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Abstract Background subtraction is the classical approach
to differentiate moving objects in a scene from the static
background when the camera is fixed. If the fixed camera
assumption does not hold, a frame registration step is fol-
lowed by the background subtraction. However, this registra-
tion step cannot perfectly compensate camera motion, thus
errors like translations of pixels from their true registered
position occur. In this paper, we overcome these errors with a
simple, but effective background subtraction algorithm that
combines Temporal and Spatio-Temporal approaches. The
former models the temporal intensity distribution of each
individual pixel. The latter classifies foreground and back-
ground pixels, taking into account the intensity distribution
of each pixels’ neighborhood. The experimental results show
that our algorithm outperforms the state-of-the-art systems
in the presence of jitter, in spite of its simplicity.

Keywords Background subtraction · Moving camera ·
Temporal background subtraction · Spatio-Temporal
background subtraction

1 Introduction

Together with frame difference, background subtraction is
one of the most common approaches to detect moving objects
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in a scene captured by a fixed camera [16,25]. Background
subtraction is the first processing step in many computer
vision systems; for instance, in a tracking algorithm it locates
the moving objects to track, while in industrial settings it
is used for parts detection in the workspace. For this rea-
son, background subtraction accuracy and robustness are of
uttermost importance, even in challenging situations, e.g.,
when abrupt brightness changes occur, when the brightness
of the scene is low or when shadows introduce undesired
moving regions.

Background subtraction has been conceived for fixed cam-
eras, but in everyday life such hypothesis is not always
true. For instance, hand-held cameras (e.g., from a mobile
device) capture shaking movies, surveillance PTZ (Pan,
Tilt and Zoom) cameras deliberately move themselves to
monitor a wide area, and also fixed cameras can move
because of wind or vibrations. Generalized background sub-
traction has been proposed to deal with not fixed camera
[14]. In these cases, background subtraction usually follows
a registration step, which aims at reducing misalignments
between the current processed frame and the reference back-
ground model. However, this is not enough to remove jit-
ter, and a background subtraction algorithm robust to this is
required.

In this paper, we propose a simple background subtraction
algorithm robust to camera movements. It uses a combination
of Temporal and Spatio-Temporal histograms of pixel inten-
sities; both histograms represent temporal distributions, but
the former deals with only a single pixel, while the latter
deals with its neighborhood.

In Sect. 2, we illustrate current approaches to general-
ized background subtraction, while in Sect. 3 we describe
the proposed algorithm for robust background subtraction in
the presence of jitter. In Sect. 4, we discuss the experimental
results on two public datasets.
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2 Related works

Background subtraction is a widespread technique to detect
moving objects in a video stream. A moving object (or fore-
ground) is defined as a region of the image that differs from
the background static scene. Classical background subtrac-
tion algorithms create a model of the background, and then,
subtract it from the current frame: pixels whose intensity
differs significantly from the background model are classi-
fied as foreground. In [2,5,6,18], the authors review sev-
eral approaches: nowadays the most common are based on
Gaussian Mixture Model (GMM) [23] and non-parametric
kernel density estimation [7].

The greatest limitation of classical background subtrac-
tion is the fixed camera assumption. In many situations (e.g.,
hand-held camera, camera on an aerial vehicle, or in robotic
vision), the camera is moving and the static background
assumption is no longer valid. To overcome this issue, novel
algorithms have been proposed to face the more general prob-
lem of background subtraction with a moving camera, named
Generalized Background Subtraction as in [14].

Most of the Generalized Background Subtraction algo-
rithms rely on image registration, which is the process of
aligning an image with a reference image of the same scene. A
straightforward Generalized Background Subtraction algo-
rithm creates a background model of the whole scene by
registering the images into a unique mosaic. Then, the algo-
rithm detects moving objects by registering each new frame
to the mosaic and performing classical background subtrac-
tion between the mosaic and the aligned frame [17]. Regis-
tration misalignments, however, result in false positive detec-
tions, and this impacts severely on the final outcome.

Usually, the registration step involves an affine or a pro-
jective transformation. The latter is more expressive, but it
can only map precisely a plane in the 3D scene between two
different point of views [10]. Therefore, these approaches
handle accurately only the scenes where the background lies
on a single plane, for instance the road surface, in a street,
but in a more complex scene, with buildings and 3D struc-
tures, this simplification does not give accurate results. In
these situations, background subtraction needs to be robust
to compensate the unavoidable misalignments.

Different approaches have been developed to overcome
the single plane assumption. A first approach relies on multi-
view geometric constraints among consecutive frames.

