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Abstract: Members of the family Arcobacteraceae are distributed widely in aquatic environments, and
some of its species have been associated with human and animal illness. However, information about
the diversity and distribution of Arcobacteraceae in different water bodies is still limited. In order
to better characterize the health risk posed by members in the family Arcobacteraceae, a systematic
review and meta-analysis-based method was used to investigate the prevalence of Arcobacteraceae
species in aquatic environments based on available data published worldwide. The database search
was performed using related keywords and considering studies up to February 2021. The pooled
prevalence in aquatic environments was 69.2%, ranging from 0.6 to 99.9%. These bacteria have a wide
geographical distribution, being found in diverse aquatic environments with the highest prevalence
found in raw sewage and wastewater treatment plants (WWTP), followed by seawater, surface water,
ground water, processing water from food processing plants and water for human consumption.
Assessing the effectiveness of treatments in WWTP in eliminating this contamination, it was found
that the wastewater treatment may not be efficient in the removal of Arcobacteraceae. Among the
analyzed Arcobacteraceae species, Al. butzleri was the most frequently found species. These results
highlight the high prevalence and distribution of Arcobacteraceae in different aquatic environments,
suggesting a risk to human health. Further, it exposes the importance of identifying and managing
the sources of contamination and taking preventive actions to reduce the burden of members of the
Arcobacteraceae family.

Keywords: aquatic environment; meta-analysis; Arcobacteraceae

1. Introduction

Proposed in 1991, the genus Arcobacter was included in the family Campylobacteracea,
which comprised two more genera, Campylobacter and Sulfurospirillum [1,2]. Over the years,
this genus has been expanded to include more species, currently comprising 34 species, of
which 30 are validly published [3,4]. Since the proposal for the creation of the Arcobacter
genus, it has been subjected to changes, and its taxonomical organization remains contro-
versial. In 2017, after a comparative genomic analysis of the class Epsilonproteobacteria, a
reclassification of the historically denominated Arcobacter genus as a new family denomi-
nated Arcobacteraceae was proposed to be included in the class Campylobacteria [5]. More
recently, through phylogenetic and genomic analyses, Pérez-Cataluña et al., (2018) have
suggested the reassessment of the taxonomy of genus in order to clarify the relationships
among its species. The authors suggested the division of the genus Arcobacter in six genera

Pathogens 2022, 11, 244. https://doi.org/10.3390/pathogens11020244 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens11020244
https://doi.org/10.3390/pathogens11020244
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0003-0712-6522
https://orcid.org/0000-0002-9540-0853
https://orcid.org/0000-0001-6360-2576
https://orcid.org/0000-0001-8308-2862
https://doi.org/10.3390/pathogens11020244
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens11020244?type=check_update&version=1


Pathogens 2022, 11, 244 2 of 15

and one candidate [6]. However, despite the reclassification in different genera having been
validated [7,8], it has been refuted by considering Arcobacter as a taxon phenotypically-,
phylogenetically- and genomically-coherent, while accepting the proposal of the family
Arcobacteraceae as reasonable [9,10]. Arcobacteraceae is a family found in diverse habitats,
environments and hosts, including animals, humans, foods and food-processing facilities,
environmental and water sources such as underground water, surface water, sewage and
sea water [11–13]. In fact, most of the species from this family have been first isolated from
aquatic environments [14]. Few species from this family have been associated with animal
and human disease, among which Aliarcobacter butzleri and Aliarcobacter cryaerophilus have
been classified by the International Commission on Microbiological Specification for Food
as a serious hazard to human [15]. Despite these two species being the most predominantly
associated with human disease, infections with Aliarcobacter skirrowii, Aliarcobacter thereius,
Malacobacter mytili and Aliarcobacter lanthieri have also been reported [16–19]. These species
can cause intestinal diseases, with symptoms of diarrhea, abdominal pain, nausea, vom-
iting and fever, but also extraintestinal diseases, such as bacteraemia and peritonitis [20].
Arcobacters are described as water and food-borne bacteria, for which contaminated food
or water are considered the probable route of transmission to human and animals [11].
Considering the wide distribution of Arcobacteraceae in environmental samples and water
sources, the consumption or the direct contact of humans and animals with these bacteria
may be seen as a relevant threat to public health. Thus, studies on Arcobacteraceae species
in water sources can be useful to determine their role as a vehicle for the transmission of
infectious agents, ecological characteristics and the potential zoonotic risk of these sam-
ples. Although studies on the prevalence of bacteria from this family in different aquatic
environments can be found, there is no comprehensive data available on its prevalence
to estimate the load. Therefore, the main aim of this work was to perform a systematic
review followed by meta-analysis in order to investigate the prevalence of Arcobacteraceae
in different water bodies based on data available worldwide.

