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Abstract We prove that any C1-stable weakly shadowable volume-preserving diffeomorphism de-

fined on a compact manifold displays a dominated splitting E ⊕ F . Moreover, both E and F are

volume-hyperbolic. Finally, we prove the version of this result for divergence-free vector fields. As a

consequence, in low dimensions, we obtain global hyperbolicity.

Keywords Weak shadowing, dominated splitting, hyperbolicity

MR(2010) Subject Classification 37C50, 37D30, 37C10

1 Introduction

1.1 Shadowing in Dynamical Systems

It is a very rich field in smooth dynamics the relation between the stability of a certain property
(with respect to a given topology) and some hyperbolic behavior on the tangent action of the
dynamical system. Structural stability, shadowing-type properties, robust transitivity, stable
ergodicity, topological stability, expansiveness, specification, Lp-shadowing, inverse shadowing,
weak shadowing, are some successful examples of that (see e.g. [1, 3, 6, 16–21, 35], and the
references therein). Here, we are interested in the weak shadowing property.

The shadowing in dynamics aims, in brief terms, to obtain shadowing of approximate tra-
jectories in a given dynamical system by true orbits of the system.

The weak shadowing property is a relaxed form of shadowing and, informally speaking,
allows the pseudo-orbits to be approximated by true orbits if one forgets the time paramete-
rization and consider only the distance between the orbit and the pseudo-orbit as two sets in
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the phase space. We intend, in this paper, to study the weak shadowing property for volume-
preserving diffeomorphisms and also for volume-preserving flows.

There are limitations about the information we can capture from a fixed dynamical system
that displays some shadowing-type property, since another system arbitrarily close to it may
be absent of that property. Thence, it is of great utility and natural to consider that a selected
model can be slightly perturbed in order to obtain the same property — the stable weakly
shadowable systems. However, it is worth to mention that stability in the volume-preserving
setting only allows us to consider perturbations which preserves the volume-form and not evolves
in the broader space of dissipative diffeomorphisms/flows. So, the results already proved for
dissipative diffeomorphisms/flows are not applicable to our conservative context.

In [31], it is proved that if a diffeomorphism defined in a surface has the C1-stable weak
shadowing property, then it satisfies the axiom A and the no-cycle condition. However, the
converse does not hold (see [23]). In [24], we can find more details on the relation between
C1-stability of weakly shadowing systems and structural stability in surfaces. In [14], the
weak shadowing property is proved to be generic (in the C1-sense) for diffeomorphisms in
closed manifolds (this results is also valid in the volume-preserving context cf. [14, §2.5]).
In the two-dimensional volume-preserving case (thus symplectic because of the low dimension
assumption), C1-weakly shadowing implies hyperbolicity (see [20]), and C1-weakly shadowable
symplectomorphisms and Hamiltonians are partially hyperbolic (see [6, 7]). In this paper, we
generalize the results in [6, 7, 19, 20, 34] proving that any C1-stable weakly shadowable volume-
preserving diffeomorphism displays a dominated splitting E ⊕ F (Theorem 1). Moreover, both
E and F are volume-hyperbolic. With respect to the flow setting, the literature is absent on
exploring this type of shadowing. We begin to develop this concept proving similar results
(Theorem 2).

1.2 Basic Definitions for the Discrete-time Case

Let M be a d-dimensional (d ≥ 2) Riemannian closed and connected manifold and let d(·, ·)
denote the distance on M inherited by the Riemannian structure. We endow M with a volume-
form and let μ denote the Lebesgue measure related to it. Actually, in [22] we find an atlas
formed by a finite collection of smooth volume-preserving charts {ϕj : R

d → Uj ⊂ M}k
i=1, where

Uj are open sets and each ϕj pullbacks the volume on R
d into the volume-form. Let Diff 1

μ (M)
denote the set of volume-preserving diffeomorphisms defined on M , i.e., those diffeomorphisms
such that μ(B) = μ(f(B)) for any μ-measurable subset B. Consider this space endowed
with the C1 Whitney topology. The Riemannian inner-product induces a norm ‖ · ‖ on the
tangent bundle TxM . We will use the usual uniform norm of a bounded linear map A given by
‖A‖ = sup‖v‖=1 ‖A · v‖.

Fix some diffeomorphism f ∈ Diff 1
μ (M). Given δ > 0, we say that a sequence of points

{xi}i∈Z ⊂ M is a δ-pseudo-orbit of f if d(f(xi), xi+1) < δ for all i ∈ Z. We say that a sequence
of points {xi}i∈Z ⊂ M is weakly ε-shadowed by the f-orbit of x if {xi}i∈Z ⊂ Bε({

⋃
i∈Z

f i(x)})
where, for A ⊂ M , we have Bε(A) := {y ∈ M : d(y, A) < ε}. The diffeomorphism f ∈ Diff 1

μ (M)
has the weak shadowing property if for any ε > 0, there exists δ > 0 such that, any δ-pseudo
orbit is weakly ε-shadowed by the f -orbit of some x ∈ M . We say that f is C1-stable weakly
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shadowing if there is a C1-neighborhood U(f)∩Diff 1
μ (M) of f , such that any g ∈ U(f) has the

weak shadowing property.

