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denoising and droplets detection from 
light scatterd images. 

• Performance assessment of standard 
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Net architectures. 

• Modified U-Net architecture out
performed for denoising light-scattered 
spray image. 

• Potential for real-time processing of the 
experimental data using the deep neural 
networks.  
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A B S T R A C T   

A deep learning-based method for denoising and detecting the gas turbine engine spray droplets in the light- 
scattered image (Mie scattering) is proposed for the first time. A modified U-Net architecture is employed in 
the proposed method to denoise and regenerate the droplets. We have compared and validated the performance 
of the modified U-Net architecture with standard conventional neural networks (CNN) and modified ResNet 
architectures for denoising spray images from the Mie scattering experiment. The modified U-Net architecture 
performed better than the other two networks with significantly lower Mean Squared Error (MSE) on the vali
dation dataset. The modified U-Net architecture also produced images with the highest Power Signal to Noise 
Ratio (PSNR) compared to the other two networks. This superior performance of the modified U-Net architecture 
is attributed to the encoder-decoder structure. During downsampling, as part of the encoder, only the most 
prominent features of the image are selectively retained by excluding any noise. This reconstruction of the noise- 
free features has produced a more accurate and better denoised image. The denoised images are then passed 
through a center predictor CNN to determine the location of the droplets with an average error of 1.4 pixels. The 
trained deep learning method for denoising and droplet center detection takes about 2.13 s on a single graphics 
processing unit (GPU). This study shows the promise for real-time processing of the experimental data using the 
well-optimized network.   
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1. Introduction 

Gas turbine combustion performance, pollutant formation, and 
operability limits strongly depend on the fuel spray atomization, droplet 
size distribution and velocity, droplet evaporation, and mixing charac
teristics [1]. High fidelity computational model development to accu
rately predict the lean blowout (LBO) equivalence ratio [2], fuel 
sensitivity to LBO limits [3], flame characteristics during the LBO [4] in 
a combustor depends on the accurate spray boundary conditions ob
tained from the experimental techniques. Thus, identifying the droplet 
size and distribution of the spray is a critical task in characterizing the 
sprays. Although the measurement technique can be selected depending 
on applications, the Phase Doppler Anemometry (PDA) and laser 
diffraction analyzer have been widely used in the spray community for 
measuring the drop size and drop distribution of the spray due to high 
accuracy and high spatial resolution [5]. However, the measurements 
with such techniques can be a trivial and time/resource-consuming 
process to construct a two-dimensional spray field since both methods 
are limited to single point-wise and line-of-sight measurements. The 
laser sheet drop sizing technique, such as laser-induced fluorescence 
(LIF)/Mie signal ratio using a single [6] or two-phase [7] Structured 
Laser Illuminated Planar Imaging (SLIPI), can provide a 
two-dimensional drop size map of the spray. However, the fundamental 
of LIF/Mie ratio drop sizing is not always valid [8], and the method may 
not be accurate [9] due to various factors such as multiple scattering 
[10], aromatic/fluorescent dye [11], and fuel concentration [12], and 
evaporation [13]. Furthermore, the experimental system for the SLIPI 
technique can be significantly complicated by adding multiple phases 
for a better resolution with mitigation of the multiple scattering effects 
[7]. 

The light scattered image often suffers from multiple scattering, 
when photons scattered from a particle are re-scattered from neigh
boring particles before reaching the detecting sensor. This results in a 
foggy and false particle image, especially for dense particle cases. 
Several conventional segmentation methods, such as the overlapping 
object recognition (OOR) algorithm [14], shape-criterion-based method 
(elliptical fitting) [15], concentric circular arrangement method [16], 
contour splitting algorithm [17], and touching cells splitting algorithm 
[18], require various segmentation parameters to be adjusted, such as 
thresholding for binarization, morphological operators, etc. However, 
these conventional methods suffer degraded performance with complex 
shape particles or particle clusters and noises in the image. Although the 
watershed method [19] can be employed more robustly in particle 
segmentation applications, it is still limited in segmenting overlapping 
objects. 