2. Results and Discussion
2.1. Selection and Characteristics of Studies

After removing duplicate articles from the searches of the three selected databases,
613 articles were available for title and abstract screening. Of these, 117 were identified as
potentially relevant, and 70 were eligible for inclusion after full-text review (Figure 1). The
prevalence data was gathered from the articles considering the employment of molecular or
cultural methods; when both methodologies were used, the overall value of prevalence was
collected and applied for meta-analysis. When it was not possible to recover the full data
required for the analysis, the work was not considered, and in the situation of examination
of samples from different countries, the study was divided by country.

2.2. Meta-Analysis Results on Overall Prevalence

The global prevalence of Arcobacteraceae in aquatic environments was investigated
considering 70 studies (Figure 2), from which the pooled prevalence was 69.2% (0.692;
95% CI: 0.609–0.765), ranging from 0.6 to 99.9%. The heterogeneity among the studies
was found significant, as demonstrated by the values of statistics of the studies included
in this meta-analysis (I2 = 91.927%; tau2 = 1.693; p-value < 0.001). The publication bias
was assessed by applying a funnel plot generated for the outcome, considering the Trim
and Fill adjustment. The adjustment of the funnel plot to the absence of publication bias
can be achieved with the inclusion of 8 additional studies (Supplementary Figure S1).
The presence of publication bias was further assessed by using Egger’s regression test
(Supplementary Table S2). The results of this test showed that there is evidence to reject
the null hypothesis (p-value < 0.001), indicating that there is asymmetry in the funnel plot.
Consequently, apparent publication bias exists in the studies included in this meta-analysis,
which can be justified by the relevance of the publication of articles with positive results
regarding the presence of Arcobacteraceae in aquatic environment samples.
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2.3. Subgroup Analysis by Geographical Distribution

A subgroup analysis based on the country and continent of origin was taken (Table 1).
Arcobacteraceae in aquatic environments have been reported in 26 countries among the
70 included papers. However, a small number of surveys in water were conducted in
each of the 26 different countries considered, usually with a low number of samples (from
three to 780, with a median number of 24 samples). Country-level estimates showed that
the highest pooled prevalence of Arcobacteraceae can be found in Denmark, followed by
Brazil, Australia and Korea, while the lowest prevalence was observed for the Netherlands
and Cameroon.

Regarding the prevalence of Arcobacteraceae among continents, South America showed
the highest pooled prevalence with 96.2% (0.962; 95% CI: 0.350–0.999), followed by Oceania,
North America, Europe, Asia and finally Africa, with the lowest pooled prevalence value
of 19.2% (0.192; 95% CI: 0.047–0.536) (Table 1).

When analyzing prevalence data in subgroups categorized by the income level of
the countries, the highest prevalence was presented by countries with a low-income level,
at 90.0% (0.900; 95% CI: 0.145–0.998), followed by the countries of high-income level, at
79.0% (0.79; 95% CI: 0.702–0.858), of upper middle-income level, at 47.2% (0.472; 95% CI:
0.281–0.673) and lower middle, at 39.8% (0.398; 95% CI: 0.180–0.666). A high heterogeneity
(I2 > 75%) was observed in the subgroup analysis by countries, except for Czech Republic
and India, which showed a moderate heterogeneity. Additionally, the I2 statistics demon-
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strated a high heterogeneity (I2 > 75%) for all the continents. This parameter was not
calculated when less than three studies were considered.
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Figure 2. Forest plot of the meta-analysis of prevalence of Arcobacteraceae in aquatic environments (in
the references, 1 and 2 concern a division of the study by country).