A diffeomorphism f is said to be transitive if there is an f -dense orbit in M . We observe that
a transitive diffeomorphism has the weakly shadowing property. Thus, C1-stable transitivity
implies the C1-stable shadowing property.

Given an f -invariant set Λ ⊆ M , we say that Λ is uniformly hyperbolic if the tangent vector
bundle over Λ splits into two Df -invariant subbundles TΛM = Eu⊕Es such that ‖Df |Es‖ ≤ 1

2

and ‖Df−1|Eu‖ ≤ 1
2 . When Λ = M , we say that f is Anosov. Clearly, there are lots of Anosov

diffeomorphisms which are not volume-preserving. We say that an f -invariant set Λ ⊆ M admits
an �-dominated splitting if there exists a continuous decomposition of the tangent bundle TΛM

into Df -invariant subbundles E and F such that

‖Df �(x)|F‖ ‖(Df �(x)|E)−1‖ ≤ 1
2
,

in this case we say E �� F (i.e. E �-dominates F ).

Finally, we say that an f -invariant set Λ ⊆ M is uniformly partially hyperbolic, if we have
a splitting Es ⊕ Ec ⊕ Eu of TΛM such that Es is uniformly contracting, Eu is uniformly
expanding, Ec � Es and Eu � Ec. When M is partially hyperbolic for f we say that f is a
partially hyperbolic diffeomorphism.

We say that the Df -invariant splitting E ⊕ C ⊕ F of TΛM where C � E and F � E is
volume partially hyperbolic if the volume is uniformly contracted on the bundle E and expanded
on the bundle F , i.e., there exists � ∈ N such that | detDf �(x)|E | < 1

2 and | detDf−�(x)|F | < 1
2 .

When C is trivial, we say that E ⊕ F is volume-hyperbolic.

It is proved in [8, Proposition 0.5] that, in the volume-preserving context, the existence of
a dominated splitting implies volume-hyperbolicity.

A periodic orbit for a diffeomorphism f is a point p ∈ M such that fπ(p) = p, where π

is the least positive integer satisfying the equality. Given a periodic orbit p of period π of a
diffeomorphism f we say that p:

• is hyperbolic if Dfπ(p) has no norm one eigenvalues;

• has trivial real spectrum if Dfπ(p), has only real eigenvalues of norm one (thus equal to
−1 or 1) and there exists 0 ≤ k ≤ d such that 1 has multiplicity k and −1 has multiplicity
d − k.

Clearly, if x is an f -periodic point with period π and with trivial real spectrum, we can split
TxM = E+

x ⊕E−
x such that Dfπ(x) : E+

x → E+
x is the identity map and Dfπ(x) : E−

x → E−
x is

the minus identity map.

1.3 Basic Definitions for the Continuous-time Case

We present the basic set up for the context of flows. In this setting we assume that the dimension
of M is greater than two. Given a Cr (r ≥ 1) vector field X : M → TM , the solution of the
equation x′ = X(x) gives rise to a Cr flow, Xt; by the other side given a Cr flow, we can define
a Cr−1 vector field by considering X(x) = d

dtX
t(x)|t=0. We say that X is divergence-free if its

divergence is equal to zero. Note that, by Liouville formula, a flow Xt is volume-preserving if
and only if the corresponding vector field, X, is divergence-free.
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Let Xr
μ(M) denote the space of Cr divergence-free vector fields and we consider the usual

Cr Whitney topology on this space.
For δ > 0, we say that

{(xi, ti) : xi ∈ M, ti ≥ 1}i∈Z

is a (δ, 1)-pseudo orbit of X if d(Xti(xi), xi+1) < δ for all i ∈ Z.
We say that X has the weak shadowing property if, for every ε > 0, there is δ > 0 such

that for any (δ, 1)-pseudo orbit {(xi, ti)}i∈Z, there is a point x ∈ M such that {xi}i∈Z ⊂
Bε({

⋃
t∈R

Xt(x)}).
We say that X ∈ X1

μ(M) is C1-stable weakly shadowable if any Y ∈ X1
μ(M) sufficiently

C1-close to X is also weakly shadowable.
Given a vector field X, we denote by Sing(X) the set of singularities of X, i.e. those points

x ∈ M such that X(x) = �0. Let R := M \ Sing(X) be the set of regular points. Given x ∈ R,
we consider its normal bundle Nx = X(x)⊥ ⊂ TxM and define the associated linear Poincaré
flow by P t

X(x) := ΠXt(x) ◦ DXt(x), where ΠXt(x) : TXt(x)M → NXt(x) is the projection along
the direction of X(Xt(x)). In the same way as we did in the discrete-time case, we define
uniform hyperbolicity, dominated splitting, partial hyperbolicity and volume-hyperbolicity for
the linear Poincaré flow P t

X , in subsets of R and related to subbundles of the normal bundle
N . We also observe that, when Λ ⊆ M is compact, the (partial) hyperbolicity of the tangent
map DXt on Λ implies the (partial) hyperbolicity for the linear Poincaré flow of X on Λ (see
[15, Proposition 1.1]).