Machine learning has been a widely used technique for image seg
mentation with the development of a convolutional neural network 
(CNN). An autoencoder neural network has been used to reconstruct the 
desired image from the original compressed image through dimension
ality reduction for image denoising, image segmentation, and audio 
compression. One of the most widely used autoencoder architectures is 
the U-Net, primarily developed for medical image segmentation [20]. 
The U-Net architecture consists of an encoder (contracting path) and a 
decoder (expansive path), which gives it the U-shaped architecture. The 
encoder downsamples the image keeping only the most prominent fea
tures by removing the noise. Each convolution is followed by a rectified 
linear unit (ReLU) and a max-pooling operation. The decoder is the in
verse operation of the encoder. The decoder upsamples the image and 
reconstructs the input image to get the desired output image. The skip 
connections between the corresponding layers in the encoder and 
decoder add the important features that may be removed during the 
downsampling in the image reconstruction process. 

Several studies have employed deep learning algorithms using CNN 
in various particle segmentation applications. Li et al. [21] used a single 
convolution neural network to analyze shadowgraph images of bubbles. 
Their approach employs a two-channel-output U-Net model to create a 

binary particle image and a particle centroid image segmented through a 
marker-controlled watershed approach. However, their approach relies 
on high-quality synthesized particle images. Furthermore, the model 
accuracy is limited by the loss of particle information due to overlapped 
particles. Nobari et al. [22] adopted the VGG model developed by 
Simonyan et al. [23] to classify the spray images recorded at different 
fluid pressures. This method distinguished patterns in sprays before at
omization, but it is limited to characterizing the primary breakup of the 
spray, such as bulk of liquid, liquid sheet, or ligament. Oktay et al. [24] 
employed the multiple output convolutional neural networks 
(MO–CNN) with Hough transform for simultaneous detection, locali
zation, and segmentation of the nano-particles from transmission elec
tron microscopy (TEM). Although this model provides the location, size, 
center, and radius of each particle simultaneously for both round and 
elliptical shapes, the model requires a masked dataset for training their 
model, which is time-consuming. Zhang et al. [25] proposed a Mask 
R-CNN segmentation model with an edge fitting method to determine 
the size and shape parameters of nano-particles from TEM images. 
However, the localization of each particle is missing. Various deep 
learning methods for particle measurement have been proposed for 
different applications. However, the deep learning model for the gas 
turbine engine spray application has not been proposed, especially for 
the spray droplets from laser-based Mie-scattered images. 

In the present work, we propose a deep learning-based method for 
the first time to denoise the Mie-scattering spray images resulting from 
the non-illuminated regions, possibly due to the multiple scattering, and 
to detect individual droplets in the denoised images. Multiple scattering 
in this study refers to a phenomenon in which a Mie photon scatters off 
several other droplets before reaching the camera sensor. These multiple 
scattered paths of photons can lead to undesired effects such as blurring, 
haziness, and detection of light intensities from non-illuminated areas 
[6]. Furthermore, the proposed model does not require a masked data
set, which significantly reduces human effort and error in preparing the 
training dataset. The spray images in the present study are obtained 
from the complex hybrid pressure-swirl airblast (HPSA) fuel injector 
under realistic gas turbine engine conditions. Our work also focuses on 
validating the performance and capability of three deep learning ar
chitectures, namely standard convolutional neural networks (CNN), 
modified ResNet, and modified U-Net for denoising the spray images. In 
addition, we have developed center predictor CNN to detect the location 
of the individual droplets from the denoised images. This study is aimed 
at reducing the post-processing time from the Mie images using the 
trained deep learning algorithm. 

The paper is organized as follows: Details of the experimental setup 
and data collection are given in Section 2; deep learning methodology is 
explained in Section 3; hyperparameter tuning, training, validation, and 
key results are discussed in Section 4; and important conclusions are 
presented in Section 5. 