Industrial pollution load, poor water and sewage treatment facilities, inadequate water
pollution control laws and rapid urbanization rates have contributed to the increasing
degradation of the aquatic environment in many developed and developing countries [21],
which in turn may potentiate the emergence of genus Arcobacteraceae. The observed scenario
regarding the prevalence according to the geographical location and level of economic
development must be analyzed carefully, given the high heterogeneity between studies.
The estimated prevalence by geographical location is clearly affected by the type of samples
analyzed in each study, as all types of aquatic samples were included in this analysis,
namely from wastewater treatment plants. Nonetheless, this analysis shows the global
distribution of members of the family Arcobacteraceae in aquatic environments worldwide.
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Furthermore, several other parameters may influence the observed trend, such as the
methods of detection used among studies and even the distribution of studies analyzed
by countries. Indeed, the highest prevalence was observed for South America and for
the low-income country included that considered only one study, with a low number of
samples analyzed (twelve and four samples, respectively). Nonetheless, in general, more
studies are globally needed to understand the prevalence of Arcobacteraceae worldwide.

Table 1. Meta-analysis of the prevalence of Arcobacteraceae according to countries, continents and
income level.

Countries/
Continent/

Income Level
n Pooled

Prevalence

95% CI
Q-Value I2 tau2 p-ValueLower

Limit
Upper
Limit

Countries

Australia 2 0.946 0.607 0.995 0.2 0 0 0.655
Belgium 2 0.647 0.15 0.95 11.215 91.084 6.069 0.001

Brazil 1 0.962 0.298 0.999 0 0 0 1
Cameroon 1 0.006 0 0.248 0 0 0 1

Canada 4 0.919 0.686 0.983 157.866 98.1 6.533 0
China 6 0.88 0.582 0.975 22.112 77.388 7.142 <0.001

Czech Republic 5 0.495 0.164 0.83 8.137 50.839 0.886 0.087
Denmark 1 0.964 0.571 0.998 0 0 0 1
Ethiopia 1 0.9 0.125 0.998 0 0 0 1
Germany 2 0.458 0.066 0.91 4.993 79.972 4.889 0.025

India 2 0.194 0.021 0.728 3.523 71.611 2.717 0.061
Iran 1 0.633 0.08 0.972 0 0 0 1
Italy 6 0.496 0.184 0.811 28.095 82.203 3.702 <0.001

Japan 1 0.235 0.091 0.486 0 0 0 1
Korea 1 0.944 0.221 0.999 0 0 0 1

Malaysia 2 0.111 0.012 0.56 0 0 0 1
Nepal 4 0.78 0.408 0.948 29.843 89.947 2.843 <0.001

Netherlands 1 0.1 0.002 0.875 0 0 0 1
Portugal 1 0.125 0.002 0.903 0 0 0 1

South Africa 1 0.333 0.023 0.914 0 0 0 1
Spain 10 0.894 0.742 0.961 63.897 85.915 1.383 <0.001

Thailand 1 0.938 0.461 0.996 0 0 0 1
Turkey 4 0.124 0.028 0.413 31.328 90.424 1.365 <0.001

UK 2 0.935 0.443 0.996 0.07 0 0 0.792
USA 9 0.857 0.669 0.947 98.424 91.872 1.361 0

Zambia 1 0.114 0.006 0.736 0 0 0 1

Continent

Africa 4 0.192 0.047 0.536 17.351 82.71 2.322 <0.001
Asia 22 0.499 0.336 0.663 149.357 85.939 1.143 0

Europe 30 0.727 0.596 0.828 193.062 84.979 1.846 0
North America 13 0.871 0.749 0.939 348.869 96.56 2.16 0

Oceania 2 0.945 0.654 0.994 0.2 0 0 0.655
South America 1 0.962 0.35 0.999 0 0 0 1

Income level

Low 1 0.9 0.145 0.998 0 0 0 1
Lower middle 8 0.398 0.18 0.666 54.123 87.067 1.211 <0.001
Upper middle 16 0.472 0.281 0.673 116.089 87.079 1.95 0

High 47 0.79 0.702 0.858 644.845 92.867 1.956 0

2.4. Subgroup Analysis by Parameters of Samples Analysis

As the volume of the sample analyzed is a parameter that may clearly influence the
prevalence of Arcobacteraceae, we further performed a subgroup analysis considering the
sample size. For that, the studies were divided into four groups, regarding the amount of
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sample analyzed (Volume of sample 0–200 mL; 201–500 mL; 1 L and >1 L). When it was
not possible to clearly define the volume of sample used in the analysis, the studies were
excluded. Through the analysis of the results, it was observed that when the volume of
the samples was up to 200 mL, there was a lower prevalence of detection of Arcobacteraceae
(58.7%), but if the volume exceeded 201 mL, the estimated prevalence increased to at least
82.0% (Table 2).

