
Can Automated Vehicles "See" 
in Minnesota? Ambient Particle 
Effects on LiDAR

William Northrop, Principal Investigator
Department of Mechanical Engineering

AUGUST 2022

Research Report 
Final Report 2022-03

Office of Research & Innovation • mndot.gov/research



To request this document in an alternative format, such as braille or large print, call 651-366-4718 or 1-
800-657-3774 (Greater Minnesota) or email your request to ADArequest.dot@state.mn.us. Please 
request at least one week in advance. 
 

 

tel:651-366-4718
tel:1-800-657-3774
tel:1-800-657-3774
mailto:ADArequest.dot@state.mn.us


Technical Report Documentation Page 
1. Report No. 2. 3. Recipients Accession No.

MN 2022-03 

4. Title and Subtitle 5. Report Date

Can Automated Vehicles “See” in Minnesota? Ambient Particle 

Effects on LiDAR 

August 2022 
6.

7. Author(s) 8. Performing Organization Report No.

William Northrop, Lu Zhan, Shawn Haag, Darrick Zarling 
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Mechanical Engineering Department 
University of Minnesota 
Mechanical Engineering Building, 111 Church St SE 
Minneapolis, MN 55455 

CTS #2020028 
11. Contract (C) or Grant (G) No.

(c) 1035427

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered

Minnesota Department of Transportation 
Office of Research & Innovation 
395 John Ireland Boulevard, MS 330 
St. Paul, Minnesota 55155-1899 

Final Report: February 2020-August 2022 
14. Sponsoring Agency Code

15. Supplementary Notes

https://www.mndot.gov/research/reports/2022/202203.pdf 
16. Abstract (Limit: 250 words)

This project will use a combination of laboratory experimentation and road demonstrations to better understand 

the reduction of LiDAR signal and object detection capability under adverse weather conditions found in 

Minnesota. It will also lead to concepts to improve LiDAR systems to adapt to such conditions through better 

signal processing image recognition software. 

17. Document Analysis/Descriptors 18. Availability Statement

Fog, Snowfall, Laser radar, Automated vehicles No restrictions. Document available from: 

National Technical Information Services, 

Alexandria, Virginia  22312 

19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price

Unclassified Unclassified 36 



 

 

Can Automated Vehicles “See” in Minnesota? Ambient Particle Effects 

on LiDAR 

 

FINAL REPORT 

 

Prepared by: 

William Northrop  

Lu Zhan 

Shawn Haag  

Darrick Zarling  

Department of Mechanical Engineering 

University of Minnesota 

 

August 2022 

 

Published by: 

Minnesota Department of Transportation 

Office of Research & Innovation 

395 John Ireland Boulevard, MS 330 

St. Paul, Minnesota 55155-1899 

 

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies 

of the Minnesota Department of Transportation or the University of Minnesota. This report does not contain a standard or 

specified technique.  

The authors, the Minnesota Department of Transportation, and the University of Minnesota do not endorse products or 

manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to this report 

because they are considered essential to this report. 



 

ACKNOWLEDGMENTS 

This project has been funded by the Minnesota Department of Transportation (MnDOT) under project 

number 00081748 and would not have been possible without the collaboration of Luminar Technologies 

Inc. and Vision System Intelligence (VSI) Labs. The research team would also like to thank the Technical 

Advisory Panel members: Robert Chaucierre, Terry Haukom, Peter Jenkins, Cory Johnson, Michael 

Kronzer, and Trisha Stefanski.   

 



 

TABLE OF CONTENTS 

CHAPTER 1: Literature Review ................................................................................................................ 1 

1.1 Introduction .................................................................................................................................. 1 

1.2 LiDAR System ................................................................................................................................ 2 

1.3 LiDAR Sensing of Aerosols .............................................................................................................. 4 

1.4 LiDAR Application on Autonomous vehicles (AV) ........................................................................... 4 

1.5 Conclusions ................................................................................................................................... 7 

CHAPTER 2: Fog Particle Experiment....................................................................................................... 8 

2.1 Test procedure .............................................................................................................................. 8 

2.2 Sensor Characterization ................................................................................................................. 9 

2.3 Results and Discussion ................................................................................................................. 12 

2.4 Conclusions ................................................................................................................................. 14 

CHAPTER 3: Snow Particle Experiments ................................................................................................ 16 

3.1 Experimental Design and Preparation .......................................................................................... 16 

3.2 Challenges in On-road Experiment ............................................................................................... 18 

3.3 Stationary Snow Experiment ........................................................................................................ 20 

3.4 Conclusions ................................................................................................................................. 23 

References ............................................................................................................................................ 24 

 



 

EXECUTIVE SUMMARY 

Research Issue: 

To achieve full automation in self-driving vehicles, environmental perception sensing accuracy is 

critically important. However, ambient particles in adverse weather like foggy, rainy, or snowy 

conditions can significantly scatter the incident laser beam, and therefore contaminate the intensity and 

accuracy of light detection and ranging (LiDAR) sensors. Especially compared to the rapidity of 

technology development in self-driving vehicles, there is a significant lack of documented research on 

LiDAR systems with wavelengths longer than 1 𝜇𝑚 for application in Advanced Driver-Assistance 

Systems. This project team at the University of Minnesota takes on that challenge in partnership with a 

forward-thinking LiDAR company that understands the importance of ensuring that automated vehicles 

(AVs) must navigate in all weather and a Minnesota AV research organization. 

Results: 

A fog chamber experiment was performed with a state-of-the-art 1.55 𝜇𝑚 wavelength automotive-grade 

LiDAR system in a controlled laboratory fog chamber. The goal of the research was to correlate laser 

attenuation and the optical properties of fog particles. In this work, a thorough multistep procedure for 

LiDAR data analysis was presented including spatial averaging of the object measurement and 

characterizing the temperature effect on a LiDAR intensity parameter. Fog particle density was measured 

by a commercial visibility sensor instrument. Assuming a constant extinction coefficient and backscatter 

coefficient, a simple analytical model was derived that correlates LiDAR reflectance and extinction 

coefficient measured by visibility sensor. Results showed that the correlation coefficient between LiDAR 

and visibility sensor data was 0.98 and the R-squared value of linear fitting was 0.96. By comparing the 

LiDAR original signal and the model, the Root-Mean-Squared Deviation was 0.007, meaning the model 

performed very well for predicting LiDAR reflectance in the controlled environment. Furthermore, 

although the returned signal strength was attenuated, the LiDAR can measure the target with a visibility 

range lower than six meters and the accuracy is within 5 cm. 