In [12,20,26], the authors propose different constraints by
estimating the camera parallax displacement by means of the
plane+parallax decomposition. Unfortunately, this decompo-
sition holds when the camera translates in a direction orthog-
onal to the viewing ray, but it fails in other cases. In [24]
and [21], the authors propose two alternative constraints
over the trajectory of the features extracted, for the regis-
tration of consecutive images, which are independent from

the plane+parallax decomposition. On the other hand, this
approach does need a certain delay to determine an adequate
trajectory for each feature.

Other approaches, that aim at overcoming the single
plane assumption, do not involve the definition of constraints
[1,11,13,14,19]. In [13], the authors align each frame with
the reference mosaic repeatedly: at each iteration, the region
that best fits the current registration is used to determine a
plane that is excluded from the successive registrations steps.
This method does not deal with moving objects since it only
focuses on the background modelling. In [11], the authors
embed a statistical description of the homography estima-
tion errors in the GMM framework. Ren et al. [19] improve
the GMM method adding the spatial dimension in the back-
ground modelling. Finally, in [14], a Bayesian filter enforces
the precision of the estimation process of the motion vector
during the registration step.

In [15], the authors use a similar approach to Spatio-
Temporal background subtraction with histograms, but they
did not consider the generalized background subtraction
issue (they consider a fixed camera). Instead, in our contri-
bution, we point out the effectiveness of a Spatio-Temporal
approach in the generalized background subtraction setting,
and we show that combining this approach with the Temporal
one we can improve its results.

3 Background subtraction with Temporal and
Spatio-Temporal histograms

In the following, we illustrate our Generalized Background
Subtraction algorithm starting with a brief explanation of
the image registration steps, which, in principle, makes it
possible to directly apply a classical background subtraction
algorithm. However, the registration always produces mis-
alignments, which result in false positives foreground.

3.1 Limits of image registration

Let Ft be a new frame from the video stream captured from
a moving camera, and Bt the reference image, i.e., the back-
ground model. To align the two images, we first extract the
Good Features to Track [22] from both images, then we find
matches among features and we estimate the homography
between Ft and Bt by means of RANSAC [8]. In Fig. 1, we
show Bt in the left and Ft in the right side: the circles repre-
sent the extracted features. The RANSAC algorithm chooses
the light blue circles, while it rejects the black ones.

As it can be noticed, the chosen features lie on the floor:
this is the dominant plane and it induces the homography
that RANSAC estimates. The features that do not lay on the
floor, e.g., those on the closet, induce a different homogra-
phy, and they are rejected by RANSAC. In Fig. 2, we show
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Fig. 1 Features selection for image registration. In this image, we show
an example of the features selected by RANSAC. The left image is the
reference frame, i.e., the background model, while the right one is the
frame to be registered. The light blue circles represent features that
are selected by RANSAC to compute the registration homography; the
features rejected are circled in black. The lines between the two frames
connect matching features (the light blue circles) (color figure online)

Fig. 2 Example of the registration errors introduced by the homog-
raphy estimated from features, as illustrated in Fig. 1. We show the
background overlaid with the registered frame: the two black lines rep-
resent the border of the registered frame. Notice how the closet is badly
aligned, since its features belong to a different plane with respect to the
floor

the image Ft transformed according to the estimated homog-
raphy overlaid with the background Bt : this transformation
aligns perfectly the floor, while it produces a significantly
misalignment of the closet. In Fig. 3, we show a detail of
it: the piece of paper in the closet in the registered image is
significantly shifted to the right.

Fig. 3 Detail of Fig. 2: we overlaid the background with the registered
frame. This picture clearly shows the misalignment between the back-
ground and the registered frame. A classical background subtraction
algorithm (Temporal approach) would misclassify the not overlapping
parts of the sheet of paper as foreground

3.2 The Temporal + Spatio-Temporal approach

After the registration step, a generalized background sub-
traction algorithm has to manage the misalignments, which
corresponds to a local translation of a set of pixels (e.g., in
Fig. 2, the transformation results in the translation of the
closet door’s pixels).

Classical background subtraction algorithms model the
history of each pixel’s intensities independently from
others—they do that using the median value, a Gaussian dis-
tribution, a Mixture of Gaussians or a histogram. Such kind of
algorithms classifies each pixel by comparing the pixel inten-
sity in the new frame with the one in the background model.
In other words, a classical background subtraction algorithm
classifies each pixel individually by taking into account only
the temporal changes (Temporal approach). The translations
of pixels, induced by the image registration misalignments,
would result in false positive detections. For instance, in Fig.
3, the not overlapping region of the piece of sheet would be
misclassified as foreground (pixels’ intensity differs signifi-
cantly).