Table 2. Meta-analysis of the prevalence of Arcobacteraceae according to the volume of sample analyzed.

Volume of
Sample

(mL)
n Pooled

Prevalence

95% CI
Q-Value I2 tau2 p-ValueLower

Limit
Upper
Limit

0–200 44 0.587 0.479 0.687 445.848 90.356 1.312 <0.001
201–500 4 0.820 0.480 0.958 32.095 90.653 10.209 <0.001

1000 3 0.903 0.684 0.976 8.358 76.069 0.517 <0.001
>1000 7 0.858 0.666 0.948 72.324 91.704 4.86 <0.001

The amount of used sample is one of the factors that may influence the isolation or
detection of bacteria. When a bacterium is present in a low number in environmental
water samples, the straightforward way is to analyze larger sample volumes to increase
the recovery; however, in turbid environmental water, for example, the high levels of
background bacteria can interfere and prevent the isolation or detection of bacteria, such
as described for thermotolerant campylobacters [22]. In the case of bacteria from the
Arcobacteraceae family, the influence of the volume of sample has not been clarified, with
only a limited number of the studies examining its presence using a quantitative approach.

In addition to the volume of sample analyzed, the laboratory detection technique
used will likely influence the reported prevalence. Herein, data was divided and analyzed
considering five subgroups (Table 3). Considering the results, studies using molecular
methodologies presented a higher estimated prevalence when compared with culture tech-
niques. Furthermore, similar prevalence values were found for direct and after enrichment
isolation, or for direct or after enrichment molecular detection, when excluding the metage-
nomic studies. The use of molecular methods allows a faster and more sensitive detection
of bacteria, being able to detect both viable and non-viable cells, as well as viable but not
cultivable cells. Nonetheless, this methodology has some drawbacks as well, associated
with the fact that some molecular methodologies do not allow to distinguish dead from live
cells or to recover bacterial isolates that can be used for further studies [14,23–25]. Several
culture methods are used and the recovery of bacteria from this family can be associated
with various factors related with the sample, but also with the disparity in the sensitivity
and specificity of isolation methods [25], pointing out the need for a standard protocol for
the isolation of Arcobacteraceae species from diverse samples [11,23,25]. Also, the use of a
selective supplements may lead to lower recovery rates in environmental water samples,
due to stressed or injured cells, which may be affected by using these compounds leading
to a reduced recovery rate [25,26]. Despite this, when data from culture methodologies with
or without an enrichment step are examined, prevalence estimates are close to 43.3% (0.433;
95% CI: 0.348–0.521) and 48.7% (0.487; 95% CI: 0.274–0.705), respectively. Considering the
results related to direct molecular detection, a subgroup analysis was performed, dividing
data into detection by metagenomic sequencing methodologies and detection methods
by PCR techniques or other methods of nucleic acids amplification. When comparing
these methodologies, the highest percentage of the detection of Arcobacteraceae species
was achieved through direct sequencing of the samples (96.0%) instead of using conven-
tional PCR identification techniques (68.8%). This may be associated with the fact that
most of PCR methods are directed for some species-specific detection, which has intrinsic
limitations beyond the ones associated with the methodology used.



Pathogens 2022, 11, 244 7 of 15

Table 3. Meta-analysis of the prevalence of Arcobacteraceae according to the used detection method.

Methods n Pooled
Prevalence

95% CI
Q-Value I2 tau2 p-ValueLower

Limit
Upper
Limit

Culture—after
enrichment 37 0.433 0.348 0.521 278.038 87.052 0.779 <0.001

Culture—without
enrichment 4 0.487 0.274 0.705 9.535 68.536 0.543 0.023

Molecular after
enrichment 10 0.631 0.437 0.79 39.809 77.392 0.924 <0.001

Molecular direct 30 0.876 0.769 0.937 422.349 93.134 4.281 <0.001
—metagenomic

sequencing 16 0.96 0.891 0.986 7.954 0 0 0.926

—PCR and other
amplification

methods
14 0.688 0.438 0.862 277.222 95.311 4.058 <0.001

Considering the diversity of protocols used for the isolation, detection and identifica-
tion of Arcobacteraceae members, these data must be interpreted with caution.