Given a closed orbit p of period π of a flow Xt, we say that p:
• is hyperbolic if P π

X(p) has no norm one eigenvalues;
• has trivial real spectrum if P π

X(p), has only real eigenvalues of norm one (thus equal to
−1 or 1) and there exists 0 ≤ k ≤ d − 1 such that 1 has multiplicity k and −1 has multiplicity
d − 1 − k.

If x is an Xt-periodic point with period π and with trivial real spectrum, we can split
Nx = N+

x ⊕ N−
x such that P π

X(x) : N+
x → N+

x is the identity map and P π
X(x) : N−

x → N−
x is

the minus identity map.

1.4 Statement of the Results and Some Applications

As we already said, here we begin by developing the generalized versions of the results in
[6, 7, 19, 20, 34]. Our first result is the following.

Theorem 1 Let f ∈ Diff 1
μ (M) be a C1-stable weakly shadowing diffeomorphism. Then, M

admits a volume-hyperbolic dominated splitting.

Notice that f is not necessarily C1-robustly transitive and this is exactly the interesting
case because otherwise we could use the arguments on robust transitivity developed in [8, §7].
We observe that Bonatti and Viana [11, §6.2] build an open subset of partially hyperbolic (but
not Anosov) transitive diffeomorphisms on 3-dimensional manifolds. Since their construction
can be made conservative, we observe that Theorem 1 is optimal for dimension d ≥ 3.

We observe that a quite complete construction of this type of behavior, in the volume-
preserving context, was done in [27]. Actually, Rodriguez-Hertz et al. [27] build volume-
preserving blenders which are a prototype example of robust transitive dynamics. We also
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observe that these results were used to prove recent important results in the volume-preserving
setting; namely, Catalan [13] proved that in the complement of Anosov (volume-preserving)
diffeomorphisms we have densely robust heterodimensional cycles and Rodriguez-Hertz [28]
proved a new criterium for ergodicity among partial hyperbolic diffeomorphisms with central
direction with dimension two, that is, stable ergodic diffeomorphisms are C1-dense among
volume-preserving partially hyperbolic diffeomorphisms with two-dimensional center bundle.

As we already said, by [8, Proposition 0.5], we obtain that a dominated splitting TM = E⊕F

with F � E implies that E is uniformly volume hyperbolic (contracting) and F is uniformly
volume hyperbolic (expanding). Thus, Theorem 1 implies the result in [20].

With respect to the three-dimensional case, Theorem 1 implies that, in the presence of C1-
stability of the weak shadowing property we get that TM = E ⊕ F has a domination F � E.
Since the dimension of the splitting is constant (see [9]), one of the subbundles E or F are one-
dimensional and thus uniformly hyperbolic. In fact, the diffeomorphism is coarsely partially
hyperbolic (cf. [29, p. 122]). Rodriguez-Hertz [29, Corollary 1.7] presented sufficient conditions
to have a (proper) partial hyperbolic volume-preserving diffeomorphism, i.e., a splitting into
three one-dimensional sub bundles Eu⊕Ec⊕Es with Eu and Es uniform hyperbolic expanding
and contracting, respectively.

Finally, we present the corresponding versions for the flow context.

Theorem 2 Let X ∈ X1
μ(M) be a C1-stable weakly shadowing vector field. Then, M admits

a volume-hyperbolic dominated splitting for the linear Poincaré flow.

As an immediate consequence of previous result and [15, Proposition 1.1], we obtain

Corollary 1.1 Let X ∈ X1
μ(M) be a C1-stable weakly shadowing vector field and M is three-

dimensional. Then X is an Anosov flow.

We observe that, as we already mention C1-stability of transitivity implies C1-stability of
weak shadowing. Thence, Theorem 2 gives a different way of proving the main result in [3].
We notice that Ferreira (see [18]) using the C1-stability of shadowing was able to obtain global
hyperbolicity for divergence-free vector fields.

2 Discrete-time Case

2.1 Linear Conservative Cocycles over Large Periodic Systems

To prove that any volume-preserving diffeomorphism f which is C1-stable weakly shadowing
does not contains trivial real spectrum periodic orbits, we will use the following very useful
volume-preserving version of Franks’ lemma (see the dissipative version in [19, Lemma 3.1])
that can be established following the volume-preserving arguments in [8, Proposition 7.4].

Lemma 2.1 Let f ∈ Diff 1
μ (M) and a C1-neighborhood of f , U(f) be given. Then there exist

δ0 > 0 and U0(f) such that, for any g ∈ U0(f), a finite set {xi}l
i=1, a neighborhood U of {xi}l

i=1

and volume-preserving linear maps Li : Txi
M → Tg(xi)M (1 ≤ i ≤ l) satisfying the inequality

||Li − Dg(xi)|| < δ0 for all 1 ≤ i ≤ l, there exist ε0 > 0 and g̃ ∈ U(f) such that

a) g̃(x) = g(x) if x ∈ M\U and

b) for all 1 ≤ i ≤ l we have g̃(x) = ϕg(xi) ◦ Li ◦ ϕ−1
xi

(x) if x ∈ B(xi, ε0).
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Item b) above implies that g̃(x) = g(x) if x ∈ {xi}l
i=1 and Dg̃(xi) is conjugated to Li via

the tangent maps of the local volume-preserving charts.

