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1 

CHAPTER 1: OVERVIEW 

INTRODUCTION 

The Highway Safety Manual (HSM) contains safety performance functions (SPFs) that are used in 

project-level decision-making to estimate the average crash frequency by severity level for existing 

conditions, determine alternatives to existing conditions, or explore proposed new roadways. 

Agencies also use SPFs to identify sites with promise, which are locations that may benefit the 

most from one or more safety treatments. SPFs are the predictive models that relate the site crash 

frequency to their traffic, geometric, and environmental characteristics. Severity distribution 

functions (SDFs) are used in conjunction with SPFs to predict the crash frequency by severity. 

SPF and SDF calibration is needed because most of the existing HSM models were developed for 

states other than Texas. Calibration of existing SPFs is needed because “the general level of crash 

frequencies may vary substantially from one jurisdiction to another for a variety of reasons, 

including crash reporting thresholds and crash reporting system procedures” (HSM, p. C-18). 

Appendix B of the HSM contains guidance on developing local calibration factors for these 

models. There are two options an agency can employ to obtain SPFs: (1) develop a jurisdiction-

specific model for the facility that is being analyzed, or (2) calibrate the existing models to the 

jurisdiction conditions. Calibration is recommended to curtail data collection and processing 

costs. According to Srinivasan et al. (2013), the hours required for data collection and 

preparation for developing SPFs are three times the hours required for calibrating existing SPFs.  

Part C of the first edition of the HSM provides crash prediction models—or what are often 

referred to as SPFs—for roadway segments and intersections. Chapter 10 of the HSM includes 

SPFs that were estimated for rural two-lane two-way roads developed using state data from 

Minnesota, Washington, Michigan, and California. Chapter 11 includes SPFs that were estimated 

for rural multilane highways using data from Texas, California, Minnesota, New York, and 

Washington. Chapter 12 includes SPFs for roadway segments in urban and suburban arterials 

that were estimated using data from Minnesota, Michigan, and Washington; the SPFs for 

intersections in urban and suburban arterials were estimated using data from Minnesota, North 

Carolina, Florida, and Toronto (Ontario). Chapter 18 contains freeway safety prediction models 

that were estimated using data from California, Maine, and Washington. 

In addition, the HSM does not contain predictive models for frontage roads. Texas has a large 

network of frontage road segments that are part of the freeway system. Moreover, the ramp models 

in the HSM are not applicable to Texas due to differences in ramp configurations. Ramps in Texas 

usually connect the freeway mainline to the adjacent frontage road rather than a ramp terminal that 

connects directly to the perpendicular road, as is typical in the states used for developing the SPFs 

in the HSM.  

Thus, the first objective of this research project was to calibrate the existing SPFs with the Texas 

data and use the goodness-of-fit (GOF) statistics to assess the quality of each model’s calibration 

factor. For facilities with a poor-quality calibrated SPF, new SPFs were developed. The second 

objective was to develop new safety prediction models for one-way and two-way frontage roads 

and ramp segments.  
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RESEARCH APPROACH 

To calibrate the SPFs documented in the HSM, researchers assembled datasets for rural two-lane 

highways, rural highways, rural freeways, and urban arterials. The data were assembled for both 

roadway segments and intersections. However, unlike its inventory of roadway segments, Texas 

does not have an inventory of intersections. Researchers used the network provided by HERE 

Traffic Analytics and developed a statewide database of about 900,000 intersections. Also, 

researchers obtained crash data, traffic volumes, and geometric variables from the state roadway 

inventory and collected supplemental variables from aerial and street-level photography sources.  

For developing new SPFs for frontage roads, researchers built a database of about 900 segments 

that included one-way and two-way frontage roads in both rural and urban areas. For ramp SPFs, 

the team assembled a database that included about 650 entrance and exit ramp segments. In 

Texas, all crashes on frontage roads and ramps are assigned to the centerline of the main 

roadway, and the precise location of the crash is unknown (left or right frontage road or ramp). 

To overcome this issue, researchers developed a procedure to assign the crash to an appropriate 

ramp or frontage road segment. Using this procedure, researchers located about 70 percent of the 

relevant crashes. For the remaining 574 frontage road and 499 ramp crash cases, researchers 

manually checked the crash reports and primarily looked at the crash diagram in the crash report 

and compared it with the roadways on aerial photographs.  

RESEARCH RESULTS 

Researchers derived local calibration factors for the SPFs documented in HSM Chapters 10, 11, 

12, and 18. The team used various GOF measures to assess the quality of the estimated calibration 

factors. For facilities with a poor-quality calibration factor, researchers developed new SPFs using 

the data assembled for the calibration. Researchers developed the calibration factors by region for 

all facility types. The regional factors are needed due to safety performance differences in 

different regions of the state. Based on those region-specific and statewide factors, the team 

developed an adjustment factor to be used in conjunction with the statewide factor to estimate 

the crashes accurately.  

Researchers also developed new safety prediction models for frontage roads and ramp segments. 

The SPFs were developed for one-way and two-way frontage road segments and ramp segments. 

For frontage roads, the significant variables found to influence crashes include left and right 

shoulder widths, access point density, presence of entrance and exit ramps, posted speed limit, 

and horizontal curve density. Analysis showed that two-way frontage roads experience fewer 

crashes than one-way frontage roads, though they are more severe. For ramps, the influential 

variables are left and right shoulder widths, presence of horizontal curves, and longitudinal 

barrier presence and offset. Exit ramps experience more crashes than entrance ramps. The SPFs 

account for single- and multiple-vehicle crashes separately.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter presents a detailed review of the published literature that summarizes SPFs’ 

application and development as well as how other agencies have elected to address model 

development and calibration. The chapter is divided into four sections. The first section presents 

details about the SPFs, followed by the procedure detailing the development of new SPFs. The 

second section documents the application of SPFs adopted by various agencies. The third section 

presents a summary of calibration efforts designed to utilize existing SPFs and apply them to 

other temporal or spatial conditions. The last section provides a comparison of various safety 

predictive methods. 

SAFETY PERFORMANCE FUNCTIONS 

SPFs are the predictive models that relate the site crash frequency to their traffic, geometric and 

environmental characteristics. SDFs are used in conjunction with SPFs to predict the crash 

frequency by severity. There are two options for how an agency can obtain SPFs: (1) develop a 

jurisdiction-specific model for the facility that is being analyzed, or (2) calibrate existing models 

to the jurisdiction conditions. Calibration of existing SPFs is needed because “the general level 

of crash frequencies may vary substantially from one jurisdiction to another for a variety of 

reasons, including crash reporting thresholds and crash reporting system procedures” (HSM, 

p. C-18). Calibration is recommended to curtail data collection and processing costs. According 

to Srinivasan et al. (2013), the hours required for data collection and preparation for developing 

SPFs are three times the hours required for calibrating existing SPFs.  

Ozbay et al. (2019) summarized the pros and cons of two possible strategies, shown in Table 1, 

for making SPFs better accommodate local data conditions. The first strategy includes 

calibrating SPFs provided in the HSM. The second strategy is to develop jurisdiction-specific 

SPFs regardless of the predictive modeling framework in the HSM.  

Table 1. Pros and Cons of the Two Different SPF Strategies (Ozbay et al., 2019). 
Strategy Pros Cons 

Calibrate SPFs 

Provided in HSM 
• Makes the best use of the 

predictive modeling framework 

in HSM  

• Requires less sample data  

• Provides less flexibility to accommodate the 

data in the new locations  

• Cannot provide crash estimates for facilities 

not included in HSM  

Develop Jurisdiction-

Specific SPFs 
• Provides more flexibility to 

accommodate local data  

• Provides crash estimates for 

facilities not included in HSM  

• Requires more sample data to achieve 

statistically robust results  

• Requires additional work for model 

development, evaluation, and comparison  

 

 

Part C of the HSM (for project-level analysis) and Safety Analyst (for network screening) 

provide a few main sources for existing SPFs. Chapter 10 of the HSM includes SPFs that were 

estimated for rural two-lane two-way roads developed using state data from Minnesota, 

Washington, Michigan, and California. Chapter 11 includes SPFs that were estimated for rural 

multilane highways using data from Texas, California, Minnesota, New York, and Washington. 

Chapter 12 includes SPFs for roadway segments in urban and suburban arterials that were 
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estimated using data from Minnesota, Michigan, and Washington; the SPFs for intersections in 

urban and suburban arterials were estimated using data from Minnesota, North Carolina, Florida, 

and Toronto (Ontario). The Safety Analyst includes SPFs for roadway segments, intersections, 

and ramps. SPFs for roadway segments were estimated using data from Ohio, North Carolina, 

Minnesota, California, and Washington. SPFs for intersections were estimated using data from 

Minnesota, and SPFs for ramps were estimated using data from Washington. Calibration of these 

SPFs is automatically done within the software. The Safety Analyst program and technical 

support are only available through purchase from the American Association of State Highway 

and Transportation Officials (AASHTO). 

Srinivasan et al. (2013) outlined an 11-step process that an agency should follow to obtain the 

final SPF to be used in its jurisdiction. Based on those steps, researchers developed a pictorial 

view of the step-by-step process for developing SPFs, as shown in Figure 1. 

Define Facility Type

SPF already exist?

Develop New SPF

Is quality good?

Recommend 

calibrated SPF

No

Yes

Yes
No

Identify 
Sample 
Size for 

calibration

Collect 
Data

Derive 
Calibration 
Factor(s)

Identify Sample Size 
for Model 

Development

Collect 
Data

 
Figure 1. Step-by-Step Process for Developing SPFs. 

DEVELOPING NEW SPFS 

For the SPFs, the number of crashes occurring at an entity (i.e., a segment or an intersection) 

during a certain period (typically one year) is assumed to follow a negative binomial (NB) 

distribution. The probability mass function of the NB distribution is defined as 

 𝑓(𝑦|𝑁, 𝜎) =
𝛤(𝑦+1 𝜎⁄ )

𝛤(𝑦+1)𝛤(1 𝜎⁄ )
(

𝜎𝑁

1+𝜎𝑁
)
𝑦

(
1

1+𝜎𝑁
)
1
𝜎⁄

 (1) 

where: 

y = response variable (i.e., the number of crashes occurring at a segment or an intersection during a 

certain period). 

N = mean of the response variable. 

σ = over-dispersion parameter. 
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For segments, assuming that the mean of the crash number is associated with roadway features 

(i.e., traffic volume, segment length, and roadway characteristics), the relationship between the 

two is shown by the following equation: 

 𝑁 = 𝐿 × 𝑒𝑥𝑝(𝛽0 + 𝛽𝐴𝐷𝑇 × 𝑙𝑜𝑔(𝐴𝐷𝑇) + ∑ 𝛽𝑗 × 𝑥𝑗
𝑝
𝑗=1 ) (2) 

where: 

𝐿 = segment length. 

ADT = average daily traffic. 

𝑥𝑗 = roadway characteristics (e.g., lane width, shoulder width, truck percentage). 

𝛽0, 𝛽𝐴𝐷𝑇, 𝛽𝑗 = unknown parameters. 

In addition, assuming that the over-dispersion parameter 𝜎 of the NB distribution is related to the 

length of a segment with the following equation, the over-dispersion parameter is disproportional 

to the segment length: 

 𝜎 =
𝑒𝑥𝑝(𝛽𝜎)

𝐿
 (3) 

where: 

𝛽𝜎 = unknown parameter for over-dispersion parameter. 

In other words, as the length of a segment increases, the number of crashes becomes relatively 

less dispersed. This finding is consistent with the first edition of HSM (Equation 10-7, pp. 10–

16). Note that the dispersion parameter 𝜃 = 1/𝜎. 

Intersection SPFs have the following functional form: 

 𝑁𝑖 = 𝑒𝛽0 × (𝑀𝑎𝑗𝑜𝑟𝐴𝐷𝑇𝑖)
𝛽1 × (𝑀𝑖𝑛𝑜𝑟𝐴𝐴𝐷𝑇𝑖)

𝛽2 × 𝑒
∑ 𝛽𝑗×𝑥𝑗
𝑝
𝑗=1  (4) 

where: 

𝑁𝑖 = predicted crash number at the intersection 𝑖. 
𝑀𝑎𝑗𝑜𝑟𝐴𝐷𝑇𝑖 = major road ADT at the intersection 𝑖. 
𝑀𝑖𝑛𝑜𝑟𝐴𝐷𝑇1 = major road ADT at the intersection 𝑖. 
𝛽0, 𝛽1, 𝛽2, 𝛽𝑗 = unknown parameters. 

The agencies traditionally use annual average daily traffic (AADT) count programs to meet their 

demand for planning data and to achieve Federal Highway Administration (FHWA) reporting 

requirements. However, the focus of these traffic count programs is on higher classes of 

roadways that consist mainly of interstates and arterials. Figure 2 illustrates boxplots and violin 

plots (plots showing kernel density estimation of the underlying distribution to reveal peaks, 

valleys, and bumps in distribution patterns). The widths of the violin plots indicate density of 

roadways segments with that particular AADT measures of traffic volume measures of low-

volume roadways (segments with AADT of 2000 vpd or less).  
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Figure 2. Violin and Boxplot of AADT Values on Low-Volume Roadways in Texas  

(note: R6—rural minor collectors, R7—rural local roads, and U7—urban local roads). 

In general, conventional SPFs in the form of regression models inspect the average effects of the 

contributing factors and ignore subgroups with different scenarios. As a result, interventions are 

often geared toward the average member of the population without consideration for the special 

needs of different roadway subgroups within the population. The trends of AADT measures, as 

shown in Figure 2, calls for examining the subgroup effect of AADT measures. Kim et al. (2013) 

proposed an iterative four-step procedure to develop SPFs that reflect the categorical impact of 

exposure variables that vary by freeway segments. First, freeway segments were classified into 

three similar groups, and in each group, the dispersion of exposure variables was minimized. In 

the second step, several distributions (Poisson and NB, geometric, and discrete uniform) were 

assumed and tested using the Kolmogorov-Smirnov GOF test. All categories showed a good fit 

with the NB distribution. In the third step, several SPF models were estimated using the NB 

regression model. The model that used the log transformation of AADT and segment length 

provided the best results. In Step 4, the validity of differences among the clustered groups was 

tested. This four-step procedure produced more accurate results than previous conventional 

procedures.  

APPLICATIONS OF SPFS 

SPFs for Rural Roadways 

Bornheimer et al. (2012) examined the SPFs of the HSM and developed calibrated SPFs and new 

SPFs for rural two-lane highways in Kansas. Roadside hazard ratings were consistently found to 

be the most significant variables in the developed models. 

Instead of the traditional fixed-length and variable-length division methods, Lu et al. (2013) 

introduced a clustering approach to roadway segment division to improve SPF calibration for 

hotspot identifications. The clustering approach helped to reduce crash heterogeneity. The results 

demonstrated that the clustering method delivered the best-fit SPF. Additionally, the site 

screening using the clustering method improved upon the deficiencies of the sliding window 

method. 
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Qin et al. (2013) applied the HSM approach for rural local two-lane two-way highway segments 

in South Dakota. The results show that the jurisdiction-specific crash type distribution for crash 

modification factors (CMFs) can be significantly different from the HSM SPFs. For rural local 

two-lane two-way roadways, the HSM models underestimated crashes by 35 percent. The 

method based on SPFs developed from a full model had the best performance. For tribal two-

lane two-way roadways, the HSM models overestimated crashes by 122 percent. To calibrate the 

SPFs, this study used the Interactive Highway Safety Design Model (IHSDM) tool for 

addressing safety issues during the road design stages. 

Schrock and Wang (2013) evaluated the use of SPFs for rural two-lane highways in Kansas. 

Kansas-based SPFs and HSM SPFs were compared. This study developed statewide calibration 

factors for rural two-lane highway segments and three- and four-stop-controlled intersections. 

Schrock and Wang further developed a calibration function to better account for animal-related 

traffic crashes that occur frequently on rural two-lane roadways in Kansas. 

Russo et al. (2014) calibrated and validated SPFs that estimate frequencies of injuries and 

fatalities on homogeneous road segments of two-lane rural roads This study introduced 

multiplicative coefficients to report the differences between the proper road geometric 

characteristics and the first base conditions for transferability to various networks. Miaou (2013) 

discussed the HSM models’ shortcomings in predicting the frequency, type, and severity 

outcomes of single vehicle run-off-road crashes. To overcome these limitations, this study 

developed SPFs for single vehicle run-off-road crashes for roadside safety analyses.  

SPFs for Both Rural and Urban Roadways 

Raicu et al. (2014) described the model structure developed for evaluation of road safety 

performances in urban areas of Bucharest City, Romania. Locations with high crash risk were 

taken into account by using the physical network characteristics, the traffic flow intensity, and 

crash statistics. Figure 3 shows the locations and detailed framework of the model development 

framework used in this study. Alluri and Ogle (2012) compared the model performances of 

Georgia-specific SPFs and the default SPFs calibrated to Georgia data. The results showed that 

Georgia-specific SPFs performs better. SPFs developed using longer segments with historical 

traffic data have low overdispersion parameters with a minimal amount of unaccountable 

dispersion. 

Tarko et al. (2015) evaluated projects that considered the safety and mobility impacts of roadway 

improvements in Indiana. The SPFs were calibrated based on the crash data available for 2009–

2011. Four separate SPFs were developed for facility types, such as rural two‐lane, rural 

multilane, urban two‐lane, and urban multilane roads. The CMFs derived from these SPFs, with 

speed adjustments from prior studies, were complemented with data available in the Highway 

Capacity Manual. Tarko et al.  also explored the option of calibrating the HSM SPFs. Moreover, 

this study developed an application tool, the Collision Diagram Builder, that provides additional 

scope for analyzing and visualizing crash patterns.  
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(a) Locations of high road crash risks (b) SPF development framework for urban 

roadways 

Figure 3. Locations of High Road CRASH Risks and SPF Development Framework for 

Urban Roadways (Raicu et al., 2014). 

Freeway SPFs 

An ongoing need exists for customized procedures to develop guidance that can help a highway 

agency choose the suitable option for its jurisdiction. Using empirical data, Kweon et al. (2014) 

explored the best option for Virginia. Their developed framework can be adopted by agencies 

interested in customizing the HSM procedures. Kweon and Lim (2014) developed SPFs for 

multilane highway and freeway segments to replace Safety Analyst’s default SPFs. All SPFs, 

including district-group SPFs, can be implemented without the use of the Safety Analyst (see 

Figure 4). 
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Figure 4. District-Group SPFs (Total Crashes) of Multilane Highways in Virginia (Kweon 

and Lim, 2014). 

Wankogere et al. (2014) developed SPFs for urban, partial cloverleaf on-ramp loops at freeway 

entries in Michigan. The SPFs include a wide range of key contributing variables.  

Lyon et al. (2011) developed SPFs based on total, fatal, and injury crashes separately for five 

categories of ramp terminals using data from Colorado. This study also conducted calibration of 

overdispersion parameters for the available SPFs.  

Corridor Specific SPFs 

Kononov et al. (2012a) explored the association between traffic flow parameters, such as flow 

density, traffic volume, and operating speed, and traffic crashes with calibrated performance 

functions of corridor-specific safety. The results show that the crash rate increases significantly 

when a certain critical threshold combination of speed and density is exceeded. This model 

demonstrates that crash rates decrease during hard shoulder running due to the lower traffic 

volume or density per lane and that the safety benefits of a reduced volume or density per lane 

balance the adverse effects of the lack of provision of a full shoulder. 

In a follow-up study, Kononov et al. (2012b) showed that crash rates initially decline because of 

the lower traffic volume and density per lane after the implementation of additional lanes. 

However, as development and rerouting occur, freeways with more lanes are expected to have 

higher crash rates that are attributable to the increased opportunities for lane change–related 

conflicts. 
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Intersection SPFs 

Monsere et al. (2011) developed SPFs and compared these factors to the HSM’s base models 

using crash data from Oregon’s intersections. The results indicate that urban signalized 

intersection SPFs did not compare as well to the HSM-based models. 

Risk ranking of intersections can be effective for the selection of cost-effective treatments and 

might be quite helpful for administrations that manage low-volume roads with a lower number of 

traffic crashes as well as exposures. Montella and Mauriello (2012) introduced a procedure for 

ranking rural unsignalized intersections that utilizes quantifiable safety evaluations performed as 

part of the safety assessment process.  

Using both motorized and nonmotorized traffic data, Strauss et al. (2014) demonstrated a 

multimodal method to investigate intersection safety. The results show that motor vehicles are 

exposed to much smaller risks than other modes, such as walking or biking. This result 

emphasizes the need for safety improvements for nonmotorized users who are, on average, at 17 

to 28 times greater risk than motorists at signalized intersections and at 2 to 19 times greater risk 

at nonsignalized intersections.  

CALIBRATION METHODS 

Calibration of Safety Performance Functions  

Crash prediction models are essential for predicting the number of crashes and evaluating 

roadway safety. Part C of the first edition of the HSM provides crash prediction models, or what 

is often referred to as SPFs, for roadway segments and intersections for three facility types: rural 

two-lane roads, rural multilane highways, and urban and suburban arterials. However, HSM 

prediction models were fitted and validated with data collected from a few selected numbers of 

states. Consequently, since crash frequency varies substantially from one jurisdiction to another, 

it is essential to calibrate SPFs when they are applied to a new jurisdiction. In other words, 

calibration is a tool to account for the differences in predictive model factors between 

jurisdictions (e.g., climate, driver behavior).  

The SPF calibration procedure is presented in greater detail in Appendix A of Part C of the 

HSM. The general steps of the procedure are as follows: 

• Step 1—Identifying the predictive model. The SPF models are provided in Chapters 10 

to 12 of Part C of the HSM. These chapters cover rural two-lane roads, rural multilane 

highways, and urban and suburban arterials, respectively. (Note: The same calibration 

procedure is used for the models documented in Chapters 18 and 19 of the HSM.) 

• Step 2—Sampling the sites. The HSM recommends deriving the calibration factors 

using a randomly selected sample that includes 30–50 sites with a total of at least 100 

crashes per year. However, for the cases in which the required data are readily available 

for a larger number of sites, it is recommended the larger set be used to derive the 

calibration factor.  

• Step 3—Obtaining the required data. The data collection consists of two components: 

(1) the total number of observed crashes obtained from randomly selected sites, and (2) 



 

11 

the site characteristics data required to predict the number of crashes using the predictive 

model. The site characteristics data are classified into two groups: (1) the required data 

and (2) the desired data. Although the required data are essential to predict the crashes, 

the desired data can enhance the prediction accuracy. 

• Step 4—Finding the predicted number of crashes using the predictive model. Once 

the roadway characteristics data are collected and compiled, they are applied to the 

particular SPF to calculate the number of predicted crashes for the facility type. 

• Step 5—Calculating the calibration factor. The calibration factor is calculated by the 

ratio of the number of observed crashes to the number of predicted crashes, as follows:  

 𝐶 =
∑𝑁𝑜𝑏𝑠

∑𝑁𝑝𝑟𝑒
 (5) 

where: 

Nobs= observed number of crashes. 

Npre= predicted number of crashes. 

The calibration factor is then multiplied to the facility SPF as a scalar term. 

Calibration of Severity Distribution Functions 

SDFs are used in highway safety assessment to estimate the severity of crashes and conduct 

different types of safety evaluations and analyses. Developing a new SDF is a difficult task and 

demands significant time and resources. To simplify the process, the HSM has documented SDF 

models for different types of facilities. As such, SDF models have been introduced for freeways 

and ramps in the HSM addendum (for freeways and interchanges) and in the upcoming revised 

HSM Chapter 12, “For Urban 6+ Lane and One-Way Arterials,” in the HSM second edition. 

However, since these functions or models are fitted and validated using data from only a few 

selected states, they are also required to be calibrated to the local conditions when applied to a 

new jurisdiction. The HSM provides a methodology to calibrate the models through a scalar 

calibration factor. The calibration factor is derived using the following equation:  

 𝐶 =
∑ 𝑁𝑜𝑏𝑠,𝐾𝐴𝐵𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 /∑ 𝑁𝑝𝑟𝑒,𝐾𝐴𝐵𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠

∑ 𝑁𝑜𝑏𝑠,𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 /∑ 𝑁𝑝𝑟𝑒,𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠
 (6) 

where: 

𝑁𝑜𝑏𝑠,𝐾𝐴𝐵 = number of observed KAB crashes (K = fatal, A = incapacitating injury, and 

B = nonincapacitating injury). 