2. Description of the experimental setup and data collection 

2.1. Experimental system 

The spray measurements are performed at the Purdue Variable 
Ambient Pressure Spray (VAPS) test rig using a hybrid pressure-swirl 
airblast (HPSA) atomizer. The detailed description of the VAPS test rig 
with flow line configuration can be found in the previous works (LBO 
[26] and cold-start [27]) by Shin et al. The HPSA atomizer was designed 
by the Parker-Hannifin Corporation, and the schematic of the internal 
layout of the atomizer is shown in Fig. 1. The HPSA atomizer is 
composed of two components: the prime injector and air swirlers. The 
prime injector has two fuel circuits for pilot and main lines, but only a 
pilot line is used in this study. The air swirler has three swirler passages: 
inner swirler, dome swirler, and outer swirler. These swirlers surround 
the prime injector. The airflow through these swirlers helps in atomizing 
the fuel spray and mixing. The mechanism of the atomization process is 
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as follows: (1) a hollow cone fuel spray exits the pilot nozzle of the prime 
injector and impinges on the pre-filming surface, (2) a fuel film forms on 
the surface and flows towards the prefilmer tip, (3) fuel ligaments are 
formed as the fuel film is torn and extends from the prefilmer tip, (4) the 
dome/outer swirling gas flows interact with the ligaments and disinte
grate them into droplets. A detailed discussion of this atomizer can be 
found in Mansour et al. [29]. 

The pressure vessel of the VAPS test rig has four optical windows, as 
shown in Fig. 2. Three 127-mm diameter windows are oriented 
perpendicular to each other, and a 76.2-mm diameter window is ori
ented at 60̊ from one of the 127-mm windows. The heated nitrogen flow 
(394 K) is supplied directly into the pressure vessel to build a desired 
pressure and temperature in the vessel. The fuel line is directly con
nected to the pilot line of the prime injector. The operating conditions 
for the spray measurement are corresponding to vessel pressure Pamb =

1.01 bar, fuel temperature Tfuel = 332 K, atomizing gas temperature 
Tairbox = 394 K, fuel injection pressure differential ΔPpilot = 1.72 bar, and 
gas swirler pressure drop ΔP/P = 3%. 

2.2. Planar laser-induced fluorescence (PLIF) and Mie scattering 
measurement 

Simultaneous fuel-PLIF and Mie scattering measurements are con
ducted for two-dimensional spray visualizations. Fig. 2 shows the 
schematic diagram of the measurement systems in the VAPS test rig. A 
Q-switched Nd: YAG laser is tuned to 266 nm through the second and 
fourth harmonic generation processes at 70 mJ/pulse with 10 Hz of 
repetition rate. This beam is expanded to approximately 40 mm in 
height and collimated into a cylindrical lens to create a sheet with 
approximately 0.5 mm thickness at the focused plane. This laser sheet 
enters the pressure vessel through the fused silica window. Jet-A, which 
has aromatic compounds such as alkyl-benzene and alkyl-naphthalenes, 
is used for this work. The fuel fluorescence light and Mie-scattered light 
are separated from a dichroic beam splitter and entered into two time- 
synchronized ICCD cameras (PI-MAX4) equipped with UV lenses (Nik
kor 70~210 mm f/4.5 and Objectif UV 100 f/4.5). For the PLIF camera, 
a transmission filter centered at 320 nm with a bandpass of 40 nm is used 
to capture the fluorescence signals. For the Mie camera, a transmission 
filter centered at 260 nm with a bandpass of 16 nm is used to capture 
only 266 nm scattered light. Each of the 800 instantaneous PLIF and 
Mie-scattered images is recorded at 5 Hz. For the present work, only 800 
Mie-scattered images are used and processed for analysis. One of the 800 
instantaneous Mie-scattered images obtained at Pamb = 1.01 bar, e Tfuel 
= 332 K, Tairbox = 394 K ΔPpilot = 1.72 bar, and ΔP/P = 3% is shown in 
Fig. 2. 

2.3. Noise from Mie scattering image 

Fig. 3 shows the pixel intensity profile of a portion of an original 
instantaneous Mie image. In this work, the noise is defined as the signal 
that causes blurriness, haziness, undesired light intensities from non- 
illuminated areas. As shown in Fig. 3, the undesired light signals were 
generated in the dense particle region of the spray, possibly due to the 
multiple scattering. This study proposes a deep learning model to filter 
these undesired light signals and regenerate the spray droplet image. 
The pixel intensity profile shows that these undesired signals are rela
tively lower than the signals from the droplets. The signal intensity 
criteria for the droplets was determined based on the comparison of 
simultaneous PLIF and Mie images. Since both Mie and PLIF images 
were taken simultaneously, the cross-correlation was performed be
tween the instantaneous PLIF and Mie images by identifying the pixel- 
to-pixel locations of the observable droplets on both images. Once the 
pixel-to-pixel locations were determined between the PLIF and Mie 
images, the difference of image can be obtained by subtracting the Mie 
image from the PLIF image for the signals from the vapor phase. Note 
that each PLIF and Mie image were normalized by the peak intensity 
value before the subtraction. By discriminating the vapor phase, the 
non-liquid region in the Mie image was able to be identified. Based on 
the signal intensity values in the non-liquid region in the Mie spray 
image, the signal intensity criteria for the droplets was determined. 