Here, we propose to adopt a Spatio-Temporal approach:
for each pixel, we model the history of the pixel and its
neighborhood—as in the previous case with the median
value, a Gaussian distribution, a Mixture of Gaussians or
a histogram. Then, we classify each pixel as foreground if
both the pixel and its neighborhood intensities differ sig-
nificantly from the modeled distributions. Therefore, the
Spatio-Temporal algorithm classifies each pixel through spa-
tial (pixel neighborhood) as well as temporal information.

Such approach manages the unavoidable misalignments
better with respect to the Temporal one. For instance, in Fig. 4
the black dot locates the position of the paper corner in the
current frame; the blue dot locates the “real” paper corner
position in the background image. A classical, “Temporal”
background subtraction algorithm would classify the black
dot as foreground, since its intensity differs significantly from
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Fig. 4 Detail of Fig. 2 (same detail of Fig. 3): we overlaid the reference
background with the registered frame. The black pixel of the corner of
the paper belongs to the registered frame, while the blue one is the real
position of this corner of the paper in the reference image. The Spatio-
Temporal approach would be able to correctly classify the black pixel as
background, since it take into account the neighborhood of black pixel,
i.e., the circle in the image, which includes the real position of the pixel
(color figure online)

the background. A Spatio-Temporal approach evaluates the
neighborhood depicted with the black circle around the black
dot, then it would also take into account the real background
(the blue dot) in the classification process, and, likely, it will
not misclassify the pixel.

The Spatio-Temporal algorithm results in a foreground
that is less noisy with respect to the one generated by the Tem-
poral algorithm; on the other hand, the misclassified pixels
cluster into connected regions. Indeed, if most of the neigh-
borhood of a pixel p is misclassified, then it is likely that
p is misclassified too. It has to be noted that the Temporal
approach fails more frequently, but most of the misclassified
pixels are sparse, and can be rejected by means of morpho-
logical operators.

To keep the positive aspects of the two approaches, we
apply a binary AND operator to the two images that result
from the Spatio-Temporal and the Temporal background sub-
traction. In Fig. 5, we show the results of the background sub-
traction for the Temporal, and Spatio-Temporal approaches,
as well as for their combination.

3.3 The histogram representation

As mentioned above, there exist different ways to describe
both the spatial and temporal distributions of a pixel; in the
proposed system, we adopt the histogram representation.

Let f be a distribution and x1, x2, . . . , xn a set of n i.i.d.
samples from this distribution. Let fix a set of m disjoint
intervals that cover all the domain of f and build the so-
called bins; an integer number ci counts the samples that fall
into the i th bin. The bins define a histogram approximating
the distribution f , up to a scale factor proportional to n.

We choose the histogram representation instead of the
widespread Mixture of Gaussians, for the following reasons:

1. Histograms provide a more natural descriptor of the
pixel intensities. While Gaussians are continuous distri-
butions, both pixel intensities and histograms are discrete.
Moreover, the histogram representation naturally man-
ages multi-modal distributions with a number of modes
not fixed (as the Mixture of Gaussians) although bounded
by m.

2. Histograms are easy to parametrize and to tune. The his-
togram has only one parameter to set, the bin dimension
d. If d = 1, each bin represents a single pixel intensities;
but we want to be more robust to noise, so we populate a
bin with similar intensities pixels (for instance d > 5). We
also want bins uniformly distributed: d must be a power of
2. Moreover, we reject too big bins, since they collect too
different intensities. In conclusion, we choose d = 16.

3. With histograms, we easily represent and compare spatial
distributions (for the Spatio-Temporal background sub-
traction). In the Spatio-Temporal background subtraction
approach, we need to describe a spatial distribution for
each pixel. This distribution is again a histogram which
summarizes the distribution of the neighborhood, and the
i th bin is the sum of i th bins’ population of each neigh-
borhood histogram. Moreover, we easily compare this his-
togram with the current histogram of neighborhood pixel
intensities through the Bhattacharyya distance [3].