2.5. Subgroup Analysis by Aquatic Source

A subgroup analysis based on the type of sample examined was performed, taking into
consideration the wastewater treatment plants (WWTP) at three distinct stages: influent,
treatment at any point and effluent. The results showed that the pooled prevalence of
samples collected from raw sewage and WWTP were the ones with the highest prevalence
values, followed by samples of seawater, surface water, ground water, processing water
from food processing plants and, lastly, water classified as for human consumption with
a prevalence of 3.2% (Table 4). The high values of pooled prevalence found in seawater
and surface water may be a concern due to its potential recreational use, but also due to
its possible influence on the food chain. Further, surface and groundwater are usually
used as a water source in developing countries for multiple purposes, increasing the
potential health risk. In turn, the lower values of the estimated prevalence of Arcobacteraceae
species in processing water and drinking water may be associated with the potential
inactivation effect of these bacteria by the chlorination process of the water [27], which may
be ineffective [28,29].

Table 4. Meta-analysis of the prevalence of Arcobacteraceae according to sample sources.

Sources Samples n Pooled
Prevalence

95% CI
Q-Value I2 tau2 p-ValueLower

Limit
Upper
Limit

Seawater 11 0.780 0.600 0.893 93.283 89.280 1.453 <0.001
Surface water 28 0.645 0.485 0.778 368.525 92.673 2.406 <0.001
Ground water 7 0.396 0.198 0.636 31.59 81.007 1.176 <0.001
Raw sewage 20 0.906 0.786 0.962 120.608 84.246 3.325 <0.001

Processing Water 9 0.343 0.141 0.624 33.624 76.207 1.942 <0.001
Drinking water 7 0.032 0.014 0.069 2.791 0 0 0.835

WWTP

Influent WWTP
Treatment WWTP

11 0.964 0.93 0.982 3.556 0 0 0.965
7 0.931 0.752 0.984 24.559 75.569 2.703 <0.001

Effluent WWTP 9 0.876 0.774 0.936 12.725 37.13 0.366 0.122

The presence of Arcobacteraceae in environmental waters indicates that it can survive
and persist in those waters, which points to their potential to be waterborne pathogens.
Furthermore, water can act as a contamination vehicle for these species, namely in the food
chain [3].

Some studies suggest that fecal contamination may be responsible for introducing
these bacteria into the water, being the presence of arcobacters correlated with a high level
of fecal pollution [30]. In fact, among the outbreaks associated with arcobacters, some
have suggested that the consumed water could have been contaminated by sewage [31,32].
However, the presence of high recovery rates of Arcobacteraceae in sea and surface waters
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may be due not only to the proximity of possible sources of fecal pollution, but also because
several species have already been described as native to marine environments. In fact,
many waterborne species of this family are found with high frequency in seawater or
seafood from coastal waters [3,33].

The highest prevalence in this meta-analysis was found in the wastewater entering
wastewater treatment plants (WWTP), which is in line with the reported prevalence in
raw sewage. Thus, to assess the effectiveness of treatments in WWTP in eliminating this
contamination, we followed with a subgroup analysis. Despite that a small decrease
in the pooled prevalence of Arcobacteraceae through the WWTP was observed, a high
prevalence continues to be observed, which could be seen as a potential health concern.
Some authors suggest that these species are well suited to survive in adverse conditions,
such as those in wastewater treatment plants, where their discharge into the environment
is classified as a global problem [34]. Kristensen et al., 2020 described that the high
relative abundance of arcobacters in the effluent may be associated with the removal of
influent microorganisms in biological WWTPs. In the case of arcobacters, a large fraction of
cells dispersed in the water phase prevails due to the reduced ability of these bacteria to
flocculate and attach to the activated sludge flocs, preventing their effective removal [34].
This points to the need to reevaluate the treatment processes adopted or to even develop
more effective methodologies to eliminate or potentially minimize the discharge of this
emerging pathogen.

2.6. Subgroup Analysis by Arcobacteraceae Species

Considering that species from Arcobacteraceae family can be seen as waterborne
pathogens, but also as naturally found in these environments, we proceeded with a sub-
group analysis considering the different species. In this subgroup analysis, when a study
presented prevalence data for each species determined by culture and molecular tech-
niques, the global value or the highest value was collected for analysis. When evaluating
the prevalence of the different species identified in the several categories of water samples,
considering the ones that were identified in at least three studies, Al. butzleri was the species
with the highest overall prevalence (58.3%), followed by Al. cryaerophilus (42.5%), Mala-
ciobacter mytili (16.2%), Al. thereius (15.4%), Pseudarcobacter cloacae (14.8%), Pseudarcobacter
defluvii (14.7%), Al. skirrowii (12.7%) and Arcobacter nitrofigilis (8.8%) (Table 5). Al. butzleri
presented the highest pooled prevalence in most different water categories revealing the
highest prevalence in seven of nine different water types, followed by Al. cryaerophilus, two
of the species most associated with human diseases.