2.4. Data preparation for training and validation of deep learning model 

The original Mie images are first passed through a Gaussian filter 
with a filter size of 3 × 3. A Gaussian filter is a filter whose impulse 
response is a Gaussian. In image processing, a Gaussian filter is a 
weighted averaging filter with weights representing the value of 
Gaussian function. Since Gaussian filter is an averaging filter, it blurs or 
smoothens the image to remove any high frequency components (noise) 
from the image. It is a preferred choice of filter to be applied before 
carrying out edge detection as it smoothens out the image and reduces 
the possibility of categorizing noise as edge. A 3 × 3 Gaussian filter 
convolves with a 3 × 3 window around the center pixel to determine the 
new value of the center pixel. As the filter size increases, the effect of 
faraway pixels is also included. The Gaussian filter works fine in 

Fig. 1. Schematic diagram of hybrid pressure-swirl airblast (HPSA) atomizer. 
Black solid lines indicate the flow through three different swirlers: inner, dome, 
and outer. Blue solid lines indicate the outer boundary of the spray. Blue dashed 
lines indicate the inner boundary of the spray (hollow-cone region). Adapted 
and modified from previous studies at LBO [26] and cold-start conditions [27] 
by Shin et al. 

Fig. 2. Schematic diagram of simultaneous PLIF and Mie scattering image 
measurement system in the VAPS test rig. An instantaneous Mie image of the 
spray is also shown below. Distance from the swirler exit plane to the bottom of 
the spray is approximately 40 mm. Adapted and modified from work by Shin 
et al. [28]. 
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removing various types of noises, however is not effective against salt 
and pepper noise. This noise appears when an image is transferred over a 
noisy digital channel. Also, since Gaussian filter is an averaging filter 
there is an inherent loss of image quality depending on the amount of 
smoothness. Hence, it cannot be used when noise level in the image is 
very high. The accuracy of the Gaussian filter is dependent on the 
amount of smoothening that is applied to the image. The Gaussian filter 
cannot reproduce the original image with 100% accuracy as there is loss 
of image quality. The filtered image is then passed through a Canny Edge 
detector which detects the outer boundary of the droplets. Once the 
edges are detected, a bounding box is drawn around each droplet to 
separate it from the other droplets. The center of the bounding box 
corresponds to the center of the droplet and the smaller dimension of the 
bounding box is considered as the diameter of the droplet. With this 
information about the center and radius of the droplets, a new clean 
image is generated with replacing each droplet as a circle with center 
and radius obtained from the previous step. 

As an example, the original Mie scattered image collected from the 
experiment is shown in Fig. 4(a)) and the corresponding filtered image is 
shown in Fig. 4(b). The detected droplets are enhanced using a series of 
erosion-dilation steps dependent on each image. Each image is resized to 
1024 × 512 and split into blocks of size 256 × 256 pixels for efficient 
processing with the neural networks. A larger block size greatly in
creases the computational requirements, whereas a smaller block size 
reduces the computational complexity significantly and improves ac
curacy with localized predictions. Figs. 4(c) and 4(d) show the magni
fied view of such one block (256 × 256 size) from the original and 
filtered image, respectively. 

3. Deep learning methodology 

The proposed deep learning methodology for denoising the fuel 
spray images from the Mie scattering and droplet center detection is 
shown in Fig. 5. We present details of this methodology, including the 
standard convolutional neural networks (CNN) [30], modified ResNet 
[31], and modified U-Net [20] architectures in this section. The original 
architectures are designed to be trained on a large dataset like ImageNet, 
making it infeasible for our case to be used directly. Hence, a lighter 
version of the original architectures is developed that can be efficiently 
trained on the available dataset without overfitting. 