𝑁𝑝𝑟𝑒,𝐾𝐴𝐵 = number of unadjusted predicted KAB crashes. 

𝑁𝑜𝑏𝑠,𝐶 = number of observed C crashes (C = possible injury). 

𝑁𝑝𝑟𝑒,𝐶 = number of unadjusted predicted C crashes. 

In the first edition of the HSM, SPFs are used for predictive safety analysis. An SPF is a 

statistical model used to estimate the long-term crash frequency (of total crashes, crash types, or 

crash severities) of a roadway entity (i.e., an intersection or roadway segment). SPFs are based 
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on the ceteris paribus principle (i.e., all else being equal); the changes in crash frequency and 

severity will depend on traffic exposure (i.e., segment length and traffic volume for normal 

segments and major and minor road AADT for intersections).  

Calibration Issues 

This section briefly covers some of the issues and challenges researchers have encountered 

during the calibration based on the HSM.  

Since roadway and vehicle characteristics and driver behavior continuously change over time, 

crash prediction models can quickly become outdated. Because fitting a new model requires 

significant data and is a time-consuming and expensive task, it is essential to find an efficient 

approach for updating outdated models. Similar to calibrating predictive models to local 

conditions, calibration can be used to update the predictive models as well. Connors et al. (2013) 

documented several methodological issues that arise from updating predictive models initially 

developed in England through both scalar calibration and the refitting of models. One issue that 

was documented was related to selecting the scalar factor based on GOF criteria. Ultimately, 

researchers suggested use of the HSM recalibration procedure.  

Wood et al. (2013) analyzed two issues on the updating of the same crash prediction models 

addressed in Connors et al.’s (2013) study. First, they looked at the temporal transferability of 

the model as a function of its complexity. Researchers concluded that the more complex the 

model, the better its temporal transferability. Second, the authors investigated two general 

approaches to updating the predictive models: (1) refitting the old model by considering the same 

variables but with new data sources, and (2) calibration through a scalar factor. Both methods are 

more practical and more efficient compared to fitting a new crash prediction model, and both 

methods demonstrated desired results in their study. Moreover, Wood et al. analyzed the original 

model, which had a term for capturing time trends. The authors stated that since the pattern may 

not remain stable over time, the model with a trend term can lead to a significant bias in 

estimations. Therefore, simpler calibration procedures, such as refitting or scalar calibration, 

were more reliable. 

The calibration factor might be different within a large region because attributes within that 

region are not uniform across the entire area. For example, the HSM recommends finding 

separate calibration factors for large jurisdictions that are characterized by different 

topographical or weather conditions (AASHTO, 2010). Unfortunately, the HSM does not 

provide guidelines for determining the detailed conditions when separate factors are warranted or 

justified. Bahar and Hauer (2014) studied this issue and suggested two approaches: 

• First, Bahar and Hauer (2014) studied how much bias can affect the prediction results of 

the calibration factor. The hypothesis is that there is no need to be more precise with the 

calibration factor than for the base model or the product of CMFs. Based on this 

hypothesis, a conservative guideline was provided: “The coefficient variation of the 

calibration factor does not need to be less than, say, half of the coefficient of variation of 

the product of the CMFs.” However, the document does not provide clear guidelines on 

what the typical coefficient of variation (CV) of the product of the CMFs should be. 

Thus, calculation of the CV of the product of CMFs was left to the user.  
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• Second, it was suggested that data be grouped based on different variables and 

conditions, such as AADT, segment length, or crash severities. If a major difference in 

calibration factors is observed, a separate calibration factor is suggested. This method is 

not necessarily for a region or terrain but can be used to consider the effect of the 

different variables more accurately. For example, different calibration factors can be 

recommended for different ranges of AADTs. 

The method proposed by Bahar and Hauer (2014) is based on the availability of detailed data that 

are used for the calibration process. More specifically, it is assumed that the analyst first collects 

all data that are required for the calibration and then groups the variables to determine whether or 

not a separate calibration factor is needed, for example, for different AADT ranges or a region. 

This method might not be efficient since the analyst may need to know if a separate calibration 

factor is desired (specifically for a region) in advance before the calibration procedure begins in 

order to collect enough data for the required sample size.  

Recently, researchers in Texas developed improved guidelines for estimating the HSM 

calibration factors (Lord et al., 2016). In that research, the authors stated that the recommended 

sample size in the HSM for calibration is not fully supported by documented studies, and no 

clear guidelines exist on when an agency should update their calibration factors or make a 

decision based on the need of region-specific calibration factors. Researchers developed region-

specific calibration factors in Texas and found a significant difference between regions 

(Geedipally et al., 2017). They also developed temporal calibration factors and proposed a 

procedure to decide when to recalibrate the models (Shirazi et al., 2017). 

Several studies have noted that the calibration of predictive models is a time-consuming task and 

also noted problems associated with the collection, readiness, and completeness of the data. 

Moreover, independent of the level of crash data history for different types of facilities, the HSM 

still recommends using between 30 and 50 sites with at least 100 crashes. This small sample size 

proposed by HSM inspired researchers to investigate the quality of calibration factors.  

When the calibration option is chosen, the implicit assumption is that the CMFs in Part C of the 

HSM (for adjusting the predictions to situations other than the base conditions) are applicable for 

all the states and are not functions of specific site characteristics. However, this assumption has 

recently been challenged by a few studies (see Sacchi et al., 2012). 

State and International Experiences with Calibration Methods 

Liu et al. (2017) considered the spatial heterogeneity of SPFs and proposed the concept of 

relaxing SPFs (which can be considered localized SPFs) using a geographically weighted 

regression method. Specifically, researchers developed geographically weighted NB regression 

models for geo-referenced freeway segments in Virginia. Comparisons indicated that the 

proposed model outperformed the conventional NB model, and there was low transferability of a 

single statewide SPF. Researchers concluded that the localized SPFs can better predict crash 

frequencies and support prioritizing safety improvements in specific locations. 

Gattis et al. (2017) developed SPFs for Arkansas roadways by calibrating the HSM models. 

Specifically, researchers first collected roadway and crash data in Arkansas on four types of 
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roadway facilities: two-lane, four-lane divided, intersections on two-lane roads, and intersections 

on four-lane divided roads. Then, researchers followed the calibration procedure recommended 

by the HSM and calibrated the models for roadways and intersections with speeds of 50 mph or 

higher. Results indicate that the HSM models under-predicted the number of crashes for all the 

four types of facilities in Arkansas. 

Li et al. (2017) compared the performance of regionalized SPFs and HSM-calibrated SPFs for 

rural two-lane roadways in Pennsylvania. Researchers considered three regionalization levels: 

statewide, engineering districts, and individual counties. The results indicated that district-level 

SPFs with county-level adjustment factors provide better predictive accuracy than the 

development of a statewide SPF or application of the HSM-calibrated SPF. The findings suggest 

significant differences in safety performance across districts within Pennsylvania. Researchers 

concluded that it is necessary for transportation agencies to consider how variations across 

jurisdictions will affect predicted crash frequencies when developing jurisdiction-specific SPFs 

or calibrating SPFs. 

Pan et al. (2017) applied a machine learning approach (i.e., deep belief network [DBN]) to 

develop a global road SPF to predict the expected crash frequencies of different highways from 

different regions. Researchers developed a DBN model with roadway and crash data from 

Colorado, Washington State, and Ontario, Canada. For comparison purposes, researchers also 

developed a SPF using the conventional NB model but with separate calibrations for each 

jurisdiction. The results showed that the performance of the trained DBN model is comparable to 

that of the locally calibrated NB model.  

Biancardo et al. (2017) analyzed the safety of three-leg and four-leg intersections on rural two-

lane highways in Italy. Researchers collected traffic and crash data at 77 intersections and 

calibrated two SPFs from previous studies (i.e., one from HSM, and the other from National 

Cooperative Highway Research Program (NCHRP) Report 57 [Rodegerdts et al., 2007]). In 

addition to the SPFs, researchers also considered the CMF for the presence of a left-turn lane. 

Residuals analysis was used to evaluate the performance of SPFs because the HSM intersection 

SPF is less reliable when predicting crashes in Italy.  

Missouri initially calibrated the HSM SPFs in 2013. Sun et al. (2018) conducted recalibration 

work based upon the previous results. Researchers considered the development of crash SDFs so 

that crash frequencies can be estimated according to the severities of fatal, severe injury, minor 

injury, and property damage only (PDO). A total of 16 facility types were calibrated, including 

the following types: 

• Rural two-lane segments with related three-leg and four-leg intersections.  

• Rural multilane segments with related three-leg and four-leg intersections. 

• Urban two-, four-, and five-lane arterial segments. 

• Urban and rural four-lane and urban six-lane freeway segments. 

• Urban three- and four-leg signalized intersections. 

• Urban three- and four-leg unsignalized intersections.  
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Calibration results indicated that the HSM predicted Missouri crashes reasonably well, with the 

exception of a few site types for which it may be desirable for Missouri to develop its own SPFs 

in the future. 

Tarko et al. (2018) updated and expanded the CMFs (including crash modification functions, or 

CM-Functions) on Indiana’s roadways (rural two-lane segments, rural divided multilane 

segments, and urban/suburban arterial segments). Researchers also presented the methodology of 

calibrating the IHSDM’s predictive components based on Indiana’s local data. The method 

jointly estimates the SPFs and CMFs to preserve the crash prediction consistency. The results 

confirmed the need for calibrating the parameters in the IHSDM to local conditions. 

Claros et al. (2020) conducted comparative analyses of two approaches for predicting crashes: 

calibration of HSM SPFs and CMFs versus development of jurisdiction-specific SPFs using 

urban freeway four-lane segments (FU4) data in Missouri. Researchers calibrated the HSM 

model by considering traffic volume and segment length (the AADT-only calibration factor and 

calibration functions considering different variables separately). In addition, researchers 

developed Missouri-specific SPFs using 160 FU4 segments. Calibration by AADT outperformed 

all other calibration factors and functions. The jurisdiction-specific SPF had similar accuracy to 

fully loaded and calibrated HSM models. This study concluded that basic jurisdiction-specific 

SPFs (with AADT and length only) is recommended, which requires less data collection efforts 

and less statistical modeling complexity. 

Wali et al. (2018) collected five years (2011–2015) of safety data on two-lane roadways in 

Tennessee. Researchers calibrated the HSM model, showing that the statewide calibration factor 

is 2.48. The region calibration factor varies from 2.02 to 2.77. In addition, eight state-specific 

SPFs (considering heterogeneity and functional forms) were developed and compared with the 

calibrated HSM SPFs. Results indicated that the state-specific random parameter Poisson model 

outperformed others. 

Vayalamkuzhi and Amirthalingam (2018) analyzed four-lane divided inter-city highways and 

intersections in India. Researchers first developed calibration factors for the HSM SPFs using the 

IHSDM, then developed site-specific SPF using local site data. Results from calibration studies 

indicated that the HSM under-predicts crashes both in the case of segment and intersection safety 

analysis. The developed SPFs are capable of predicting/evaluating the safety level more 

accurately on multilane divided segments than calibrated HSM models. 

Ahmed et al. (2019) validated applicability of the HSM Part D to Wyoming conditions and 

CMFs for 5 countermeasures (shoulder rumble strips, passing lane, headlight signs, turning lanes 

at intersections, and ITS facilities) in Wyoming. Researchers concluded that the CMFs from the 

HSM and Clearinghouse should not be implemented in Wyoming without proper calibration and 

validation. In addition, SPFs and CMFs should be calibrated and updated every five years. 

Matarage and Dissanayake (2020) calibrated the HSM freeway SPF using Kansas data. In this 

study, researchers collected geometric and crash data on 521 freeway segments. This sample 

satisfied the minimum sample size requirement. Calibration results indicated that the HSM SPF 

over-predicts fatal and injury crashes and under-predicts PDO crashes for freeway segments in 

Kansas.  
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Qin et al. (2019) compared jurisdiction-specific SPFs and HSM SPFs to determine which 

functions were more accurate when used locally in South Dakota. Results showed that 

jurisdiction-specific SPFs—without the use of a calibration factor—were most accurate. 

Researchers also compared the fixed severity proportion with a severity proportion function 

calibrated by local data in South Dakota. Results showed that the severity proportion function 

did not contribute significantly to prediction accuracy.  

Tang et al. (2019) evaluated the predictive power of a random parameter (RP) safety model using 

rural two-lane roadway data in Pennsylvania. Researchers developed NB and RPNB models and 

assessed the model GOF using three metrics: root-mean-square error (RMSE) and mean absolute 

error, coefficients from calibration functions, and cumulative residual (CURE) plots. The 

assessment indicated that the RPNB model outperforms the NB model. However, the predictive 

power of the RPNB model appears to be similar to or slightly less precise than the traditional NB 

model when applied to out-of-sample observations. The findings suggest that the RPNB model is 

more reliable when applied to the same set of sites that were used to estimate the model, but the 

model might not be as robust as the traditional NB model when applied to other sites. 

Asal and Said (2019) assessed the suitability of using the HSM models on rural multilane 

divided highways in Egypt. Researchers first calibrated the HSM SPFs, then compared the 

predictions with the actual observed crash events. In addition, SPFs were also developed using 

local data. The local SPFs outperformed the HSM SPFs in terms of GOF measures. Results 

suggest that there was a need to develop locally derived SPFs.  

Geedipally et al. (2019) examined the safety performance and injury severity characteristics of 

rural county roadways. Specifically, researchers collected roadway geometric data and non-deer 

crash data on county roadways from 30 counties in Michigan and developed a random-effect NB 

safety count model as well as a multinomial logit crash severity model. Researchers reported that 

paved county roadways showed approximately double the crash occurrence rate of typical state-

maintained two-lane rural highways, and gravel roadways showed a substantially greater crash 

occurrence rate than paved county roadways across the equivalent range of traffic volumes. 

Researchers also suggested using random-effect models when modeling county roadway crashes 

since a considerable variability among counties exists. 

Vargas et al. (2019) compared the performance of Florida-specific SPFs with Safety Analyst 

default SPFs calibrated to Florida data. Researchers used mean absolute deviation, mean squared 

predicted error, and Freeman-Tukey R-square GOF measures to evaluate the two types of SPFs. 

The results showed that Florida-specific SPFs generally produced better-fitted models than the 

calibrated Safety Analyst default SPFs. However, the calibrated Safety Analyst default SPFs 

generally performed better than the calibrated Florida-specific SPFs. Researchers suggested that 

(1) the local SPFs are recommended when developed from present data; (2) in the case local 

SPFs developed from present safety data are not available, the calibrated Safety Analyst default 

SPFs be used. 

La Torre et al. (2019) proposed a new method for developing SPFs. Researchers first developed 

a base SPF for single-vehicle and multiple-vehicle crashes, respectively, based on Italian 

freeways. The model only consisted of traffic volume and segment length. They then combined 

the model with CMFs to account for differences between each site and the base conditions. 
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Researchers evaluated the models using four GOF measures: chi square test, root mean square 

error, observed versus predicted diagram, and predicted versus residual diagram.  

Gaweesh et al. (2019) developed the SPF for Interstate 80 in Wyoming as a safety evaluation of 

pre-deployment of piloting connected vehicle technology on the roadway. Researchers 

developed three SPFs on the 420-mile corridor: the NB model, the spatial autoregressive model, 

and the nonparametric multivariate adaptive regression splines. In addition, two models were 

calibrated using five years of crash data (2012–2016). Results showed that the multivariate 

adaptive regression splines model provided a better model fit than the NB and spatial 

autoregressive models.  

Farid et al. (2019) developed and transferred rural divided multilane highway segment SPFs of 

Florida, Ohio, Illinois, Minnesota, California, Washington, and North Carolina to each state. For 

every state, researchers first developed SPFs using various models, such as NB, zero-inflated 

NB, Poisson lognormal, regression tree, random forest, boosting, and Tobit models. In addition, 

researchers proposed a hybrid model that included the Tobit and the NB model. Then, 

researchers transferred these models to other states to evaluate the prediction performance. 

Results revealed that no single model always outperformed others. Generally, the Tobit, random 

forest, tree, NB, and hybrid models demonstrated better predictive performances. 

Biancardo et al. (2019) identified significant crash risk factors at various types of intersections in 

the rural area. Researchers collected eight years of geometric and crash data at 35 three-leg 

intersections. The data in the first five years were used to calibrate the HSM SPF, and the 

remaining three years of data were used to validate the results. Findings revealed that the AADT 

on the major and minor roads, the intersection skew angle, the co-occurrence of left and right-

turn lanes on the major roads, and lighting seriously affect the crash scenario. 

Smith et al. (2017) estimated the calibration factors of the HSM SPFs for North Carolina. 

Researchers collected six years (2010–2015) of safety data. In addition, separate calibration 

factors were developed for the three different regions in North Carolina (Coast, Mountain, and 

Piedmont). At the time that this technical memorandum was developed, the full report is not 

available to the research team; thus, the detailed calibration results are unknown.  

Dadvar et al. (2020) proposed an innovative method for calibrating the HSM SPFs with an 

objective to improve prediction quality at individual locations while maintaining equality of total 

observed and total predicted crashes. Instead of calibrating a single factor at the aggregate level, 

the proposed method incorporates multiple calibration factors for different components of the 

predictive method (SPF parameters and CMFs). Researchers applied the method on rural two-

lane highways in three states (Maryland, Illinois, and Washington). GOF measures and CURE 

plots were used to compare the results, which indicated that the proposed method performed 

significantly better than the HSM calibration method. This study also suggests that additional 

parameters for CMFs improve the prediction significantly.  

Feng et al. (2020) investigated the transferability of SPFs developed separately in China and the 

United States. Researchers first developed five groups of SPFs using data from two Chinese 

cities, Shanghai and Suzhou, and three U.S. states: Texas, New York, and Florida, respectively. 

They then transferred these models to the other country and investigated their performance on 
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hotspot identification. Main conclusions were as follows: (1) without calibration, the models 

perform poorly between the two countries; (2) with calibration, two model groups show 

satisfactory performance on both model fitting and hotspot identification (Shanghai/Suzhou and 

Texas/New York); and (3) the transferability of models between Florida and Chinese cities is 

unsatisfactory.  

Sample Size Estimation for Calibration 

The first version of the HSM recommends a one‐size‐fits-all sample size for the calibration 

procedure. It requires crash data collected from 30 to 50 randomly selected sites with a minimum 

of 100 crashes per year. However, this recommended sample size is not fully supported by 

documented studies. For sites with low crash history, collecting data from 100 crashes at 30 or 

50 sites can be difficult to perform (Xie et al., 2011). On the other hand, for most facilities, this 

minimum recommendation may not provide desirable results (Alluri et al., 2016; Banihashemi, 

2012).  

Banihashemi (2012) reviewed the HSM sample-size recommendation by performing a sensitivity 

analysis on calibration factors derived from samples with different sizes. The author used a 

dataset collected in Washington State and performed a sensitivity analysis for three types of 

facilities: rural two-lane roads, rural multilane highways, and urban and suburban arterials. The 

author first found the calibration factor that was derived from the available dataset and referred 

to it as the ideal (true) calibration factor. Then, for each selected sample size, 10 samples were 

generated randomly, and their corresponding calibration factors were calculated. Next, assuming 

the estimated measures followed the normal distribution, the quality of each sample size was 

quantified by measuring the probability that the calibration factor falls within 5 percent or 

10 percent (depending on the desired accuracy) of the ideal calibration factor. The sample size 

that ensures the estimated calibration factor falls within 10 percent of the ideal calibration factor 

with a reasonable probability was recommended in the new guidelines. This study showed that 

the HSM 30- to 50-site criterion was too small to derive a reliable calibration factor for most 

roadway types.  

Alluri et al. (2016) used data collected in Florida to determine the minimum sample size that 

results in a reliable calibration factor for the same three types of facilities described above. A 

procedure similar to the one proposed by Banihashemi (2012) was used to assess the calibration 

factors and estimate the minimum sample size. In the study, for each given sample size, 30 

subsets of data were generated, and the corresponding calibration factors were calculated. The 

analysis showed that not only was the HSM-generalized sample size guideline is not appropriate, 

the criterion was also insufficient to acquire the desired accuracy. The recommendations 

provided in the paper are based on the criterion that, with a high probability, the calibration 

factors lie within 10 percent of the ideal factor. However, for cases where sufficient data are 

available and a higher accuracy is desired, the recommendations based on 5 percent of the ideal 

factor were provided as well. The recommended minimum sample size for reaching 5 percent 

accuracy almost doubles compared to the recommendations for achieving 10 percent accuracy. 

Trieu et al. (2014) performed a sensitivity analysis on calibration sample size to evaluate and 

critique the accuracy of the HSM sample-size guideline for undivided two-lane urban arterial 

roadways. Given different percentages of a complete dataset, the samples were resampled from 
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the complete dataset for 500 iterations. Then, calibration factors for each size group were 

classified based on their errors from the ideal calibration factor in 5 percent increments. As the 

sample size increased, calibration factor observations with a high error range decreased. It was 

also observed that for samples generated from 50 percent (or more) of the complete dataset, all 

calibration factors fall within 10 percent of the ideal calibration factor. The paper concluded that 

the current HSM sample-size criterion may not yield a reliable calibration factor. The authors 

then analyzed the AADT distribution for a group of calibration factors that were generated with a 

sample size of 37 sites (the sample size that satisfies the HSM criterion). The results showed that 

the AADT distribution can influence the calibration factor reliability. 

Shin et al. (2014) proposed a sampling framework to determine the minimum sample size. For a 

chosen confidence level, the minimum sample size is calculated as follows: 

 𝑛 =
(𝑛0×𝑁)

(𝑛0+(𝑁−1))
 (7) 

 𝑛0 = (
𝑧

𝑒
)
2 𝑃

1−𝑃
 (8) 

where: 

n = minimum sample size. 

N = total population. 

z = area under normal curve (= 1.645, 1.96, and 2.58 for a level of confidence of 90 percent, 

95 percent, and 99 percent, respectively). 

P = true proportion of factor in the population, or the expected frequency value. 

e = margin of errors.  

This proposed approach was based on the finite population correction (FPC) factor that considers 

the trade-offs among the desired error levels of the estimated calibration factors, confidence 

levels, and sample standard deviations in determining the sample size. The implicit assumption is 

that the samples are taken from an infinite population and selected with replacements. However, 

Ozbay et al. (2019) pointed out that these assumptions do not present much of a problem when 

the sample size n is small relative to the population size N. However, when n is larger, Ozbay et 

al. (2019) suggested applying a correction to the formulas used to compute standard error. This 

correction is calculated as follows: 

 𝐹𝑃𝐶 = √
𝑁−𝑛

𝑁−1
 (9) 

Matarage and Dissanayake (2020) calibrated the HSM-default freeway facility SPFs to Kansas 

conditions and assessed the quality of the calibration process. The authors used the approach 

proposed by Shin et al. (2014) to determine the minimum sample size required for the 

calibration. For freeway segments, the HSM methodology overpredicted fatal and injury (FI) 

crashes and underpredicted PDO crashes in Kansas. For speed-change lanes, the results indicated 

the HSM methodology consistently underpredicted both FI and PDO crashes in Kansas. In 

addition, the percent cure deviations for the majority of freeway models were greater than the 

accepted minimum of 5 percent. To improve the process, the authors developed a calibration 
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function that was documented in Srinivasan et al. (2013). The calibration function is estimated 

by the following model: 

 𝑦 = 𝐶 × 𝜇𝛽 (10) 

where: 

𝑦 = observed crashes. 

𝜇 = predicted crashes. 

𝐶, 𝛽 = parameters to be estimated using a regression analysis (such as Poisson or NB models).  

If the relationship between observed crashes and predicted crashes is a straight line, then 𝛽 will 

be close to 1.0. Matarage and Dissanayake (2020) compared the performance of SPFs with 

calibrated functions to calibrated HSM-default SPFs using numerous GOF measures, such as 

percent cure deviation, modified 𝑅2, Akaike information criterion (AIC), Bayesian information 

criterion (BIC), mean absolute deviation (MAD), and dispersion parameter (k). The GOF results 

showed calibration functions had a better fit to Kansas freeway data than calibrated HSM-default 

SPFs. 