The only real drawback of this approach is the large
amount of memory needed to store the entire background
model by means of histograms. If the bin dimension is
d = 16, the number of bins in a histogram is 16 too. For
instance, if we consider a 1,024 × 768 image and for each
bin, we store a 32 bit integer, the memory requirement would
be 1,024×768×16×32 = 245,760,000 bit, i.e., ∼48 MB,
which could be considered a large amount of memory in some
applications, e.g., in embedded systems. On the other hand,
for state-of-the-art Mixture of Gaussians memory require-
ment would amount to 1,024 × 768 × 5 × (16 + 16 + 8) bit,
i.e., ∼19 MB, to represent the background, for 5 Gaussians
per-pixel and 16 bit to store the mean and the standard devia-
tion, and 8 bit for the weight associated with each Gaussian.
So, even if histograms require a larger amount of memory,
this is not so larger that the one needed by a classical Mixture
of Gaussians approach.

3.4 The Temporal + Spatio Temporal histograms algorithm

The diagram in Fig. 6 summarizes our Temporal + Spatio-
Temporal Histograms algorithm. In the Temporal algorithm,
we model each pixel through a histogram, by populating each
histogram with the history of pixel intensities. The intensities
corresponding to the most populated bins are those that more
likely belong to the background. Then, for each new frame,
we classify each pixel checking the bin population corre-
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(a) (b)

(c) (d)

Fig. 5 Example of background subtraction with the Temporal, the
Spatio-Temporal and our approach, which combines the two. This figure
gives an idea of the complementarity of the foreground mask resulting
from the Temporal and the Spatio-Temporal approaches on the frame
(a). The Temporal approach in b estimates a noisy and sparse fore-
ground. Instead, the Spatio-Temporal background subtraction output
in c is cleaner and the region classified as foreground is thick. If we
combine the two results with a binary AND, we obtain that the noisy

misclassified pixels from the Temporal approach are discarded by the
clean region from the Spatio-Temporal approach. Then, the thick mis-
classified area resulting from the Spatio-Temporal background subtrac-
tion is “sparsified” with the pixel from the Temporal approach. a Frame
number 861 from the boulevard video of ChangeDetection dataset. b
Temporal background subtraction. c Spatio-Temporal background sub-
traction. d Binary AND of Temporal and Spatio-Temporal results

Fig. 6 Overview of the proposed system. We combine the Temporal
and the Spatio-Temporal approaches to estimate the foreground. The
background model is created after an initialization step and it is then
updated according to description in Sect. 3.4.2

sponding to the current intensity: if the population of the bin
is high (above a fixed threshold), the pixel is classified as
background, otherwise it is classified as foreground.

The Spatio-Temporal background subtraction with his-
togram starts from our Temporal background subtraction
implementation, but, instead of representing only the Tem-
poral distribution of the pixels, it represents also the spatial
one. With spatial distribution, we mean the distribution of
the intensities in the neighborhood of each pixel.

Let us assume that we know the Temporal background
model, i.e., the set of histograms associated with each
pixel representing their Temporal distribution. We create
the Spatio-Temporal background model from the Tempo-
ral one. Let consider the pixel (i, j) and his neighborhood
(i ±w, j ±w) with w being a small integer, representing the
semi-dimension of the neighborhood. For each pixel (i, j),
we create a histogram by combining, i.e., by counting the
occurrence of all the temporal histograms corresponding to
the pixels in the interval (i ± w, j ± w). Then, for each new
frame, we create another histogram populated with the pixel
intensities in the current neighborhood (i ±w, j ±w) for the
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Fig. 7 Simple example of the Spatio-Temporal background subtrac-
tion with histograms. In this simple case, the neighborhood is only
of one pixel, i.e., w = 1. On one side, the background model stores a
Temporal histogram for each pixel (each bin is represented by a image),
describing its distribution up to the current frame. For the pixel (i, j),
we consider its neighborhood. For each bin, we sum the population

among the Temporal histogram of each pixel inside the neighborhood.
The result is the Spatio-Temporal histogram of the background. On the
other side, we populate a spatial histogram with the intensities of the
neighborhood of the pixel (i, j) of the current frame. Finally, we com-
pare the two (normalized) histograms (Spatial for the current frame and
Spatio-Temporal for the background) with the Bhattacharyya distance

current frame. We classify the pixel (i, j) comparing these
two histograms, with the Bhattacharyya distance: if their dis-
tance is below a fixed threshold τ , which is unique for the
entire image, the pixel is considered foreground, otherwise
it is classified as background. In Fig. 7, we give an idea of
what happens if w = 1.