3.1. Standard CNN architecture 

The standard CNN architecture is shown in Fig. 6, and it comprises 
the convolutional layers stacked one after another. No downsampling of 
the input image is performed to maintain the exact image resolution for 
output and input image. Each convolutional layer uses a filter of size 3 ×
3 with a stride of 2 and additional padding to maintain the resolution. A 
total of 8 hidden layers are implemented, with the first 4 layers 
convolved with 16 filters and the last 4 with 32 filters. Each layer passes 
through a ReLU [32] activation and then batch normalization layer [33]. 
The final layer implements a 1 × 1 convolution to merge the 32 channels 
of the last hidden layer and create the final output image. 

3.2. Modified ResNet architecture 

The original ResNet architecture is designed to work as a feature 
extractor network connected to a classification head and trained on the 
ImageNet dataset. This architecture involves strided convolutions and 
pooling operations to reduce the dimension of the input. However, we 

Fig. 3. Pixel intensity profile of the instantaneous Mie image.  

Fig. 4. (a), (b) Example of the Mie scattered spay image and the corresponding filtered image. (c), (d) Zoomed section of the original and filtered image.  
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require the dimensions to remain the same for the image to image 
translation problem (the present study). Hence, a modified ResNet- 
inspired architecture is developed. 

For the modified ResNet-inspired architecture shown in Fig. 7, the 
convolutional layers are replaced by convolutional blocks. Each con
volutional block comprises two convolutional layers with a skip 
connection between the input image and the output image. The con
volutional layers use a filter of size 5 × 5 followed by ReLU activation 
and batch normalization. Skip connection allows for a deeper network 
while preventing overfitting of the data. The first convolutional layer 
uses a 3 × 3 filter to get 32 feature maps of the input passed to the 
convolutional blocks. The output layer uses a 1 × 1 convolution with 
ReLU activation. 

3.3. Modified U-Net architecture 

The U-Net architecture was originally developed for semantic seg
mentation of medical images very efficiently. However, we propose to 
use this U-Net architecture with modifications for denoising the Mie 
images. The modifications are made to the number of feature maps and 

the shape of the bottleneck layer to prevent overfitting of the network on 
the training data. 

The U-Net architecture comprises an encoder and decoder network 
with the layers connected through the skip-connections. Every level of 
the encoder consists of a convolutional layer followed by a down
sampling layer. A 3 × 3 filter is used in each convolutional layer. The 
convolutional layer is followed by a ReLU activation and batch 
normalization. Instead of the pooling layers, we use strided convolution 
with a stride length of 2 for downsampling the input. The bottleneck 
layer is set of size 8 × 8. The decoder network upsamples the encoder 
output from 8 × 8 back to 256 × 256 using transposed convolutions. 
Each level of the decoder comprises a convolutional layer followed by an 
upsampling layer. The convolution operation uses a 3 × 3 filter followed 
by the ReLU activation. Overfitting the network is prevented by using 
dropout layers with setting a dropout rate to a value of 0.2. The last layer 
uses Sigmoid activation to force the output between 0 and 1. The 
encoder and decoder levels are connected using skip connections that 
bypass the bottleneck layer to transfer information from the encoder 
section to the decoder section. The modified U-Net architecture is shown 
in Fig. 8. 

Fig. 5. General outline for the deep learning methodology. The original Mie image is split into 256 × 256 blocks and denoised using deep learning. Denoised image 
blocks are then stitched together for the output image. 

Fig. 6. Block diagram of the standard CNN architecture for denoising of fuel spray from Mie scattering images.  

Fig. 7. Block diagram of the modified ResNet architecture for denoising of fuel spray from Mie scattering images.  
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3.4. Metrics for performance evaluation 

Each network is trained to optimize the Mean Square Error (MSE) 
between the predicted output and the true output. MSE is the preferred 
loss function as the aim is to minimize the absolute difference between 
pixels in the true denoised image and the predicted denoised image. The 
MSE as loss function (L) can be expressed as 

L(y, f (x)) =
1
n

∑|y− f (x)|2

(1)  

where, x is the input image, y is the true output, and f(x) is the predicted 
output by the network. The sparsity of the droplets in the image signifies 
that most of the convolution outputs will be 0, resulting in very slow 
learning of the network. The Adam optimizer is used to handle the 
sparse gradients. MSE is an important parameter for evaluating the 
performance of a denoising algorithm. As in Eq. (1), it computes pixel- 
wise correctness of the predicted image compared to the original 
output. The smaller the MSE, the better the denoising results. 