Unlike fog particles, snow particles were generally larger and therefore reflected a larger portion of laser 

energy. According to this feature, we adopted a different data-processing strategy, which Instead of 

characterizing the laser attenuation, a snow filter was developed based on the cut-off reflectance value 

calculated from first principle. A visualization of the result was presented in Figure 11. However, if the 

precipitation of snow becomes serious, the laser lens may be blocked by a thick layer of ices and lose 99% 

of the data due to this blockage effect. This is very crucial as such a huge loss of real-time data can cause 

tremendous safety issues during a severe snow event. Better design in the hardware level such as 

installing the LiDAR internally or adding a heat unit around the lens may alleviate the blockage effect from 

ice.  

Recommendations: 

By combining the data from the two experiments, we can conclude that: 



 

1. A mathematical correlation was derived and validated by the data of the fog experiment. The 

model was used to predict LiDAR performance or visibility under fog conditions. Moreover, this 

methodology can be extended to different scenarios where homogenous ambient particles are 

expected. 

2. LiDAR data was mainly corrupted due to the ice accumulation on the LiDAR lens. Improvement 

will be required at the hardware level to palliate such blockage effects. 

3. A snow particle filter was designed and tested with the LiDAR data and showed the most 

significant potential to remove the outliers due to adverse weather. Applying such a filter can be 

beneficial in the data post-processing and algorithm improvement analysis. 

MnDOT could consider agricultural dust, due to Minnesota’s grain harvest season, and other non-water 

particles in future LiDAR-related projects. Due to the focus of our research on fog and snow particles, the 

research team will be unable to pursue any specific research on dust particles. Public safety knowledge 

related to LiDAR to guide policy and regulation is also not considered as this was not part of the original 

objectives of this research. The research team suggests future research may be required to further assess 

policy implications of LiDAR and connected and automated vehicle (CAV) technologies. 

Benefactors: 

The completed work mainly addresses the issue of advancing CAV technology in winter conditions, a 

stated MnDOT CAV-X Office goal. By better understanding the impact of particles like snow and mist, 

practitioners can develop better object recognition capabilities for winter environments. Minnesota 

roads provide an ideal testing ground for winter AV testing. Through on-road experiments, the project 

accelerates the development of real-world LiDAR technology in Minnesota and globally. 

This project used a combination of laboratory experiments and road demonstrations to understand the 

reduction of LiDAR signal and object detection capability under adverse weather conditions found in 

Minnesota. It also led to new concepts to improve LiDAR systems to adapt to such conditions through 

better signal processing image recognition software. 

In the short term, the work will advance CAV policy in Minnesota by providing crucial information about 

what weather conditions are appropriate for on-road testing and the development of new AVs. While 

advancing AV technology is essential, maintaining proper safety margins on navigation systems are 

required for any vehicles on Minnesota roads. Longer-term, the project results can lead or contribute to 

stronger state safety regulations for AVs. Other measures of success include the use of data and 

correlations produced in the project by LiDAR manufacturers, system integrators, and vehicle 

manufacturers. Incorporating developed correlations into AV products, either directly into image 

processing software or hardware or software changes during the design process, will be critical 

indicators that show the project successfully impacts the field. 

 

 



 

CHAPTER 1:  LITERATURE REVIEW 

1.1 INTRODUCTION 

Since the 1960s, Light Detection and Ranging (LiDAR) technology has been well-established in both 

academia and industry. LiDAR is a surveying method that measures distance to a target by illuminating 

the target with laser light and measuring the reflected light with a sensor. Methods include time of flight 

(ToF), Doppler frequency shift or polarization. Regarding autonomous vehicles, this literature review is 

focused on ToF imaging LiDAR, which specifically measures the distance between the apparatus and 

hard targets. From the first lasers ranging to the moon achieved in 1969 [1] to the first commercial 

LiDAR system installed on autonomous vehicles in 2005 [2], the ToF LiDAR technique has made great 

strides historically and provides a significant role in the application of autonomous vehicles.  

The use of LiDAR in the automated vehicle (AV) industry is a relatively novel use of the technology, 

though it is considered an essential component of AV navigation systems. The laser technique improves 

the versatility and efficiency of mobile robots by directly mapping static environments and identifying 

moving objects nearby. Notwithstanding a suite of sensors (radar, optical camera, and ultrasound), 

LiDAR complements the environmental detection in terms of long-range and high resolution. To achieve 

the full automation level, which refers to the complete automatic control of a vehicle under all 

conditions [3], an accurate environmental perception is always required, even under adverse weather 

such as haze, snow, rain, or fog. 

However, even the most state-of-art automotive sensor systems experience non-negligible attenuation 

in data quality due to adverse weather [4]. Subjected to the interaction of aerosol particles with light, 

the LiDAR system provides sensitive and instantaneous responses to such unfavorable atmospheric 

conditions, where the degradation in signal is normally presented. This is beneficial in atmospheric 

research as many aerosol properties are measured, like particle size and concentration [5]. It is 

nonetheless a hurdle, to overcome in autonomous vehicle applications as the maximum (or average) 

range detected may be reduced. 

It is, therefore, of importance to characterize the impact of aerosol properties on LiDAR measurement, 

via which more advanced processing algorithms can be developed for correction, calibration, and 

prediction. Moreover, such study will potentially benefit new hardware design to tackle the challenge of 

the extreme environment [6]. 

The chapter is organized as follows: Key aspects of the LiDAR system are described in section 1.2. LiDAR 

research on aerosol properties in the atmosphere is reviewed in section 1.3. Finally, in section 1.4, the 

up-to-date investigation of particle effects on the automated LiDAR system is summarized. Section 1.5 

provides concluding remarks. 

 



 

1.2 LIDAR SYSTEM 

As stated in the introduction, LiDAR includes a wide range of phenomenology, thus many standards for 

categorization. There is a focus on the pulsed imaging LiDAR that is commonly used in aerosol particle 

research and automated vehicle perception. Some key aspects of the LiDAR system are reviewed, such 

as laser wavelength, pulse energy, scanning mode and range resolution, while the LiDAR range equation 

is given along with the explanation. The range equation forms the framework of approaches in aerosol 

particle research.  