We start this section by recalling some basic definitions introduced in the paper [10, §2.3].
Let f ∈ Diff 1

μ (M) and consider a set Σ ⊆ M which is a countable union of periodic orbits of
f . Moreover, we assume that the number of orbits of Σ with period equal to τ is finite for
any τ > 0. A large periods system (LPS) is a four-tuple A = (Σ, f, TΣ, A), where TΣ is the
restriction to Σ of the tangent bundle over M and A : Σ → SL(n, R) is a continuous map, where
SL(n, R) stands for the special linear (n2 − 1)-dimensional Lie group of n × n matrices with
real entries. In fact, for x ∈ Σ, Ax is a linear map from TxM to Tf(x)M and we identify these
spaces with R

n. The quintessential example of an LPS, and associated with the dynamics of
the volume-preserving diffeomorphism, is obtained by taking the so-called dynamical cocycle
given by Ax = Df(x). Given an LPS A = (Σ, f, TΣ, A), the cocycle identity associated with it
is given by

Am+n
x = Am

fn(x) · An
x , (2.1)

where x ∈ Σ and m, n ∈ N. The LPS A = (Σ, f, TΣ, A) is bounded if there exists K > 0
such that ‖Ax‖ ≤ K for all x ∈ Σ. Since the LPS A evolves in SL(n, R), we say that it is
conservative, in fact, | detAx| = 1, ∀x ∈ Σ.

An LPS B = (Σ, f, TΣ, B) is a conservative perturbation of a bounded LPS A if, for every
ε > 0, ‖Ax−Bx‖ < ε, up to points x belonging to a finite number of orbits, and B is conservative.
A bounded LPS A is strictly without dominated decomposition if the only invariant subsets of
Σ that admit a dominated splitting for A are finite sets.

Let us now present a key result about LPS which is the conservative version of [10, Theo-
rem 2.2].

Theorem 2.2 Let A be a conservative and bounded LPS. If A is strictly without dominated
decomposition, then there exist a conservative perturbation B of A and an infinite set Σ′ ⊂ Σ
which is f-invariant such that for every x ∈ Σ′ the linear map B

π(x)
x has all the eigenvalues

real and with the same modulus (thus equal to 1 or to −1).

As in [10], we can also obtain the following more user friendly result:

Corollary 2.3 Given any K > 0 and ε > 0, there exist π0, � ∈ N such that, for any conser-
vative and K-bounded LPS A, over a periodic orbit x with period π(x) > π0, we have either

(i) that A has an �-dominated splitting along the orbit of x or else

(ii) there exists an ε-C0-perturbation B of A, such that B
π(x)
x has all eigenvalues equal to 1

and −1.

All the perturbations which are used in the proof of [10, Theorem 2.2] are rotations and
directional homotheties, i.e., diagonal linear maps for a fixed basis. They are made in the linear
cocycle setting which evolves in the general linear group GL(n, R), and clearly can also be done
in SL(n, R) with some additional care. Then, Lemma 2.1 allows to realize them as perturbations
of a fixed volume-preserving diffeomorphism. Therefore, the proof given by Bonatti et al. [10]
can be carried on to our volume-preserving setting without additional obstructions. As a
conclusion, we obtain the following crucial result.
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Lemma 2.4 Let f ∈ Diff 1
μ (M) and fix ε0 > 0. There exist π0, � ∈ N such that, for any

periodic orbit x with period π(x) > π0, we have either
(i) that f has an �-dominated splitting along the orbit of x or else
(ii) for any neighborhood U of

⋃
n fn(x), there exists an ε-C1-perturbation g of f , coinciding

with f outside U and on
⋃

n fn(x), and such that Dgπ(x)(x) has all eigenvalues equal to 1 and
−1.

Since the fact that previous result is very useful, we can improve it in order to be used in
the sequel.

Remark 2.5 Let Dgπ(x)(x) : TxM → TxM be the linear map given in Lemma 2.4 (ii). We can
assume that x has trivial real spectrum. Actually, we can obtain a proof of this by considering
[10, Proposition 3.7] where we can obtain h ∈ Diff 1

μ (M) arbitrarily C1-close to g and such
that Dhπ(x)(x) has all eigenvalues real of multiplicity 1, and with different modulus. Moreover,
the Lyapunov exponents of Dhπ(x)(x) can be chosen arbitrarily close to those of Dgπ(x)(x).
Finally, another small and volume-preserving perturbation can be done in order to preserve the
simplicity of the spectrum and with all eigenvalues equal to 1 or −1.

2.2 Proof of Theorem 1

The following result is almost the volume-preserving counterpart of [19, Lemma 3.2]. Another
fundamental results which guarantee the absent of elliptic behavior among C1-stable weakly
shadowable maps can be found in [7, Main Lemma 1] and in [20, Proposition 3.5]. In brief
terms next lemma says that fixed/periodic local trivial dynamics is an ingredient against the
stability of weak shadowing.