3.4.1 Abrupt illumination changes

The algorithm illustrated in the previous section does not
manage abrupt illumination changes as this may change the
whole intensities of a set of images generating a diffused
misclassification. Indeed, at time t , our algorithm builds the
background histograms only considering the intensities of
the pixels up to the time t − 1. If in frame t , the illumina-
tion changes, for instance, if a cloud shields the sun, current
values of the background pixels are slightly different from
the values expected from the background model, then they
could be misclassified as foreground (Fig. 8a): if the bright-
ness increases, all of the intensities increase and vice versa.
This illumination change results in a translation of the his-
tograms’ bins along the intensity axis.

To avoid the abrupt illumination issue, we filter out the
current difference in median brightness between the back-
ground model and the current frame t—we prefer to use
median with respect to mean because it is more robust to out-
liers. We compare the median of the current frame intensities

with the median value of the median intensities computed for
the past frames. If the two medians differ significantly, we
increase or decrease the intensities of each pixel in the current
image according to this difference. To cope with drifts in illu-
mination, we compare the current median with the median
computed over the last N frame.

More precisely, let us assume that Mt is the median of the
pixels intensities pt in the frame t :

Mt = median
(

p(i, j)
t

)
, ∀(i, j) ∈ framet (1)

When a new frame T comes in, we compute the median of
the last N median, i.e.:

MN = median(Mt ), ∀t, T − N < t < T . (2)

Then, we calculate the difference of the median of the current
intensities from this value:

Ok = MN − MT , (3)

and we use this value to change the current image intensities:

p(i, j)
new = p(i, j)

old − Ok, ∀(i, j) ∈ frameT , (4)

where p(i, j)
old and p(i, j)

new are the pixel of the current image,
respectively, before and after the brightness correction.
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(a) (b)

Fig. 8 Effectiveness of our illumination changes management system:
In the left image (a), we show the output of our algorithm without illu-
mination management. Let notice the high amount of misclassified pix-
els (false positives), i.e., the white areas not belonging to the vehicle.

Instead the right image (b) is the foreground mask obtained with the
illumination management module. The number of the false positives
decreases significantly. a Without illumination change management. b
With illumination change management

In Fig. 8, we show an example of how this strategy dimin-
ishes the number of misclassified pixels under abrupt illu-
mination changes. The limit of this approach occurs when a
big object appears in the image: the current median value MT

may be polarized by its color, and this may result in misclassi-
fied pixels. To overcome this issue, we apply the illumination
changes algorithm only to the Spatio-Temporal background
subtraction. Therefore, the Temporal algorithm is still robust
to the big object issue, since it does not implement the illu-
mination changes module, while the Spatio-Temporal algo-
rithm compensates abrupt illumination changes. The AND
combination of the two outcomes removes different kind of
misclassified pixels, and then it increases the robustness of
the Temporal + Spatio-Temporal algorithm.

3.4.2 Background update

The previous technique deals successfully with abrupt illu-
mination changes, which have a short duration and affect the
whole image. In a background subtraction algorithm, we have
also to take into account that the global illumination of the
scene slowly changes too; we have to update the background
model according to these changes.

The histogram representation makes this update step quite
straightforward: we add a value λ to the bin of each pixel
histogram of the current image. λ weights the current pixel
intensity in the update step, defining the algorithm respon-
siveness. If we assume the segmentation to be perfect, we
would update only the background pixels so to avoid includ-
ing the intensity of a moving object in the background model.
In this case, we would set λ = 1 for background pixels, and
λ = 0 for foreground ones. As a perfect segmentation is not
realistic, we choose experimentally λ = 0.5 for foreground
pixels to partially integrate their values in the background
model.

4 Experimental results

We tested our algorithm, specifically designed for moving
camera, on the ChangeDetection dataset [9], which pro-
vides real case videos together with the ground-truth fore-
ground masks. We choose the four jittering camera (illus-
trative results in Table 1), because these videos simulate the
problems to be faced after performing the image to back-
ground registration: for this reason, we applied directly the
background subtraction algorithm (i.e., without the registra-
tion step) to the videos.

We compare our results with the state-of-the-art algorithm
whose results are published in the ChangeDetection website.
For each algorithm, the website reports the following metrics:
recall, specificity, false-positive rate (FPR), false-negative
rate (FNR), percentage of wrong classifications (PWC),
F-Measure and precision1.