By definition, a LiDAR instrument uses the electromagnetic waves in the visible and infrared spectrum 

(wavelengths approximately from 10−5 m to 10−6 m), which fundamentally differentiates itself from X-

band radar (typically wavelength of 3 cm) and L-band radar (wavelength of 30 cm). LiDAR systems can 

be equipped with a laser at an ultraviolet wavelength [7] or lasers at multi-wavelengths [8], the review 

of which is beyond the scope of this report. Numerous factors can influence the design of laser 

wavelengths, one of which is the Shannon sampling theorem. The theorem states that the instrument 

must utilize a sampling interval no greater than half-size of the resolvable feature of the study object, 

for instance, the size of aerosol particle. In other words, if the laser wavelength is significantly larger 

than the size of particles, it just flows around them with less or no attenuation. For a typical 1500 nm 

wavelength, the LiDAR technique is more capable in measuring properties of tiny particles in the 

atmosphere than radar techniques, however, the LiDAR technique is less powerful in penetrating the 

rain droplets, fog or dust for long-range measurement. Another factor to consider is the laser safety 

category as a stronger laser power may damage a human retina. In general, people assume 10 seconds 

of eye exposure to calculate the total absorbed pulse energy when categorizing laser safety. Given that 

the surface of a human eye has varied absorptivity as to laser wavelength, the maximum permissible 

laser flux is at the wavelength around 1500 nm [9]. The laser device used in AV applications is therefore 

normally less than 1500 nm due to the restriction of laser safety class 1. The maximum allowed power 

for 1500 nm laser is less than 100 mW. 

Another key aspect of imaging LiDAR is the angular resolution. Unlike 3D flash LiDAR, which uses a large 

array of detectors to develop images, commercial scanning LiDAR has a single detector or a limited 

number of individual detectors and high-speed scanners to direct the lasers. Consequently, the angular 

resolution is determined by the rotation speed of the scanner and sampling frequency of the system. 

The 3D imaging LiDAR currently available for autonomous vehicles in the market is pushing the 

resolution high enough to recognize a paper bag from a child on the street. The range resolution of 

LiDAR can be defined as the minimum distance to separate two independent measurement points, and 

can be determined by the equation as follows [9]: 

∆𝑅 =
𝑐

2𝐵
 

Where c is the speed of light in a specific medium, and B indicates the bandwidth of the returned signal. 

For a commercial LiDAR system on autonomous vehicles, the range resolution can be as accurate as 0.3 

cm. Furthermore, if the range to an object is sufficiently long enough such that the system is ’confused’ 



 

with the return signal from the next signal, Eq. 1 can then define the maximum range without ambiguity. 

This can be done by simply replacing the bandwidth, B, with the pulse repetition frequency (PRF).  

The returned LiDAR signal can be written in the simplest form as [10]: 

𝑃(𝑅, 𝜆) = 𝐾𝐺(𝑅)𝛽(𝑅, 𝜆)𝑇(𝑅, 𝜆) 

Note the power P received from a distance R is determined by four factors. The first factor, K, 

summarizes the performance of the LiDAR system, the second, 𝐺(𝑅), describes the range-dependent 

measurement geometry. These two factors are completely determined by the LiDAR setup and can thus 

be controlled by the experimentalist. The information on the atmosphere, and thus all the measurable 

quantities, are contained in the last two factors of above equation. The term 𝛽(𝑅, 𝜆) is the backscatter 

coefficient at distance R. It stands for the ability of the atmosphere to scatter light back into the 

direction from which it comes. 𝑇(𝑅, 𝜆) is the transmission term and describes how much light gets lost 

on the way from the LiDAR to distance R and back. Both 𝛽(𝑅, 𝜆) and 𝑇(𝑅, 𝜆) are the subjects of 

investigation and, in principle, unknown to the experimentalist. 

Considering the LiDAR academic research on atmospheric aerosol particles and the practical goal in this 

project, we herein focus on elaborating the 𝛽(𝑅, 𝜆) and 𝑇(𝑅, 𝜆). In the atmosphere, the laser light is 

scattered by air molecules and particulate matter. i.e., 𝛽(𝑅, 𝜆) can be written as: 

𝛽(𝑅, 𝜆) = 𝛽𝑚𝑜𝑙(𝑅, 𝜆) + 𝛽𝑎𝑒𝑟(𝑅, 𝜆) 

This dual effect can be modeled individually, however, is difficult to separate from the pulse imaging 

LiDAR measurement. There are two main regimes of scattering based on the comparison in size 

between particles and laser wavelength. Rayleigh scattering is the in-all-direction elastic scattering of 

light by molecules and particulate matter that are much smaller than the wavelength of the incident 

light. The scattering intensity is proportional to the sixth power of the diameter of the particles and 

inversely proportional to the fourth power of the wavelength of light [9]. Mie scattering is the second 

type of mechanism where particles are on the order of the same size as the laser wavelength or much 

larger. Particles with Mie scattering have mostly forward scattering. As the final part of the LiDAR 

equation, we have to consider the fraction of light that gets lost on the way from the LiDAR to the 

scattering volume and back. The transmission term 𝑇(𝑅, 𝜆) can take values between 0 and 1 and is given 

by 

𝑇(𝑅, 𝜆) = 𝑒𝑥𝑝 [−2∫ 𝛼(𝑟, 𝜆)𝑑𝑟
𝑅

0

] 

This term results from the specific form of the Lambert–Beer–Bouguer law for LiDAR. The integral 

considers the path from the LiDAR to distance R. The sum of all transmission losses is called light 

extinction, and 𝛼(𝑟, 𝜆) is the extinction coefficient. Similar to the backscatter coefficient, extinction can 

occur because of scattering and absorption of light by molecules and particles. It, therefore, can be 

written as the sum of four components: 

𝛼(𝑟, 𝜆) = 𝛼𝑚𝑜𝑙,𝑠𝑐𝑎(𝑟, 𝜆) + 𝛼𝑚𝑜𝑙,𝑎𝑏𝑠(𝑟, 𝜆) + 𝛼𝑎𝑒𝑟,𝑠𝑐𝑎(𝑟, 𝜆) + 𝛼𝑎𝑒𝑟,𝑎𝑏𝑠(𝑟, 𝜆) 



 

After obtaining these optical parameters, analytical methods will be adopted to bridge the gap between 

LiDAR measurements and microphysical parameters of the atmospheric particles [11]. 

1.3 LIDAR SENSING OF AEROSOLS 

The fundamental equations of imaging LiDAR were presented in section 2. Normally, molecular 

absorption is ignored [11]. There are, therefore, four unknowns in principle, namely 𝛽𝑚𝑜𝑙(𝑅, 𝜆), 

𝛽𝑎𝑒𝑟(𝑅, 𝜆), 𝛼𝑠𝑎𝑐(𝑅, 𝜆) and 𝛼𝑎𝑒𝑟(𝑅, 𝜆), while one quantity is measured. To proceed with the solution, 

assumptions or more equations should be added. For instance, molecular scatters light by varying the 

intensity inversely proportional to the fourth power of the wavelength of light (Rayleigh scattering). 