Ozbay et al. (2019) used the calibrator tool developed by FHWA (Lyon et al., 2016) to develop 

the calibration factors for using HSM SPFs in New Jersey. The study also developed New 

Jersey-specific SPFs for facilities with enough sample size using the same data used for 

calibration. The study assessed the validity of the calculated calibration factors and the 

developed SPFs using the GOF measures and the CURE plots. The authors embedded the 

calculated calibration factors and the developed SPFs in the safety analysis spreadsheet for use 

by the New Jersey Department of Transportation staff. Users have an option to either select the 

SPFs provided in the HSM and apply the calculated calibration factors or simply use the New 

Jersey-specific SPFs developed by researchers. 

Wang et al. (2019) developed jurisdiction-specific SPFs based on random-effect NB models for 

urban arterials in Shanghai and Guangzhou during peak hours and off-peak hours, respectively. 

They explored transferring the models without applying the calibration factors between two 

cities. They used a CURE plot and transfer index (TI) to assess the fit. The TI value is calculated 

as follows (Hadayeghi et al., 2006): 

 𝑇𝐼𝑛(𝑀𝑚) =
𝐿𝐿𝑛(𝑀𝑚)−𝐿𝐿𝑛(𝑀𝑟𝑒𝑓,𝑛)

𝐿𝐿𝑛(𝑀𝑛)−𝐿𝐿𝑛(𝑀𝑟𝑒𝑓,𝑛)
 (11) 

where: 

𝑇𝐼𝑛(𝑀𝑚)= transfer index if the model of jurisdiction 𝑚 is transferred to jurisdiction 𝑛. 

𝐿𝐿𝑛(𝑀𝑚)= log-likelihood of the calibrated model. 

𝐿𝐿𝑛(𝑀𝑛)= log-likelihood of the local model. 

𝐿𝐿𝑛(𝑀𝑟𝑒𝑓,𝑛)= log-likelihood of intercept only model in the jurisdiction 𝑛.  

A TI index of 1 indicates perfect transferability and an index of 0 indicates that the transferred 

SPF’s log-likelihood is the same as that of the destination jurisdiction’s null SPF (Farid et al., 
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2018b). A negative index implies that the destination jurisdiction’s null SPF outperforms the 

transferred SPF. 

Different calibration methods were employed by Wang et al. (2019) to improve the prediction 

performance of the transferred model since CURE plots and TI values revealed that the SPFs 

could not be transferred directly. The K Nearest Neighbor (KNN) regression method is one of 

the calibration methods used. In the KNN method, the observed crashes are modeled as a 

function of the predicted crashes. The first step in the KNN regression is to compute the absolute 

distances as follows (Farid et al., 2018a): 

 𝐷𝑗 = |𝜇𝑖 − 𝜇𝑗| (12) 

where: 

𝜇𝑖= predicted crash frequency of site 𝑖. 
𝜇𝑗= predicted crash frequency of site 𝑗. 

Using the distances computed, K sites nearest to site 𝑖 are selected. Any K value can be used, but 

Farid et al. (2018a) attempted values of 1, 5, and 10. The site 𝑖’s calibrated crash frequency 𝜇𝑖,𝑐 

is computed as the average of the observed crash frequencies of the K nearest sites as follows: 

 𝜇𝑖,𝑐 =
∑ 𝑦𝑗
𝐾
𝑗=1

𝐾
 (13) 

where: 

𝑦𝑗= observed crash frequency of site 𝑗. 

Farid et al. (2018a) used configurations similar to the ones used by the HSM and developed NB 

SPFs for total crashes on rural divided multilane highway segments using data from Florida, 

Ohio, California, and Washington. Each SPF is calibrated to the other states’ conditions. The 

authors used the HSM calibration method, calibration (Srinivasan et al., 2016), and the KNN 

data mining regression method described above. They used bootstrapping to estimate 95th 

percentile CLs of the GOF metrics used to assess the performances of the calibration methods 

employed. Both Farid et al. (2018a) and Wang et al.’s (2019) studies concluded that the KNN 

method outperformed other methods. 

Rodrigues Silva and Pinto Ferraz (2019) conducted the evaluation of two-lane highway safety in 

Brazil using HSM SPFs. The authors noted that, for HSM calibration, the most time-consuming 

stage is to obtain and to prepare the dataset. The use of the HSM crash prediction model can be 

an alternative when the geometric and traffic characteristics are well known and not much 

difference from base conditions exists. The study evaluated the transferability using some GOF 

measures and the CURE plot. The results revealed a good indication of model quality. However, 

the authors indicated that it is not simple to use the HSM SPFs for conditions in Brazil.  

Ahmed and Chalise (2018) developed SPFs for rural two-lane two-way roadways for flat, 

rolling, and mountainous terrain using Wyoming data. The authors also developed Wyoming-
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specific SPFs for different seasons (summer and winter) and different weather conditions (clear, 

snowy, and rainy conditions). A two-lane two-way roadway segment was selected randomly to 

compare the Wyoming-specific SPF to the calibrated HSM SPF adjusted with CMFs and a 

calibration factor. A paired t-test was performed to check the statistical difference between the 

expected crash frequency obtained from using calibrated HSM SPFs versus Wyoming-specific 

SPFs. The study found the calibrated HSM SPF under-predicted the total crashes and thus 

concluded that the calibrated HSM SPFs might not be the most adequate to predict crash 

frequencies in Wyoming. For the same segment, the Wyoming-specific SPF was statistically 

more accurate in predicting the total crashes. 

Dissanayake and Aziz (2016) calibrated the HSM SPFs of rural four-lane divided and undivided 

highways for Kansas. Results showed that the calibration factors for divided and undivided 

segments were calculated as 1.43 and 1.63, respectively, for the total crash frequency, which 

means that the HSM SPFs underpredict total crashes on rural multilane highways in Kansas. For 

fatal/injury crashes, the calibration factors were 0.52 and 0.49 for divided and undivided 

segments, respectively, which indicates that the HSM SPFs overpredict fatal and injury crashes. 

Using the same dataset, the study developed Kansas-specific SPFs similar to the configuration in 

the HSM for total crashes and fatal/injury crashes separately. The study concluded that state-

specific SPFs predict total crashes and fatal and injury crashes more accurately than only the 

HSM methodology. 

Xie and Chen (2016) calibrated HSM SPFs for Massachusetts’ urban and suburban arterials 

using data from the period 2009 to 2012. The study results indicated that the calibration factors 

for three-leg and four-leg signalized intersections are substantially greater than 1.0, suggesting 

that the HSM SPFs underpredict crashes in Massachusetts. As a result, the study developed new 

SPFs for urban and suburban intersections in Massachusetts for multiple- and single-vehicle, 

vehicle-bicycle, and vehicle-pedestrian crashes. Since the HSM SPFs for vehicle-pedestrian 

collisions at signalized intersections require daily pedestrian volumes, regression models were 

developed to estimate daily pedestrian volumes in this research. 

Colonna et al. (2016) performed an HSM SPF calibration study by using a data sample for Italian 

two-way undivided highways. The study assessed the influence of traffic ranges, terrain types 

and regions on the calibration. The results suggested that conducting SPF calibration without 

taking into account traffic variability could lead to significant errors in using the calibration 

factor.  

The calibration factors for fatal and injury crashes for the nationwide Italian two-way undivided 

highways network were calculated as 1.19 ± 0.10 for AADT < 10,000 and 1.75 ± 0.17 for AADT 

including and between 10,000 and 17,800. The calibration factors were computed for flat and 

rolling terrain, and the calibration factors for road segments lying in flat terrain are greater than 

the factors computed for rolling terrain. The study showed the importance of considering 

regional variability while carrying out the calibration process since reliable factors were obtained 

at a more disaggregated level.  

Abdel-Rahim and Sipple (2015) calibrated the HSM SPFs and developed the state-specific SPFs 

for the state of Idaho. The HSM calibration factors developed for rural two-lane two-way 

highway segments and rural three- and four-leg stop-controlled intersections were calculated as 
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0.87, 0.56, and 0.62, respectively, which indicates that the HSM crash prediction models 

overpredicts crashes for sites in Idaho. As a result, Idaho-specific SPFs were developed and are 

found to provide better crash prediction for the two-lane two-way highways’ roadway segments 

and the three-leg stop-controlled intersections. The Idaho-specific SPF did not provide 

significant crash prediction improvement over the calibrated HSM SPF for the four-leg 

controlled intersections.  

The authors used different GOF measures such as Pearson’s R, mean squared prediction error 

(MSPE), and the Freeman-Tukey R2 for comparing the Idaho-specific SPFs to the uncalibrated 

and calibrated HSM SPFs to check reliability of the prediction models. The study recommended 

using the Idaho-specific SPFs for predicting crash frequencies on rural two-lane, two-way state 

highways and three-leg stop-controlled intersections and using the calibrated HSM SPF for four-

leg stop-controlled intersections.  

Troyer et al. (2015) presented the calibration efforts undertaken by the Ohio Department of 

Transportation to implement the HSM SPFs. This study calculated calibration factors for using 

the HSM models for Ohio and evaluated their reliability with the use of CURE plots. The CURE 

plots showed that the preliminary calibration factors for the 18 evaluated site types provide a 

reasonable adjustment for the respective HSM SPFs. The calibration factors varied from 0.25 to 

3.71. The study concluded that three-quarters of the HSM-calibrated SPFs fulfilled Ohio 

Department of Transportation’s needs, and no state-specific SPF development was required for 

those facilities. The study also found site types with more than 1,000 observations are closely 

grouped around zero in CURE plots and have very little variability. 

Kaaf and Abdel-Aty (2015) calibrated the HSM SPFs for the sites in Riyadh, Saudi Arabia. This 

was done by using HSM-default CMFs and then using Riyadh-specific CMFs. The study also 

evaluated new forms for specific SPFs to identify the best model. The prediction capabilities of 

these models were evaluated with the use of a validation dataset that was different from the 

original estimation dataset. GOF measures, such as the MAD, MSPE, mean prediction bias 

(MPB), and BIC, were considered to evaluate the fit. The study found the jurisdiction-specific 

SPFs provided the best fit of the data. The HSM calibration method using new local CMFs 

outperformed the HSM default values. 

Mehta and Lou (2013) calibrated the HSM SPFs for Alabama conditions. The authors also 

proposed a new calibration method that treats the estimation of calibration factors as a special 

case of NB regression. They also developed four new SPFs using NB regression modeling. The 

prediction capabilities of these models were tested by using a validation dataset that is different 

from the original estimation dataset. GOF measures such as MAD, MPB, MSPE, log-likelihood 

(LL), and AIC were considered for evaluation. The calibration factors derived from the HSM 

calibration method and the proposed method were greater than 1.0, implying that the HSM-based 

SPFs underestimate the mean crash frequencies in Alabama. The study found the proposed 

method did not outperform the HSM-recommended method. One particular state-specific SPF 

was found to outperform all other models, including both calibrated models. The best state-

specific model included a few variables that were not part of the HSM-based SPF. The study’s 

findings indicated that the relationship between the crash and exploratory variables in Alabama 

is different from what the HSM-based SPF describes. 
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Lu et al. (2012) calibrated Safety Analyst’s base models to Florida data for freeway segments. 

Safety Analyst uses a set of default SPFs developed using crash data from California, Minnesota, 

North Carolina, Ohio, and Washington. These default SPFs are calibrated to reflect each state’s 

safety data within the software. The authors also developed Florida-specific SPFs to better reflect 

local safety trends. The comparison showed that Florida-specific SPFs fitted the data better than 

the calibrated SPFs, although crash predictions from both cases were reasonable.  

Brimley et al. (2012) calibrated the HSM SPF for rural two-lane two-way roads to represent 

conditions in Utah and also developed jurisdiction-specific SPFs to be considered as alternatives. 

The state-specific SPFs were developed from the same dataset used for the calibration of the 

HSM SPF, although some additional variables that were correlated with crash frequencies were 

considered. The calibration factor for rural two-lane two-way highways in Utah was calculated 

as 1.16. This indicates the HSM SPF slightly underpredicts crashes in Utah. The jurisdiction-

specific SPFs showed that the relationships between crashes and roadway characteristics in Utah 

may be different from those presented in the HSM and included some variables that have not 

been examined extensively in the literature. However, the authors argued that the Utah-specific 

SPFs did not provide a substantial benefit because of the additional data required to implement 

these SPFs. 

Banihashemi (2011) used a heuristic methodology to develop two models that contained SPFs 

and CMFs for predicting segment crashes for Washington State rural two-lane highways. Due to 

the unavailability of some data elements, the models had only four new CMFs, and eight other 

CMFs were borrowed from the HSM model. The study used half of the available data for model 

development (i.e., modeling dataset) and another half for validation. The modeling dataset was 

also used to derive a calibration factor for the HSM model for predicting crashes on rural two-

lane highway segments. Three different aggregation options (no aggregation, 10+ miles segment 

aggregation, and aggregation) based on geometric and AADT ranges were used for comparison. 

Study results showed the HSM-calibrated model and the jurisdiction-specific models performed 

very comparably to each other. The study concluded that if the data are limited, a calibrated 

HSM model performs as well as state-specific SPFs. However, if more variables for the 

development of CMFs are available, then development of state-specific SPFs may be preferred. 

Srinivasan and Carter (2011) calibrated the HSM SPFs for divided rural multilane road 

segments, all urban road segments, and 8 of 10 intersections included in the HSM using data 

from North Carolina. The study results indicated that the calibration factors did not vary 

significantly from year to year. The calibration factors for urban two-lane roads with a two-way 

left-turn lane (TWLTL) and four-lane divided and undivided roadway segments were much 

greater than 1.0, indicating that the HSM SPFs underpredict crashes in North Carolina. The 

authors also developed state-specific SPFs for 16 roadway segments and nine crash types. 

COMPARISON OF SAFETY PREDICTION MODELS 

As discussed, numerous states have conducted statistical analyses to develop local calibration 

factors for HSM models. A list of these calibration factors from 13 analyses is provided in Table 

2 (for segment models) and Table 3 (for intersection models). The facility types include rural 

highways and intersections and urban and suburban arterial streets and intersections. Some states 

have conducted additional analyses to develop local calibration factors for HSM freeway models 
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(Ahmed and Chalise, 2018; Matarage and Dissanayake, 2020; Sun et al., 2013), but these efforts 

are excluded from Table 2 and Table 3 because they are outside the scope of this research 

project. 

Many of the local calibration factors in Table 2 and Table 3 are outside the range of 0.5–1.5, 

indicating that the HSM models overpredicted or underpredicted crash frequency in the state of 

interest by more than 50 percent. Some researchers have developed new SPFs for states instead 

of deriving local calibration factors. The following figures show a comparison of these models: 

• Figure 5: rural two-lane undivided (2U) highway segments and intersections. 

• Figure 6: rural four-lane undivided (4U) highway segments and intersections. 

• Figure 7: urban segments and intersections. 

The figures include the HSM models, the models from the Texas Department of Transportation 

(TxDOT) Roadway Safety Design Workbook (Workbook from Project 0-4703), and any relevant 

models from other states’ analyses. Most of the models apply to KABCO (K=fatal, 

A=incapacitating injury, B=non-incapacitating injury, C=minor injury, O=property damage only) 

crashes, but the models from the Workbook apply to KABC crashes. The Workbook models were 

adjusted to provide estimates of KABCO crash frequency by using the following proportions: 

• For rural facilities, KABC crashes are 32.1 percent of all crashes, based on proportions 

provided in Chapter 10 of the HSM. 

• For urban facilities, KABC crashes are 42.1 percent of all crashes, based on proportions 

provided in Table 2-9 of Bonneson and Pratt (2008). 

For all intersection models, the minor-road AADT is assumed to be 5000 veh/day.  

Table 4 (for segments) and Table 5 (for intersections) show the summary statistics of the data 

used by Bonneson and Pratt (2008). 
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Table 2. Local Calibration Factors for HSM Segment Models. 
Model Severity Calibration Factor 

Rural 2U KABCO 1.55   2.49 1.2   0.74 1.54 0.97 0.87 0.97 0.54 

Rural 4U KABCO 1.12 1.63  2.25 1.61   0.36    0.62  

Rural 4D KABCO 1.7 1.44  1.47 1.31 0.97  0.78  0.74  1.92 0.66 

Urban 2U KABCO 1.26   4.71 1.02 1.54  0.62  1.48  1.91  

Urban 3T KABCO    5.82 0.45 3.62  0.81    0.26  

Urban 4U KABCO 1.10   7.63 0.24 4.04  1.41    1.59  

Urban 4D KABCO 1.60   4.46 0.79 3.87  0.63  0.91  2.54  

Urban 5T KABCO    3.57 0.36 1.72  0.64  0.84  0.06  

Rural 2U KABC       0.98 1.15      

Rural 4U KABC  0.49      0.26      

Rural 4D KABC  0.52     0.67 0.68      

Urban 2U KABC       0.93 0.82      

Urban 3T KABC       1.05 0.98      

Urban 4U KABC       0.71 1.73      

Urban 4D KABC       1.61 0.86      

Urban 5T KABC       0.70 0.74      

Rural 2U KAB       1.22       

Rural 4D KAB       0.69       

Urban 2U PDO        0.51      

Urban 3T PDO        0.72      

Urban 4U PDO        1.27      

Urban 4D PDO        0.50      

Urban 5T PDO        0.58      

 Source code: 2 3 4 5 6 7 8 9 10 11 12 13 14 

State: NJ KS MA TN OH NC FL OR SD MO ID LA AR 

Source: 2—(Ozbay et al., 2019); 3—(Matarage and Dissanayake, 2020); 4—(Xie and Chen, 2016); 5—(Khattak et al., 2019); 6—(Troyer et al., 2015); 7—

(Srinivasan and Carter, 2011); 8—(Srinivasan et al., 2011); 9—(Dixon et al., 2012); 10—(Qin et al., 2014); 11—(Sun et al., 2013); 12—(Abdel-Rahim and 

Sipple, 2015); 13—(Robicheaux and Wolshon, 2015); 14—(Gattis et al., 2017). 

Note: 4D=four-lane divided; 3T=two-lane with a two-way-left-turn-lane; 5T=four-lane with a two-way-left-turn-lane; blanks cells mean those particular 

calibration factors are not provided in those studies. 
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Table 3. Local Calibration Factors for HSM Intersection Models. 
Model Severity Calibration Factor 

Rural 2 3ST KABCO 0.88 2.87   1.51 0.57  0.32  0.69 0.56  0.65 

Rural 2 4ST KABCO 0.88 0.91   1.5 0.68  0.31  0.41 0.62  0.46 

Rural 2 4SG KABCO 0.85    1.86 1.04  0.47      

Rural M 3ST KABCO     1.66   0.16  0.95   0.70 

Rural M 4ST KABCO     1.73   0.40  0.65   0.74 

Rural M 4SG KABCO     1.33 0.49  0.15      

Urban 3ST KABCO 2.61 1.16 0.77  1.34 1.72  0.35  1.28    

Urban 4ST KABCO 1.66 0.74 1.03  1.60 1.32  0.45  1.27    

Urban 3SG KABCO 3.60  1.50  3.35 2.47  0.73  2.95    

Urban 4SG KABCO 4.25  1.49  3.71 2.79  1.05  5.21    

Rural 2 3ST KABC       0.80 0.41      

Rural 2 4ST KABC       0.80 0.48      

Rural 2 4SG KABC       1.21 0.67      

Rural M 3ST KABC        0.23      

Rural M 4ST KABC        0.48      

Rural M 4SG KABC       0.37 0.17      

Urban 3ST KABC        0.47      

Urban 4ST KABC        0.51      

Urban 3SG KABC       1.41 1.07      

Urban 4SG KABC       1.84 1.29      

Rural 2 3ST KAB       0.75       

Rural 2 4ST KAB       1.21       

Rural 2 4SG KAB       1.96       

Rural M 4SG KAB       0.50       

Urban 3ST PDO        0.28      

Urban 4ST PDO        0.41      

Urban 3SG PDO        0.57      

Urban 4SG PDO        0.91      

 Source code: 2 3 4 5 6 7 8 9 10 11 12 13 14 

State: NJ KS MA TN OH NC FL OR SD MO ID LA AR 

Source: 2 – (Ozbay et al., 2019); 3 – (Matarage and Dissanayake, 2020); 4 – (Y. Xie and Chen, 2016); 5 – (Khattak et al., 2019); 6 – (Troyer et al., 2015); 7 – 

(Srinivasan and Carter, 2011); 8 – (Srinivasan et al., 2011); 9 – (Dixon et al., 2012); 10 – (Qin et al., 2014); 11 – (Sun et al., 2013); 12 – (Abdel-Rahim and 

Sipple, 2015); 13 – (Robicheaux and Wolshon, 2015); 14 – (Gattis et al., 2017). 

Note: 3ST=three-leg stop-controlled; 4ST=four-leg stop-controlled; 3SG=three-leg signalized; 4SG=four-leg signalized; blanks cells mean those particular 

calibration factors are not provided in those studies. 
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a. Segments 

  
b. 4SG Intersections c. 4ST Intersections 

Figure 5. Segment and Intersection SPFs for Rural 2U Facilities. 

  
a. Segments b. Intersections 

Figure 6. Segment and Intersection SPFs for Rural 4U Facilities. 
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a. Segments, TWLTL b. Segments, Raised-Curb Median 

 
c. 4SG Intersections 

Figure 7. Segment and Intersection SPFs for Urban Facilities. 
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Table 4. Segment Safety Prediction Model Calibration Database Summary. 
Segment 

Type 

Sample 

Size (mi) 

AADT Range Crash Total (FI 

crashes over 3 

years) 

Source 

Minimum Maximum 

Rural 2U 233.7 650 23,700 214 (Bonneson and Pratt, 2008), Ch. 6 

Rural 4U 158.6 980 20,200 396 (Bonneson and Pratt, 2008), Ch. 4 

Rural 4N 48.3 1120 39,300 219 (Bonneson and Pratt, 2008), Ch. 4 

Rural 4R 365.0 1550 39,200 761 (Bonneson and Pratt, 2008), Ch. 4 

Urban 2U 32.2 850 15,600 114 (Bonneson and Pratt, 2008), Ch. 3 

Urban 4U 53.6 2500 31,300 754 (Bonneson and Pratt, 2008), Ch. 3 

Urban 2N 4.4 5700 13,200 13 (Bonneson and Pratt, 2008), Ch. 3 

Urban 4N 195.9 1950 48,100 2752 (Bonneson and Pratt, 2008), Ch. 3 

Urban 6N 53.6 7400 54,000 1824 (Bonneson and Pratt, 2008), Ch. 3 

Urban 4R 25.0 4450 32,400 269 (Bonneson and Pratt, 2008), Ch. 3 

Urban 6R 84.9 3450 56,700 1435 (Bonneson and Pratt, 2008), Ch. 3 

Urban 8R 8.4 33,000 67,300 699 (Bonneson and Pratt, 2008), Ch. 3 

Rural 4F 252.5 7200 69,100 1066 (Bonneson and Pratt, 2008), Ch. 5 

Rural 6F 26.4 31,100 72,700 281 (Bonneson and Pratt, 2008), Ch. 5 

Rural 8F 1.8 109,000 140,000 116 (Bonneson and Pratt, 2008), Ch. 5 

Urban 4F 101.1 4800 92,300 1296 (Bonneson and Pratt, 2008), Ch. 5 

Urban 6F 84.3 24,300 170,000 2662 (Bonneson and Pratt, 2008), Ch. 5 

Urban 8F 51.2 33,500 198,000 2495 (Bonneson and Pratt, 2008), Ch. 5 

Urban 10F 6.8 152,000 234,000 520 (Bonneson and Pratt, 2008), Ch. 5 

Note: 4N= four-lane nonrestrictive median; 4R=four-lane restrictive median; 6N= six-lane nonrestrictive median; 

6R=six-lane restrictive median; 8R=eight-lane restrictive median; 4F=four-lane freeway; 6F=six-lane freeway; 

8F=eight-lane freeway; 10F=ten-lane freeway. 