In Table 2, we show the results of our algorithm, which we
named TSTH (Temporal and Spatio Temporal Histograms),
in comparison to the algorithm listed in the ChangeDetec-
tion website (in Fig. 1 we show a sample results compar-
ison among TSTH and the best algorithms in the camera
jitter ChangeDetection dataset). Despite the simpleness of
the approach, TSTH algorithm outperforms all the others,
according to the average ranking, which is the overall metric
used by the ChangeDetection website to rank an algorithm:
average ranking is the mean of each metrics’ ranking of the
algorithm. The worst metric for TSTH is the recall as the
AND operation increases the false-negative count, but the

1 If TP are true positives, FP are false positives, FN are false nega-
tives and TN are true negatives, then: recall = T P

T P+F N ; specificity =
T N

T N+F P ; FPR = F P
F P+T N ; FNR = F N

T P+F N ; PWC = 100 ∗
(F N+F P)

T P+F N+F P+T N ; F-Measure = 2∗precision∗recall
precision+recall ; precision =

T P
T P+F P .
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Table 1 Experimental results with ChangeDetection.net dataset

We list the results of our algorithm and the three best ranking algorithms

very low number of false positives and a high rate of true
negatives largely compensate, allowing TSTH to obtain the
best result.

In Table 3, we show how the simple binary AND com-
bination and a good illumination management increase the
performances of the Temporal and Spatio-Temporal algo-
rithms. All the four combinations that we listed (Temporal
+ Spatio-Temporal, or just one of the two, with or without
illumination management), outperform the individual algo-
rithms results with the exception of the false negative ratio
and the recall.

Table 3 also highlights the effectiveness of our illumina-
tion management approach (Sect. 3.4.1): when applied to
the Temporal and Spatio-Temporal algorithm it increases the
overall performances.

We also list some details of the videos (Table 4): the res-
olution, how many frames we used to initialize the back-
ground model and the number of processed frames. We
also show the processing frequency: the main implemen-

tation is written in MATLAB, but we also wrote a proto-
type version in C++/OpenMP: we determined the process-
ing times for both algorithms on a Core i7-2630QM CPU at
2.2 Ghz.

In the previous tests, we fixed the parameters, for all the
videos, as follows. The histograms are made up of d = 16
bins, as explained in Sect. 3.3. For the Spatio-Temporal algo-
rithm, we choose w = 6 (the neighborhood is a 13 × 13
px square). This value is proportional to the misalignments’
translation: a large translation requires a large value of w. In
the next paragraph, we show the results when w is fixed and
the overall translation changes. After some preliminary test,
we set the Bhattacharyya threshold of the Spatio-Temporal
algorithm to τ = 0.758 (Sect. 3.4). Finally, we set the win-
dow of the illumination compensation module (Sect. 3.4.1)
at about the number of the background model initialization
frames (N = 690), and in the background update module
(Sect. 3.4.2) we choose λ = 0.5 for foreground pixel and
λ = 1 for background ones.
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Table 2 Average metrics in the four camera jitter video of the ChangeDetection dataset

Method Average Average Average Average Average Average Average Average
ranking recall specificity FPR FNR PWC precision FMeasure

TSTH (proposed) 3.29 0.7497 0.9912 0.0088 0.0084 1.6440 0.8255 0.7738

CwisarD 4.14 0.7645 0.9916 0.0084 0.2355 1.7886 0.8091 0.7814

STLBP 5.14 0.8797 0.9841 0.0159 0.1203 1.9191 0.8124 0.8272

DPGMM 7.14 0.6988 0.9930 0.0070 0.3012 1.7707 0.8426 0.7477

PSP-MRF 7.87 0.8211 0.9825 0.0175 0.1789 2.2781 0.7009 0.7502

Spectral-360 10.29 0.6709 0.9906 0.0094 0.3291 2.0806 0.8392 0.7156

Multi-layer background subtraction 10.43 0.6903 0.9905 0.0095 0.3097 2.1628 0.7905 0.7311

PBAS 10.57 0.7373 0.9838 0.0162 0.2627 2.4882 0.7586 0.7220

SGMM 11.43 0.7088 0.9869 0.0131 0.2912 2.3761 0.7752 0.7251

KDE—Integrated Spatio-Temporal features 11.86 0.7316 0.9857 0.0143 0.2684 2.4238 0.6993 0.7110

KDE—Spatio-Temporal change detection 11.86 0.7562 0.9816 0.0184 0.2438 2.7450 0.6793 0.7122

SOBS 12.00 0.8007 0.9787 0.0213 0.1993 2.7479 0.6399 0.7086

SGMM-SOD 12.14 0.6351 0.9918 0.0093 0.3649 2.1683 0.8040 0.6724

SC-SOBS 12.71 0.8113 0.9768 0.0232 0.1887 2.8794 0.6286 0.7051

KNN 14.43 0.7351 0.9778 0.0222 0.2649 3.1104 0.7018 0.6894

Bayesian background 16.43 0.5441 0.9886 0.0114 0.4559 2.8807 0.6678 0.5988

GMM—KaewTraKulPong 16.57 0.5074 0.9888 0.0112 0.4926 3.0233 0.6897 0.5761

Chebyshev prob. with Static Object detection 17.43 0.7223 0.9725 0.0275 0.2777 3.6203 0.5960 0.6416

