the 
critical point [13]. 
 
Dynamic viscosity is retrieved following Eq.18 

adding to the ideal gas component (𝜇0(𝑇)) the 
departure real gas effect (𝜇𝑟(𝜌𝑟 , 𝑇𝑟)). In Eqs.20 and 
21, 𝜎 is the Lennard-Jones size parameter, 𝑀 the 

molar mass, Ω the collision integral while the 
remaining parameters are tabulated constants [13].  
 

                        𝜇 = 𝜇0(𝑇) + 𝜇𝑟(𝜌𝑟 , 𝑇𝑟)                  Eq.19 
 

                         𝜇0(𝑇) =
0.0266958√𝑀𝑇

𝜎2Ω(𝑇∗)
                     Eq.20 

 

           𝜇𝑟(𝜌𝑐 , 𝑇𝑐) = ∑ 𝑁𝑖𝜏
𝑡𝑖𝛿𝑑𝑖exp (−𝛾𝛿𝑙𝑖)𝑛

𝑖=1      Eq.21 

 
Similarly, thermal conductivity is retrieved from Eq. 
22, albeit the inclusion of the critical divergence term 

(𝜆𝑐(𝜌𝑟 , 𝑇𝑟)). In Eq.25 Ω̃ is a consequence of the 
specific heat at constant pressure and volume, 

where cv, cp and (
𝜕𝜌

𝜕𝑝
)

𝑇
 are obtained through the 

derivation of the Eos at specified values of density 
and temperature.  
 

               𝜆 = 𝜆0(𝑇) + 𝜆𝑟(𝜌𝑟 , 𝑇𝑟) + 𝜆𝑐(𝜌𝑟 , 𝑇𝑟)      Eq.22 
 

                 𝜆0 = 𝑁1 [
𝜂0(𝑇)

1𝜇𝑃𝑎.𝑠
] + 𝑁2𝜏𝑡2 + 𝑁3𝜏𝑡3       Eq.23 

 

                    𝜆𝑟 = ∑ 𝑁𝑖𝜏
𝑡𝑖𝛿𝑑𝑖exp (𝛾𝛿𝑙𝑖)𝑛

𝑖=4            Eq.24 

 

                     𝜆𝑐 = 𝜌𝑐𝑝
𝐾𝑅0𝑇

6𝜋𝜉𝜂(𝑇,𝜌)
(Ω̃ − Ω0̃)             Eq.25 

 
2.4. Thermodynamic Properties 

The evaluation of thermodynamic properties is 
dependent upon the conversion of the EoS to a 
thermodynamically consistent caloric equation of 
state written for energy or enthalpy. Accordingly, 
enthalpy of a real gas is described following Eq.26, 
as a combination of ideal gas value and departure 
function, similarly to the evaluation of transport 
properties. The ideal gas enthalpy of Eq.27 is 
evaluated for nitrogen through the 7 coefficient 
NASA polynomials [14] with tabulated values for 
coefficients 𝑎1 to 𝑎6. Lastly, the caloric version [15] 
of the PR EoS is evaluated from Eqs. 28 and 29, 
where 𝑍 is the compressibility factor. 
 

       ℎ(𝑝, 𝑇) =  ℎ0(𝑇) + ∫ [
1

𝜌
+

𝑇

𝜌2 (
𝜕𝑝

𝜕𝑇
)

𝜌
]

𝑇

𝑝

𝑝0
𝑑𝑝      Eq.26 

 

ℎ0(𝑇) = (𝑎1 + 𝑎2
𝑇

2
+ 𝑎3

𝑇2

3
+ 𝑎4

𝑇3

4
+ 𝑎5

𝑇4

5
+

𝑎6

𝑇
) 𝑅𝑇 

Eq.27 

 

ℎ(𝑝,𝑇)−ℎ0(𝑇)

𝑅
=

𝑎𝛼(𝑇)
𝜕𝛼

𝜕𝑇

𝑅𝑇√8𝑏2
ln (

2𝑣𝑚+2𝑏−√8𝑏2

2𝑣𝑚+2𝑏+√8𝑏2
) − 1 + 𝑍 Eq.28 

 

                                   
𝜕𝛼

𝜕𝑇
= −

𝑘𝛼(𝑇)