Given a laser wavelength, molecular scattering changes directly with molecular number density, which is 

thus theoretically determined from the Rayleigh scattering law and knowledge of the atmospheric 

temperature and pressure profiles over the observation site [23][24][25]. By doing so, the remaining 

terms are the aerosol terms 𝛽𝑎𝑒𝑟(𝑅, 𝜆) and 𝛼𝑎𝑒𝑟(𝑅, 𝜆). However, this still leaves two unknowns and only 

one measurement at each radial distance R. Various solution methods have been developed over the 

years to overcome this dilemma [26][27][28][29][30][31][32].  

Many examples and details can be found in the literature. To retrieve the aerosol properties, the LiDAR 

equation (Eq. 2) was solved in many ways. However, the challenge is still obvious, that is, the particle 

backscatter coefficient and extinction coefficient, must be determined from only one measured 

quantity, the elastic LiDAR return. Moreover, the assumptions behind the solution are the major source 

of uncertainty and errors. Therefore, new laser techniques have been developed to tackle this challenge, 

namely Raman LiDAR and High Spectral resolution LiDAR (HSRL), which rely on multi-wavelength 

measurements and spectral distribution of light [33]. 

 

1.4 LIDAR APPLICATION ON AUTONOMOUS VEHICLES (AV) 

The first benchmark of the LiDAR sensor experimental study was already performed in 1991 by Hebert 

and Krothov [34]. Afterwards, Pascoal et al. performed the first assessment of four different laser range 

finders (Sick LMS200, Hokuyo URG- 04LX, IFM Efector O1D100 and Sick DT60) and found the IFM Efector 

O1D100 and the Sick DT60 have the best performance [35]. Prior, Wong et al. extended this into a 

benchmark study where a total of 10 different range sensors were evaluated to reflect the optimality for 

void modeling at a critical distance [36]. In general, automotive LiDAR system experiments can be 

categorized into two types, one of which involves field tests with atmospheric aerosols and particles, 

while the other one uses controllable and detectable artificial aerosols within the atmospheric chamber 

for the test. One example including both types of automotive LiDAR system experiments, can be found 

in [37]. Trickey et al. investigated the penetration performance of the Opal LiDAR in dust, fog, snow 

whiteouts and smoke. Dust and fog performances have been evaluated in an aerosol chamber while 

snow conditions and smoke were obtained in the field tests. Two types of experiments are reviewed as 

follows: 



 

 Field experiments: In [38], Peynot et al. did the initial work in collecting a large, accurately 

calibrated and synchronized data-set, where the common perceptual failures are identified and 

new methods are proposed to alleviate the corresponding errors. For laser radar systems, 

Rasshofer et al. theoretically investigated the influence of atmospheric parameters based on 

Mie’s theory in order to develop a novel electro-optical laser radar target simulator system. 

However, their experimental accuracy was limited by the lack of calibration and scaling on the 

signal modeling [39]. Recently, Hasirlioglu et al. studied the disturbances due to low ambient 

temperatures and exhaust gases from leading vehicles [40]. A practical statement is given that 

the degradation of a laser signal becomes more serious with the lower temperature of 

exhausted gas. Kutila et al. evaluates the maximum and average detection range of a 

commercial LiDAR system under foggy and rainy weather. The result shows a noticeable 

decrement in the average range, while the maximum range is changed minimally [41]. 

 Fog chamber experiments: In [42], Ijaz et al. built a very small laboratory with a controlled 

atmospheric chamber and was able to show that the attenuation due to fog and smoke in a free 

space optical communication link is not wavelength dependent for visibility less than 500m and 

wavelengths between 600-1550 nm. A linear correlation was found between laser attenuation 

due to smoke particles and visibility. In the same experimental condition, they later conducted 

experiments and proposed a new empirical model to predict the attenuation, which 

outperformed the Kim and Kruse model [43]. Knowing that the laser wavelength plays a 

significant role in responding to atmospheric particles, a very detailed inspection and discussion 

of two popular wavelengths for LiDAR systems, i.e. 905 nm and 1550 nm, was completed by 

Wojtanowski et al. [44]. It is interesting to point out that the climate chamber of CEREMA in 

Clermont Ferrand (France) is the only one in Europe that is able to produce stable fog with a 

certain meteorological visual range V in two different fog droplet distributions, i.e. radiation fog 

(small droplets) and advection fog (large droplets) [45]. 

Unlike the atmospheric particle experiments, researchers and engineers working in the autonomous 

vehicle industry prefer more practical parameters rather than the aerosol optical properties. For 

instance, 𝑇(𝑅, 𝜆) and 𝛼(𝑅, 𝜆) in Eq. 4 are physical parameters that are difficult to represent in road 

transport or the application of visibility [45]. The question has been asked: what’s the meaning of fog 

with a transmission factor of 0.3, or with an extinction coefficient of 0.1? It is thus easier to grasp the 

idea of fog expressively by a visibility distance such as 30 or 100 m. On the other hand, the 

meteorological visibility V (km) can be linked to atmospheric attenuation coefficient and laser 

wavelength via the empirical model, the Kruse model [46]: 

𝑉 =
10 log10 𝑇𝑡ℎ
𝛼(𝑅, 𝜆)

(
𝜆

𝜆0
)
−𝑞

 

𝑞 = {

1.6, 𝑉 > 50 𝑘𝑚
1.3, 6 𝑘𝑚 < 𝑉 < 50 𝑘𝑚

−0.583𝑉
1
3, 𝑉 < 6 𝑘𝑚

 



 

where 𝑇𝑡ℎ  is the visual threshold (normally is taken as 2% to 5% depends on the experimental 

condition). 𝜆0 is the maximum spectrum of the solar band. q is the adjustable parameter related to the 

particle size distribution in the atmosphere. Modified values of q were introduced by Kim [47], who puts 

effort in researching the visibility lower than 500 m,  

𝑞 =

{
 
 

 
 

1.6, 𝑉 > 50 𝑘𝑚
1.3, 6 𝑘𝑚 < 𝑉 < 50 𝑘𝑚

16𝑉 + 0.34, 1 𝑘𝑚 <  𝑉 < 6 𝑘𝑚
𝑉 − 0.5, 0.5 𝑘𝑚 <  𝑉 < 1 𝑘𝑚

0,  𝑉 < 0.5 𝑘𝑚

 

However, this model does not provide a good agreement with several recent experimental data 

[43][48][49][50][51]. Naboulsi has proposed a new fine-tuned correlation for advection fog (4 – 20 𝜇𝑚) 

and radiation fog (1 - 5 𝜇𝑚) in [48], and can be expressed as: 

𝑉 =
0.11478𝜆 + 3.8367

𝛼𝑎𝑑𝑣(𝑅, 𝜆)
 

𝑉 =
0.18126𝜆2 + 0.13709𝜆 + 3.8367

𝛼𝑟𝑎𝑑(𝑅, 𝜆)
 