Table 5. Intersection Safety Prediction Model Calibration Database Summary. 
Intersection 

Type 

Sample Size 

(intersections) 

AADT Range Crash Total (FI 

crashes over 3 

years) 

Source 

Major Road Minor Road 

Min. Max. Min. Max. 

Rural signalized 

intersections 
20 4300 19,200 1800 11,100 132 

(Bonneson and 

Pratt, 2008), Ch. 6 

Rural stop-

controlled 

intersections 

188 80 19,200 30 6200 150 

(Bonneson and 

Pratt, 2008), Ch. 6 

Urban signalized 

intersections 
152 4040 55,200 1400 38,000 1928 

(Bonneson and 

Pratt, 2008), Ch. 2 

Urban stop-

controlled 

intersections 

94 400 27,600 270 10,400 247 

(Bonneson and 

Pratt, 2008), Ch. 2 
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CHAPTER 3: DATA COLLECTION ACTIVITIES 

This chapter discusses the steps considered for collecting the detailed data. The chapter is 

divided into five sections. The first section describes the data needs for calibrating the HSM 

SPFs. The second section shows how different database inventories are developed. The third 

section presents the procedure for sample size estimation. The fourth section describes the 

sampling design. The last section provides the steps taken for collecting the data followed by the 

summary statistics of the data.  

DATA NEEDS 

Table 6 shows the data required by SPF type that are included in the HSM.  
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Table 6. Data Requirement by SPF Type. 

Data Attribute 

HSM SPF Availability by Facility 
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Number of Lanes ✓ ✓ ✓ ✓ ✓ ✓ 

Lane Width ✓ ✓ ✓  ✓ ✓ 

Shoulder Width ✓ ✓ ✓  ✓ ✓ 

Shoulder Type ✓ ✓     

Median Width/Barrier   ✓ ✓ ✓  

Horizontal Curve  ✓    ✓ ✓ 

Vertical Grade ✓      

Driveway Density ✓     ✓ 

Rumble Strips ✓      

Passing Lanes ✓      

TWLTL ✓      

Lighting ✓ ✓ ✓ ✓   

Automated Speed Enforcement ✓ ✓ ✓ ✓   

Sideslopes  ✓     

On-Street Parking    ✓   

Roadside Fixed Objects/Barrier    ✓ ✓ ✓ 

Roadway “Diets”    ✓   

Roadside Hazard Rating/Clear Zone ✓      

Speed Limit     ✓ ✓ 

Speed-change Lane/Lane Add/Drop     ✓ ✓ 

Skew Angle ✓ ✓ ✓   ✓ 

Left-Turn Lane ✓ ✓ ✓ ✓  ✓ 

Right-Turn Lane ✓ ✓ ✓ ✓  ✓ 

Lighting ✓ ✓ ✓ ✓   

Signal Phasing    ✓  ✓ 

Right-Turn on Red    ✓   

Red-Light Camera    ✓   

Bus Stops    ✓   

Schools    ✓   

Alcohol Sales Establishments    ✓   

 

DATABASE INVENTORY 

Roadway Segments 

For the roadway segment database inventory, researchers used TxDOT’s 2019 Roadway 

Highway Inventory Network Offload (RHiNo) database. The RHiNo database contains 

information on roadway design characteristics and traffic data for both state and local roadway 

segments. The database also includes historical traffic volumes for the last 10 years. Currently, 
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TxDOT has this database available in a format compatible with geographic information systems 

(GIS), which offers the advantage of matching the data collected to the information in the RHiNo 

database. There are over a hundred RHiNo fields indicating various pieces of information 

relevant to this project, including but not limited to location of the roadway segment (e.g., state, 

district, county, highway name, and distance from origin), the system and facility type (e.g., 

rural/urban, urban area code, and functional class), roadway design characteristics (e.g., number 

of lanes, surface width, shoulder width, and median type), and traffic volumes (e.g., current and 

historical AADTs, truck AADT). For geometric data missing from the RHiNo database but 

required for calibration of the existing SPFs, researchers used Google Earth® and Google Street 

View®, which will be described in detail in later sections. Some of the missing variables include 

roadside parking roadside clearance, existence of edgeline or centerline rumble strips, presence 

of turn lanes, roadside slopes, presence and location of utility poles, density of driveways, and 

ditches.  

Intersections 

Unlike roadway segments, Texas does not have an inventory of intersections. Researchers used 

two different transportation networks to develop two intersection layers for Texas, respectively. 

The first network was the OpenStreetMap (OSM) transportation network that is available online. 

The second network was provided by HERE Traffic Analytics. Both layers were developed in 

ArcGIS and were exported in a shapefile format. 

Figure 8 shows the OSM fields used to develop the intersection layer. Researchers developed a 

model (Figure 9) to process the OSM network and export the final intersection layer (Figure 10) 

as a point layer.  

 
Figure 8. OSM Fields. 



 

36 

 
Figure 9. ArcGIS Model Used to Develop Intersection Database from OSM Network. 

 
Figure 10. Final Intersection Layer Based on OSM Network. 

The final intersection layer developed from the OSM network contained only the roadway name 

of each approach. Other OSM attributes, such as number of lanes, were not complete and 

therefore were not included in the intersection layer. Because of this data limitation, researchers 

used the HERE transportation network to develop a richer layer in terms of attributes that was 

used in subsequent safety analyses of this project. 

Researchers initially identified around 12 million points where two or more roadway lines 

intersect. The points were further processed in ArcGIS using the model illustrated in Figure 11. 

The team developed an intersection layer for Burleson County to test and validate the model. 

Figure 12 shows the intersections identified in the city of Caldwell. This layer contains the 
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number of unique road names and the number of approaches at each intersection, as well as the 

road name and the unique ID of each link/approach. Based on the acceptable results from initial 

testing for Burleson County, researchers developed a statewide intersection database for Texas.  

 
Figure 11. ArcGIS Model Used to Develop Intersection Database from HERE Network. 

 
Figure 12. Sample Intersection Layer Developed Using the HERE Transportation Network 

for the City of Caldwell. 

The following sections summarize the steps followed to develop the statewide intersection 

database inventory based on georeferenced information and attributes from different data 

sources. 

Step 1. Converting Polygons to Points 

The geospatial data obtained from the HERE network were used to first create an intersection 

shapefile in ArcMap 10. The dataset contained several attributes, such as OBJECT ID, 



 

38 

NODE_ID, roadlinks, and street names. However, the dataset contained no geolocation (latitude 

and longitude). For this step, researchers converted the intersection polygons to points (see 

Figure 13). 

 
Figure 13. Converting Polygons to Geolocated Points. 

Step 2. Determination of Area Type 

Once the HERE dataset was converted to a point layer, the final product (HERE point layer) was 

combined with data from a statewide area types dataset (“Final Combined Urban Area Types 

2017”) previously developed by the members of the research team. The area type in that dataset 

was defined by adopting the following key steps.  

• Identify urban areas using the 2017 Census urban area geography and 2017 American 

Community Survey 5-year population estimates.  

• Identify urban areas and fringe buffers based on extraterritorial jurisdiction distances as 

described in the Texas Local Government Code. The area types and fringe buffers were 

defined as shown in Table 7.  

Table 7. Fringe Buffer Definitions by Area Type. 
Label Population Category Fringe Buffer 

Urban—Very Large >250K population 5 mi 

Urban—Large 100K–250K 5 mi 

Urban—Medium 50K–100K 3.5 mi 

Urban—Small 25K–50K 2 mi 

Urban—Very Small 5K–25K 1 mi 

Urban—Very, Very Small <5K 0.5 mi 

Rural Everywhere else — 

 Note: — means not applicable. 
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The above classification was combined with the HERE point layer to obtain the area type 

characteristics at each intersection (see Figure 14). A “Spatial Join” in ArcMap was used to 

combine these two datasets and create a new layer called “HERE Point Layer with Area Type.”  

 
Figure 14. HERE Intersection Data with Area Type Classification. 

Step 3. Merging With Roadway Data 

Geometric characteristics and other road information are needed to develop the calibration 

factors. Those characteristics were obtained from the TxDOT’s 2019 RHiNo data. Once again, 

the Spatial Join tool in ArcMap was used to append selected attributes such as the highway 

name, record type, from and to mile points, district, rural/urban code, functional classification, 

highway design, number of lanes, lane width, and AADT, among others. This process was 

particularly complex for the following reasons: 

1. The Texas Roadway Inventory layer was not 100 percent geographically aligned with the 

HERE point layer with Area Type (see Figure 15). 

2. The Texas Roadway Inventory layer has connectivity issues from its origin. 

3. The Spatial Join was between lines and points. 

To solve these issues, an auxiliary buffer containing the same OBJECTID was created around 

each intersection so the characteristics of the road lines intersecting this buffer area were 

appended to the buffer area. After joining the OBJECTID from the point and auxiliary buffer, the 

corresponding road characteristics were extracted.  
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a) Aerial view with background 

 
b) Zoom-in view with no 

background 

Figure 15. Offset between Road Lines and Intersection Points. 

Step 4. Obtaining Site Characteristics 

In Step 3, each intersection (point) was appended with the attributes from the closest line from 

the RHiNo layer. This step also created a problem since each intersection is crossed by at least 

two lines (see Figure 16). Thus, the maximum and minimum value from the RHiNo line layer at 

each intersection point was appended. This process originated a new point layer with all the 

attributes from the HERE point layer combined with the Area Type layer plus maximum and 

minimum columns for the number of lanes, lane width, AADT, and record type. 

 
Figure 16. Example of Maximum and Minimum Values for ADT at a Four-Leg 

Intersection.  
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Step 5. Obtaining Number of Legs 

The next step was to count the number of legs at each intersection. This process was also 

challenging due to the RHiNo line layer and the HERE intersection original geolocation. Several 

substeps were followed to complete this process: 

1. Using an auxiliary buffer area combined with the ArcMap tool “Erase,” the center portion 

of the crossroad lines was erased (Figure 17). 

2. With the ArcMap tool “Multipart to Single Part,” the continuous crossroad lines (from 

the Texas Road Inventory layer) were divided into multiple lines at each intersection. 

3. By creating a larger area auxiliary buffer, the number of lines (legs) at each intersection 

were counted using a Spatial Join and appending the count to this larger area auxiliary 

buffer. 

4. Finally, the total number of lines/legs was appended to the intersection point as an 

attribute (Figure 18). 

 
a) Input 

 
b) Output 

Figure 17. Erase Lines at Intersections. 

 
Figure 18. Auxiliary Buffer Used to Count the Number of Legs at Each Intersection. 
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This process was automated and applied to each intersection statewide. The resulting layer 

includes the output of all the steps described in this document (Figure 19). 

 
Figure 19. Number of Legs Counting Process. 

Step 6. Obtaining Traffic Control 

Since there is no direct way of obtaining the traffic control at the intersection from any existing 

data sources, researchers relied on the traffic control variable entered into the crash reports by the 

law enforcement officer. The team obtained eight years (2013–2020) of crash data for each 

intersection from the Crash Records Information System (CRIS), filtered to include intersection-

related and TxDOT reportable crashes only, and used a traffic control variable (Traffic_Cntl_ID) 

to classify each intersection into a signalized or unsignalized intersection. In this manner, the 

team assigned the traffic control for about one-third of the intersections (316,579 of 910,668 

intersections). 

Using the area type, number of legs, number of lanes, traffic control, and highway design, the 

team successfully created the following intersection types for rural two-lane, rural multilane, 

one-way, and urban arterials.  

• Three-leg stop-controlled (3ST). 

• Four-leg stop-controlled (4ST). 

• Three-leg signalized (3SG). 

• Four-leg signalized (4SG). 

Frontage Roads  

Researchers used the 2019 version of the RHiNo database maintained by TxDOT. The field 

“RDBD_ID,” which represents the roadbed identifier, was used to select and extract frontage 

roadways. Specifically, the team used the following criteria: 
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• RDBD_ID equals to “AG” (right frontage road); or 

• RDBD_ID equals to “XG” (left frontage road). 

Researchers developed datasets for four types of frontage roads: 

• Rural one-way (R1W). 

• Rural two-way (R2W). 

• Urban one-way (U1W). 

• Urban two-way (U2W). 

In total, 23,815 frontage roadway segments were extracted from the original RHiNo database, 

comprising a total mileage of 7,752.1 miles. Table 8 shows the summary of the frontage roadway 

segments. 

Table 8. Summary of Frontage Roadway Segments. 

Side Area Type Highway Type No. Segments Length (mi) 

Right  Urban   One-Way   7,970   2,098.0  

Right  Urban   Two-Way   799   244.3  

Right  Rural   One-Way   792   269.4  

Right  Rural   Two-Way   2,340   1,219.3  

Total (Right Side)  11,901   3,831.0  

Left  Urban   One-Way   7,549   2,057.2  

Left  Urban   Two-Way   918   289.7  

Left  Rural   One-Way   757   250.1  

Left  Rural   Two-Way   2,690   1,324.0  

Total (Left Side)  11,914   3,921.0  

Grand Total  23,815   7,752.1  

 

Researchers further created a unique identifier (ID) for each segment using the following 

formula: 

 ID = “REC” + “RIA_RTE_ID” + “FRM_DFO” (14) 

where: 

REC = record in the RHiNo database. 

RIA_RTE_ID = route ID. 

FRM_DFO = start milepost or start DFO (distance from the origin). 

Two formats of frontage roadways were created to facilitate the following data preparation, 

additional variable collection, and safety analyses: 

• GIS format (i.e., SHP file). 

• CSV format. 
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Ramp Segments 

TxDOT provided researchers an Excel spreadsheet file with 2014–2021 ramp and connector 

volume data that were extracted from STARS II. The volumes were derived from counts taken 

on ramps and connectors. The counts were conducted with pneumatic tubes prior to 2015. 

Beginning in October 2020, the counts have been conducted using nonintrusive mounted 

cameras. The data also included location ID and latitude and longitude of the point where 

volumes were conducted.  

Researchers geolocated the counts and developed an ArcMAP model (Figure 20) to further 

process the ramp volume data by performing the following: 

• Created a 25-ft circular buffer around each count taken on ramps. 

• After downloading “TxDOT_Roadways” shapefile (GRID, 2022), filtered for and 

extracted all ramp and connector data using roadbed type field [RDBD_TYPE]. 

• Joined spatially the two shapefiles that were created in the previous steps. 

• Validated and selected the ramps and connectors that had valid volume, location, and 

direction data. 

 
Figure 20. Screenshot of ArcMAP Model Developed to Post-Process the Ramp Volume 

Data. 

Crash Data Extraction 

Researchers obtained crash data from TxDOT’s CRIS for both roadway segments and 

intersections for the years 2015 to 2019. CRIS data elements are divided into three major groups: 

crash event and roadway characteristics, primary person characteristics, and vehicle (unit) 

characteristics. These elements were used to separate the crashes into different severities and 
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collision types because separate calibration factors are required by crash severity and type. CRIS 

has over 150 fields that contain data about spatial and temporal characteristics (e.g., time, date, 

and geodesic coordinates), roadway and traffic characteristics (e.g., intersection-related, ADT), 

crash contributing factors (e.g., weather, lighting, pavement conditions), manner of collision 

(e.g., head-on, rear-end, sideswipe), crash severity, vehicle type, driver characteristics, and 

passenger characteristics, among others. Researchers used spatial joining to assign crashes. For 

intersections, researchers used a 250-ft radius from the center of the intersection to assign 

crashes to a specific intersection.  

Frontage Roads 

Researchers used three years (2017–2019) of crash data from the CRIS. Only three years’ crash 

data are used because of the need to manually review some of the crash reports. One major issue 

with the frontage roadway crashes is that the side of the crashes (i.e., left or right) cannot be 

known from the original CRIS database. This element makes it challenging to assign crashes to 

frontage roadway segments. Researchers developed the following process to identify the side of 

each crash and assign crashes to an appropriate frontage roadway segment. 

• Step 1: Locate frontage roadway crashes. 

• Step 2: Find the nearest point on right (A) and left side (B) of frontage roadways, 

separately. 

• Step 3: Identify the traveling directions of points A and B. 

• Step 4: Compare vehicle traveling direction with road directions. 

• Step 5: Determine the side of the crash. 

The following section provides an example to illustrate the process.  

First, the frontage roadway crashes were extracted using the variable “Road_Part_Adj_ID,” and 

when its value is 2 (SERVICE/FRONTAGE ROAD), the crash is identified as a frontage 

roadway crash. 

Second, the nearest points were found on the two sides of frontage roadways. As shown in 

Figure 21, Point A is on the left side, and Point B is on the right side. 

 
Figure 21. Locating Nearest Points on Frontage Roadways of a Crash. 
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Third, the traveling directions of Points A and B were identified. In this case, the two directions 

are approximately 135 and 320 degrees, as shown in Figure 22. 

 
Figure 22. Directions of the Nearest Points. 

Fourth, the traveling directions of the vehicle(s) involved in the crashes were identified. In this 

step, the variable “Veh_Dir” in the CRIS database is used. Veh_Dir takes the following values 

(shown in Table 9). 

Table 9. Vehicle Traveling Directions in CRIS. 
Veh_Dir Value Direction 

1 NORTH 

2 NORTHEAST 

3 EAST 

4 SOUTHEAST 

5 SOUTH 

6 SOUTHWEST 

7 WEST 

8 NORTHWEST 

9 NOT APPLICABLE 

10 NOT REPORTED 

11 UNKNOWN 

 

Finally, the side of the crash was determined. Now, consider a crash that has three vehicles 

involved. Their traveling directions are 4 (SOUTHEAST), 5 (SOUTH), and 6 (SOUTHWEST). 

In this case, since all the three involved vehicles are traveling to the south or southwest, it can be 

determined that the crash is on the left side frontage roadway (i.e., AG). In the case of a wrong-

way driving crash, the direction is adjusted to reflect the actual direction of the roadway. 

For each of the crashes in the CRIS, there are three possible identification results: right side, left 

side, and cannot be determined (e.g., the vehicle traveling direction is unknown or not reported). 

After processing all the frontage roadway crashes, researchers calculated the three-year crash 

count for each frontage roadway segment. For unidentified crash directions, lower-bound crash 
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counts are calculated by not counting them on any side and upper-bound crash counts are 

calculated by counting them on both sides. 

Table 10 illustrates the format of the final frontage roadway inventory data, with crash counts for 

six sites. 

Table 10. Format of Frontage Roadway Safety Data. 

RHI_KEY RDBD_ID AADT 

Crash Count 

(Lower-

Bound) 

Crash Count 

(Upper-Bound) 

3_IH0035-XG_8.695 XG 2,502 1 1 

3_IH0030-XG_115.847 XG 482 0 0 

3_IH0820-XG_18.491 XG 11,717 34 37 

3_IH0045-AG_83.206 AG 2,833 20 20 

3_IH0035-AG_150.196 AG 16,268 0 0 

3_IH0035E-AG_76.325 AG 6,050 29 36 

Note: 3-year crash data are considered. 

Initially, researchers attempted to assign CRIS frontage crashes onto the roadways by identifying 

the directions of roadways and vehicles involved in the crashes. However, under some special 

circumstances, the process might not work to reliably assign the crash onto the frontage roadway. 

For example, when there are frontage roadways on both sides, and at least one of them is a two-

way frontage roadway, the process will not yield accurate results. In this kind of situation, it will 

be extremely difficult to determine the side of the crash. Researchers conducted a thorough 

validation of the whole process, as shown in Figure 23.  

 
Figure 23. Frontage Roadway Crash Assignment Process Validation. 

Ramps 

Researchers used four years (2017–2020) of crash data from the CRIS. The ramp crashes were 

extracted using the variable “Road_Part_Adj_ID.” When the variable value is 3 

(ENTRANCE/ON RAMP) or 4 (EXIT/OFF RAMP), the crash is identified as a ramp-related 
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crash. One major issue with the ramp crashes is that the crash location is assigned to the center of 

the main lanes. Thus, it is difficult to know on which ramp segment the crash occurred, as 

described above. This facet makes it challenging to assign crashes to ramp segments. 

Researchers first identified the traveling directions of the vehicle(s) involved in the crashes. The 

variable “Veh_Dir” in the CRIS database is used. Table 9 shows Veh_Dir field values. 

In the second step, researchers used the direction of the ramp specified in the database 

[DES_DRCT] and compared it against the vehicle direction in the crash. The ramp direction was 

classified into four cardinal directions: NORTHBOUND, EASTBOUND, WESTBOUND, or 

SOUTHBOUND. If the vehicle direction is within 90 degrees of the ramp direction, then the 

crash is assigned to that ramp. For instance, if the ramp direction is SOUTHBOUND and vehicle 

traveling directions are 5 (SOUTH), 4 (SOUTHEAST), or 6 (SOUTHWEST), then those crashes 

are assigned to the ramp. For each of the crashes considered, there are three possible 

identification results: related to the concerned ramp, not related to the concerned ramp, or cannot 

be determined (e.g., the vehicle traveling direction is unknown or not reported). After processing 

all the ramp crashes, researchers calculated the 4-year crash count for each ramp segment. For 

unidentified crash directions, lower-bound crash counts were calculated by not assigning to the 

ramp of interest and upper-bound crash counts were calculated by assigning them to the ramp. 

Table 11 illustrates the format of the final ramp inventory data, with crash counts for six sites. 

Table 11. Format of Ramp Safety Data. 

RHI_KEY Area Type AADT 
Crash Count 

(Lower-Bound) 

Crash Count 

(Upper-Bound) 

RP0009 Rural 347 0 0 

RP0010 Rural 173 0 1 

RP0053 Rural 3230 4 4 

RP3175 Urban—medium 9203 0 2 

RP0561 Urban—very large 4590 1 5 

RP0629 Urban—large 2015 0 0 

Note: 4-year crash data are considered. 

SAMPLE SIZE ESTIMATION 

For the calibration procedure, the first version of the HSM recommends a one‐size‐fits-all 

sample size. It requires crash data collected from 30 to 50 randomly selected sites with a 

minimum of 100 crashes per year. However, this recommended sample size is not fully 

supported by documented studies. For sites with low crash history, collecting 100 crashes at 30 

or 50 sites could be difficult to perform (Xie et al., 2011). On the other hand, for most facilities, 

this minimum recommendation may not provide desirable results (Alluri et al., 2016; 

Banihashemi, 2012).  

Researchers reviewed the relevant literature and examined different approaches that have been 

proposed. Particular attention was given to work by Shin et al. (2014). These authors proposed a 

sampling framework to determine the minimum sample size. For a chosen confidence level, the 

minimum sample size is calculated as follows (Shin et al., 2014): 
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 𝑛 =
(𝑛0×𝑁)

(𝑛0+(𝑁−1))
 (15) 

with  𝑛0 = (
𝑧

𝑒
)
2 𝑃

1−𝑃
 (16) 

where: 

n = minimum sample size. 

N = total population. 

z = area under normal curve (= 1.645, 1.96, and 2.58 for a level of confidence of 90 percent, 

95 percent, and 99 percent, respectively). 

P = true proportion of factor in the population, or the expected frequency value. 

e = margin of errors.  

Researchers used the above equation and estimated the minimum sample size needed for each 

facility type, as shown in Table 12. 

Table 12. Minimum Sample Size Using Shin et al. (2014) Method. 
Facility Type Population Size Minimum Sample size 

Rural two-lane (R2U) 90371 270 

Rural four-lane undivided (R4U) 7317 261 

Rural four-lane divided (R4D) 6530 260 

Urban two-lane (U2U) 15557 266 

Urban two-lane with TWLTL (U3T) 306 144 

Urban four-lane undivided (U4U) 13064 265 

Urban four-lane divided (U4D) 6729 260 

Urban four-lane with TWLTL (U3T) 1357 226 

The method proposed by Shin et al. (2014) has certain limitations. It requires making an 

assumption about the true proportion of factor in the population or the expected frequency value. 

The authors set the true proportion at 0.50, or 50 percent, which yields the maximum sample size 

at the 90 percent confidence level (i.e., the value of P is assumed to be 0.50). This assumption 

has a big influence on the sample size estimation, and no theoretical evidence about the 

recommended true proportion exists. In addition, the formulations these authors proposed were 

found to be rooted in the sample-size calculations for estimating a proportion from a population, 

not a multiplicative factor on the mean parameter of a discrete response model (such as an SPF). 