𝑇𝑐𝑇𝑟
1/2                                Eq.29 

 

3. EXPERIMENTAL CONDITIONS 

The experiments [1] used for validation and 
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comparison with the numerical simulations detail 
the injection of transcritical and supercritical 
nitrogen into a quiescent nitrogen environment 
according to Tab. 2. The nitrogen pressure, p∞, is 
considered constant at 4.0 MPa, while the injection 
velocity is 5 m/s. As described in Tab. 3 the 
pressure is kept above the critical point during the 
simulations, while the injection temperature ranges 
from supercritical conditions in case A to 
transcritical in case B. Accordingly, higher density 
gradients are expected in the transcritical injection 
cases as indicated in Tab. 3. 
 
Table 2. Experimental conditions [1]. 

Case p∞ [MPa] Vinj [m/s] Tinj [K] T∞ [K] 

A4 4.0 5.0 140 298 

B4 4.0 5.0 118 298 

 
Table 3. Non-dimensional experimental conditions 
[1]. 

Case p∞/pc Tinj/Tc ρinj/ρc 

A4 1.17 1.11 3.14 

B4 1.17 0.84 12.5 

 
The injector has a diameter of 1.9 mm and the 
chamber 100 mm. A length of 250 mm of the 
combustion chamber total length of 1 m is 
considered, decreasing computational cost, while 
ensuring a ratio of length to diameter high enough 
so that the region of interest is not affected by the 
outflow boundary condition (BC). On the other hand, 
the full length of the injector, 90 mm is considered, 
to ensure a fully developed turbulent flow at its exit 
plane. In the computations, the injector and 
chamber walls are considered isothermal [3] 
according to T∞ while the injector faceplate is 

modelled as an adiabatic wall. 
 
4. NUMERICAL MODELING 

The finite volume method describes the integration 
of the system of partial differential governing 
equation into each control volume as defined by the 
grid. Each control volume is associated to a point in 
the mesh. The finite volume method has the 
advantage of automatically ensuring conservative 
discretization, which means that for two opposite 
cell-faces, the difference between both quantities is 
not dependent on the cell in which the face is 
considered. 
 
A staggered grid configuration is used to ensure that 
the well-known odd-even decoupling of pressure 
and velocity does not happen, i.e., that pressure 
and velocity do not affect each other. Velocity and 
pressure values are stored in different positions for 
which the control volumes are no longer equal. 
Ultimately, the pressure values are calculated 
directly for the cell face, and no interpolation is 
needed. This eliminates the decoupling of the 
pressure and velocity fields, along with any possible 
oscillations. Diffusive fluxes in the governing 
equations are discretized by the second-order 
central scheme, while advective fluxes follow the 
QUICK scheme [17]. In this way, the appearance of 
non-physical pressure oscillations related to the 
formulation of the EoS and the transition across the 
Widom line is mitigated through the combination of 
the stability characteristic of central schemes with 
the directional behaviour of upwinding. 
 

 
Figure 1. Grid refinement study considering the conditions of experimental test case A4. 

 
5. VALIDATION 

Fig.1 depicts a grid refinement study for 
experimental test case A4 considering three 

refinement levels: a coarse mesh with 180 000 
points, a standard one with 280 000 points and a 
refined one with 495 000 points. The figure depicts 
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the normalized axial density distribution by the 
conditions at injection denoted by the index inj and 
chamber conditions by the index ∞ as a function of 

the axial distance, x, measured from the injector exit 
plane normalized by the injector diameter d. 

 

 
Figure 2. Evaluation of error as a function of the Grid Convergence Index. 

 

In Fig.2 it is possible to observe the decrease in 
error for the grids of Fig.1 as we move from the 
coarser to the finer grid as a function of the grid 
convergence index [16]. The obtained slope 
indicates that as the grid is consecutively refined the 
error becomes smaller than second-order. An order 
of convergence of 2.512 is obtained versus the 
expected nominal rate of convergence of 3. Initial, 
boundary conditions, and the discrete 
representation of the continuous physical domain 
explain the difference between both values. 
 