Çelik and Ünver (2005) suggested that Al. butzleri may present a stronger viability than
other species in water, while presenting a competitive inhibitory effect in the population
dynamic with other species [35]. Nonetheless, when analyzing these results, it should be
considered that isolation and identification methods are needed for the analysis of the
species considered, since the currently used methodologies may lead to an underestimation
of the presence of some Arcobacteraceae species throughout the aquatic environment.

This systematic review and meta-analysis on the prevalence of species from the Arcobac-
teraceae family provides a comprehensive analysis on its occurrence and wide distribution
worldwide. The use of meta-analytic techniques to assess the prevalence of pathogens in
the environment, while allowing to overcome some flaws of the traditional review, also
has the advantage of considering the relative weight with which each individual study
contributes to the final result. The lack of defined criteria for carrying out the systematic re-
view and meta-analysis outside clinical settings represents, however, one of its weaknesses.
In addition, this study also includes some limitations: (a) there was a lack of studies in
some regions across the world, (b) the confounding effect of using samples from different
aquatic environments in the global estimate of prevalence, (c) the low number of samples
analyzed in some studies or (d) the diversity of the detection and identification methods
with different sensitivities and specificities.
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Table 5. Meta-analysis of the prevalence of Arcobacteraceae according to the sources of samples and species.

Species

Drinking Water,
Animals

Drinking Water,
Humans Surface Water Seawater Processing Water Raw Sewage Influent WWTP Treatment WWTP Efluent WWTP Overall

n
Pooled

Prevalence
(95% CI)

n
Pooled

Prevalence
(95% CI)

n
Pooled

Prevalence
(95% CI)

n
Pooled

Prevalence
(95% CI)

n
Pooled

Prevalence
(95% CI)

n
Pooled

Prevalence
(95% CI)

n
Pooled

Prevalence
(95% CI)

n
Pooled

Prevalence
(95% CI)

n
Pooled

Prevalence
(95% CI)

n
Pooled

Prevalence
(95% CI)

Aliarcobacter butzleri 3 0.090
(0.019–0.342) 2 0.029

(0.004–0.195) 18 0.503
(0.347–0.659) 5 0.704

(0.389–0.898) 3 0.090
(0.019–0.342) 13 0.696

(0.502–0.838) 4 0.954
(0.776–0.992) 3 0.832

(0.485–0.963) 3 0.830
(0.49–0.961) 56 0.583

(0.483–0.675)
Aliarcobacter skirrowii 0
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(0.007–0.50) 0
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Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 
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Treatment 

WWTP 

Efluent 

WWTP 
Overall 
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Pooled 
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(95% CI) 
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Pooled 

Prevalence 

(95% CI) 
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Pooled 

Prevalence 

(95% CI) 
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Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 
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 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
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0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
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0.148  

(0.072–0.281) 
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defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 
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(0.049–0.377) 
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(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
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0.147  

(0.078–0.261) 

4 0.465
(0.120–0.847) 4 0.207

(0.049–0.570) 2 0.089
(0.01–0.479) 9 0.500

(0.251–0.749) 3 0.524
(0.135–0.885) 4 0.770

(0.369–0.950) 2 0.796
(0.237–0.98) 30 0.425

(0.285–0.579)
Aliarcobacter thereius 0
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(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
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(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
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0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 
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(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 
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0.071 (0.004–
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56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

1 0.042
(0.003–0.425) 0
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Table 5. Meta-analysis of the prevalence of Arcobacteraceae according to the sources of samples and species. 0 
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

2 0.108
(0.027–0.346) 1 0.167

(0.023–0.631) 3 0.071
(0.014–0.288) 3 0.071

(0.014–0.288) 10 0.088
(0.041–0.178)

Malaciobacter mytili 0
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(95% CI) 
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(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

0
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(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–
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30 

0.425  
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(0.023–0.631) 
1 
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(0.023–0.631) 
3 
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(0.055–0.409) 
1 

0.071 (0.004–
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6 

0.154  
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3 
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0.207  
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(0.013–0.439) 
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1 