GMM—Stauffer & Grimson 18.00 0.7334 0.9666 0.0334 0.2666 4.2269 0.5126 0.5969

KDE—ElGammal 18.57 0.7375 0.9562 0.0438 0.2625 5.1349 0.4862 0.5720

GMM—RECTGAUSS-Tex 18.71 0.7649 0.9497 0.0503 0.2351 5.6663 0.4179 0.5370

Color histogram backprojection 20.29 0.4688 0.9821 0.0179 0.5312 3.7175 0.5296 0.4822

Local-self similarity 20.43 0.9764 0.6158 0.3842 0.0236 36.9570 0.1202 0.2074

GMM—Zivkovic 21.14 0.6900 0.9665 0.0335 0.3100 4.4057 0.4872 0.5670

Mahalanobis distance 21.43 0.7356 0.9431 0.0569 0.2644 6.4390 0.3813 0.4960

Euclidean distance 22.71 0.7115 0.9456 0.0544 0.2885 6.2957 0.3753 0.4874

CDPS 23.57 0.6025 0.9613 0.0387 0.3975 5.3593 0.4397 0.4865

Histogram 24.43 0.7111 0.8412 0.1588 0.2889 16.2797 0.1756 0.2784

The average ranking is the average of the each metric’ rankings. The boldface highlights the best value for each metric

Table 3 Comparison of results of Temporal, Spatio-Temporal and TSTH approaches with and without the abrupt illumination change management
(for each metric, the bold value underlines the best score)

Recall Specificity FPR FNR PWC Precision FMeasure

Temporal w/o ill. 0.8568 0.9629 0.0371 0.0044 3.9633 0.6779 0.7130

Temporal with ill. 0.8458 0.9757 0.0243 0.0049 2.7815 0.7146 0.7503

Spatio-Temporal w/o ill. 0.7962 0.9669 0.0331 0.0066 3.7963 0.6627 0.6874

Spatio-Temporal with ill. 0.7846 0.9796 0.0205 0.0072 2.6375 0.7016 0.7242

TSTH

Temporal w/o ill. + Spatio-Temporal w/o ill. 0.7754 0.9712 0.0289 0.0071 3.4374 0.7049 0.6957

Temporal w/o ill. + Spatio-Temporal with ill. 0.7500 0.9912 0.0088 0.0084 1.6453 0.8253 0.7738

Temporal with ill. + Spatio-Temporal w/o ill. 0.7518 0.9901 0.0099 0.0082 1.7336 0.8149 0.7678

Temporal with ill. + Spatio-Temporal with ill. 0.7644 0.9834 0.0166 0.0077 2.3106 0.7614 0.7416

The first four rows show results with the two individual algorithm (Temporal and Spatio-Temporal) with or without illumination management. The
other four rows show the results obtained by combining the two algorithm (our TSTH algorithm) with or without the illumination management.
We choose the second combination, i.e., Temporal w/o ill. + Spatio-Temporal with ill (see Sect. 3.4.1)
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Table 4 Technical parameters
of the datasets’ videos and
processing time in the Matlab
and C++ implementation

name resolution Num. Bootstrap Num. processed fps fps
name resolution Frames Frames (MATLAB) (C++/OpenMP

prototype)

Badminton 720 × 480 800 450 0.07 1.34

Boulevard 352 × 240 790 1810 0.33 8.09

Sidewalk 352 × 240 800 500 0.32 8.48

Traffic 320 × 240 900 770 0.38 7.88

Fig. 9 Illustrative frames of the SABS sequence and our results with the translated version. The salt and pepper noise in our results could be easily
removed with morphological operator or with a median filter: a Original frames. b Ground truth. c Our Results

To explain the role of the neighborhood dimension, i.e.,
the parameter w, in the Spatio-Temporal algorithm, we per-
formed another test on the SABS dataset [4] (in this case
we choose w = 6, τ = 0.8, N = 400, λ = 0.5 for fore-
ground pixel and λ = 1 for background ones). This dataset
is made up of synthetic videos, so the annotations are very
accurate (Fig. 9). For each experiment, we fix a value T , and
we translate each frame i by ti , which is a random value
extracted from an uniform distribution in [−T, T ]. The aim
of the random translation is to simulate, for each pixel, the
misalignments which can occur in the registration step itself:
the misalignments are induced on the whole image, and not
only on a limited area.