The Power Signal to Noise Ratio (PSNR) is the ratio between the 
maximum possible value of the pixel and the noise that affects the fi
delity of the image. PSNR can be expressed as 

PSNR = 10log
(
I2

MAX

/
MSE

)
(2)  

where, IMAX is the maximum pixel intensity in the image. As the images 
are normalized before processing, the maximum intensity value is 1. 
Hence, Eq. (2) can be simplified as 

PSNR = − 10log(MSE) (3)  

The higher PSNR value indicates a better denoising algorithm. 

3.5. Droplet center detection 

The Mie images denoised by the best performing deep neural net
works are then passed to a center predictor convolutional neural 
network (CNN) to predict the center location of the droplets. The center 
predictor network is a 3-layer CNN with each layer using a 3 × 3 
convolution filter and ReLU activation function. Each layer is followed 
by a batch normalization layer. The network is trained to optimize the 
MSE between the actual center pixels and the predicted center pixels. 
The deep learning methodology is implemented in Python 3.6 using the 
TensorFlow 2.5.0 library and trained on Google Colab with a single 
Nvidia T4 graphics processing unit (GPU). 

4. Results and discussion 

A thorough hyperparameter tuning was performed for each of the 
three networks to select the optimum values that result in the lowest 
MSE using the grid search method. For each hyperparameter, different 

values were selected. Every combination of hyperparameters was run for 
a total of 10 epochs on a truncated dataset containing selectively chosen 
samples that represent the entire dataset for faster computation and 
adjustability. The range for the hidden layers was set as (5,10) for CNN, 
(10,15) for the modified ResNet, and (3,8) for the encoder section of the 
modified U-Net. The filter size was selected from 3 × 3, 5 × 5, and 7 × 7. 
Larger filter sizes are not suitable for images having very small objects. 
ReLU, tanh, and Leaky ReLU were the choices for activation function, 
and the optimizer was selected from Stochastic Gradient Descent and 
Adam. For the bottleneck layer, the choices were 4 × 4 to 32 × 32 with 
increments of 2. The learning rate was set from 1e-1 to 1e-4. The list of 
hyperparameters and the optimum values for each deep learning ar
chitecture are listed in Table 1. The standard CNN showed strong 
overfitting for hidden layers above 8, whereas skip-connection-based 
ResNet allowed for a deeper network with 13 layers. However, the 
rapid growth in trainable parameters prevented more depth. Modified 
U-Net style network with autoencoder network and skip connections 
yielded optimum results with 11 hidden layers and a bottleneck layer of 
size 8 × 8. The better performance is achieved with a filter size of 3 × 3 
for standard CNN and Modified U-Net, and 5 × 5 for ResNet. All three 
networks showed better results with the ReLU activation and Adam 
optimizer. 

In this study, the input data was split into training and validation 
pairs with an 80:20 ratio. Each of the 800 Mie images was resized and 
split into 8 blocks, which resulted in 6400 images. Out of 6400 images, 
5120 images were used for the training set, and 1280 images were used 
for validation. The images were randomized before splitting to avoid 
clustering of similar images in the training set. Each training image went 
through an image augmentation pipeline comprising random crop, flip, 
random shift, and brightness effects to add more diversity and vari
ability in the dataset, which dynamically increases the total number of 
training images fed into the network. With the optimum hyper
parameters selected, each network ran on the entire dataset till the loss 
converges. The plot of loss vs. the number of epochs is shown in Fig. 9. 
As observed from the plots, the loss for all the three networks converges 
after 10 epochs. The convergence is determined when the change in the 
loss is less than 0.01. 

The modified U-Net performed significantly better than the other 
two networks with substantially lower training loss and validation loss. 

Fig. 8. Block diagram of the modified U-Net architecture for denoising of fuel spray from Mie scattering images.  

Table 1 
Optimum Hyperparameters.  