Lemma 2.6 Fix some C1-weakly shadowable volume-preserving diffeomorphism f and δ0 > 0
such that any g ∈ Diff 1

μ (M) δ0-C1-close to f is also weakly shadowable. Let U0(f) be given by
Lemma 2.1 with respect to U(f). Then, for any g ∈ U0(f), g does not contains periodic points
with trivial real spectrum.

Proof Let dim M = d and let us suppose that there is a volume-preserving g ∈ U0(f) that have
a period orbit p with all eigenvalues equal to 1 and −1. Assume that p is such that g(p) = p.
Then Dg(p) has k eigenvalues equal to 1 and n−k eigenvalues equal to −1 and TpM = E+

p ⊕E−
p

where E+
p corresponds to the subspace of the eigenvalue 1 and E−

p corresponds to the subspace
of eigenvalue −1.

By Lemma 2.1, there is ε0 > 0 and a stable weakly shadowable g̃ ∈ U(f), such that
g̃(p) = g(p) = p and g̃(x) = ϕg(p) ◦ Dg(p) ◦ ϕ−1

p (x) if x ∈ B(p, ε0), reducing ε0 if necessary.
The next computations will be yield in E+

p (ε0) (the other case is similar using that g̃2 has
all eigenvalues equal to 1 and that, if g has the weak shadowing property, then g2 also has the
weak shadowing property).

Since Dg(p)|E+
p

= id, where id : E+
p → E+

p is the identity map on E+
p , there is a small arc

Ip ⊂ B(p, ε0) ∩ ϕp(E+
p (ε0)) with center p such that g̃(Ip) = Ip and g̃|Ip

is id (i.e., the identity
map).

Take ε1 < ε0, v1 ∈ E+
p (ε1) with ‖v1‖ = ε2 = ε1

2 and set

Ip ⊃ ϕp({tv1 : t ∈ [−1, 1]}) ∩ B(p, ε1).
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Put ε = ε1
5 and let 0 < δ < ε be the number of the weak shadowing property of g̃.

Now, we are going to construct a δ-pseudo-orbit {xk}k∈Z of g̃ in Ip which cannot be weakly
ε-shadowed by any g̃-true orbit of a point in M .

We take a finite sequence {wk}T
k=0 in E+

p (ε1) for some T > 0, such that w0 = Op, wT = v1

and |wk − wk+1| < δ for 0 ≤ k ≤ T − 1. Here the wk are chosen such that if wk = tkv1, then
|tk| < |tk+1| for 0 ≤ k ≤ (T − 1). Finally, define

• xk = ϕp(w0) for k < 0;
• xk = ϕp(wk) for 0 ≤ k ≤ T − 1;
• xk = g̃k−T (ϕp(wT )) for k ≥ T .
Then {xk}k∈Z is a δ-pseudo-orbit of g̃ in B(p, ε2) and since g̃ is stable weakly shadowable,

there is y ∈ M weakly ε-shadowing {xk}k∈Z.

The local structure of g̃ in a neighborhood of Ip in M is the direct product of the identity
map, g̃|ϕp(E+

p (ε2))∩B(p,ε2) by the minus identity map g̃|ϕp(E−
p (ε2))∩B(p,ε2).

We may assume that y ∈ B(x0, ε).
If y ∈ Ip, then since g̃i(y) = y for i ∈ Z, d(g̃i(y), xT ) > ε by the choice of ε.
If y /∈ Ip, then, g̃(y) = y or else g̃2(y) = y, for all i ∈ Z, and d(g̃i(y), xT ) > ε by the choice

of ε. This proves the lemma. �
Proof of Theorem 1 Take the Pugh–Robinson residual (general density theorem, see [25]), in-
tersected with Bonatti–Crovisier residual [12] and call it R. As Diff 1

μ (M) endowed with the C1-
topology is a Baire space, we can take a sequence of fn ∈ R with fn → f (in the C1-topology).
There exist periodic points pn (for fn and with period πn) such that lim supn

⋃
i f i(pn) = M

(in the Hausdorff metric sense1)). Clearly, πn → +∞. Define

Σ =
⋃

n∈N

{pn, fn(pn), . . . , fπn−1
n (pn)}. (2.2)

Notice that Σ = M .
We now define an A = (Σ, g, TΣ, A); Σ is defined in (2.2), TΣ = TxM where x ∈ Σ,

g(f i
n(pn)) = f i+1

n (pn) for any i ∈ {0, 1, . . . , πn − 1} and A(gi
n(pn)) = Dfn(f i

n(pn)).
Of course that we are in the presence of an LPS. By Corollary 2.3, there exists a uniform

dominated splitting over Σ. Since Σ = M and the dominated splitting extends to the closure
(cf. [9]), we obtain that M has a dominated splitting with respect to the LPS A = (Σ, g, TΣ, A).