Smoke and fog particles are characterized in an atmospheric chamber by Ijaz et al [43]. Results are valid 

for the laser wavelength within a range [550, 1550] nm, and up to 1 km visibility, which can be 

formulated as: 

𝑞 = {
0.1428𝜆 − 0.0947, 𝑓𝑜𝑔
0.8467𝜆 − 0.5212, 𝑠𝑚𝑜𝑘𝑒

 

Using characteristics from both Ijaz and Naboulsi’s results, Mustafa has developed another custom 

model for visibility less than 0.5 km. The expression is given as follow [52]: 

𝑞 = {
0.6701 − 0.5182, 𝑓𝑜𝑔

−0.1619𝜆 − 1.336, 𝑠𝑚𝑜𝑘𝑒
 

Estimating visibility is the key step to quantify the adverse environment, which then allows one to 

evaluate the correlation between environmental parameters and sensor performance. Normally, the 

LiDAR system performance is evaluated by variables such as maximum range, averaged range, number 

of points, SNR or raw data intensity and associated variation [6]. The correlation above is not simply 

linear in general and is of great importance because the most state-of-the-art detection algorithms are 

based on undisturbed LiDAR data. Indeed, several up-to-date experiments have adopted such 

methodology in their benchmark studies and presented a comparison between different sensor 

performances under various weather conditions [6][53][54][4]. It is noteworthy that most of the 

commercial LiDAR systems can directly provide signal intensity information or SNR, which reduces the 

computational effort in the post-processing. However, the real challenges lie on the accurate controlling 

of environmental parameters and the collection of data with robust statistics. 



 

The theoretical work predicts the LiDAR extinction and backscattering coefficient under foggy conditions 

[55]. The assumption of spherical particle and the single scattering process of light is proved to be valid 

in fog by the Monte Carlo Simulation [56]. Similarly, given the single scattering assumption, the impact 

of rainy conditions on laser radar is also studied. Simulation work shows that the radar detection range 

can be reduced by 55% in extreme rainy conditions (400mm/hr) [57]. A more complex pattern is 

observed in an experimental study that under rain influence, the reflected points of LiDAR can be shifted 

closer to the emitter [4]. Additionally, it is interesting to observe that comparing to fog and rain 

droplets, snow particles have been less studied with commercial LiDAR systems in the literature. In fact, 

there is a lack of research in methods to improve LiDAR data under snow influence [58]. Although the 

large size of snowflakes may generate Mie scattering like fog particles and rain droplets, different laser 

attenuation should be expected due to its unique microphysical model and precipitation speed [55]. This 

work will be meaningful, especially in Minnesota, where it snows on average 110 days per year with a 

cover of one inch (2.5 cm) or greater [56]. Secondly, many benchmark studies of commercial LiDAR 

systems are strongly dependent on the Kruse model, which is derived empirically. Efforts to develop 

new analytical models or semi-empirical models to improve the accuracy in both assessment and 

prediction are necessary. Simple Monte Carlo simulations can be implemented with the new model to 

make comparisons with future experimental data [59]. 

 

1.5 CONCLUSIONS 

In this chapter, applications of LiDAR techniques to fundamental research of atmospheric particles and 

use in autonomous vehicles have been reviewed. The former emphasizes the characterization of the 

aerosol microphysics and optical properties, while the latter seeks solutions to reduce particle effects on 

LiDAR signals. Adverse weather including fog, haze, rain and snow, not only reduces the maximum range 

of detection [60], but also causes the attenuation in signal intensity. To investigate and benchmark 

phenomenon as such, the experimental study and methodologies from literature have been discussed in 

sections 1.3 and 1.4, based on which some research ideas are offered as well in subsection 1.4. 

Experiments in the literature show a complex pattern of LiDAR signals. It is, therefore, important to 

reconsider assumptions such as the single scattering process in deriving new analytical models of 

predicting backscattering and extinction coefficients under adverse weather conditions. The literature 

review shows the value of this project, which not only will extend the knowledge of LiDAR applications 

in unfavorable weather but will also shine more light on the hardware design of LiDAR systems. In fact, 

as an example, Velodyne has upgraded their system by implementing a digital signal processor that can 

automatically switch intensity in the laser emitter according to the surrounding environment [61]. 



 

CHAPTER 2:  FOG PARTICLE EXPERIMENT 

2.1 TEST PROCEDURE 

The chamber setup is identical to the one in memorandum of Task 5, except the fog machine was replaced 
by a new model with higher output power, the target was covered by aluminum material. A Belfort Model 
6400 visibility sensor (Grants Pass, OR) was mounted at the center of the chamber. The inner view and 
objects dimension are reported in Fig. 1 (a). Fig. 1 (b) shows the view of setup from the viewpoint of the 
LiDAR system, where the different color represents the value of an internal LiDAR parameter, Range 
Corrected Directional Reflectance (RCDR). This non-dimensional parameter is defined as the ratio of 
backscattered laser energy over the emitted energy, which describes the portion of energy received by 
the sensor. It is particularly of interested that how the fog particles can affect RCDR value from sensor. 
Meanwhile, a spatial averaging technique was used in this work to compensate for single laser beam 
variability in the time series data. The spatial averaging sensitivity was confirmed by taking mean of the 
data from different areas on the reflective object. Although the size of area where spatial averaging was 
implemented varied, the mean value remained approximately the same. Therefore, it is reasonable to use 
a spatially averaged value to represent the changes in LiDAR signal. 

 

Figure 1. (a) Experimental setup inside the chamber. The dimension of the object and the height of the visibility 
sensor receiver are displayed. The North direction is given by an arrow. (b) RCDR data measured by LiDAR 



 

system. Four red squares and one black square with dash line on the object, refer to the areas used for spatial 
averaging. 

Preliminary tests were carried out before filling up the chamber with fog. The vert first step was to 
characterize the temperature drift of the LiDAR system using the setup shown in Fig. 1. LiDAR data was 
recorded continuously while system temperature was monitored. The second test was to take 
measurements from the visibility sensor without fog. The receiver was rotated within the chamber to 
eight cardinal orientations and compared to data taken outside the chamber. These experiments were 
conducted to understand the impact of the non-fog chamber environment on the extinction coefficient 
measurement and establish ground-truth baseline data for the later comparison with fog experiments.  

Once the visibility sensor and LiDAR instruments were characterized, fog particles were released into the 
chamber from the fog machine. The procedural steps of the fog experiment are summarized as follows: 

1. Initial condition: Record 10 minutes of data with the current setup as a reference in the clear 
chamber; 

2. Fog condition: Generate a fog plume with constant fog machine output power. The release 
process duration is 5 seconds and is repeated four times with a one-minute interval between 
release events; 

3. Homogeneous condition: Wait for 20 minutes until the fog particles are fully mixed inside the 
chamber; 

4. Fog diffusion: In this step, open all the roll-up windows on the chamber to ventilate the fog 
particles. This step takes approximately 70 minutes; 

5. Exhaust fan: A 1000 W exhaust fan is placed outside of the chamber to create turbulent flow to 
purge all the fog particles. The chamber should recover back to its initial condition. This step 
takes about 20 minutes. 