Parameters Standard CNN Modified ResNet Modified U-Net 

Hidden layers 8 13 11 
Filter size 3 × 3 5 × 5 3 × 3 
Activation Function ReLU ReLU ReLU 
Optimizer Adam Adam Adam 
Learning rate 1e-3 1e-3 1e-3 
Bottleneck layer – – 8 × 8  
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Also, modified U-Net showed a faster convergence of loss for both 
training and validation than the other two networks. The standard CNN 
performed the worst with the highest loss among the three, with the 
validation loss showing a non-monotonous convergence. Further eval
uation of the networks was performed using the metrics mentioned in 
Section 3.4 for different block sizes. The effect of block size on the 
performance of the three model architectures is quantitatively assessed, 
and results are shown in Table 2. The smaller block size takes less 
computational time but results in higher MSE and lower PSNR values. 
The block size of 256 × 256 pixels gives more accurate results with the 
lowest MSE values and highest PSNR values for all three architectures 
but takes more training time per epoch. The standard CNN with a 
simpler architecture takes lesser time for training per epoch, while the 
complex modified U-Net architecture takes more training time per 
epoch. Among three architectures, the modified U-Net architecture gives 
the lowest MSE and highest PSNR values with higher computational 
time. The modified U-Net architecture generated better-denoised images 
with the highest PSNR value of 22.757 dB. 

The comparisons of denoised images resulted from each network are 
shown in Fig. 10. The original Mie image and the true denoised image 
are shown in Figs. 10(a) and 10(b). The output from the standard CNN, 
modified ResNet, and modified U-Net are shown in Fig. 10(c), Fig. 10 
(d), and Fig. 10(e), respectively. The modified U-Net produced a more 
accurate output with clearly segmented droplets from the noise. 

Although the standard CNN and modified ResNet performed comparably 
on denoising the image, multiple droplets formed single large clusters 
during the process. Furthermore, these two networks failed to detect the 
low-intensity droplets by removing them from the final output. This can 
be observed in the bottom right section of the image shown in Fig. 10(c) 
and Fig. 10(d) compared to Fig. 10(e). 

The superior performance of modified U-Net over the other two 
networks can be attributed to its encoder-decoder structure. The 
downsampling part of the encoder selectively retains only the most 
prominent features of the image, which does not include any noise. 
Reconstruction of the noise-free features produces a more accurate and 
better-denoised image. However, it is an important task to decide how 
much to downsample the input image. Table 3 shows the results of the 
modified U-Net architecture with different bottleneck layer sizes. As we 
decreased the bottleneck layer dimensions from 32 × 32 to 8 × 8, MSE 
decreased. This is because only the most prominent features are 
retained, increasing the downsampling of the input image by dis
regarding unnecessary information. However, there is a certain 
threshold value for the MSE with the bottleneck size, as shown in 
Table 3. For the modified U-Net, the threshold value is 8 × 8. Any value 
below this threshold increased the MSE. In other words, on further 
downsampling the input image, we tend to lose even the important 
features of the input that causes inefficient reconstruction. 

The additional skip connection between the encoder and decoder 
sections helped in retaining the original structure of the image, hence 
better and more accurate reconstruction of the droplets. The skip 
connection allowed some information from the encoder to bypass the 
bottleneck layer and join the decoder layer. This provided more infor
mation for the decoder to learn the original structure of the input image. 

Our denoising algorithm was tested on the unseen original noisy Mie 
scattering spray image taken directly from the high-speed camera, as 
shown in Fig. 11(a). The trained model was used to denoise the unseen 
test image. The inference procedure involved splitting the input image 
into 8 blocks of size 256 × 256 pixels and passing them through the 
trained deep learning model. The denoised 8 blocks of size 256 × 256 
pixels were then combined to generate the entire spray image, as shown 
in Fig. 11(b). The denoising algorithm took about 1.43 s on a single GPU. 

Fig. 9. Training and validation loss versus the number of epochs for three different deep learning architectures used for spray image denoising.  

Table 2 
Performance Evaluation.  