To overcome some of these issues, the authors presented a new method that is based on a two-

step sample size estimation in their subsequent work (Shin et al., 2015). The new method 

basically requires taking an initial sample of sites and conducting the calibration. After obtaining 

the standard error of calibration factor, the analyst can determine if the accuracy needed is 

achieved, or if further data are needed. This step is needed every time a new sample size is used. 

This method is similar to the approach proposed in Bahar and Hauer (2014), and it requires the 

analyst to make a decision on the initial sample size and conduct multiple iterations.  

Given the issues discussed above, researchers used another sampling approach to assess the 

value and potential applicability of the work by Shin et al (2014). Only in the case of a sample 
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taken with equal probabilities of selection (e.g., stratified random sampling (SRS) or 

proportional stratified sampling) can one take the raw data and produce an unbiased population 

parameter estimate without considering the sampling weights. By applying disproportionate 

stratified sampling and not introducing the sampling weights into the estimation of the 

calibration factor, Shin et al. steered toward more convenient sample sizes, but they risked 

introducing bias to the estimation of the calibration factor (by including less of the “dominant 

strata,” as they refer to portions of the data). Additionally, the precision of their estimate could 

have suffered. Lohr stated that “if the variances Sh
2 are more or less equal across all the strata, 

proportional allocation is probably best for increasing precision” (Lohr 2009). In this context, 

proportional allocation means equal probabilities sampling, as described above. For Scenario 3 

in Shin et al.(2014), the report stated that “disproportionate stratified sampling with optimum 

allocation was used.” Regarding optimal allocation, Lohr indicated that “optimal allocation 

works well for sampling units such as corporations, cities, and hospitals, which vary greatly in 

size. It is also effective when some strata are much more expensive to sample than others” (Lohr 

2009). Researchers found no documentation of how Shin et al. assessed these conditions for their 

dataset. Specifically, if those authors applied the formulation for optimal allocation provided by 

Lohr (see equation below), they had to define their cost function to apply this definition at some 

point (Lohr 2009): 

 𝑛ℎ = (

𝑁ℎ∙𝑆ℎ

√𝐶ℎ

∑
𝑁𝑖∙𝑆𝑖

√𝐶𝑖

𝐻
𝑖=1

) ∙ 𝑛 (17) 

where: 

Nh = Size of stratum h. 

Sh = Standard deviation of variable of interest in stratum h. 

ch = The cost of taking an observation in stratum h. 

Researchers found no documentation of this critical assumption, which is necessary to reproduce 

those authors’ calculations and interpret the meaning of their achieved optimality.  

For the reasons described above, researchers determined not to adapt the framework by Shin et 

al., given that the sample-size assumptions stem from a different type of estimation problem (i.e., 

estimate of a proportion) and the set of unknown assumptions implied in the procedures followed 

by those researchers. Therefore, researchers deemed the need to determine calibration sample 

sizes based on the framework of an SPF as a statistical model and a set of sensible assumptions 

about the relevant parameters that influence the precision of a given sample size. 

Framework to Determine Appropriate Calibration Sample Sizes 

For statistical estimation, different objectives require different sample sizes, even if the data 

source is the same. However, a general assumption exists that a single formula can yield an 

appropriate sample for every case. Most textbooks present formulas for simple cases, such as 

estimating population means or proportions from random samples. The familiar calculations for 

surveys of opinion of at least a sample of 1,000 responses are derived from the case of estimating 

a population-level proportion in favor or against a specific issue (or candidate) coded as a binary 
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variable. This calculation requires the initial assumption of a 0.5 proportion, which is known to 

have the largest variance for the binary case, so it is a worst-case scenario calculation.  

Design-Based and Model-Based Inference about a Population Parameter 

In the case of calibrating SPFs, an important distinction must be made that differs from textbook 

sample-size calculations regarding design-based and model-based inference. In the case of 

design-based inference, no distributional assumptions are made about the variables of interest, 

and the inference is based on the chances each element of the population has to be included in 

the sample (Lohr, 2009). A simple example of design-based inference is the derivation of the 

standard error of a mean from a simple random sample. The statistical properties of the estimate 

stem from the way the sample was collected rather than the distribution of the observed variable. 

Conversely, for model-based inference, the assumption is that the observation is a realization 

from an underlying process that generates a response with a defined probability distribution. 

Under this view, the statistical properties of the estimates stem from the underlying data 

generation model, and bias can emerge if the model mismatches the observations incorrectly. 

Criterion under the Hypothesis of a Single Scaling Factor 

In their general discussion about appropriate sample sizes for hypothesis testing, Ramsey and 

Schafer (2012) argued that the objective of sample size selection is avoiding the case in which 

the confidence interval of the desired estimate includes both the null and alternative values 

(Ramsey and Schafer, 2012). In other words, a sample is too small if it allows no differentiation 

between the null hypothesis and a practical alternative hypothesis. Notice that this definition is 

general enough that is not circumscribed only to estimations of means; it can also reflect the 

estimation of other types of statistics. 

Let 𝑦 be the realization of random variable Y, which is the number of crashes observed at a 

facility, given its characteristics. Then, 𝑦𝑖 is the observed crashes at site 𝑖. Let 𝑝𝑖  be the 

appropriate SPF prediction at that site. Assuming the difference between the expectation of 𝑦 and 

𝑝 is only accounted for by a single factor 𝑐, the following is derived: 

 𝐸(𝑌|𝑋) = 𝑐 ∙ 𝐸(𝑝|𝑋) (18) 

That equation is conditional to the predictor variables, but it becomes unconditional after 

integrating all available values of X:  

 𝐸(𝑌) = 𝑐 ∙ 𝐸(𝑝) (19) 

After rearranging and noting that the right-hand side is a set of constants that can be included in 

the expectation, the following is derived: 

 
𝐸(𝑌)

𝐸(𝑝)
= 𝑐 (20) 
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The natural estimator of the quantity 𝑐 can be defined after plugging in the estimates from a 

sample of the two expectations in the ratio: 

 
𝐸(𝑌)̂

𝐸(𝑝)̂
= �̂� (21) 

 �̂� =
1

𝑛
∙∑ 𝑦𝑖
𝑛
𝑖=1

1

𝑛
∙∑ 𝑝𝑖
𝑛
𝑖=1

 (22) 

 �̂� =
∑ 𝑦𝑖
𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

 (23) 

The expression above is the HSM definition of the calibration factor. Up to this point, no 

assumptions about the distribution of the crash counts has been made. To obtain the variance of 

this quantity, one can bring in the assumption of an NB distribution of crashes, wherein the SPF 

prediction is the expectation of that random variable, and a dispersion parameter 𝜅 is known and 

documented in the HSM. For a sample of size 𝑛, the variance of the estimator above is as 

follows: 

 𝑉(�̂�) =
𝐸(𝑦)+𝜅∙𝐸(𝑦)2

�̅�2∙𝑛
 (24) 

where: 

�̅� = the average of all SPF predictions in the sample.  

To determine an appropriate sample size, one can define a level of relative precision in 

estimating the value of the calibration factor. The researchers defined that level of precision as 𝛾. 

For example, if a 10 percent precision for 𝑐 is required, then 𝛾 = 0.1. Considering a desired level 

of precision 𝛾, and the level of confidence for an interval of the value of 𝑐, the equation above 

yields the following sample size: 

 𝑛 =
𝑍𝛼
2

𝛾2
(𝜅 +

1

�̅�
) (25) 

where: 

𝑍𝛼 = the standard normal variable for a level of confidence 1 − 𝛼. 

𝜅 = the SPF dispersion parameter. 

�̅� = the average number of crashes in the sample. 

SAMPLING DESIGN 

Roadway Segments 

After confirming the appropriateness of the above formulation using simulated crash data, 

researchers calculated the sample sizes for eight HSM SPFs whose types of facilities were 

sampled from the RHiNo files for data collection and calibration. Data were restricted to a 
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minimum segment length of 0.05 miles for R2U and R4D facilities and a minimum of 0.025 for 

the rest of facilities. Additionally, a maximum segment length of 2.0 miles was also set.  

Researchers calculated the sample sizes under the assumption of a known dispersion parameter 

(as given in the HSM for each SPF of interest). Fortunately, the average number of crashes per 

segment could be easily obtained from the datasets prepared for this research, so researchers did 

not need to assume its value. Table 13 shows the resulting sample size calculations for three 

levels of precision in the estimation of 𝑐 (i.e., gamma values of 0.15, 0.10, and 0.05). 

Table 13. Sample Size Calculations for Calibration of SPFs for Three Levels of Precision. 
Facility 

Type 

Kappa (dispersion 

parameter) 

Average Crashes 

per Site 

Gamma (Level of Precision) 

0.15 0.10 0.05 

R2U 0.61 1.9 198 444 1775 

R4D 0.74 5.9 156 349 1396 

R4U 0.96 3.8 208 468 1871 

U2U 0.84 7.4 167 375 1498 

U4D 1.32 14.7 237 534 2133 

U4U 1.01 18.7 182 409 1635 

U3T 0.66 4.6 150 337 1346 

U5T 0.81 13.4 152 340 1360 

Note: U5T=Urban four-lane with TWLTL. 

 

Researchers elected to collect samples of sizes required to obtain a precision of 0.15. The 

rationale for this sample size is that a higher level of precision escalates the required sample size 

needs very quickly, more than doubling when going from precision 0.15 to precision 0.10, and 

approximately quadrupling when going from 0.10 to 0.05. Since the sample sizes for precision 

0.10 are appropriate for developing new SPFs, researchers believe that for that sample size, the 

effort to collect the data better justifies developing new SPFs rather than just calibrating the 

HSM SPF. However, at a 0.15 precision level, the sample size is large enough to check the 

stability of the calibration factor and the assumption of a known dispersion parameter. If the 

research team has concerns about the calibration quality at that point, additional data can be 

collected for new SPF development. 

Researchers then proceeded to develop a stratified simple random sample for a 0.15 precision, 

using the values in Table 14 inflated by a 10 percent factor (i.e., multiplied by 1.1) to account for 

any data loss, as is common in collection efforts. For this effort, the selected strata were the four 

TxDOT regions. The table shows the final sample sizes drawn for this effort. 
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Table 14. Final Sample Size for Segments. 

Facility Type 
Population 

Size 

Final Sample Size by Region 

Total East North South West 

R2U 90371 220 48 49 35 88 

R4D 7317 175 45 57 48 25 

R4U 6530 232 50 63 75 44 

U2U 15557 186 36 18 58 74 

U4D 306 262 37 82 90 53 

U4U 13064 202 39 32 71 60 

U3T 6729 166 37 60 69 0 

U5T 1357 171 57 13 100 1 

Intersections 

Since the number of signalized intersections on rural highways is limited, all sites were used to 

develop the calibration factors. Stratified random sampling was used for selecting the other 

intersection types. The sampling procedure was fine-tuned by resampling methods to verify 

achievement of balance by major and minor street ADTs. Figure 24 shows the sampling 

performance for three-leg stop-controlled (3ST) intersections on R2U highways when the sample 

size is set at 323. This figure shows a good match between the population and sample 

distributions of both street ADTs, which means balance by these variables has been achieved. 

 
a) Balance by Major Street ADT (n = 323) b) Balance by Minor Street ADT (n = 323) 

Figure 24. R2U 3ST Intersections Resampling Results. 

Figure 25, Figure 26, and Figure 27 show the resampling metrics for four-leg stop-controlled 

(4ST) intersections on R2U highways, 3ST intersections on rural multilane highways, and 4ST 

intersections on rural multilane highways, respectively. In all cases, these figures show a very 

good balance by both street ADTs.  
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a) Balance by Major Street ADT (n = 216) b) Balance by Minor Street ADT (n = 216) 

Figure 25. R2U 4ST Intersections Resampling Results. 

 
a) Balance by Major Street ADT (n = 249) b) Balance by Minor Street ADT (n = 249) 

Figure 26. RMU 3ST Intersections Resampling Results. 
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a) Balance by Major Street ADT (n = 208) b) Balance by Minor Street ADT (n =208) 

Figure 27. RMU 4ST Intersections Resampling Results. 

Figure 28, Figure 29, Figure 30, and Figure 31 show the resampling metrics for 3ST, 4ST, 3SG 

and 4SG intersections on urban arterials, respectively. In all cases, these figures show a very 

good balance by both street AADTs.  

 
a) Balance by Major Street ADT (n = 265) b) Balance by Minor Street ADT (n = 265) 

Figure 28. Urban 3ST Intersections Resampling Results. 
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a) Balance by Major Street ADT (n = 118) b) Balance by Minor Street ADT (n = 118) 

Figure 29. Urban 4ST Intersections Resampling Results. 

 
a) Balance by Major Street ADT (n = 66) b) Balance by Minor Street ADT (n = 66) 

Figure 30. Urban 3SG Intersections Resampling Results. 
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a) Balance by Major Street ADT (n = 75) b) Balance by Minor Street ADT (n = 75) 

Figure 31. Urban 4SG Intersections Resampling Results. 

Researchers developed a stratified simple random sample using the recommended sample size 

shown in each figure above and inflated by a 10 percent factor (i.e., multiplied by 1.1) to account 

for any data loss, as is common in collection efforts. For this effort, the strata selected were the 

four TxDOT regions. Once the samples were developed, researchers reviewed the location of 

every intersection in Google Earth to confirm the traffic control and the number of legs. The 

review results showed that, for some intersections, the traffic control was incorrect since it was 

initially assigned based on the control mentioned in crash reports. There were some instances 

when a crash occurred closer to the concerned intersection, but the adjacent intersection, which is 

also within 250 ft, had a different traffic control. In this situation, the concerned intersection may 

get assigned the traffic control of the adjacent intersection. After correcting the traffic control, 

the final sample size by region is shown in Table 15.  

Table 15. Final Sample Size for Intersections. 

Facility Type Intersection Type 
Final Sample Size by Region 

Total East North South West 

R2U 

3ST 337 73 146 84 34 

4ST 222 35 82 53 52 

4SG 133 25 43 63 2 

RMU 

3ST 348 71 113 120 44 

4ST 208 30 59 52 67 

4SG 106 31 22 42 11 

U5 

3ST 326 90 119 88 29 

4ST 75 26 29 11 9 

3SG  28 10 10 5 3 

4SG 113 39 50 15 9 
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Freeways 

For freeway mainlane segments, TxDOT’s Project 0-7067 (Enhancing Freeway Safety 

Prediction Models) developed new safety prediction methods for 12-lane freeway segments and 

segments with managed lanes and derived local calibration factors for models for urban freeway 

segments with 4–10 lanes. Since Project 0-7067 dealt with urban freeways only, it was 

determined that calibration factors need to be developed for rural highways in this project. In 

Texas, rural freeways consist of either four or six lanes. To identify rural freeway segments, 

researchers used TxDOT’s RHiNo data and created two separate databases. 

The sampling procedure was fine-tuned by resampling methods to verify achievement of balance 

by AADT and an acceptable level of precision achieved for the mean value of the design variable 

(in this case, FI crash frequency). Figure 32 shows the sampling performance for rural four-lane 

freeways when the sample size is set at 113. On the left side, this figure shows a good match 

between the population and sample distributions of AADT, which means balance by this variable 

has been achieved. The sampling distribution for the mean of the design variable (FI crashes) is 

shown on the right side of Figure 32. The sampling distribution seems to be free of bias (i.e., 

roughly normal shape) and has produced a relative precision of 0.156 (i.e., Gamma). This result 

means in this case that the standard error of a sample of size of 113 sites should be about 

15.6 percent of the population mean. 

 
a) Balance by AADT (n = 113) b) Sampling Distribution (n = 113; 

gamma = 0.156) 

Figure 32. Rural Four-Lane Freeways Resampling Results. 

Similar to Figure 32, Figure 33 shows the resampling metrics corresponding to a sample size of 

113 sites for rural six-lane freeways. In this case too, the figure shows a very good balance by 

AADT and absence of bias for FI crash mean. The precision for the sample mean, however, is 

slightly smaller, having a gamma value of 0.09. 
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a) Balance by AADT (n = 113) b) Sampling Distribution (n = 113; 

gamma = 0.09) 

Figure 33. Rural Six-Lane Freeways Resampling Results. 

After discarding a few sites with issues, Table 16 shows the final sample sizes by region drawn 

for this effort. 

Table 16. Rural Freeway Segment Sample Size. 
Stage Region 4-Lane Rural Freeway 6-Lane Rural Freeway 

Segments Miles Segments Miles 

Stage 1  East 18 9.9 6 6.5 

North 25 14.4 55 29.4 

South 27 16.6 20 10.0 

West 31 16.8 5 3.9 

Total 101 57.6 86 49.7 

Stage 2  East 6 2.2 0 0 

North 11 6.6 20 11.4 

South 14 9.5 5 1.2 

West 14 7.1 2 2.6 

Total 45 25.4 27 15.2 

 

Frontage Roads 

For each sampling frame, researchers developed a probability sample that allows researchers to 

draw inferences about quantities of interest at the sampled population level (the population in 

this case is all frontage road segments in each sampling frame). Researchers used a stratified 

sample balanced for the variable Crash Count Low Bound (csh_ct_lb) as the design variable. The 

stratification criteria were TxDOT’s four regions (north, west, south, and east). Segment lengths 

shorter than 0.01 and longer than 2.0 miles were removed from each sampling frame to ensure 

lengths comparable to HSM guidance. Researchers confirmed that this removal did not reduce 

the sampling pools by more than 20 percent, thereby leaving the majority of RHiNo segments for 

sampling. 

Researchers decided to implement cube sampling to produce the stratified sample to control for 

AADT as the balancing variable since it is known that this variable is essential in developing 
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SPFs. The method selected to draw the equal-probabilities sample was an implementation of the 

fast algorithm proposed by Chauvelt and Tillé (2006), based on cube sampling methods. More 

details on this procedure can be found elsewhere (Chauvet and Tillé, 2006). 

The sampling procedure was fine-tuned by resampling methods to verify achievement of balance 

by AADT, and an acceptable level of precision was achieved for the mean value of the design 

variable (csh_ct_lb). Figure 34 shows the sampling performance for R2W frontage roads when 

the sample size is set at 450. On the left side, this figure shows a very good match between the 

population and sample distributions of AADT, which means balance by this variable has been 

achieved. The sampling distribution for the mean of the design variable (csh_ct_lb) is shown on 

the right side of Figure 34. The sampling distribution seems to be free of bias (i.e., roughly 

normal shape) and produces a relative precision of 0.139 (i.e., gamma), which means in this case 

that the standard error of a sample of size 450 should be about 13.9 percent of the population 

mean. 

 
a) Balance by AADT (n = 450) b) Sampling Distribution (n = 450; gamma = 0.139) 

Figure 34. R2W Resampling Results. 

Similar to Figure 34, Figure 35 shows the resampling metrics corresponding to a sample size of 

300 for R1W frontage roads. In this case too, the figure shows a very good balance by AADT 

and absence of bias for the csh_ct_lb mean. The precision for the sample mean, however, is 

slightly smaller, having a gamma value of 0.125. 
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a) Balance by AADT (n = 300) b) Sampling Distribution (n = 300; 

gamma = 0.125) 

Figure 35. R1W Resampling Results. 

Figure 36 shows the resampling metrics for U1W frontage roads and a sample size of 111, which 

was determined as the maximum size feasible for the resources available for this effort. Although 

the balance is slightly worse than for rural frontage roads, the match between the AADT 

population and sample distributions is acceptably good. The sampling distribution has a slight 

positive skewness, but the team considers that skewness very minimal given the size of the 

precision achieved (about 20.9 percent of the population mean, which is roughly two crashes in 

the scale of the mean crashes). 
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a) Balance by AADT (n = 111) b) Sampling Distribution (n = 111; 

gamma = 0.209) 

Figure 36. U1W Resampling Results. 

Finally, Figure 37 shows the resampling metrics for a sample size of 111 U2W frontage road 

segments. Similar to Figure 36, the balance by AADT is acceptable, and the precision of 0.247, 

though slightly larger than U1W, is acceptable for the purposes of this project. The slight 

positive skewness is also acceptable. 
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a) Balance by AADT (n = 111) b) Sampling Distribution (n = 111; 

gamma = 0.247) 

Figure 37. U2W Resampling Results. 

Researchers developed a stratified simple random sample for a 0.15 precision, using the values in 

Table 17 inflated by a 10 percent factor (i.e., multiplied by 1.1) to account for any data loss—as 

is common in collection efforts. For this effort, the strata selected were the four TxDOT regions. 

The table shows the final sample sizes drawn for this effort. 

Table 17. Final Sample Size for Frontage Roads. 

Facility Type Population Size 
Final Sample Size by Region 

Total East North South West 

R1W 1,549 276 48 141 78 9 

R2W 5,030 413 25 149 94 145 

U1W 15,519 128 30 45 37 16 

U2W 1,717 100 10 36 15 39 

 

Ramps 

Researchers developed sampling frames for rural and urban ramp segments. For each sampling 

frame, researchers developed a probability sample that would allow researchers to draw 

inferences about quantities of interest at the sampled population level (the population being in 

this case all ramp segments in each sampling frame). Researchers used a stratified sample 

balanced for the design variables: lower-bound crash count, and upper-bound crash count. The 

stratification criteria were TxDOT’s four regions (north, west, south, and east).  

Researchers decided to implement cube sampling to produce the stratified sample to control for 

AADT as the balancing variable since it is known that this variable is essential in developing 

SPFs. The method selected to draw the equal-probabilities sample was an implementation of the 

fast algorithm proposed by Chauvelt and Tillé (2006) based on cube sampling methods. More 

details on this procedure can be found elsewhere (Chauvet and Tillé, 2006). 

The sampling procedure was fine-tuned by resampling methods to verify achievement of balance 

by AADT and an acceptable level of precision was achieved for the mean value of the design 

variables. Figure 38 shows the sampling performance for rural ramps when the sample size is set 

at 200. On the left side, this figure shows a very good match between the population and sample 

distributions of AADT, which means balance by this variable has been achieved. The sampling 

distribution for the mean of the design variables are shown on the two histograms of Figure 38. 

The sampling distribution seems to be free of bias (i.e., roughly normal shape) and produces a 

relative precision of 0.278 and 0.197 (i.e., gamma). This result means, in this case, the standard 

error of a sample of size 200 should be about 20–28 percent of the population mean. 
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a) Balance by AADT 

(n = 200) 

b) Sampling Distribution for 

Lower-Bound Crash Count 

(n = 200; gamma = 0.278) 

c) Sampling Distribution for 

Upper-Bound Crash Count 

(n = 200; gamma = 0.197) 

Figure 38. Rural Ramp Resampling Results. 

Similar to Figure 38, Figure 39 shows the resampling metrics corresponding to a sample size of 

150 for urban ramps. In this case too, the figure shows a very good balance by AADT and an 

absence of bias for the crash mean. The precision for the sample mean, however, is slightly 

smaller, having a gamma value of around 0.2 for both crash counts. 

 
a) Balance by AADT 

(n = 150) 

b) Sampling Distribution for 

Lower-Bound Crash Count 

(n = 150; gamma = 0.201) 

c) Sampling Distribution for 

Upper-Bound Crash Count 

(n = 150; gamma = 0.196) 

Figure 39. Urban Ramp Resampling Results. 

Researchers developed a simple random sample using the values in Table 18. For this effort, the 

strata by TxDOT regions were not used since the district information was not available from the 

data provided by TxDOT. The table shows the final sample sizes drawn for this effort. 
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Table 18. Final Sample Size for Ramp Segments. 
Area Type Population Size Final Sample Size  

Rural 1,408 499 

Urban 6,417 143 

 

DATA COLLECTION 

The team obtained traffic and some of the geometric data from TxDOT’s RHiNo database. To 

obtain the missing geometric data that are required for calibration of the existing SPFs, 

researchers used different sources, including Google Earth and Google Street View.  

Rural Two-Lane Segments 

Appendix A1 presents the data collection protocol that researchers used for collecting the 

required data for R2U segments from Google Earth and Google Street View. Table 19 shows the 

summary statistics for R2U segments. 

Table 19. Summary Statistics for Rural Two-Lane Segments. 

Variable Min. Max. Mean Std. dev. 