0.333  

(0.084–0.732) 
3 
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(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 
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(0.072–0.281) 
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3 
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(0.055–0.409) 
2 
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0.530) 
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0.090 
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(0.004–0.195) 
18 

0.503  
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(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  
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1 
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8 
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0.50) 
0 ̵̵̵̵̵̶- 4 
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(0.120–0.847) 
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0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

2 0.207
(0.062–0.506) 0
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 
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0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 
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(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

1 0.033
(0.001–0.475) 0
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(95% CI) 
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Prevalence 

(95% CI) 
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Pooled 
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(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

0
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4 
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3 
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(0.485–0.963) 
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(0.597–0.998) 
1 

0.042  
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1 
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(0.031–0.386) 
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(0.014–0.288) 
1 

0.071 (0.004–
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8 
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1 
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3 
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(0.055–0.409) 
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0.530) 
9 

0.147  

(0.078–0.261) 

0

 
 

 

 
Pathogens 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/pathogens 

 

Table 5. Meta-analysis of the prevalence of Arcobacteraceae according to the sources of samples and species. 0 

̵̵̵̵̵̶-: Corresponds to no value. 1 

Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 
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1 
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8 
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(0.120–0.847) 
4 

0.207  
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2 

0.796 (0.237–
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0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

3 0.162
(0.052–0.405)

Pseudarcobactercloacae 0
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

0
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

0
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

1 0.091
(0.013–0.439)
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

2 0.197
(0.054–0.512) 1 0.333

(0.084–0.732) 3 0.071
(0.014–0.288) 1 0.071

(0.004–0.577) 8 0.148
(0.072–0.281)

Pseudarcobacter defluvii 0
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

0
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

0
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

1 0.042
(0.003–0.425) 0
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Species 

Drinking 

Water, 

Animals 

Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

2 0.150
(0.049–0.377) 1 0.167

(0.023–0.631) 3 0.167
(0.055–0.409) 2 0.160

(0.031–0.530) 9 0.147
(0.078–0.261)
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Drinking 

Water, 
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Drinking 

Water, 

Humans 

Surface Water Seawater 
Processing 

Water 
Raw Sewage 

Influent 

WWTP 

Treatment 

WWTP 

Efluent 

WWTP 
Overall 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

n 

Pooled 

Prevalence 

(95% CI) 

Aliarcobacter 

butzleri 
3 

0.090 

(0.019–0.342) 
2 

0.029 

(0.004–0.195) 
18 

0.503  

(0.347–0.659) 
5 

0.704  

(0.389–0.898) 
3 

0.090  

(0.019–0.342) 
13 

0.696  

(0.502–0.838) 
4 

0.954  

(0.776–0.992) 
3 

0.832  

(0.485–0.963) 
3 

0.830 (0.49–

0.961) 
56 

0.583  

(0.483–0.675) 

Aliarcobacter 

skirrowii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.962  

(0.597–0.998) 
1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.062–0.366) 
1 

0.125  

(0.031–0.386) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.127  

(0.057–0.258) 

Aliarcobacter 

cryaerophilus 
2 

0.079 (0.007–

0.50) 
0 ̵̵̵̵̵̶- 4 

0.465  

(0.120–0.847) 
4 

0.207  

(0.049–0.570) 
2 

0.089  (0.01–

0.479) 
9 

0.500  

(0.251–0.749) 
3 

0.524  

(0.135–0.885) 
4 

0.770  

(0.369–0.950) 
2 

0.796 (0.237–

0.98) 
30 

0.425  

(0.285–0.579) 

Aliarcobacter 

thereius 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.167  

(0.023–0.631) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
1 

0.071 (0.004–

0.577) 
6 

0.154  

(0.068–0.311) 

Arcobacter 

nitrofigilis 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.108  

(0.027–0.346) 
1 

0.167  

(0.023–0.631) 
3 

0.071  

(0.014–0.288) 
3 

0.071 (0.014–

0.288) 
10 

0.088  

(0.041–0.178) 

Malaciobacter 

mytili 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 2 

0.207  

(0.062–0.506) 
0 ̵̵̵̵̵̶- 1 

0.033  

(0.001–0.475) 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 3 

0.162  

(0.052–0.405) 

Pseudarcobacter 

cloacae 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.091  

(0.013–0.439) 
 ̵̵̵̵̵̶- 2 

0.197  

(0.054–0.512) 
1 

0.333  

(0.084–0.732) 
3 

0.071  

(0.014–0.288) 
1 

0.071 (0.004–

0.577) 
8 

0.148  

(0.072–0.281) 