Realizing dynamically the cocycle, by Theorem 2.2 and Lemma 2.6, we obtain that f ,
C1-stable weakly shadowable, has a dominated splitting over M . Finally, [8, Proposition 0.5]
guarantees the volume-hyperbolic statement and the theorem is proved. �

3 Continuous-time Case

3.1 Linear Traceless Differential Systems over Large Periods Systems

We begin by recalling some definitions introduced in [10], in Subsection 2.1 and first developed
for flows in [3]. Let X ∈ X1

μ(M) and consider a set Σ ⊂ M which is a countable union of closed
orbits of Xt. A Linear Differential System (LDS) is a four-tuple A = (Σ, Xt, NΣ, A), where NΣ

1) We recall that the Hausdorff distance between two compact subsets A, B ⊆ M is given by dH(A, B) =

max{supy∈B d(y, A), supx∈A d(x, B)}.
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is the restriction to Σ of the normal bundle of X over M\Sing(X) and A : Σ → GL(n− 1, R) is
a continuous map. In fact, for x ∈ Σ, Ax is a linear map of Nx and we identify this space with
R

n−1. The natural LDS associated with the dynamics of the vector field is obtained by taking
Ax = Π ◦ DXx.

Given A = (Σ, Xt, NΣ, A), the linear variational equation (or equation of first variations)
associated to A is given by

d

dt
u(t, x) = A(Xt(x)) · u(t, x), (3.1)

where x ∈ Σ and u(t, x) is a map between Nx and NXt(x).
The matriciant (or solution) of the system (3.1) with initial condition u(0, x) = id is, for

each t and x, a linear map Φt
A(x) : Nx → NXt(x). We call the map A the infinitesimal generator

of ΦA. It is easy to see that Φt
A(x) = P t

X(x) when the infinitesimal generator is Π ◦ DX. We
say that A = (Σ, Xt, NΣ, A) is bounded, if there exists K > 0 such that ‖Ax‖ ≤ K for all x ∈ Σ.
The LDS A is said to be a large period system if the number of orbits of Σ with period less or
equal to τ is finite for any τ > 0. We say that the LDS A is traceless (or conservative) if, for
all x ∈ Σ, we have

| detΦt
A(x)|‖X(Xt(x))‖ = ‖X(x)‖. (3.2)

In fact we observe that, if for a given X ∈ X1
μ(M), we have Sing(X) = ∅, then there exists

ρ : M → R with ρ(x) = ‖X(x)‖−1 such that ρX(x), in (3.2), satisfies | detΦt
A(x)| = 1. Now,

by (3.3), we get
∫ t

0
tr(A(Xs(x)))ds = 0. It follows from Liouville’s formula that

detΦt
A(x) = exp

(∫ t

0

tr(A(Xs(x)))ds

)

. (3.3)

An LDS B = (Σ, Xt, NΣ, B) is a traceless perturbation of a bounded LDS A if, for every
ε > 0, ‖Ax−Bx‖ < ε, up to points x belonging to a finite number of orbits, and B is conservative.
From (3.3) it follows that B is traceless if and only if tr(B) = tr(A).

Gronwall’s inequality gives that

‖Φt
A(x) − Φt

B(x)‖ ≤ exp(K|t|)‖Ax − Bx‖.

In particular, Φ1
B is a perturbation of Φ1

A in the sense introduced in [10] and in Subsection 2.1
for the discrete case. A bounded LDS A is strictly without dominated decomposition if the only
invariant subsets of Σ that admit a dominated splitting for Φt

A are finite sets.
Now, we present a result about LDS which is the flow version of Theorem 2.2.

Theorem 3.1 Let A be a traceless, large period and bounded LDS. If A is strictly without
dominated decomposition, then there exist a traceless perturbation B of A and an infinite set
Σ′ ⊂ Σ which is Xt-invariant such that for every x ∈ Σ′ the linear map Φπ(x)

B (x) has all the
eigenvalues real and with the same modulus (thus equal to 1 or to −1).

Like in Theorem 2.2, once again the perturbations are made in the linear traceless differential
systems and Franks’ lemma for volume-preserving vector fields (Lemma 3.2) allows us to realize
them as perturbations of a fixed volume-preserving flow.

Let us introduce now a useful concept. Fix X ∈ X1
μ(M), τ > 0 and p ∈ M non-periodic (or

with period larger than τ ). A one-parameter area-preserving linear family {At}t∈R associated
with {Xt(p); t ∈ [0, τ ]} is defined as follows:
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• At : Np → Np is a linear map for all t ∈ R,
• At = id for all t ≤ 0, and At = Aτ for all t ≥ τ ,
• At ∈ SL(n, R), and
• the family At is C∞ on the parameter t.
The following result, proved in [3, Lemma 3.2] is now stated for X ∈ X1

μ(M) instead of
X ∈ X4

μ(M) because of the improved smooth C1 pasting lemma proved in [5, Lemma 5.2].