In Table 5, we list the results for different values of T :
notice that for a certain value of T , pixels translate inside
a square window of size 2 ∗ T + 1 px, while the neigh-
borhood considered in the Spatio-Temporal module of our
algorithm is a fixed 13 window. As the translation increases
(value T ), the overall performance degrades as expected. The
degradation becomes relevant when T > 6, which corre-
sponds to the value of the parameter w (w is the neighbor-
hood window semi-size of the Spatio-Temporal algorithm).
As we state in Sect. 3, the well-managed misaligned pixels
are those inside the neighborhood; so, the parameter w has
to be proportional to the expected length of misalignments’
translations.

123



Background subtraction by combining Temporal and Spatio-Temporal histograms

Table 5 Results with the SABS dataset: we translate each frame i by a random quantity ti , such that −T ≤ ti ≤ T

T Window dimension Recall Specificity FPR FNR PWC Precision FMeasure

0 no translation 0.7785 0.9929 0.0071 0.0047 1.1523 0.7378 0.7011

1 3 × 3 0.7855 0.9929 0.0071 0.0046 1.1466 0.7405 0.7003

2 5 × 5 0.7915 0.9928 0.0072 0.0044 1.1381 0.7431 0.7002

3 7 × 7 0.7930 0.9928 0.0072 0.0044 1.1361 0.7003 0.7486

4 9 × 9 0.7954 0.9927 0.0073 0.0043 1.1430 0.7433 0.6975

5 11 × 11 0.7936 0.9924 0.0076 0.0044 1.1725 0.7378 0.6894

6 13 × 13 0.7936 0.9915 0.0085 0.0044 1.2637 0.7232 0.6642

7 15 × 15 0.7957 0.9894 0.0106 0.0043 1.4670 0.6930 0.6138

8 17 × 17 0.7971 0.9871 0.0129 0.0043 1.6856 0.6619 0.5660

9 19 × 19 0.7952 0.9813 0.0187 0.0044 2.2572 0.5944 0.4746

10 21 × 21 0.7999 0.9781 0.0219 0.0042 2.5600 0.5644 0.4360

We list the results with different values of T , and the corresponding window dimensions, to show how the algorithm performs if the misalignment
increases. In these experiments, the neighborhood dimension is w = 6, i.e., the neighborhood is a 13 × 13 square. The performance degrades when
the misalignment exceeds this neighborhood window, as a consequence of the reasoning in Sect. 3 and in Fig. 4

5 Conclusion

In this paper, we proposed a simple, but effective, approach to
background subtraction with moving camera. The state-of-
the-art algorithms usually face this problem performing three
steps: the image registration, some refinement of the align-
ment results and the background subtraction. Indeed, to apply
the classical background subtraction algorithms, which rely
on the fixed camera assumption, a camera alignment step is
needed. We designed our background subtraction algorithm
to take into account the unavoidable misalignments resulting
from the registration.

Our main contribution is to combine a Temporal and a
Spatio-Temporal approaches. The former is the most com-
mon in classical background subtraction literature: it classi-
fies each pixel relying on its Temporal distribution. The latter,
instead, considers the neighborhood of each pixel, so it clas-
sifies pixels relying on their spatial distribution. To the best
of our knowledge, this paper is the first that clarifies how a
Spatio-Temporal approach to background subtraction can be
effective in background subtraction with a moving camera,
to manage some of the misclassified pixels generated from
misalignment of the registration step.

Moreover, we noticed that the foreground mask estimated
by the two approaches are in some sense complementary:
Temporal approach is less robust against misalignments,
but produces sparse misclassified pixels which are easy to
remove with morphological operators. The Spatio-Temporal
approach produces a cleaner result in most of the images,
but in some areas, it generates dense groups of misclassified
pixels. The proposed combination of the two approaches is
simple, just a binary AND, and effective, as the experimental
results show.

In our implementation, we adopt a histogram-based repre-
sentation of the pixel intensities distribution, since we believe

it is the most adequate tool for this framework: histograms are
easy to implement and they also represent more naturally the
discrete intensity distribution of the pixel with respect to other
tools as the Gaussian distribution, or the Mixture of Gaus-
sians. However, the proposed approach could be extended to
other non-parametric models.

We tested our algorithm with the camera jitter data-set
of ChangeDetection.net and, despite its simplicity, it outper-
formed the state-of-the-art algorithms.
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