 

2.2 SENSOR CHARACTERIZATION 

When a LiDAR system is turned on at the temperature of surrounding environment, its electrical 

components continuously generate heat and lead to a temperature drift observed in the recorded data. 

An independent test was conducted to characterize the temperature drift of LiDAR sensor used in this 

work. In Fig. 2, the increase in LIDAR system temperature and the corresponding changes in range 

measurement and Range Corrected Directional Reflectance (RCDR) are provided after instrument startup. 

The LiDAR data are spatial averaged for the largest red rectangular area given in Fig.1 (b). The range 

measurement changed from 5.113 m to 5.061 m (by 1% increments), which can be considered negligible. 

However, the RCDR output changed from 1.18 to 1.063 (by 13%) due to temperature drift, which then has 

less effect on RCDR after 17:02:24. The criteria to record data therefore is deduced to be when the 

difference between minimum and maximum system temperature is less than 0.1, which is achievable 

after an approximately one-hour warm-up time.  



 

 
Figure 2. The effect of temperature drift on the (a) range measurement and (b) RCDR from the LiDAR sensor. 
Three values of system temperature are reported, including minimum, maximum and average for each 3-minute 
collection period. 



 

 

Figure 3. The visibility sensor was oriented in eight cardinal directions and placed inside or outside the chamber. 
Two outputs from the sensor are plotted: (a) The percentages of Received Signal of full scale, (b) Extinction 
Coefficient 𝜶𝒗𝒊𝒔𝒊, [𝒎

−𝟏]. The linear correlation is plotted in (c). Black crosses in (a) and (b) are the outliers 
identical to the black dots in (c). 

The first visibility sensor characterization experiment was to collect a reference dataset by deploying the 

sensor outside the chamber with receiver pointing East (named ‘Outside East’ in Fig. 3). Additionally, the 

relation between the chamber orientation and four cardinal directions, North, South, East and West, are 

specified in Fig. 1(a). It is clear that the extinction coefficient measured outside the chamber had the 

lowest value, corresponding to longer visibility range. All orientations inside the chamber provided 

similar extinction values with exception to the West and East directions. By comparing the measurement 

inside and outside the chamber, interference with the tunnel chamber was the main reason for the 

increased extinction coefficient. This was especially apparent when the sensor was oriented towards 

East or West, where the chamber surface was in the line-of-sight of both receiver and emitter. Although 

the result shows that it is challenging to observe a ground-truth extinction coefficient value, the visibility 



 

sensor was installed with Southern orientation for further experiments to minimize the impact from the 

chamber. 

2.3 RESULTS AND DISCUSSION 

Range measurement, RCDR and extinction coefficient are reported in Fig. 4 as a function of time 

according to the experimental steps described previously. In region I, the LiDAR reads the range of about 

5.025 m and RCDR of 1.149 at the initial condition. Once the fog machine was turned on, a peak value of 

RCDR is observed in region II while the extinction coefficient increased rapidly. It is noteworthy that a 

constant extinction coefficient 𝛼𝑣𝑖𝑠𝑖 in region III does not reflect a stationary status of the fog particles 

but rather the upper limit of the visibility sensor (although not shown in figures, this has been verified by 

using the data quality control criteria in previous section). Surprisingly, although the RCDR measurement 

exhibited a chaotic evolution, the LiDAR system exhibited a very accurate measurement of the distance 

from the object. When the minimum visibility range measurement of 3.3 m was achieved in region II, 

the LiDAR system only overestimated the object distance by 2 cm. 

 

Figure 4. Time series of (a) range measurement and (b) RCDR from LiDAR system (blue lines) and extinction 
coefficient 𝜶𝒗𝒊𝒔𝒊 from visibility sensor (Orange lines). Black vertical lines divide the experiments into five regions. 
The horizontal lines are the upper and lower limit of the visibility sensor capacity. The green area refers to the 
good dataset for modeling. 



 

The process in region III appears relatively complex as the range measurement tended towards a steady 

value while RCDR remained fluctuating. This may be due to many factors like changes in local fog density 

due to small-scale movement of fog particles or clusters, multi-scattering (defined by the phenomenon 

where photons were scattered multiple times before reaching back to the detector), or internal 

adjustment of the LiDAR sensor. However, as soon as the fog particles were vented from the chamber in 

region IV, the change in fog density dominated other factors. In Fig. 4 (a), the range measurement 

decreases monotonically starting at 23:14, and RCDR is increasing steadily. Meanwhile, the visibility 

sensor read a continuous reduction in extinction coefficient. The exhaust fan was turned on in region V 

at 00:23, which caused a small discontinuity in the time series of both LIDAR and visibility sensor 

As seen in region IV and V (green area), LiDAR RCDR is strongly correlated with the extinction coefficient. 

To further investigate this, if constant values of extinction coefficient and backscatter coefficient are 

assumed, we can calculate the changes in extinction coefficient from LiDAR data by using a ratio of the 

RCDR measurements: 

Δ𝛼𝐿𝑖𝐷𝐴𝑅 =

log (
𝐼
𝐼𝑟𝑒𝑓

)

−2𝑅
                                                               (1) 

Following the comprehensive sensor characterization experiments, the Δ𝛼𝐿𝑖𝐷𝐴𝑅 value is finally compared 

with extinction coefficient measured by visibility sensor. The result is reported in Fig. 5 (a), where a linear 

regression was suitable for fitting  Δ𝛼 from the LiDAR and the same value from the visibility sensor. The 

correlation coefficient from the fitting is found to be 0.98 with an r-squared of 0.97. The fitted linear 

model is expressed as:  

Δ𝛼𝐿𝑖𝐷𝐴𝑅 = 0.02562 ∗ Δ𝛼𝑉𝑖𝑠𝑖 − 0.01                                              (2) 

This result can be further extended to reveal the following expression: 

𝐼 = 𝐼𝑟𝑒𝑓𝑒
−2𝑅(0.02562Δ𝛼𝑣𝑖𝑠𝑖−0.01)                                                    (3) 

Equation (3) demonstrates an empirical approach to estimate RCDR from the LiDAR system as a function 

of ambient visibility for the condition of fog. The input is a reference value 𝐼𝑟𝑒𝑓 , the distance from an 

object to the LiDAR R and two corresponding measurements from visibility sensor to form Δ𝛼𝑣𝑖𝑠𝑖. A 

comparison between the original signal and the predicted signal is reported in Fig. 5 (b). The derived 

model performs very well in predicting the trend of the LiDAR measurement in foggy ambient 

conditions. Although the linear model did not capture the high frequency variation in the original signal, 

the Root-Mean-Square Deviation (RMSD) between experimental data and prediction is 0.007 



 

 

Figure 5. (a) Linear correlation of the extinction coefficient difference measured by LiDAR and visibility sensor. 
(b) Time history of LiDAR RCDR in blue, and the model predicted RCDR marked by black dash line. Orange line is 
extinction coefficient 𝜶𝒗𝒊𝒔𝒊 from visibility sensor. 