Segment Length 0.051 1.953 0.48 0.44 

ADT 35 17,477 2,258 2,578 

Lane Width 6 27 11.76 1.79 

Avg. Shoulder Width 0 14.5 4.37 4.26 

SV FI Crashes 0 6 0.31 0.79 

SV PDO Crashes 0 9 0.57 1.19 

MV FI Crashes 0 5 0.28 0.80 

MV PDO Crashes 0 24 0.62 2.16 

Total Crashes 0 31 1.79 3.60 

 Note: SV = single-vehicle; MV=multi-vehicle; FI= fatal and injury; PDO=property damage only.  

 

Rural Multilane Segments 

The data collection protocol that researchers used for collecting the required data for R4D and 

R4U segments from Google Earth and Google Street View is presented in Appendices A2 and 

A3, respectively. Table 20 and Table 21 show the summary statistics for R4D and R4U 

segments, respectively. 
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Table 20. Summary Statistics for Rural Four-Lane Divided Segments. 

Variable Min. Max. Mean Std. dev. 

Segment Length 0.052 4.685 0.59 0.82 

ADT 1,144 53,382 13,528 8,710 

Median Width 1 250 53.89 34.05 

Lane Width 10 24 12.25 1.22 

Left Shoulder Width 0 20 8.98 4.16 

Right Shoulder Width 0 24 16.19 6.22 

SV FI Crashes 0 11 1.24 2.01 

SV PDO Crashes 0 29 3.13 5.02 

MV FI Crashes 0 23 1.61 3.16 

MV PDO Crashes 0 35 2.37 5.00 

Total Crashes 0 82 8.35 12.16 

Table 21. Summary Statistics for Rural Four-Lane Undivided Segments. 

Variable Min. Max. Mean Std. dev. 

Segment Length 0.026 5.867 0.34 0.61 

ADT 276 31,916 7,256 5,043 

Median Width 0 0 0.00 0.00 

Lane Width 10 23 12.51 1.65 

Avg. Shoulder Width 0 17 5.33 4.20 

SV FI Crashes 0 10 0.50 1.24 

SV PDO Crashes 0 18 1.19 2.57 

MV FI Crashes 0 20 1.09 2.50 

MV PDO Crashes 0 64 2.50 7.25 

Total Crashes 0 74 5.28 10.63 

 

Urban Segments 

Appendix A4 presents the data collection protocol that researchers used for collecting the 

required data for urban segments from Google Earth and Google Street View. Table 22, Table 

23, Table 24, Table 25, and Table 26 show the summary statistics for U2U, U3T, U4D, U4U, 

and U5T segments, respectively. 
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Table 22. Summary Statistics for Urban Two-Lane Segments. 

Variable Min. Max. Mean Std. dev. 

Segment Length 0.026 2.56 0.37 0.48 

ADT 52 42,500 6,485 6,874 

Median Width 0 0 0.00 0.00 

Lane Width 10 24 12.31 1.93 

Avg. Shoulder Width 0 16.5 5.54 4.07 

SV FI Crashes 0 13 0.63 1.62 

SV PDO Crashes 0 26 1.04 2.76 

MV FI Crashes 0 47 2.59 5.97 

MV PDO Crashes 0 64 4.98 10.93 

Total Crashes 0 125 9.24 19.08 

Table 23. Summary Statistics for Urban Two-Lane with TWLTL Segments. 

Variable Min. Max. Mean Std. dev. 

Segment Length 0.026 1.961 0.17 0.22 

ADT 2,678 33,703 12,389 6,455 

Median Width 0 0 0.00 0.00 

Lane Width 10 29 12.60 2.82 

Avg. Shoulder Width 0 13 3.65 4.13 

SV FI Crashes 0 9 0.39 1.14 

SV PDO Crashes 0 12 0.66 1.43 

MV FI Crashes 0 24 1.81 3.57 

MV PDO Crashes 0 55 3.21 6.15 

Total Crashes 0 75 6.07 10.45 

Table 24. Summary Statistics for Urban Four-Lane Divided Segments. 

Variable Min. Max. Mean Std. dev. 

Segment Length 0.026 3.089 0.28 0.40 

ADT 1,478 82,850 20,322 12,754 

Median Width 1 400 46.89 63.82 

Lane Width 11 24 12.58 1.69 

Left Shoulder Width 0 25 6.27 5.45 

Right Shoulder Width 0 31 14.02 7.69 

SV FI Crashes 0 11 0.84 1.52 

SV PDO Crashes 0 17 1.61 2.55 

MV FI Crashes 0 71 5.27 10.20 

MV PDO Crashes 0 98 9.60 17.02 

Total Crashes 0 176 17.32 28.75 
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Table 25. Summary Statistics for Urban Four-Lane Undivided Segments. 

Variable Min. Max. Mean Std. dev. 

Segment Length 0.026 2.184 0.22 0.26 

ADT 1,305 51,109 14,675 9,277 

Median Width 0 0 0.00 0.00 

Lane Width 10 19 13.10 1.78 

Avg. Shoulder Width 0 20 4.98 4.33 

SV FI Crashes 0 31 1.01 3.21 

SV PDO Crashes 0 34 1.46 3.12 

MV FI Crashes 0 161 7.38 17.66 

MV PDO Crashes 0 261 15.89 31.68 

Total Crashes 0 443 25.74 53.51 

Table 26. Summary Statistics for Urban Four-Lane with TWLTL Segments. 

Variable Min. Max. Mean Std. dev. 

Segment Length 0.026 1.548 0.28 0.28 

ADT 5,058 69,491 23,325 11,576 

Median Width 0 10 0.06 0.76 

Lane Width 10 31 13.16 2.73 

Avg. Shoulder Width 0 14 4.28 4.09 

SV FI Crashes 0 16 1.21 1.99 

SV PDO Crashes 0 20 1.52 2.26 

MV FI Crashes 0 50 7.46 10.24 

MV PDO Crashes 0 112 14.89 21.06 

Total Crashes 0 173 25.08 32.56 

 

Rural Intersections 

Researchers obtained traffic data and some of the geometric data from TxDOT’s RHiNo 

database. However, the accuracy of the data is unknown due to the issues discussed above. To 

verify the information and obtain the missing geometric data that are required for calibration of 

the existing SPFs, researchers used different sources, including Google Earth and Google Street 

View. Some of the missing variables include presence of turn lanes and lighting. Appendix A5 

presents the data collection protocol for rural stop-controlled intersections. Appendix A6 

presents the data collection protocol for collecting the required data for rural signalized 

intersections. Table 27, Table 28, and Table 29 show the summary statistics for 3ST, 4ST, and 

4SG intersections on R2U highways, respectively. 
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Table 27. Summary Statistics for 3ST Intersections on R2U Highways. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 10 11,682 1,964.36 2,357.71 

Minor Street ADT 3 3822 202.52 355.18 

Intersection Skew 0 79 10.35 15.31 

Number of Left-Turn Lanes 0 1 0.07 0.26 

Number of Right-Turn Lanes 0 2 0.02 0.16 

Lighting 0 1 0.15 0.36 

SV FI Crashes 0 5 0.08 0.44 

SV PDO Crashes 0 12 0.26 0.95 

MV FI Crashes 0 10 0.26 0.82 

MV PDO Crashes 0 7 0.40 0.99 

Total Crashes 0 18 1.00 1.92 

Table 28. Summary Statistics for 4ST Intersections on R2U Highways. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 4 10,283 1,658.91 1,873.19 

Minor Street ADT 2 1643 195.96 312.01 

Intersection Skew 0 80 12.50 17.73 

Number of Left-Turn Lanes 0 2 0.05 0.25 

Number of Right-Turn Lanes 0 2 0.02 0.18 

Lighting 0 1 0.26 0.44 

SV FI Crashes 0 8 0.09 0.63 

SV PDO Crashes 0 9 0.28 1.08 

MV FI Crashes 0 25 0.70 2.28 

MV PDO Crashes 0 33 0.93 2.91 

Total Crashes 0 62 2.00 5.32 

Table 29. Summary Statistics for Signalized Intersections on R2U Highways. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 2017 23,971 8,675.64 4,426.58 

Minor Street ADT 24 10,614 2,655.85 2,254.40 

Number of Left-Turn Lanes 0 4 1.45 1.19 

Number of Right-Turn Lanes 0 4 1.05 1.20 

Lighting 0 1 0.95 0.22 

SV FI Crashes 0 8 0.59 1.40 

SV PDO Crashes 0 8 0.95 1.75 

MV FI Crashes 0 70 8.97 12.80 

MV PDO Crashes 0 115 16.72 19.05 

Total Crashes 0 195 27.23 31.77 
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Table 30, Table 31, and Table 32 show the summary statistics for 3ST, 4ST, and 4SG 

intersections on rural multilane highways, respectively. 

Table 30. Summary Statistics for 3ST Intersections on Rural Multilane Highways. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 407 26,465 7,916.55 4,851.50 

Minor Street ADT 14 6,379 314.73 597.29 

Intersection Skew 0 62 9.84 12.97 

Number of Left-Turn Lanes 0 4 0.46 0.56 

Number of Right-Turn Lanes 0 4 0.11 0.38 

Lighting 0 1 0.38 0.49 

SV FI Crashes 0 3 0.11 0.46 

SV PDO Crashes 0 9 0.24 0.92 

MV FI Crashes 0 30 0.95 2.48 

MV PDO Crashes 0 27 1.26 3.14 

Total Crashes 0 36 2.57 4.95 

Table 31. Summary Statistics for 4ST Intersections on Rural Multilane Highways. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 315 23,698 6,790.15 4,140.71 

Minor Street ADT 9 2,008 253.64 383.35 

Intersection Skew 0 54 8.16 12.26 

Number of Left-Turn Lanes 0 2 0.75 0.93 

Number of Right-Turn Lanes 0 2 0.07 0.29 

Lighting 0 1 0.69 0.46 

SV FI Crashes 0 2 0.04 0.25 

SV PDO Crashes 0 9 0.23 0.88 

MV FI Crashes 0 45 1.76 4.89 

MV PDO Crashes 0 49 2.55 6.77 

Total Crashes 0 88 4.59 11.39 
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Table 32. Summary Statistics for 4SG Intersections on Rural Multilane Highways. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 2017 23,971 11,877.78 5,403.07 

Minor Street ADT 24 10,614 2,967.39 2,628.89 

Number of Left-Turn Lanes 0 4 1.76 1.19 

Number of Right-Turn Lanes 0 4 1.05 1.26 

Lighting 0 1 0.90 0.31 

SV FI Crashes 0 8 0.58 1.34 

SV PDO Crashes 0 8 1.24 2.66 

MV FI Crashes 0 70 10.93 19.72 

MV PDO Crashes 0 115 24.45 31.22 

Total Crashes 0 195 37.20 49.37 

 

Urban Intersections 

Appendix A7 presents the data collection protocol for collecting the required data for urban 

intersections. Table 33, Table 34, Table 35, and Table 36 show the summary statistics for 3ST, 

4ST, 3SG, and 4SG intersections on urban arterials, respectively. 

Table 33. Summary Statistics for 3ST Intersections on Urban Arterials. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 80 43,912 7,806.66 9,604.26 

Minor Street ADT 26 22,947 545.07 1,576.45 

Number of Left-Turn Lanes 0 1 0.15 0.35 

Number of Right-Turn Lanes 0 1 0.07 0.26 

Lighting 0 1 0.89 0.31 

SV FI Crashes 0 2 0.02 0.16 

SV PDO Crashes 0 2 0.04 0.23 

MV FI Crashes 0 11 0.33 1.23 

MV PDO Crashes 0 24 0.53 1.99 

Total Crashes 0 24 0.92 2.83 
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Table 34. Summary Statistics for 4ST Intersections on Urban Arterials. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 195 39,713 14,046.03 9,717.68 

Minor Street ADT 103 22,860 984.87 2,770.52 

Number of Left-Turn Lanes 0 1 0.27 0.45 

Number of Right-Turn Lanes 0 1 0.16 0.37 

Lighting 0 1 0.95 0.23 

SV FI Crashes 0 2 0.08 0.32 

SV PDO Crashes 0 2 0.17 0.45 

MV FI Crashes 0 12 1.23 2.64 

MV PDO Crashes 0 19 1.88 3.62 

Total Crashes 0 31 3.36 6.31 

Table 35. Summary Statistics for 3SG Intersections on Urban Arterials. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 5,512 40,980 22,118.89 9,388.61 

Minor Street ADT 186 20,000 5,511.04 5,485.86 

Number of Left-Turn Lanes 1 5 2.39 0.96 

Number of Right-Turn Lanes 0 4 1.18 0.82 

Right-Turn-on-Red Prohibition 0 0 0.00 0.00 

Lighting 1 1 1.00 0.00 

SV FI Crashes 0 8 0.39 1.52 

SV PDO Crashes 0 5 0.46 1.00 

MV FI Crashes 0 89 7.43 16.80 

MV PDO Crashes 0 104 10.46 19.57 

Total Crashes 0 206 18.75 38.57 

Table 36. Summary Statistics for 4SG Intersections on Urban Arterials. 

Variable Min. Max. Mean Std. dev. 

Major Street ADT 3,763 67,315 24,415.81 11,905.30 

Minor Street ADT 138 27,530 7,033.24 6,671.93 

Number of Left-Turn Lanes 0 8 3.67 1.84 

Number of Right-Turn Lanes 0 5 1.49 1.45 

Right-Turn-on-Red Prohibition 0 1 0.01 0.09 

Lighting 0 1 0.98 0.13 

SV FI Crashes 0 6 0.97 1.57 

SV PDO Crashes 0 37 1.12 3.89 

MV FI Crashes 0 263 12.67 28.53 

MV PDO Crashes 0 411 24.32 50.79 

Total Crashes 0 678 39.09 81.32 
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Frontage Roads 

For the selected sample, the team obtained data that are not available from TxDOT’s RHiNo 

database but are required for developing new SPFs. Mainly the team used Google Earth and 

Google Street View for collecting missing variables such as edge markings, rumble strips, 

lighting, curb presence, and cross-sectional widths. Appendix A8 presents the data collection 

protocol that researchers used for collecting the required data for frontage roads.  

Due to issues related to crash assignment, researchers manually checked some of the crashes that 

occurred on the frontage roads to assign to the appropriate sites. The procedure used for 

manually checking is described in the following paragraphs. This procedure is applicable to both 

frontage roads and ramps.  

In the Texas CRIS database, all crashes on frontage roadways and ramps are assigned to the 

centerline of the main roadway, and which side (left or right frontage roadway or ramp) the crash 

occurred on is unknown. To overcome this issue, researchers developed a process to 

automatically determine the side of a crash. For frontage roadways, a GIS-based method is first 

applied to identify the traveling direction of each frontage roadway segment. The traveling 

direction of the vehicle(s) involved in each crash that is within a certain distance of the segment 

is then compared against the segment direction. If the angle between the two directions is less 

than 90 degrees, the crash is assigned to a frontage roadway segment. Otherwise, the crash is not 

associated with the segment. For ramps, the ramp database includes a column indicating the 

direction of the ramp. This column is used and compared with vehicle direction(s) to determine 

on which ramp the crash has occurred.  

Researchers applied the process for both frontage roadways segments and ramps. Overall, 

researchers determined the side of about 70 percent of related crashes. The side of the remaining 

crashes cannot be determined mainly for two reasons: (1) the vehicle direction information in the 

CRIS database is invalid (including missing and unknown); (2) both sides of the frontage 

roadway segment or ramp meet the criteria (i.e., the process cannot determine which side since 

both sides are possible based on the crash and roadway information). In addition, the process 

only applies to one-way frontage roadways. For two-way frontage roadways, both sides have two 

traveling directions; thus, it is not feasible to identify the side of a crash from the CRIS database. 

For these situations, researchers further verified the crash assignment through manually 

investigating the crash reports from the CRIS database. 

Specifically, the team examined 574 frontage roadways and 499 ramp crash cases. For each case, 

the team primarily looked at the crash diagram in the crash report and compared it with the 

roadways on Google Earth. Figure 40 shows, on the left side, the diagram from the crash report 

and, on the right side, a Google Earth image of the roadway based on the location mentioned in 

the CRIS. From the crash diagram and Google Earth image—together with the crash narrative—

the team was able to identify the side and location of the crash. After manually checking the 

crash cases, researchers obtained crash counts on all the selected frontage roadway segments and 

ramps for a four-year period (2017–2020). 
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a) Crash Report b) Google Earth Image 

Figure 40. Manual Check of Crash Reports. 

Table 37, Table 38, Table 39, and Table 40 show the summary statistics for R1W, R2W, U1W, 

and U2W segments, respectively. 
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Table 37. Summary Statistics for R1W Segments. 

Variable Category Min. Max. Mean Std. dev. % 

Segment Length (mi)  0.011 1.778 0.33 0.36  

ADT  4 12,515 1,771.20 2,386.78  

Lane Width (ft)  0 24 11.76 1.58  

Left Shoulder Width (ft)  0 15 2.56 2.68  

Right Shoulder Width (ft)  0 13 4.82 3.76  

No. of Driveways  0 16 1.61 2.68  

Crash Count (2017–2020)  0 23 1.15 2.96  

Presence of Edgeline Markings 

None     1.1% 

One side     1.1% 

Both sides     97.8% 

Number of Lanes 

1     7.6% 

2     86.6% 

>3     5.8% 

Number of Minor Intersections 

0     41.7% 

1     45.3% 

2     9.1% 

>3     3.9% 

Presence of Shoulder Rumble 

Strips 

No     98.6% 

Yes     1.4% 

Presence of Lighting 
No     76.1% 

Yes     23.9% 

Presence of Curb 

None     70.3% 

One side     18.8% 

Both sides     10.9% 

Posted Speed Limit (mph) 

<40     12.3% 

45     19.9% 

50     20.7% 

55     42.8% 

>60     4.3% 

Number of Horizontal Curves 

0     70.3% 

1     23.6% 

>2     6.1% 
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Table 38. Summary Statistics for R2W Segments. 

Variable Category Min. Max. Mean Std. dev. % 

Segment Length (mi)  0.011 1.977 0.47 0.48  

ADT  4 7,819 498.60 882.28  

Lane Width (ft)  8.5 19 11.22 1.08  

Left Shoulder Width (ft)  0 11 2.02 2.34  

Right Shoulder Width (ft)  0 11 2.19 2.56  

No. of Driveways  0 37 1.33 3.03  

Crash Count (2017–2020)  0 7 0.29 0.81  

Presence of Edgeline Markings 

None     29.8% 

One side     0.0% 

Both sides     70.2% 

Number of Lanes 

1     0.7% 

2     98.6% 

>3     0.7% 

Number of Minor Intersections 

0     51.6% 

1     26.2% 

2     16.0% 

>3     6.4% 

Presence of Shoulder Rumble 

Strips 

No     98.3% 

Yes     1.7% 

Presence of Lighting 
No     94.2% 

Yes     5.8% 

Presence of Curb 

None     95.9% 

One side     2.9% 

Both sides     1.2% 

Posted Speed Limit (mph) 

<40     3.4% 

45     21.3% 

50     10.2% 

55     60.5% 

>60     4.5% 

Number of Horizontal Curves 

0     51.1% 

1     24.7% 

>2     24.2% 
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Table 39. Summary Statistics for U1W Segments. 

Variable Category Min. Max. Mean Std. dev. % 

Segment Length (mi)  0.014 1.379 0.29 0.32  

ADT  99 36,375 8,233.35 8,045.37  

Lane Width (ft)  9 17 12.23 1.17  

Left Shoulder Width (ft)  0 13 1.87 2.57  

Right Shoulder Width (ft)  0 10.5 1.89 2.79  

No. of Driveways  0 21 2.89 4.52  

Crash Count (2017–2020)  0 196 12.79 26.87  

Presence of Edgeline Markings 

None     30.7% 

One side     68.5% 

Both sides     0.8% 

Number of Lanes 

1     5.5% 

2     59.1% 

>3     35.4% 

Number of Minor Intersections 

0     40.2% 

1     35.4% 

2     15.0% 

>3     9.4% 

Presence of Lighting 
No     56.7% 

Yes     43.3% 

Presence of Curb 

None     30.7% 

One side     15.0% 

Both sides     54.3% 

Posted Speed Limit (mph) 

<40     24.3% 

45     34.4% 

50     18.0% 

55     20.3% 

>60     3.1% 

Number of Horizontal Curves 

0     49.2% 

1     30.5% 

>2     20.3% 
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Table 40. Summary Statistics for U2W Segments. 

Variable Category Min. Max. Mean Std. dev. % 

Segment Length (mi)  0.011 1.609 0.33 0.35  

ADT  32 17,540 1,827.57 2,652.42  

Lane Width (ft)  10.25 17 11.97 1.13  

Left Shoulder Width (ft)  0 9 2.20 2.24  

Right Shoulder Width (ft)  0 8 2.34 2.26  

No. of Driveways  0 19 2.32 3.83  

Crash Count (2017–2020)  0 17 1.00 2.79  

Presence of Edgeline Markings 

None     23.0% 

One side     0.0% 

Both sides     77.0% 

Number of Lanes 

1     6.0% 

2     91.0% 

>3     3.0% 

Number of Minor Intersections 

0     36.0% 

1     37.0% 

2     15.0% 

>3     12.0% 

Presence of Lighting 
No     92.0% 

Yes     8.0% 

Presence of Curb 

None     81.0% 

One side     8.0% 

Both sides     11.0% 

Posted Speed Limit (mph) 

<40     23.0% 

45     27.0% 

50     15.0% 

55     34.0% 

>60     1.0% 

Number of Horizontal Curves 

0     38.0% 

1     37.0% 

>2     25.0% 

 

Ramps 

For the selected sample, the team obtained data that are not available from the TxDOT database 

but are required for developing the new SPFs. Appendix A9 presents the data collection protocol 

that researchers used for collecting the required data for ramps. 

Table 41 and Table 42 show the summary statistics for rural and urban ramp segments, 

respectively. 
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Table 41. Summary Statistics for Rural Ramp Segments. 

Variable Category Min. Max. Mean Std. dev. % 

Segment Length (mi)  0.02 0.501 0.20 0.09  

ADT  5 2990 286.62 425.61  

Lane Width (ft)  10.5 26 14.35 1.75  

Left Shoulder Width (ft)  0 9.3 2.73 1.62  

Right Shoulder Width (ft)  0 12.65 4.71 2.11  

Crash Count (2017–2020)  0 3 0.10 0.36  

Presence of Left Side Barrier 
No     97.0% 

Yes     3.0% 

Presence of Right Side Barrier 
No     96.5% 

Yes     3.5% 

Lane Add or Drop 
No     98.5% 

Yes     1.5% 

Speed Change Lane Presence 
No     74.5% 

Yes     25.5% 

Presence of Weaving Section 
No     97.0% 

Yes     3.0% 

Number of Horizontal Curves 

0     2.0% 

1     67.0% 

>2     31.0% 
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Table 42. Summary Statistics for Urban Ramp Segments. 

Variable Category Min. Max. Mean Std. dev. % 

Segment Length (mi)  0.033 0.635 0.21 0.09  

ADT  0 16,343 3,664.37 3,154.12  

Lane Width (ft)  10 20 13.77 1.52  

Left Shoulder Width (ft)  0 11 2.55 1.82  

Right Shoulder Width (ft)  0 11 4.80 2.27  

Crash Count (2017–2020)  0 72 1.79 6.48  

Presence of Left Side Barrier 
No     57.3% 

Yes     42.7% 

Presence of Right Side Barrier 
No     49.7% 

Yes     50.3% 

Lane Add or Drop 
No     55.9% 

Yes     44.1% 

Speed Change Lane Presence 
No     39.2% 

Yes     60.8% 

Presence of Weaving Section 
No     56.6% 

Yes     43.4% 

Number of Horizontal Curves 

0     4.2% 

1     29.4% 

>2     66.4% 

 

Freeways 

In addition to the basic geometric variables, more supplemental data were extracted from aerial 

and street-level photography sources. Some of these data variables required plotting and analysis 

of placemarks in Google Earth. Specifically, the following variables required placemarks: 

• Locations and lengths of ramp entrances and exits. 

• Locations, lengths, and offsets of roadside barrier pieces. 

• Locations and lengths of short median barrier pieces (not including the continuous 

median barrier, if present). 