Pseudarcobacter 

defluvii 
0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 0 ̵̵̵̵̵̶- 1 

0.042  

(0.003–0.425) 
0 ̵̵̵̵̵̶- 2 

0.150  

(0.049–0.377) 
1 

0.167  

(0.023–0.631) 
3 

0.167  

(0.055–0.409) 
2 

0.160 (0.031–

0.530) 
9 

0.147  

(0.078–0.261) 

: Corresponds to no value.
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Despite this, the results confirm that the species from this family have a wide geo-
graphical distribution, being present on diverse aquatic environments. The presence of the
pathogenic species in these environments represents a public health risk, particularly when
accessible to animals and humans. Thus, this study demonstrates the need for the monitor-
ing and surveillance of water quality and safety, considering the presence of Arcobacteraceae
species, as well as to assess to microbial risk. Further, some concern can be associated with
Arcobacteraceae in wastewater plants effluents, highlighting the need for rapid action and
review of bacterial elimination processes of this family, as effluents may eventually impact
the receiving water body quality and in turn contaminate animals and food products that
are easily accessible to humans.

3. Materials and Methods
3.1. Search Strategy and Study Selection

A comprehensive systematic literature search from databases ISI Web of Science,
PubMed and Scopus were accessed for studies in February 2021 using the following
search strategy: Arcobacter AND (Water OR groundwater OR seawater OR influent OR
Effluent OR ambient OR sewage OR wastewater). This systematic review was performed
following the PRISMA protocol. The recovered records were exported to Rayyan QCRI
(https://rayyan.qcri.org/welcome) for the initial screening. Thereafter, all the studies from
the search were independently analyzed by the title, abstract and selected full-text by two
reviewers, and a third reviewer arbitrated any divergence. Full-text articles published
or in press were collected, while reviews, conference abstracts and chapter books were
excluded. Only studies in English, Portuguese and Spanish were accessed for inclusion.
Articles were considered for full-text review if (1) the full-text article could be retrieved,
(2) it reported primary data or (3) the article reported isolation by culture or detection by
molecular techniques of Arcobacteraceae or their species in water samples.

3.2. Data Extraction and Statistical Analyses

After a careful analysis, the following data were extracted and summarized from each
included article: first author’s last name, year of publication, country, continent, income
level, total analyzed samples, source of the samples, detection technique, volume of wa-
ter used for analysis, species identified/detected and prevalence or number of positive
samples. Meta-analysis of the prevalence of Arcobacteraceae was performed using Compre-
hensive Meta-Analysis Software v.2.0 (https://www.meta-analysis.com/). Forest plots
were generated to show the study-specific effect sizes, with the pooled prevalence (PP) con-
sidered with a 95% confidence interval (CI), using the random-effects model. Heterogeneity
among studies was measured by applying the I2 statistics. Values close to 0% indicate no
heterogeneity, whilst values close to 25%, 50% and 75% correspond to a low, moderate and
high heterogeneity, respectively. p-values correspond to the heterogeneities between studies
from a Chi-squared test of the null hypothesis that there is no heterogeneity. The potential
impact of publication bias on the present meta-analysis was assessed by three different
analyses: funnel plot [36,37]; Egger’s regression test [38,39] and Duval and Tweedie’s Trim
and Fill approach [40,41]. This allowed us to obtain the best estimate of the unbiased
pooled effect size, creating a funnel plot including both the observed studies (shown as
blue circles) and the necessary imputed studies (shown as red circles) to obtain the absence
of bias. A sensitivity analysis was performed by removing each study at a time to evaluate
the stability of the results. Subgroup analysis was performed on the outcome under the
study per countries, continents (Turkey was included in Asia), income level, volume of
analyzed water, laboratory detection technique, Arcobacteraceae species and water types.

https://rayyan.qcri.org/welcome
https://www.meta-analysis.com/
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10.3390/pathogens11020244/s1, Figure S1: Funnel plot of standard error by logit event rate (publica-
tion bias tests) for Arcobacteraceae prevalence in aquatic environments, Table S1: Main characteristics
of the 70 included studies in this meta-analysis. and Table S2: Assessment of publication bias for the
prevalence of Arcobacteraceae in aquatic environments using Egger’s regression test [42–100].
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