2.4 CONCLUSIONS 

In this fog chamber experiment, a prototype LiDAR sensor was correlated to extinction coefficient data 

provided by a visibility sensor instrument in the presence of fog inside a controlled chamber. Preliminary 

characterization experiments were performed to better understand the instruments and improve the 



 

accuracy of reported results. Preliminary results demonstrated the measurement uncertainty 

introduced by LiDAR system temperature drift. During the fog experiments, it was found that the LiDAR 

system resulted in a robust and accurate measurement of the distance from an object even when the 

reported visibility range was lower than 6 m. Furthermore, the correlation coefficient between the RCDR 

measured by LiDAR and extinction coefficient from visibility sensor was found to be 0.98. The RCDR 

measurement was predicted in fog with a RMSD of 0.007 between the LiDAR original signal and 

prediction using a developed linear model. This modeling approach can be extended to different aerosol 

particles or testing environments in future work. The benchmark results of LiDAR RCDR in the presence 

of fog particles will benefit the characterization, calibration, and design of LiDAR systems to operate 

accurately under adverse weather conditions. 



 

CHAPTER 3:  SNOW PARTICLE EXPERIMENTS 

3.1 EXPERIMENTAL DESIGN AND PREPARATION 

Two types of experiments have been conducted in this section, namely road test and static test, where 

the former refers to the experiment with a driving vehicle, while the latter requires a stationary 

installation of LiDAR. To collect the LiDAR data while driving, the Luminar H3 LiDAR needs to be 

mounted on the roof of the vehicle. A mounting plate was prepared with 9.5 inches in width and 7.9 

inches in length accordingly (a). Since the plate is made of carbon fiber, it is easy to drill 4xM4 clearance 

holes for platform mounting. Four M4 bolts with 0 .7mm thread and 100mm long were used for 

attaching the LiDAR onto the plate (b). Eventually, the LiDAR and mounting plate were installed on a 3D-

printed rack that is already setup on the roof of the vehicle (c). All the power units, AD/DC converter, 

SSD, network router, are fixed to the rear trunk along with an additional cooling system (d). It is 

noteworthy that the sensor does not have inertial measurement unit (IMU) to compensate the 

vibrations and it follows the standards from SAE J1211. The sensor accuracy is within 1 cm for every data 

point and the external idle vibrations are therefore very minimal. However, if the vertical center offset is 

not negligible, we will consider external equipment to mitigate the vibrations. 

 

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 6. (a) Measurement of the LiDAR dimension. (b) Install the LiDAR on a carbon fiber plate. (c) Mount the 
carbon fiber plate on the roof rack of vehicle. (d) Fit the storage and power units in the back trunk. 



 

 

The first on-road experiment was designed to test the system capability and stability. Envision, a 

software provided by Luminar Inc, has been used to visualize the measurement in real-time. Afterwards, 

we used MATLAB to make customized visualization videos thru Pcap data files. VSI labs has Ouster LiDAR 

available during the test. The data from two systems were compared in terms of range data and signal 

intensity. 

Compared to the stationary chamber experiment, it is reasonable to expect differences in the data from 

a mobile vehicle. The faster the speed of the vehicle, the less time required by the LiDAR system to 

measure an object. However, to select an optimal sampling frequency is not trivial since higher 

frequency can increase streamwise resolution for a moving object while lower frequency can improve 

spanwise resolution. In the next phase, we will study the resolution trade-off in different dimension and 

look for the best practice. In this preliminary study, we only considered two factors to explore the 

dynamic, namely vehicle velocity and LiDAR sample frequency. Four datasets were designed and 

collected with various driving speeds (miles/hour) and sampling frequencies (Hz), which are listed 

below: 

● 1st: 5 mph and 10 Hz. 

● 2nd: 10 mph and 10 Hz. 

● 3rd: 20 mph and 20 Hz. 

4𝑡ℎ: 30 mph and 20 Hz. Each dataset includes around five minute durations. The vehicle velocity refers 

to the maximum speed in the driving test, since we must remain at low speeds due to safety reasons, 

such as stop signs or speed bumps. The vehicle engine ran continuously to power the LiDAR system. 

Data visualizations is shown in four videos (YouTube link: 

https://www.youtube.com/watch?v=NKgY8IAoo5s&list=PLO2aoKkVlPh1YF6S1K_p7mRKbNL8joTHo&ind

ex=4). A virtual tour video is also shared in the same YouTube channel. A narrative below can provide 

more details of the vehicle operation and surrounding environments during the test.  

To fully understand the influence of ambient particles on LiDAR perception, a baseline measurement 

was needed to document the LiDAR performance and reflectivity of objects on the road in a ‘clean’ 

environment. To design an experiment that includes as many types of objects as possible, we adopted 

the proposed clusters shown below [62]: 

 

 

 

 

 



 

Table 1 Proposed clusters by Behley et al., 2019 

Cluster SemanticKITTI Classes 

Vehicle car, bicycle, motorcycle, truck, other-vehicle, bus 

Human person, bicyclist, motorcyclist 

Construction building, fence 

Vegetation vegetation, trunk, terrain 

Poles pole, traffic sign, traffic light 

Artifacts sky, road, parking, sidewalk, other-ground 

 

The first baseline experiment took place on 02/01/2021. The baseline experiment’s goal was to record 

most, if not all, of the objects from different classes. Therefore, the driving routine was designed to 

include a mix of scenarios including highway roads, neighborhood streets, and a park. It was challenging 

to find pedestrians outside on the road during the winter season. Luckily, some brave residents were 

found exercising at the park during the baseline experiment collection period.  

3.2 CHALLENGES IN ON-ROAD EXPERIMENT 

The on-road experiment was carried out on 02/17/2021 with moderate snow and 03/15/2021 with a 

snowstorm. Comparing with the dataset collected on a sunny day, we observed an interesting 

phenomenon. Between Fig.7 (a) and Fig.7 (b), without snow or water covered on the ground, the LiDAR 

system can detect the traffic lanes since pavement and paintings have different reflectivity in light. 