6. RESULTS 

Fig. 3 depicts the comparison between the 
computations and the experimental data [1] in terms 
of density related information. In the top figure the 
non-dimensional axial density evolution of nitrogen 
is represented, defined according to Eq.30. The 
middle figure represents the full width at half 
maximum (FWHM) of density, a measure of the jet 
spreading rate, and the bottom figure represents the 
shape parameter, nρ for density, evaluated from 
Eq.31, giving a measure of the axial density shape 
profile. Axial density, FWHM of density and shape 
parameter are evaluated as a function of the non-
dimensional distance measured from the injector 
exit plane, x/d. 
 

                               𝜌∗ =
𝜌−𝜌∞

𝜌𝑖𝑛𝑗−𝜌∞
                            Eq.30 

 

                          𝑓 (
𝑟

𝑟𝑚
) = tanh2[(

𝑟

𝑟𝑚
)

𝑛

]                Eq.31 

 

The FWHM is a measure of the jet spreading, and it 

is obtained by determining half the difference 
between the maximum and minimum values. The 
shape parameter, allows to quantify the 
characteristic shape of the density profile, where 
large values correspond to top hat-shaped profiles, 
and one relating to similarity profiles. All three 
quantities are depicted as a function of the 
normalized axial distance from the injector exit 
plane concerning its diameter and are compared 
against the experimental data indicated by the open 
circles. 
 
The axial density evolution follows the experimental 
trend quite well. We can observe a decay until an 
x/d = 8. This is a consequence of the heat transfer 
in the injector, which is sufficient to trigger a pseudo-
phase change from liquid to gas-like conditions; 
hence no potential core is observed. These results 
are accompanied by a good representation of the jet 
spreading. It is interesting to note that the jet starts 
to spread at x/d = 8, where the nitrogen in the 
chamber begins to entrain the jet, matching the 
mean density’s sharper decay rate. Concerning the 
shape of the profile, we can infer that no similarity 
region is reached. 
 
As expected, differences are observed concerning 
the results of the transcritical configuration in Fig.4. 
In the first section, until an x over d of 9.8, the 
transcritical jet evolves until the critical point value 
of temperature is reached, corresponding to a value 
of normalized density of 0.95, whose rate of decay 
is not retrieved from our model. After the critical 
point is surpassed, the liquid-like supercritical 
nitrogen will initially be unaffected by the conditions 
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in the chamber. However, the large density 
gradients, let me recall that the ratio between 
injectant and chamber density is 12.5 start to play a 
predominant role, with the fluid in the chamber 
entraining in the jet. 
 
Looking into the jet spreading, we can observe a 

good prediction of jet growth, which we did not 
expect, considering that no two-phase flow model is 
present and the variations obtained in the mean 
axial density. Furthermore, concerning the previous 
case – case A4, we observe a lower jet growth per 
comparison. Lastly, no similarity profiles are 
obtained, as indicated by the shape parameter. 

 
Figure 3. Comparison between density-related numerical results and experimental results for case A4 (top: 
axial density distribution; middle: Full Width at half Maximum of density; bottom: shape parameter). Lines 

and star symbols correspond to numerical results, while open circles represent experimental data. 
 

 
Figure 4. Comparison between density-related numerical results and experimental results for case B4 (top: 
axial density distribution; middle: Full Width at half Maximum of density; bottom: shape parameter). Lines 

and star symbols correspond to numerical results, while open circles represent experimental data. 
 
7. CONCLUSIONS 

In the proposed manuscript, we detailed on the 
validity of an incompressible variable density 

approach for the modelling of high-pressure fluid 
conditions, characteristic of liquid rocket engines 
operational range. Conditions of a single species 
high-pressure nitrogen experiment were selected 
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from the literature corresponding to transcritical and 
supercritical conditions, which were analysed in 
terms of the axial density evolution, FWHM of 
density and shape of the axial parameter. 
 
A closer agreement between predictions and the 
experimental data was found for the supercritical jet 
of case A4 than for the transcritical one of case B4, 
in terms of the axial density evolution. We believe 
this to be due to the appearance of two-phase flow, 
in those conditions, which we did not account for in 
the model. Nevertheless, in terms of the transcritical 
jet spreading a similar agreement with the 
experimental data is reported for both supercritical 
and transcritical jets, which supports the hypothesis 
of incompressible but variable density approach as 
suitable to the be used in the modelling of jets at 
such conditions.  
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