Lemma 3.2 Given ε > 0 and a vector field X ∈ X1
μ(M), there exists ξ0 = ξ0(ε, X) such that

∀τ ∈ [1, 2], for any periodic point p of period greater than 2, for any sufficient small flowbox T of
{Xt(p); t ∈ [0, τ ]} and for any one-parameter linear family {At}t∈[0,τ ] such that ‖A′

tA
−1
t ‖ < ξ0,

∀t ∈ [0, τ ], there exists Y ∈ X1
μ(M) satisfying the following properties :

1. Y is ε-C1-close to X;
2. Y t(p) = Xt(p) for all t ∈ R;
3. P τ

Y (p) = P τ
X(p) ◦ Aτ , and

4. Y |T c ≡ X|T c .

In overall, we obtain the following result:

Lemma 3.3 Let X ∈ X1
μ(M) and fix a small ε0 > 0. There exist π0, � ∈ N such that, for any

closed orbit x with period π(x) > π0, we have either
(i) that P t

X has an �-dominated splitting along the orbit of x or else
(ii) for any neighborhood U of

⋃
t Xt(x), there exists an ε-C1-perturbation Y of X, coin-

ciding with X outside U and on
⋃

t Xt(x), and such that P
π(x)
Y (x) has all eigenvalues equal to

1 and −1.

3.2 Set Us Free of Singularities

In order to rule out singularities in the context of C1-stable weak shadowable volume-preserving
flows, we will recall some useful results. The first one was proved in [3, Lemma 3.3].

Lemma 3.4 Let σ be a singularity of X ∈ X1
μ(M). For any ε > 0, there exists Y ∈ X∞

μ (M),
such that Y is ε-C1-close to X and σ is a linear hyperbolic singularity of Y .

The second one was proved in [33, Proposition 4.1] generalizing Doering’s theorem in [15].
Observe that, in our context, the singularities of hyperbolic type are all saddles.

Proposition 3.5 If Y ∈ X1(M) admits a linear hyperbolic singularity of saddle-type, then
the linear Poincaré flow of Y does not admit any dominated splitting over M\Sing(Y ).

Finally, since by Poincaré recurrence, any X ∈ X1
μ(M) is chain transitive, the following

result is a direct consequence of [2].

Proposition 3.6 In X1
μ(M) chain transitive flows equal topologically mixing flows in a C1-

residual subset.

The following theorem is proved borrowing some arguments in [1, Theorem 15].

Theorem 3.7 If X ∈ X1
μ(M) is C1-stable weak shadowable vector field, then X has no

singularities.

Proof Let X ∈ X1
μ(M) be a C1-stable weak shadowable vector field and fix a small C1

neighborhood U ⊂ X1
μ(M) of X. The proof is by contradiction. Assume that Sing(X) �= ∅.
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Using Lemma 3.4, there exists Y ∈ U with a linear saddle-type singularity σ ∈ Sing(Y ). By
Proposition 3.6, there exist Zn ∈ X1

μ(M) C1-close to Y which is topologically mixing. We can
find Wn ∈ X1

μ(M) C1-close to Zn having a Wn-closed orbit pn such that the Hausdorff distance
between M and

⋃
t W t

n(pn) is less than 1
n .

Now we consider jointly Lemma 3.8 and Lemma 3.3 obtaining that P t
Wn

is �-dominated
over the Wn-orbit of pn where � is uniform on n. Since Wn converges in the C1-sense to Y

and lim supn

⋃
t W t

n(pn) = M , we obtain that M\Sing(Y ) has an �-dominated splitting which
contradicts Proposition 3.5. �

3.3 Proof of Theorem 2

The following result is the continuous-time counterpart of Lemma 2.6.

Lemma 3.8 Fix some C1-weakly shadowable volume-preserving vector field X ∈ X1
μ(M).

Then, any Y ∈ X1
μ(M) sufficiently C1-close to X does not contains closed orbits with trivial

real spectrum.

Proof Let X ∈ X1
μ(M) be a volume preserving vector field and U(X) a C1-neighbourhood of

X in X1
μ(M) where the weak shadowing property holds. Let p be a closed orbit of X and Up

a small neighbourhood of p in M . Let us also assume that all eigenvalues of P π
X(p), the linear

Poincaré flow in p, are −1 and 1.
Now, we transpose our objects to the euclidian space using the volume-preserving charts

given by Moser’s theorem (see [22]). Then, there exists a smooth conservative change of co-
ordinates ϕp : TpM → Up such that ϕp(�0) = p. Let fX : ϕp(Np) → Σ stand for the Poincaré
map associated with Xt, where Σ denotes the Poincaré section through p, and take V a C1-
neighbourhood of fX .

By the careful construction of a local linearized divergence-free vector field done in [4], we
take T a small flowbox of {Xt(p) : t ∈ [0, τ ]}, τ < π where we have that there is a (local linear)
divergence-free vector field Z ∈ U(X), fZ ∈ V and a small ε0 > 0 such that

fZ(x) =

⎧
⎨

⎩

ϕp ◦ P π
X ◦ ϕ−1

p (x), x ∈ Bε0(p) ∩ ϕp(Np);

fX(x), x /∈ B4ε0(p) ∩ ϕp(Np).

The next computations will be yield in N+
p (ε0). Take v ∈ N+

p (ε1), ε1 < ε0 with ||v|| = ε2 =
ε1
2 and set Ip = {sv : 0 ≤ s ≤ 1}.

Fix 0 < ε < ε2
2 and let 0 < δ < ε be the number of the weak shadowing property of Zt.

Now, we are going to construct a (δ, 1)-pseudo-orbit of Zt belonging to ϕp(Ip) which cannot be
weakly ε-shadowed by any true orbit y ∈ M .