However, the lane markings will not be seen if covered by snow or water (melted snow due to the passing 

traffic). Moreover, the snow layer on the ground generally returns a signal with low reflectance. It is 

essential to detect the lanes and feed this information to the lateral controller while an autonomous 

vehicle plans a lane-changing operation or passing by a front vehicle. 

 



 

(a) 

 

 

(b) 

 

 

 

(c)  

 

 

(d) 

Figure 7. Image (a), (c) below show the object reflectance measurement by LiDAR in the baseline case, while 
images (b), (d) are the same type of LiDAR data but recorded with moderate snowfalls. 

 

Fig 7. (d) shows a significant amount of white (blank) areas randomly distributed in this 2D-view dataset. 

The white areas are due to the snow particles on the LiDAR lens surface, which quickly transforms into an 

ice layer after contact, and continuously scatters and distorts the laser signal. Such circumstance largely 

deteriorates in the snowstorm. In the worst case, the LiDAR system will not see a single vehicle on the 

highway. Although Luminar H3 LiDAR is claimed to be IP67 compliant, which means the system can 

function under adverse conditions such as rainy, snowy, or foggy weather, the experimental data shows 

the LiDAR cannot 'see' through the thick ice layer. 

Interestingly, the LiDAR system can see the particles and water droplets spun off from the front vehicle's 

rear tires. The particles presented a highly complex pattern in movement and shape. Particles and 

droplets experience the influence of the vehicle wake flow, which caused the meandering movement in 

a lateral direction. On the other hand, they intended to mix with vehicle emissions where high-

temperature air will melt the snow particles instantly. Additionally, as the particles spread and diffused 

in a downstream direction, a lower particle density will return less signal to the LiDAR system. As a 



 

result, the LiDAR can only see the sprays very close to the target vehicle, instead a far downstream 

position. 

Fig. 8 (a) shows how the ice was formed on the LiDAR lens in a snowstorm. To record meaningful data, 

the LiDAR lens was manually cleaned every 3 minutes. This cleaning process was not feasible on the 

highway. There is no doubt that the ice blockage has significantly affected the LiDAR perception. It is 

almost impossible to record valid data without solving this challenge and ensuring safety in full 

automation by using a LiDAR sensor. We have reported this issue to Luminar and received feedback that 

this is still an unresolved issue in the system. 

The suggestion based on this finding is that a hardware design needs to be refined to keep the LiDAR lens 

'clean'. Although we can think of installing an auto-wiping system or redesigning the device structure, the 

new generation of the automated vehicles shown in Fig. 8 (b), seems to have great potential to avoid snow 

or ice blockage by installing the LiDAR internally. It is anticipated that if water-repellent material is used 

in the new design, the influence from ice accumulation will be largely reduced. However, this assumption 

has not been tested to date. 

 

Figure 8. (a) A thick layer of ice-covered Luminar LiDAR lens. (b) The next generation of Volvo cars powered by 
Luminar LiDAR, Photo credit: https://www.media.volvocars.com/ 

 

3.3 STATIONARY SNOW EXPERIMENT 

We conducted a static test during the snowstorm event on 03/15/2021 by installing the LiDAR indoors to 

avoid ice accumulation on the lens while the laser measured objects in an open area with natural 

snowfalls. The positions of the sensor and target are shown in Fig. 9 (a). One specific snapshot of the LiDAR 

reflectance data was plotted in two types of coordinates in Fig. 9 (b) and (c), where we can see some 

scatter points distributed randomly in space and marked by red dots that are close to the LiDAR. These 

scatter points are reflectance from snow particles in the air. However, unlike the fog particles, the impact 

from snow is not as ‘continuous’ as the one from fog, where a homogenous cluster is expected to scatter 



 

the laser rays continuously. This is reasonable since fog particles has a smaller size but generally higher 

density than snow particles. 

Furthermore, the heterogeneity of snow distribution can bring considerable uncertainty into the analysis 

since the sampling volume of automated LiDAR and visibility sensor is different (Volumn sampling versus 

point sampling). It is observed that the reflected signal from the object, the vehicle in Fig. 9 (a), is not 

correlated with the changes in extinction coefficient. Instead, the noise-like signal seems to vary according 

to the extinction coefficient in Fig. 10. 

 

Figure 9. (a) The experimental setup of comparison test; (b) LiDAR reflectance measurement plotted in a 3D 
coordinate of XYZ; (c) LiDAR reflectance measurement plotted in a 2D coordinate of azimuth and elevation 
angle. Red dots mark reflectance from snow particles. 

 

Figure 10. Time history data of LiDAR reflectance marked by blue dots and extinction coefficient measured by 
visibility sensor denoted as a solid orange line. 

(a) (b) 

(c) 



 

 

The histogram of the data, which is not shown here, found that the backscattered signal from snow 

particles generally has a very low reflectance value. To extract the snow position, a filter was applied to 

the snapshot. This filter can be described as: 

𝑓 = 𝑓(𝑟, 𝐼|𝐼 ≤ 𝐼𝑠𝑛𝑜𝑤 , 𝑟 < 𝑟0, 𝑟𝑠𝑖𝑛(𝜑) > 𝑧𝑔𝑟𝑜𝑢𝑛𝑑) 

Where 𝐼𝑠𝑛𝑜𝑤  is the characteristic reflectance value for snow particles, 𝑟0 is the radius at which the laser 

signal is significantly affected, and 𝑧𝑔𝑟𝑜𝑢𝑛𝑑  is a value to exclude the sampling points on the ground. The 

filtering effect is reported in Fig. 11. 

 

 

Figure 11. (a) Stationary data before filtering; (b) Stationary data after filtering; (c) On-road data before filtering; 
(d) On-road data after filtering 

If the snow event is severe, more data points are filtered in Fig. 11 (a) and (b). Meanwhile, a few outliers 

near the LiDAR are removed during the moderate snow weather in Fig. 11 (c) and (d). This filter can be 

implemented to reduce complexity in the dataset before any high-level algorithms such as object 

detection or semantic segmentation start to play a role. Based on this result, a dynamic filter is 

recommended to exclude the outliers in LiDAR data due to ambient particles. 

 



 

3.4 CONCLUSIONS 

In this chapter, we summarized two experimental campaigns and presented the significant findings and 

corresponding analysis on the LiDAR system. The key points were: 

 LiDAR data was mainly corrupted due to the ice accumulation on the LiDAR lens. Improvement 

will be required in hardware to palliate such blockage effects. 

 A snow particle filter was designed and tested with the LiDAR data and showed the greatest 

potential to remove the outliers due to adverse weather. Applying such a filter can be beneficial 

in the data post-processing and algorithm improvement analysis.   
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