Figure 41 shows a screenshot of Google Earth with plotted placemarks denoting the gore points 

for a ramp exit and two roadside barrier pieces. Researchers reviewed aerial photographs for all 

freeway segments in the calibration dataset, plotted the needed placemarks, manually measured 

and tabulated roadside barrier offsets (i.e., distance from placemark to edge of traveled way), and 

wrote code to compute the several length variables included in the supplemental data. The first 

component of the code was a Microsoft Excel® Visual Basic for Applications macro that 

extracted and tabulated the placemark names and latitude/longitude coordinates from the Google 

Earth Keyhole Markup Language (kml) file. The second component of the code was a Statistical 

Analysis Software program that merged the placemark coordinates with the segment roadlog 

data files, computed lengths from the latitude/longitude coordinates, and merged the roadside 

barrier lengths with the roadside barrier offset measurements. 
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Due to many variables required for calibration, researchers applied a two-stage approach as 

follows: 

• Stage 1—Assemble a sample of 101 segments for four lanes and 86 segments for six 

lanes and use these segments to calibrate the base SPFs with their CMFs that require data 

that are readily available in the state roadlog database (such as lane and shoulder width). 

• Stage 2—Assemble a sample of up to 30–50 segments with each lane count as 

recommended by the HSM and use these segments to calibrate the base SPFs with all 

their CMFs, including those SPFs that require data from supplemental data sources (such 

as longitudinal barrier or rumble strip presence). 

 
Figure 41. Example Placemarks. 

Table 43 and Table 44 show the summary statistics for Stage 1 and Stage 2 segments, 

respectively. 
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Table 43. Rural Freeway Segment Summary Statistics, Stage 1 Segments. 
 Variable Minimum Maximum Mean Standard Deviation 

4
 l

an
es

 

Segment length 0.05 1.95 0.57 0.48 

ADT 7,985 131,128 43,247 30,638 

Lane width 11 15 12.0 0.3 

Inside shoulder width 4 24 13.3 5.2 

Outside shoulder width 14 28 19.8 2.6 

MV FI crashes 0 21 2.8 4.4 

MV PDO crashes 0 47 6.6 10.8 

SV FI crashes 0 14 2.0 2.7 

SV PDO crashes 0 74 5.9 10.0 

Total crashes 0 139 17.3 24.9 

6
 l

an
es

 

Segment length 0.07 1.9 0.58 0.46 

ADT 8175 131,719 51,463 27,475 

Lane width 8 12 11.8 0.8 

Inside shoulder width 7 32 12.8 5.6 

Outside shoulder width 10 44 20.3 4.5 

MV FI crashes 0 37 3.2 5.2 

MV PDO crashes 0 57 7.8 9.8 

SV FI crashes 0 15 3.1 3.2 

SV PDO crashes 0 54 9.7 10.5 

Total crashes 0 126 23.8 24.3 

Table 44. Rural Freeway Segment Summary Statistics, Stage 2 Segments. 
 Variable Minimum Maximum Mean Standard Deviation 

4
 l

an
es

 

Segment length 0.07 1.95 0.56 0.48 

ADT 10,459 129,791 44,753 32,104 

Lane width 11 12 12.0 0.1 

Inside shoulder width 7 24 13.1 5.5 

Outside shoulder width 14 28 20.1 1.9 

MV FI crashes 0 21 3.1 4.7 

MV PDO crashes 0 47 7.2 11.5 

SV FI crashes 0 9 1.9 2.4 

SV PDO crashes 0 30 5.4 6.9 

Total crashes 0 90 17.7 22.5 

6
 l

an
es

 

Segment length 0.08 1.85 0.56 0.46 

ADT 8,175 131,719 45,585 24,231 

Lane width 11 12 12.0 0.2 

Inside shoulder width 8 20 11.7 3.7 

Outside shoulder width 10 26 20.4 3.0 

MV FI crashes 0 8 2.3 2.5 

MV PDO crashes 0 22 4.9 5.6 

SV FI crashes 0 15 2.5 3.3 

SV PDO crashes 0 33 8.5 9.0 

Total crashes 0 65 18.2 17.6 

 

Table 45 shows the crash count by collision type for each region at the study segments. 
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Table 45. Rural Freeway Segment Crash Count. 

Stage 
Number of 

Lanes 
Region MV FI MV PDO SV FI SV PDO All 

Stage 1 

4 

East 83 258 48 141 530 

North 48 110 39 131 328 

South 105 239 68 136 548 

West 47 62 43 192 344 

Total 283 669 198 600 1750 

6 

East 50 116 46 114 326 

North 122 366 156 550 1194 

South 102 189 62 162 515 

West 1 1 4 9 15 

Total 275 672 268 835 2050 

Stage 2 

4 

East 18 80 13 34 145 

North 38 74 22 86 220 

South 74 171 41 89 375 

West 10 3 10 32 55 

Total 140 328 86 241 795 

6 

East 0 0 0 0 0 

North 52 123 56 211 442 

South 11 10 7 16 44 

West 0 0 4 2 6 

Total 63 133 67 229 492 
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CHAPTER 4: SAFETY PREDICTION METHOD DEVELOPMENT 

This chapter documents the development of different safety prediction methods. The chapter is 

divided into three sections. The first section presents the calibration methodology. The second 

section provides the results of HSM SPF calibration. The third section documents the new SPFs 

developed for frontage roads and ramps.  

CALIBRATION METHODOLOGY 

The following sections summarize the steps followed to develop the calibration factors for the 

segment SPFs presented in Chapters 10, 11, and 12 of the HSM.  

Step 1: Estimate Crashes Using SPFs 

SPFs are the crash prediction models to predict the relationship between number of crashes and 

characteristics of a particular site or segment. The HSM-based (AASHTO, 2010) SPF predicts 

the average crash frequency for a roadway segment under base conditions using AADT of the 

roadway segment as the independent variable. The equations in Table 46 are used for estimating 

crashes using SPFs for each type of roadway segment. 

Table 46. HSM SPFs for Segments. 
Segment Type SPF Formula (HSM) 

R2U 𝐴𝐴𝐷𝑇 × 𝐿 × 365 × 10−6 × 𝑒−0.312 

R4U 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+ln(𝐿)); a = -9.653, b = 1.176 

R4D 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+ln(𝐿)); a = -9.025, b = 1.049 

U2U 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+ln(𝐿)) ; a = -15.22, b = 1.68 

U4U 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+ln(𝐿)) ; a = -11.63, b = 1.33 

U4D 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+ln(𝐿)) ; a = -12.34, b = 1.36 

U3T 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+ln(𝐿)) ; a = -12.40, b = 1.41 

U5T 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+ln(𝐿)) ; a = -9.70, 1.17 

Note: AADT = average annual daily traffic volume (vehicles per day); L = length of roadway segment (miles); a, b 

= Regression Coefficients (these values are taken from Table 11-3, Table 11-5, and Table 12-3 in the HSM for total 

crashes). 

The equations in Table 47 are used for estimating crashes using SPFs for each type of 

intersection. 
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Table 47. HSM SPFs for Intersections. 
Facility 

Type 

Intersection 

Type 

SPF Formula (HSM) 

R2U 3ST 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -9.86, b = 0.79, c=0.49 

4ST 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -8.56, b = 0.60, c=0.61 

4SG 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -5.13, b = 0.60, c=0.20 

RMU 3ST 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -12.526, b = 1.204, c=0.236 

4ST 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -10.008, b = 0.848, c=0.448 

4SG 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -7.182, b = 0.722, c=0.337 

U5 3ST 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -13.36, b = 1.11, c=0.41 

4ST 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -8.90, b = 0.82, c=0.25 

3SG 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -12.23, b = 1.11, c=0.26 

4SG 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)+𝑐×ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)); a = -10.99, b = 1.07, c=0.23 

Note: 𝐴𝐴𝐷𝑇𝑚𝑎𝑗 = average annual daily traffic volume on the major street (vehicles per day); 𝐴𝐴𝐷𝑇𝑚𝑖𝑛= average 

annual daily traffic volume on the minor street (vehicles per day); a, b, c = Regression Coefficients (these values are 

taken from Equations 10-8, 10-9, 10-10, 11-11, and 12-21 and Tables 11-7, 11-8, and 12-10 in the HSM for total 

crashes). 

Step 2: Calculation of CMFs 

CMFs are calculated to adjust the predicted crash frequency estimated from base conditions to 

specific site conditions. The value of CMFs under base conditions is 1.00 (i.e., taken as a 

reference to compare the effect of treatment at a specific site to adjust estimated average crash 

frequency). Multiple site characteristics are presumed to have independent effects on crash 

frequency and therefore independent CMFs are calculated and multiplied to calculate the 

combined CMF. Appendix B presents the CMFs from the HSM Part C. 

Step 3: Predicting the Total Number of Crashes for Each Site 

The total number of crashes are predicted at each segment by multiplying the combined CMF 

(i.e., CMF1x × CMF2x × … .× CMF𝑦x) with the predicted crashes for base conditions at the site. 

 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑆𝑃𝐹 × 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑀𝐹 (26) 

Step 4: Computation of Calibration Factor 

Calibration Factor (C) is the multiplicative factor used with the existing SPF to estimate the 

crashes. C is calculated by dividing the observed crashes and predicted crashes for each type of 

segment, as shown in the following equation:  

 C = ∑ 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑/∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑛
𝑖=1

𝑛
𝑖=1  (27) 

where: 

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑= Observed annual average crash frequency. 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑= Predicted annual average crash frequency. 
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The predicted crashes are then adjusted to calculate the calibrated predicted crash frequency: 

 𝑁𝑐𝑎𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒𝑑 = 𝐶 × 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (28) 

Step 5: Determination of Goodness of Fit 

To evaluate the quality of calibration factors, various GOF measures are used, as described 

below. 

CURE Plot  

A CURE plot is a graph of CURE (i.e., observed crashes minus predicted crashes) plotted against 

a variable of interest sorted in ascending order (e.g., AADT or predicted crashes). The visual 

presentation of CURE shows areas of concern that may require improvement of SPF models, 

such as percent areas increasing confidence limits, long trends, and vertical changes (Lyon et al., 

2016).  

The CURE plots for each segment type have to be constructed using the following steps: 

1. The variables of interest, which in this case are predicted crashes and AADT, are sorted 

in ascending order. 

2. For each site, the residual is calculated as the difference between observed and predicted 

crashes. 

3. The cumulative of residuals is then calculated as the sum of residuals 1 to n (n is between 

1 and total number of sites N). 

4. The square of residuals is calculated, followed by the calculation of cumulative squared 

residuals. 

5. The 95 percent confidence limits are then calculated for each site as follows:  

 ±1.96√𝜎2 (29) 

where: 

𝜎2 = the variance of the cumulative residual. 

Error-Based Methods 

Three error-based methods are used to analyze the GOF (Lord et al., 2021; Lyon et al., 2016): 

• MPB computes the magnitude and direction of model bias by calculating the difference 

between predicted and observed crashes. The following equation is used to calculate this 

measure: 

 𝑀𝑃𝐵 = 
1

𝑛
∑ (𝜇𝑖 − 𝑦𝑖)
𝑛
𝑖=1  (30) 
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• MAD calculates the absolute difference between the predicted number of crashes and 

observed number of crashes: 

 𝑀𝐴𝐷 = 
1

𝑛
∑ |𝜇𝑖 − 𝑦𝑖|
𝑛
𝑖=1  (31) 

• MSPE calculates the square of difference between predicted and observed number of 

crashes: 

 𝑀𝑆𝑃𝐸 = 
1

𝑛
∑ (𝜇𝑖 − 𝑦𝑖)

2𝑛
𝑖=1  (32) 

Modified R2 

This GOF measure is used to measure the amount of systematic variation in the predicted crashes 

as it subtracts the random variation that is based on the expectation that the CMFs were 

100 percent accurate. Equation (33) is used to calculate the modified R2 value: 

 𝑅2 =
∑ (𝑦𝑖−�̅�)

2−∑ 𝜇𝑖2
̂

𝑖 𝑖

∑ (𝑦𝑖−�̅�)
2−∑ 𝑦𝑖2

̂
𝑖 𝑖

 (33) 

where: 

𝑦𝑖 =observed crashes. 

𝑦�̂� = predicted crashes using CMFs. 

�̅� = sample average. 

𝜇�̂� = 𝑦𝑖- 𝑦�̂�. 

Dispersion Parameter (k) 

This measure shows the spread of observed crashes about predicted value of crashes (based on 

the assumption the crash data follow a NB distribution). It is calculated by rearranging the 

variance equation as follows: 

 𝑘 =
(predictedvarianceofmeancrashrate–predictedmeancrashrate)

(predictedmeancrashrate)2
 (34) 

Coefficient of Variation (CV) of Calibration Factor 

CV is calculated as the standard deviation of calibration factor C divided by the predicted 

calibration factor, as shown in the following equation: 

 𝐶𝑉 = 
√𝑉(𝐶)

𝐶
 (35) 

where: 

V (C) = Variance of Calibration Factor. 
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The variance of calibration factor is calculated as: 

 𝑉(𝐶) = 
∑ (𝑦𝑖+𝑘∗𝑦𝑖

2)𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠

(∑ �̂�)𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠
2  (36) 

where: 

�̂� = uncalibrated predicted values of CMF. 

𝑘 =dispersion parameter. 

An SPF is deemed to be acceptable when one of the below is true (Lyon et al., 2016): 

• Five percent or less of CURE plot ordinates for calibrated predicted values exceed the 2σ 

limits, or  

• The CV of the calibration factor is less than 0.15.  

CALIBRATION RESULTS 

This section describes the results of the calibration process, which covers the characteristics of 

the calibration factors and the GOF of the recalibrated models using the Texas data. The section 

is separated into three subsections. The first subsection covers segment SPFs in HSM Chapters 

10, 11, 12; the second subsection covers corresponding intersection SPFs; and the third 

subsection describes HSM freeway SPFs.  

Segments 

Table 48 presents the range of variables for segments used for developing the local calibration 

factors.  

Table 48. Range of the Data Variables Used for Calibrating Segment SPFs. 

Facility 

Type 

Number 

of 

Segments 

Variable Range 

ADT, veh/day 
Segment 

Length, mi 

MV FI 

Crash 

Count 

MV PDO 

Crash 

Count 

SV FI 

Crash 

Count 

SV PDO 

Crash 

Count 

Total 

Crash 

Count 

R2U 220 35–17,477 0.051–1.953 0–2 0–10 0–6 0–9 0–13 

R4D 175 1,144–53,382 0.052–4.685 0–9 0–14 0–11 0–29 0–46 

R4U 229 276–31,916 0.026–5.867 0–8 0–23 0–10 0–16 0–45 

U2U 186 52–42,500 0.026–2.56 0–9 0–16 0–12 0–20 0–56 

U3T 166 2,678–33,703 0.026–1.961 0–8 0–19 0–8 0–11 0–36 

U4D 262 1,478–82,850 0.026–3.089 0–31 0–51 0–8 0–13 0–94 

U4U 202 1,305–51,109 0.026–2.814 0–57 0–89 0–16 0–23 0–169 

U5T 171 5,058–69,491 0.026–1.548 0–17 0–44 0–7 0–17 0–72 

 

Table 49 summarizes the calibration factors for segments. The results show that the calibration 

factors vary from 0.50 to 1.97. Rural highways usually experienced fewer crashes than the 
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original models predicted, whereas for urban roads, they experienced either more or fewer 

crashes than expected.  

Table 49. Calibration Factors for Segments. 

Segment Type Collision Type 
Crash Count 

Local Calibration 

Factor C 

Observed Predicted  

R2U All 232 284.63 0.82 

R4D All 1,046 1,154.70 0.91 

R4U All 685 989.55 0.69 

U2U 
MV 302 321.69 0.94 

SV 221 200.58 1.10 

U3T 
MV 255 416.71 0.61 

SV 118 79.93 1.48 

U4D 
MV 1,142 682.11 1.67 

SV 479 243.39 1.97 

U4U 
MV 1,157 865.06 1.34 

SV 289 192.84 1.5 

U5T 
MV 1,008 2,028.51 0.50 

SV 327 440.71 0.74 

 

CURE Plots 

The following figures show plots for segment models by different facility types: 

• Figure 42. CURE Plot for Rural Two-Lane Highway Crashes. 

• Figure 43. CURE Plots for Rural Multilane Highway Crashes. 

• Figure 44. CURE Plots for Urban Highway Crashes. 

 
Figure 42. CURE Plot for Rural Two-Lane Highway Crashes. 
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a. R4D b. R4U 

Figure 43. CURE Plots for Rural Multilane Highway Crashes. 

  
a. U2U-MV Crashes b. U2U-SV Crashes 

  
c. U3T-MV Crashes d. U3T-SV Crashes 

  
e. U4D-MV Crashes f. U4D-SV Crashes 
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g. U4U-MV Crashes h. U4U-SV Crashes 

  
i. U5T-MV Crashes j. U5T-SV Crashes 

Figure 44. CURE Plots for Urban Highway Crashes. 

Table 50 shows the results for the different GOF measures for segment models. Researchers also 

used the Calibrator tool (Lyon et al., 2016) to confirm the results. The table reports the values for 

the calibration factor, the SE of the factor, MAD, MSPE, modified R2, the recalibrated dispersion 

parameter, and the percentage of the CURE plot lying beyond the 95 percent confidence 

intervals (CI). The standard errors showed that only rural four-lane undivided and urban five-

lane highways with a TWLTL have a statistically significant calibration factor (C does not 

include 1). Since all the CV values are less than or equal to 0.15—in other words, 5 percent or 

less of CURE plot ordinates for calibrated predicted values exceed the 2σ limits—the calibrated 

SPFs can accurately estimate crashes in Texas. 
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Table 50. GOF Measures for Recalibrated Segment Models. 
Seg. 

Type 

Coll. 

Type C 

SE of 

C MAD MSPE 

Modified 

R2 

Dispersion 

Parameter CV 

Exceeding 

95% CI 

R2U All 0.82 0.09 0.77 1.97 0.62 0.43 0.11 14% 

R4D All 0.91 0.10 3.41 34.09 0.61 0.62 0.11 19% 

R4U All 0.69 0.09 1.90 17.16 0.61 0.66 0.13 24% 

U2U 

MV 0.94 0.21 1.44 11.04 0.37 1.25 0.23 37% 

SV 1.10 0.27 1.01 5.78 0.5 0.65 0.25 1% 

U3T 

MV 0.61 0.11 1.33 7.01 0.42 0.86 0.18 4.8% 

SV 1.48 0.25 0.7 1.7 0.63 0.44 0.17 0.6% 

U4D 

MV 1.67 0.35 3.79 70.49 0.27 1.91 0.21 50.4% 

SV 1.97 0.20 1.44 6.11 0.38 0.57 0.1 0.0% 

U4U 

MV 1.34 0.27 4.32 98.25 0.54 1.14 0.2 26.9% 

SV 1.5 0.18 1.17 3.81 0.53 0.52 0.12 17.9% 

U5T 

MV 0.50 0.08 5.34 91.75 -0.12 1.29 0.16 53% 

SV 0.74 0.09 1.53 5.62 0.19 0.65 0.12 49% 

 

Figure 45 shows the box plots for the GOFs without any modification. Some metrics tend to 

have a long right tail. Researchers investigated potential transformations appropriate to each 

variable distribution and range and arrived at the transformations shown in Figure 46. 

 
Figure 45. Boxplots for Different GOF Metrics—Segments. 
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Figure 46. Boxplots for Different GOF Metrics after Transformation—Segments. 

Figure 47 shows the covariance of the transformed set for segments. A strong positive 

correlation exists between the CV and dispersion parameter. CURE deviation is negatively 

correlated with the modified R2. Similarly, MAD is negatively correlated with the calibration 

factor value. 

 
Figure 47. Covariance Matrix—Segments. 
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Finally, using varimax rotation, researchers developed a Simple Index (SI) functional form 

derived from a three-factor factor analysis on the transformed covariance matrix. 

After simplification, the SI for segments is determined as follows: 

 𝑆𝐼 =
(1−𝐶𝑈𝑅𝐸)0.4952∙𝑀𝑜𝑑.𝑅𝑠𝑞0.4576∙𝐶𝐹0.0607

(𝐶𝑈𝑅𝐸)0.4952∙(1−𝑀𝑜𝑑.𝑅𝑠𝑞)0.4576∙𝐷𝑖𝑠𝑝.𝑃𝑎𝑟0.130∙𝐶𝑉0.110∙𝑀𝐴𝐷0.1388
 (37) 

where: 

𝐶𝑈𝑅𝐸 = CURE deviation exceeding the 95 percent confidence level. 

𝑀𝑜𝑑. 𝑅𝑠𝑞 = Modified R2. 

𝐶𝐹 = Calibration Factor. 

𝐷𝑖𝑠𝑝. 𝑃𝑎r = Dispersion parameter. 

𝐶𝑉 = Coefficient of variation. 

𝑀𝐴𝐷= Mean absolute deviation. 

To select a threshold of acceptance for the newly developed SI, researchers examined the 

ordered distribution of SIs in the sample of data at hand, as shown in Figure 48. This analysis 

included SPFs by severity type as well; however, the recommendations are for the whole facility 

type and are not just restricted to any severity. This figure shows that the calibrated SPFs for 

U4D, U5T, and U2U may be of poor quality, and new SPFs need to be developed.  

 
Figure 48. SI for Segments. 
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Intersections 

Table 51 presents the range of data variables for intersections used for developing the local 

calibration factors.  

Table 51. Range of the Data Variables Used for Calibrating Intersection SPFs. 

Facility 
Int. 

Type 

No. 

of 

Int. 

Variable Range 

Maj. ADT, 

veh/day 

Min. ADT, 

veh/day 

MV FI 

Crash 

Count 

MV PDO 

Crash 

Count 

SV FI 

Crash 

Count 

SV PDO 

Crash 

Count 

Total 

Crash 

Count 

Rural 

Two- 

Lane  

3ST 337 10–11,682 3–3822 0–10 0–7 0–5 0–12 0–18 

4ST 222 4–10,283 2–1643 0–25 0–33 0–8 0–9 0–62 

4SG 133 2017–23,971 24–10,614 0–70 0–115 0–8 0–8 0–195 

Rural 

Multilane  

3ST 348 407–26,465 14–6379 0–30 0–27 0–3 0–9 0–36 

4ST 208 315–23,698 9–2008 0–45 0–49 0–2 0–9 0–88 

4SG 106 2058–26,465 35–11,747 0–144 0–176 0–6 0–16 0–336 

Urban 

Arterials 

3ST 326 80–43,912 26–22,947 0–11 0–24 0–2 0–2 0–24 

4ST 127 195–39,713 103–22,860 0–12 0–33 0–2 0–3 0–43 

3SG 67 3925–48,424 186–24,916 0–89 0–145 0–9 0–12 0–206 

4SG 113 3763–67,315 138–27,530 0–263 0–411 0–6 0–37 0–678 

 

Table 52 summarizes the calibration factors for intersections. The results show that the 

calibration factors vary from 0.53 to 1.94. No specific trend is observed since different 

intersection types experienced either more or fewer crashes than predicted by the HSM SPFs.  

Table 52. Calibration Factors for Intersections. 

Segment Type 
Intersection 

Type 

Crash Count Local Calibration Factor C 

Observed Predicted  

Rural Two-Lane 

Highways 

3ST 234 379.6 0.62 

4ST 243 380.6 0.64 

4SG 1172 2035.0 0.58 

Rural Multilane 

Highways 

3ST 539 758.05 0.71 

4ST 425 564.79 0.75 

4SG 1241 4212.57 0.29 

Urban Arterials 

3ST-MV 252 560.50 0.45 

3ST-SV 19 117.41 0.16 

4ST-MV 342 727.92 0.47 

4ST-SV 24 105.49 0.23 

3SG-MV 771 750.07 1.03 

3SG-SV 47 52.62 0.89 

4SG-MV 2698 2277.73 1.18 

4SG-SV 159 130.79 1.22 
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CURE Plots 

The following figures show plots for intersection models by different facility types: 

• Figure 49. CURE Plots for Rural Two-Lane Intersection Crashes. 

• Figure 50. CURE Plots for Rural Multilane Intersection Crashes. 

• Figure 51. CURE Plots for Intersection Crashes on Urban Arterials. 