Block Size Model Architecture Training Time/ 
Epoch 

MSE PSNR (dB) 

64 × 64 Standard CNN 53s 0.0970 10.132 
Modified ResNet 89s 0.0132 18.79 
Modified U-Net 170s 0.0066 21.804 

128 × 128 Standard CNN 72s 0.103 9.871 
Modified ResNet 101s 0.0141 18.507 
Modified U-Net 233s 0.0062 22.076 

256 × 256 Standard CNN 169 0.0784 11.056 
Modified ResNet 191 0.0110 19.586 
Modified U-Net 447 0.0053 22.757  
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The denoised images from the modified U-Net were then passed to a 
center predictor CNN to predict the x and y pixel location of every 
droplet in the image. The network was trained for 15 epochs, and the 
loss was optimized using the Adam optimizer. The comparison of 
training and validation losses with the number of epochs is shown in 
Fig. 12. The pixel locations were extracted by running a raster scan on 
the image. The performance results of the network are shown in Fig. 13 
as a correlation between the true and predicted center locations. 

The plots demonstrated that the predicted locations by the neural 
network agreed well with the true center locations. To evaluate the 
performance, the Average Error (AE) for the predicted x and y locations 
of every droplet was calculated. As shown in Eq. (4), the AE is defined as 
the mean of the absolute difference between the predicted location and 
the true location. 

AE =
1
m
∑⃒

⃒xp − x
⃒
⃒ (4)  

where, xp is the predicted location, x is the true location, and m is the 
total number of detected droplets. The test results for the AE in the 

predicted locations with the center detector CNN model for 3 repre
sentative images are summarized in Table 4. 

5. Conclusion 

In the present study, a deep learning-based denoiser and droplet 
location predictor were developed for the first time to denoise and 
predict the location of spray droplets in the light scattered Mie images. 
The data for the deep learning algorithm was obtained by capturing the 
Mie scattering images of gas turbine engine sprays at engine relevant 
condition. A thorough comparison of different deep learning algorithms 
such as standard CNN, modified ResNet, and modified U-Net was per
formed for the denoising tasks. The modified U-Net architecture per
formed the best with an MSE value of 0.0053 and a PSNR value of 

Fig. 10. Image denoising result comparison. (a) Mie noisy image, (b) true denoised image, (c) standard CNN, (d) Modified ResNet, and (e) Modified U-Net.  

Table 3 
Comparison of loss for different bottleneck layer 
sizes.  

Bottleneck size MSE 

4 × 4 0.0077 
8 × 8 0.0042 
16 × 16 0.0053 
32 × 32 0.0059  

Fig. 11. Evaluation of trained model on a test image. (a) original image, (b) denoised image.  

Fig. 12. Training and Validation loss vs. Epochs for Center Prediction CNN.  
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22.757 dB on the validation dataset. For the droplet location, a center 
prediction network based on CNN architecture was performed on the 
denoised images. The proposed network predicted the droplet center 
with an AE value of 1.35 pixels for x location and 0.927 pixels for y 
location. The uncertainty of the deep learning model is ±3.4% and 
±3.9% in the predictions for the x and y pixel location of the droplets 
respectively. The validated deep learning model significantly reduces 
the time taken per image for denoising from 168 s to 2.13 s on a single 
GPU. This makes it a powerful tool for real-time usage on the fly. 

The deep learning-based denoising algorithm automatically differ
entiates the droplets from noises that cause blurriness and undesired 
signals from non-illuminated regions. This ensures that the background 
noise is not misclassified as a droplet and does not interfere with the 

droplet location prediction. In addition, the proposed model provides an 
efficient and robust method for determining the droplet center location. 
A well-optimized network is expected to have the capability of pro
ducing results at near real-time speeds. While the proposed model is 
beneficial, it has some limitations. Manual preparation of labeled 
datasets for training is highly time-consuming, and an image processing- 
based approach that uses the Canny edge detector is unable to detect and 
separate overlapping droplets. In addition, the proposed model is 
limited to round-shaped droplets. To overcome these limitations, an 
unsupervised or semi-supervised learning approach will be explored in 
future studies for generating ground truth datasets. The model can be 
extended to determine the quantitative information about the droplets, 
such as diameter, sphericity, and droplet size distribution using deep 
learning methods. These deep learning models will be further tested and 
fine-tuned utilizing the more accurate “true images” from SLIPI tech
nique with less multiple scattering effects. 
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