We take a finite sequence {wk}T
k=0 ∈ N+

p (ε1) for some T > 0, such that w0 = 0p, wT = v

and |wk − wk+1| < δ for 0 ≤ k ≤ T − 1. Here wk are chosen such that if wk = skv then
sk < sk+1 for 0 ≤ k ≤ T − 1. Finally, we define

• xk = ϕp(w0), tk = π for k < 0;
• xk = ϕp(wk), tk = π for2) 0 ≤ k ≤ T − 1;
• xk = fk−T

Z (ϕp(wT )), tk = π for k ≥ T .

2) Observe that we are considering that the return time at the transversal section is the same and equal to π.

Clearly, it is not exactly equal to π, however it is as close to π as we want by just squeezing the flowbox.
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Then {(xi, ti)}i∈Z is a (δ, 1)-pseudo orbit of Zt in B(p, ε2) and since Z is weakly shadowable,
there is y ∈ M such that {xi}i∈Z ⊂ B(Zt(y), ε), ∀t ∈ R.

We may assume that y ∈ B(x0, ε) ∩ ϕp(Np,ε). Note that, in N+
p (ε1) we have

d(x0, xT ) = d(ϕp(w0), ϕp(wT )) = d(ϕp(�0), ϕp(v)) = d(p, ϕp(v)) ≈ ‖v‖ = ε2 > 2ε,

where ≈ says that d(p, ϕp(v)) is very close to d(�0, v) = ‖v‖, because ϕp is very close to be an
isometry when ε is close to zero.

On the other hand, since Z is weakly shadowable, we have that, for some ι = nπ,

d(x0, xT ) ≤ d(x0, y) + d(y, xT ) = d(x0, y) + d(Zι(y), xT ) < 2ε,

which is a contradiction and the lemma follows. �
Proof of Theorem 2 The proof goes as the one did in Theorem 1. Take the Pugh–Robinson
residual (general density theorem, see [25]) intersected with the residual in [2] and call it R.
As X1

μ(M) endowed with the C1-topology is a Baire space, we can take a sequence of Xn ∈ R
with Xn → X (in the C1-topology). There exist closed orbits pn (for Xn and with period πn)
such that lim supn

⋃
t Xt(pn) = M in the Hausdorff metric sense. Clearly, πn → +∞. Define

Σ =
⋃

n∈N

{Xt
n(pn) : 0 ≤ t ≤ πn}. (3.4)

Notice that Σ = M .
We now define an LDS A = (Σ, Y t, NΣ, A); Σ is defined in (3.4), NΣ = Nx where x ∈ Σ.

We define a one-parameter map by Y t(Xr
n(pn)) = Xt+r

n (pn) for any r ∈ [0, πn]. Observe that
Y t is a flow; clearly,

• Y 0(Xr
n(pn)) = Xr

n(pn) and
• Y t+s(Xr

n(pn)) = Xt+s+r
n (pn) = Y t(Xs+r

n (pn)) = Y t(Y s(Xr
n(pn))).

Finally, we define the linear action on NΣ by Φt
A(Y r

n (pn)) = P t
Xn

(Xr
n(pn)). Since Xn are

divergence-free, the map A is traceless.
This time we are in the presence of an LDS. Reasoning analogously with the discrete-time

case, using Theorem 3.1 and Lemma 3.8, we obtain that there exists a uniform dominated
splitting over Σ. Since Σ = M and, by Theorem 3.7, we have Sing(Y ) = ∅, the dominated
splitting extends to the closure and we obtain that M has a dominated splitting with respect
to the LDS A = (Σ, Y t, NΣ, A).

Finally, we realize dynamically the traceless LDS, by Theorem 3.1 and Lemma 3.2, we
obtain that Xt, C1-stable weakly shadowable, has a dominated splitting over M for P t

X . The
volume-hyperbolicity can be obtained as in [8, Proposition 0.5]. �

4 Conclusions and Possible Generalizations

In overall, as it was expected, shadowing is a property that allows us to go further than weak
shadowing. However, surprisingly, shadowing does not take us as far as we would expect when
compared to weak shadowing. In fact, in low dimensions, the C1-stability of the shadowing
property implies global hyperbolicity exactly as the C1-stability of the weak shadowing property.
Moreover, even in the multidimensional case, both properties share several properties, because
both avoid the presence of singularities (for flows), both display a dominated splitting in the
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whole manifold and both have a hyperbolic behavior; the shadowing has hyperbolicity and the
weak shadowing has volume-hyperbolicity.

We believe that the techniques developed in the present paper should be useful to prove
that volume-preserving dynamical systems which exhibits C1-shadowing-like properties display
a weak form of hyperbolicity. Actually, it is our guess that the results in [1] can be genera-
lized not only for our class but also for dissipative flows in higher dimensions. Thus, systems
with C1-stability of the average shadowing property and also the asymptotic average shadow-
ing property should also have a dominated splitting. Furthermore, the C1-stability of weak
shadowing for dissipative flows is not studied yet, and our results should enlighten the solution
for that problem.

Acknowledgements We would like to thank the referee for helpful comments and sugges-
tions.
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