  

a. 3ST b. 4ST 

 
c. 4SG 

Figure 49. CURE Plots for Rural Two-Lane Intersection Crashes. 
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a. 3ST b. 4ST 

 
c. 4SG 

Figure 50. CURE Plots for Rural Multilane Intersection Crashes. 
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a. 3ST-MV Crashes b. 3ST-SV Crashes 

  
c. 4ST-MV Crashes d. 4ST-SV Crashes 

  
e. 3SG-MV Crashes f. 3SG-SV Crashes 

  
g. 4SG-MV Crashes h. 4SG-SV Crashes 

Figure 51. CURE Plots for Intersection Crashes on Urban Arterials. 
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Table 53 shows the results for the different GOF measures for intersections. Out of 10 SPFs, four 

of them have CV significantly greater than 0.15, and CURE plot ordinates for calibrated 

predicted values exceeded the 2σ limits more than 5 percent of the time. This finding shows that 

new SPFs may need to be developed for these intersection types.  

Table 53. GOF Measures for Recalibrated Intersection Models. 
Facility Int. Type 

C 

SE of 

C MAD MSPE 

Mod. 

R2 

Dispersion 

Parameter CV 

Exceeding 

95% CI 

Rural 

two-lane 

3ST 0.62 0.066 0.73 1.68 −1.37 0.72 0.11 68% 

4ST 0.64 0.108 1.00 4.73 0.17 0.98 0.17 38% 

4SG 0.58 0.059 6.82 86.49 0.03 0.6 0.1 0% 

Rural 

multilane 

3ST 0.71 0.065 1.35 4.71 0.13 0.73 0.09 65% 

4ST 0.75 0.087 1.77 8.49 0.08 0.73 0.12 86% 

4SG 0.29 0.039 7.72 144.03 0.13 0.79 0.13 0% 

Urban 

arterial 

3ST-MV 0.45 0.189 0.96 4.43 0.23 5.56 0.42 2% 

3ST-SV 0.16 0.132 0.11 0.08 0.04 7.57 0.81 83% 

4ST-MV 0.47 0.222 3.37 31.47 0.09 5.00 0.47 21% 

4ST-SV 0.23 0.106 0.33 0.28 0.09 2.55 0.47 36% 

3SG-MV 1.03 0.509 12.34 322.81 0.17 4.34 0.50 18% 

3SG-SV 0.89 0.408 1.03 1.73 0.08 2.98 0.47 11% 

4SG-MV 1.18 0.335 21.69 804.35 0.14 3.43 0.28 1% 

4SG-SV 1.22 0.297 1.52 4.50 0.08 1.77 0.24 3% 

 

Figure 52 shows the box plots for the GOFs for intersections without any modification. Some 

metrics tend to have a long right tail. Researchers investigated potential transformations 

appropriate to each variable distribution and range and arrived at the transformations shown in 

Figure 53. 

 
Figure 52. Boxplots for Different GOF Metrics—Intersections. 
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Figure 53. Boxplots for Different GOF Metrics after Transformation—Intersections. 

Figure 54 shows the covariance of the transformed set for intersections. A strong positive 

correlation exists between the CV and dispersion parameter. CURE deviation is negatively 

correlated with the dispersion parameter and MAD.  

 
Figure 54. Covariance Matrix—Intersections. 

Finally, using varimax rotation, researchers developed an SI functional form derived from a 

three-factor factor analysis on the transformed covariance matrix. 
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After simplification, the SI for intersections is as follows: 

 𝑆𝐼 =
(1−𝐶𝑈𝑅𝐸)0.122∙𝑀𝑜𝑑.𝑅𝑠𝑞0.469

(𝐶𝑈𝑅𝐸)0.122∙(1−𝑀𝑜𝑑.𝑅𝑠𝑞)0.469∙𝐷𝑖𝑠𝑝.𝑃𝑎𝑟0.198∙𝐶𝑉0.110∙𝑀𝐴𝐷0.371∙𝐶𝐹0.16
 (38) 

To select a threshold of acceptance for the newly developed SI, researchers examined the 

ordered distribution of SIs in the sample of data at hand, as shown in Figure 55. This figure 

shows that the SPFs for 3SG on urban arterials and for signalized intersections in rural areas are 

not reliable, and new SPFs need to be developed. However, a smaller sample size has an 

influence on the SI calculations, so researchers put more emphasis on the CURE plots than on 

the SI itself.  

 
Figure 55. SI for Intersections. 

Rural Freeway Main Lanes 

For this research project, researchers applied a two-stage approach, as follows: 

1. A sample of up to 100 segments with each lane count was assembled, and these segments 

were used to calibrate the base SPFs with their CMFs—which require data (such as lane 

and shoulder width) readily available in the state roadlog database. 

2. A sample of between 30 and 50 segments with each lane count was assembled and used 

to calibrate the base SPFs with all their CMFs, including those that require data (such as 

longitudinal barrier or rumble strip presence) from supplemental data sources. 

The team adopted the two-stage approach because of the requirement of a large amount of data. 

By using this approach, researchers could assess the reliability of the calibration factor with 

Stage 1 data and use the Stage 2 data to estimate the recommended calibration factor. Table 54 

provides the summary statistics by data in different stages for the rural freeway segments in 

Texas.  



 

103 

Table 54. Summary Statistics of the Data Used for Calibrating Freeway SPFs. 

Stage 
No. of 

Lanes 

No 

of 

Seg. 

Variable Range 

ADT, veh/day 
Segment 

Length, mi 

MV FI 

Crash 

Count 

MV 

PDO 

Crash 

Count 

SV FI 

Crash 

Count 

SV 

PDO 

Crash 

Count 

Total 

Crash 

Count 

Stage 1 
4 93 8044–51,991 0.05–1.953 0–4 0–12 0–6 0–21 0–38 

6 96 36,059–131,719 0.069–1.953 0–36  0–55  0–15  0–47  0–122  

Stage 2 
4 41 8044–50,449 0.05–1.953 0–4 0–12 0–6 0–21 0–38 

6 38 36,059–131,719 0.07–1.953 0–18  0–30  0–15  0–33  0–69  

 

Table 55 and Table 56 summarize the calibration factors by the number of freeway lanes with 

Stage 1 and Stage 2 data, respectively. The results show that the calibration factors vary from 

0.55 to 1.00. The calibration factors for both four- and six-lane rural freeways are lower than 1.0, 

suggesting that the HSM models for these lane counts over-predict for Texas conditions. 

Table 55. Calibration Factors for Freeways—Stage 1. 

No. of Lanes Crash Type 
Crash Count Local Calibration Factor C 

Observed Predicted  

4 

MV FI 61 67.54 0.90 

MV PDO 123 122.56 1.00 

SV FI 101 184.91 0.55 

SV PDO 273 369.17 0.74 

6 

MV FI 374 383.28 0.98 

MV PDO 888 930.47 0.95 

SV FI 330 482.44 0.68 

SV PDO 934 1010 0.92 
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Table 56. Calibration Factors for Freeways—Stage 2. 

No. of Lanes Crash Type 
Crash Count Local Calibration Factor C 

Observed Predicted  

4 

MV FI 27 40.56 0.67 

MV PDO 60 78.20 0.77 

SV FI 53 93.87 0.56 

SV PDO 137 200.81 0.68 

6 

MV FI 125 198.49 0.63 

MV PDO 296 492.47 0.60 

SV FI 118 166.98 0.71 

SV PDO 346 426.40 0.81 

 

Figure 56 and Figure 57 show plots for the various combinations of lane count, crash type, and 

crash severity. The figures show that, except for a few sites, the recalibrated models predict 

crashes accurately. 
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a. Stage 1 MV-FI Crashes b. Stage 1 MV-PDO Crashes 

  
c. Stage 1 SV-FI Crashes d. Stage 1 SV-PDO Crashes 

  
e. Stage 2 MV-FI Crashes f. Stage 2 MV-PDO Crashes 

  
g. Stage 2 SV-FI Crashes h. Stage 2 SV-PDO Crashes 

Figure 56. CURE Plots for Crashes on Four-Lane Freeways. 
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a. Stage 1 MV-FI Crashes b. Stage 1 MV-PDO Crashes 

  
c. Stage 1 SV-FI Crashes d. Stage 1 SV-PDO Crashes 

  
e. Stage 2 MV-FI Crashes f. Stage 2 MV-PDO Crashes 

  
g. Stage 2 SV-FI Crashes h. Stage 2 SV-PDO Crashes 

Figure 57. CURE Plots for Crashes on Six-Lane Freeways. 
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Table 57 and Table 58 show the results for the different GOF measures for rural freeways using 

Stage 1 and Stage 2 data, respectively. Both tables show that, in almost all cases, CV value is 

0.15 or less, suggesting that the HSM-calibrated SPFs can predict crashes on rural freeways 

accurately. For cases in which the CV is greater than 0.15, a smaller sample affected the results. 

Table 57. GOF Measures for Rural Freeway Recalibrated Models—Stage 1. 
No. of 

Lanes 
Crash Type C 

SE 

of C 
MAD MSPE Modified R2 

Dispersion 

Parameter 
CV 

Exceeding 

95% CI 

4 

MV FI 0.90 0.12 0.58 0.62 1.24 0.01 0.13 30% 

MV PDO 1.00 0.14 0.96 2.13 0.72 0.30 0.14 5% 

SV FI 0.55 0.09 0.96 1.84 0.26 0.58 0.17 12% 

SV PDO 0.74 0.11 2.14 9.53 0.39 0.68 0.15 4% 

6 

MV FI 0.98 0.10 1.93 8.01 0.83 0.24 0.10 0% 

MV PDO 0.95 0.10 5.82 93.9 0.05 0.41 0.10 58% 

SV FI 0.68 0.06 1.92 7.17 0.49 0.23 0.09 0% 

SV PDO 0.92 0.10 5.15 51.37 0.44 0.52 0.11 3% 

Table 58. GOF Measures for Rural Freeway Recalibrated Models—Stage 2. 
No. of 

Lanes 
Crash Type C 

SE 

of C 
MAD MSPE Modified R2 

Dispersion 

Parameter 
CV 

Exceeding 

95% CI 

4 

MV FI 0.67 0.13 0.59 0.62 1.26 0.01 0.19 12% 

MV PDO 0.77 0.22 1.12 3.10 0.70 0.66 0.29 0% 

SV FI 0.56 0.17 1.22 2.94 0.11 1.06 0.31 17% 

SV PDO 0.68 0.12 2.11 8.59 0.61 0.38 0.18 0% 

6 

MV FI 0.63 0.07 1.52 4.27 0.90 0.06 0.11 0% 

MV PDO 0.60 0.09 3.88 26.48 0.60 0.36 0.15 45% 

SV FI 0.71 0.09 1.59 4.88 0.69 0.21 0.14 0% 

SV PDO 0.81 0.11 4.54 34.07 0.53 0.32 0.13 0% 

 

SDF Calibration 

Table 59 provides the observed and predicted number of crashes, observed and predicted 

probability of severe crashes, and SDF local calibration factor by number of lanes. The 

calibration factors are in the bottom row of the table. For every lane count and for the overall 

dataset, the observed probability of a severe crash was higher than the predicted probability of a 

severe crash. 

Table 59. SDF Calibration Results. 

Variable 
Variable Value by Number of Lanes 

4 6 All 

No_KABC 80 243 323 

No_KAB 46 145 191 

Np_KABC 134.43 365.47 499.90 

Np_KAB 68.06 160.08 228.14 

Po,KAB 0.58 0.60 0.59 

Pp,KAB 0.51 0.44 0.46 

CSDF 1.32 1.90 1.72 
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RECOMMENDED SPFS 

Although the GOF measures may show that the calibrated SPFs are accurate, sometimes the 

SPFs may not capture the crash trend due to differences in jurisdiction-specific factors. To 

confirm the crash trend, researchers developed the Texas-specific SPFs with the same data that 

are used for calibration and for the same base conditions. The main objective of this exercise is 

to check if the trend in crash prediction is similar between two SPFs. If the trend is similar, then 

the HSM-calibrated SPFs are recommended because those SPFs are developed with data from 

multiple states and with a larger sample size. Otherwise, Texas-specific SPFs are recommended.  

Rural Two-Lane Highways  

Roadway Segments 

Figure 58 shows the comparison of crash trends for R2U roadway segments predicted by the 

HSM-calibrated SPF and the Texas SPF. The HSM SPF assumes a linear trend, which means the 

rate of increase in crash risk remains constant with the increase in traffic volume. However, the 

Texas SPF shows that the rate of increase in crash risk decreases with the increase in traffic 

volume. Given that there is a difference in crash trends, researchers recommend using the Texas-

specific SPF. The recommended SPF for predicting the average crash frequency for segments is 

as follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠 = 𝐿𝑒−7.025𝐴𝐴𝐷𝑇0.821 (39) 

 
Figure 58. Crash Trends for R2U Segments. 

The value of the overdispersion parameter associated with the recommended SPF for roadway 

segments is 0.247. Table 60 and Table 61 provide the proportions developed using Texas data 

for crash severity and for collision type by crash severity level, respectively, and should be 

applied sequentially. These tables may be used to separate the crash frequencies from Equation 

39 into components by crash severity level and collision type. To estimate crash frequencies by 
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crash severity level, Table 60 is used first, and then, to estimate crash frequencies by collision 

type for a particular crash severity level, Table 61 is used. 

Table 60. Distribution for Crash Severity Level—R2U Segments. 

Crash Severity Level Percentage of Total Crashes 

Fatal 3.6 

Incapacitating Injury 6.1 

Nonincapacitating Injury 11.3 

Possible Injury 13.4 

Total fatal Plus Injury 34.4 

Property Damage Only 65.6 

Total 100 

Table 61. Distribution for Collision Type—R2U Segments. 

Crash Severity Level 

Percentage of Total Roadway Segment Crashes by Crash Severity 

Level 

Fatal and Injury Property Damage Only Total  

SINGLE-VEHICLE CRASHES   

Collision with animal 3.5 15.4 11.3 

Collision with bicycle 0.0 0.6 0.4 

Collision with pedestrian 0.0 0.0 0.0 

Overturned 0.0 0.0 0.0 

Ran off road 63.5 47.5 53.0 

Other single-vehicle crash 7.1 6.2 6.5 

Total single-vehicle crash 74.1 69.8 71.3 

MULTIPLE-VEHICLE CRASHES 

Angle collision 3.5 2.5 2.8 

Head-on collision 3.5 4.9 4.5 

Rear-end collision 7.1 4.9 5.7 

Sideswipe collision 1.2 2.5 2.0 

Other multiple-vehicle collision 10.6 15.4 13.8 

Total multiple-vehicle crashes 25.9 30.2 28.7 

Total crashes 100.0 100.0 100.0 

 

Intersections 

Figure 59 shows the comparison of crash trends for 3ST intersections on R2U predicted by the 

HSM-calibrated SPF and the Texas SPF. Given that there is a difference in crash trends, 

researchers recommend using the Texas-specific SPF. The recommended SPF for predicted 

average crash frequency for 3ST intersections is as follows: 

 𝑁𝑠𝑝𝑓,3𝑆𝑇 = 𝑒−6.082𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.433𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.205 (40) 
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Figure 59. Crash Trends for 3ST Intersections on R2U. 

The value of the overdispersion parameter associated with the recommended SPF for 3ST is 

0.405. 

Figure 60 shows the comparison of crash trends for 4ST intersections on rural two-lane roadway 

segments predicted by the HSM-calibrated SPF and the Texas SPF. Given that there is a 

difference in crash trends, researchers recommend using the Texas-specific SPF. The 

recommended SPF for predicted average crash frequency for 4ST intersections is as follows: 

 𝑁𝑠𝑝𝑓,4𝑆𝑇 = 𝑒−6.978𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.422𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.468 (41) 

 
Figure 60. Crash Trends for 4ST Intersections on R2U. 

The value of the overdispersion parameter associated with the recommended SPF for 4ST 

intersections is 0.469. 
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Figure 61 shows the comparison of crash trends for 4SG intersections on R2U predicted by the 

HSM-calibrated SPF and the Texas SPF. Given that there is no significant difference in crash 

trends, researchers recommend using the HSM-calibrated SPF. The recommended SPF for 

predicted average crash frequency for 4SG intersections is as follows: 

 𝑁𝑠𝑝𝑓,4𝑆𝐺 = 𝑒−5.675𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.60𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.20 (42) 

 
Figure 61. Crash Trends for 4SG Intersections on R2U. 

The value of the overdispersion parameter associated with the recommended SPF for 4SG 

intersections is 0.599.  

Table 62 provides the proportions for intersections on R2U developed using Texas data for crash 

severity. Table 63, Table 64 and Table 65 provide the proportions for collision type by crash 

severity level, respectively. These tables may be used to separate the crash frequencies from 

Equations 40 to 42 into components by crash severity level and collision type.  

Table 62. Distribution for Crash Severity Level—Intersections on R2U Highways. 

Crash Severity Level 

Percentage of Total Crashes 

Three-Leg 

Stop-Controlled 

Intersections 

Four-Leg 

Stop-Controlled 

Intersections 

Four-Leg 

Signalized 

Intersections 

Fatal 1.2 1.1 0.5 

Incapacitating Injury 3.9 7.4 4.5 

Nonincapacitating Injury 17.8 14.2 11.1 

Possible Injury 10.6 12.5 16.5 

Total Fatal Plus Injury 33.5 35.1 32.5 

Property Damage Only 66.5 64.9 67.5 

Total 100.0 100.0 100.0 
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Table 63. Distribution for Collision Type at 3ST Intersections on R2U Highways. 

Crash Severity Level 
Percentage of Total Crashes by Collision Type 

Fatal and Injury Property Damage Only Total  

SINGLE-VEHICLE CRASHES 

Collision with animal 0.0 1.4 0.9 

Collision with bicycle 0.0 0.0 0.0 

Collision with pedestrian 1.8 0.0 0.6 

Overturned 0.0 0.0 0.0 

Ran off road 27.0 43.2 37.8 

Other single-vehicle crash 1.8 1.8 1.8 

Total single-vehicle crash 30.6 46.4 41.1 

MULTIPLE-VEHICLE CRASHES 

Angle collision 23.4 18.2 19.9 

Head-on collision 0.0 0.5 0.3 

Rear-end collision 10.8 6.8 8.2 

Sideswipe collision 0.0 1.4 0.9 

Other multiple-vehicle collision 35.1 26.8 29.6 

Total multiple-vehicle crashes 69.4 53.6 58.9 

Total crashes 100.0 100.0 100.0 

 

Table 64. Distribution for Collision Type at 4ST Intersections on R2U Highways. 

Crash Severity Level 
Percentage of Total Crashes by Collision Type 

Fatal and Injury Property Damage Only Total  

SINGLE-VEHICLE CRASHES 

Collision with animal 0.0 0.8 0.5 

Collision with bicycle 1.6 0.0 0.5 

Collision with pedestrian 0.8 0.0 0.3 

Overturned 0.0 0.0 0.0 

Ran off road 13.2 20.6 18.0 

Other single-vehicle crash 1.6 3.4 2.7 

Total single-vehicle crash 17.1 24.8 22.1 

MULTIPLE-VEHICLE CRASHES 

Angle collision 46.5 41.2 43.1 

Head-on collision 1.6 0.0 0.5 

Rear-end collision 10.1 7.1 8.2 

Sideswipe collision 0.8 0.4 0.5 

Other multiple-vehicle collision 24.0 26.5 25.6 

Total multiple-vehicle crashes 82.9 75.2 77.9 

Total crashes 100.0 100.0 100.0 
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Table 65. Distribution for Collision Type at 4SG Intersections on R2U Highways. 

Crash Severity Level 
Percentage of Total Crashes by Collision Type 

Fatal and Injury Property Damage Only Total  

SINGLE-VEHICLE CRASHES 

Collision with animal 0.0 0.3 0.2 

Collision with bicycle 0.2 0.1 0.1 

Collision with pedestrian 0.6 0.0 0.2 

Overturned 0.0 0.0 0.0 

Ran off road 3.8 5.8 5.2 

Other single-vehicle crash 1.7 0.9 1.2 

Total single-vehicle crash 6.3 7.1 6.8 

MULTIPLE-VEHICLE CRASHES 

Angle collision 38.1 20.8 26.4 

Head-on collision 0.2 0.1 0.1 

Rear-end collision 6.0 7.8 7.3 

Sideswipe collision 0.4 2.4 1.8 

Other multiple-vehicle collision 49.0 61.7 57.6 

Total multiple-vehicle crashes 93.8 92.9 93.2 

Total crashes 100.0 100.0 100.0 

 

Rural Multilane Highways  

Roadway Segments 

Figure 62 shows the comparison of crash trends for RMU roadway segments predicted by the 

HSM-calibrated SPF and the Texas SPF. Given that there is no significant difference in crash 

trends, researchers recommend using the HSM-calibrated SPF. The recommended SPF for 

predicted average crash frequency for RMU segments is as follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠 = 𝐿𝑒−10.02𝐴𝐴𝐷𝑇1.176 (43) 
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Figure 62. Crash Trends for RMU Segments. 

The value of the overdispersion parameter associated with the recommended SPF is 0.659. Table 

66 and Table 67 provide the proportions developed using Texas data for crash severity and for 

collision type by crash severity level, respectively, and should be applied sequentially. These 

tables may be used to separate the crash frequencies from Equation 43 into components by crash 

severity level and collision type.  

Table 66. Distribution for Crash Severity—RMU Segments. 

Crash Severity Level Percentage of Total Crashes 

Fatal 2.0 

Incapacitating Injury 6.7 

Nonincapacitating Injury 12.0 

Possible Injury 9.3 

Total Fatal Plus Injury 30.1 

Property Damage Only 69.9 

Total 100 

Table 67. Distribution for Collision Type—RMU Segments. 

Crash Severity Level 

Percentage of Total Roadway Segment Crashes by Crash Severity 

Level 

Fatal and Injury Property Damage Only Total  

Head-On 7.3 1.9 3.5 

Sideswipe 3.9 11.9 9.5 

Rear-End 10.7 13.4 12.6 

Angle 9.2 8.8 8.9 

Single 50.0 52.2 51.5 

Other 18.9 11.9 14.0 
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Figure 63 shows the comparison of crash trends for RMD roadway segments predicted by the 

HSM-calibrated SPF and the Texas SPF. The HSM SPF assumes almost a linear trend, whereas 

the Texas SPF shows that the rate of increase in crash risk decreases with the increase in traffic 

volume. Given that there is a difference in crash trends, researchers recommend using the Texas-

specific SPF. The recommended SPF for predicted average crash frequency for segments is as 

follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠 = 𝐿𝑒−7.509𝐴𝐴𝐷𝑇0.894 (44) 

 
Figure 63. Crash Trends for RMD Segments. 

The value of the overdispersion parameter associated with the recommended SPF for RMD 

segments is 0.611. Table 68 and Table 69 provide the proportions developed using Texas data 

for crash severity and for collision type by crash severity level, respectively, and should be 

applied sequentially. These tables may be used to separate the crash frequencies from Equation 

44 into components by crash severity level and collision type.  

Table 68. Distribution for Crash Severity—RMD Segments. 

Crash Severity Level Percentage of Total Crashes 

Fatal 1.9 

Incapacitating Injury 4.8 

Nonincapacitating Injury 12.4 

Possible Injury 11.8 

Total Fatal Plus Injury 30.9 

Property Damage Only 69.1 

Total 100 
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Table 69. Distribution for Collision Type—RMD Segments. 

Crash Severity Level 

Percentage of Total Roadway Segment Crashes by Crash Severity 

Level 

Fatal and Injury Property Damage Only Total  

Head-On 0.4 0.6 0.5 

Sideswipe 10.0 6.5 5.5 

Rear-End 13.3 19.3 19.6 

Angle 3.7 6.8 6.5 

Single 68.5 60.9 61.3 

Other 4.1 5.9 6.5 

 

Intersections 

Figure 64 shows the comparison of crash trends for 3ST intersections on rural multilane roadway 

segments predicted by the HSM-calibrated SPF and the Texas SPF. Given that there is a 

difference in crash trends, researchers recommend using the Texas-specific SPF. The 

recommended SPF for predicted average crash frequency for 3ST intersections is as follows: 

 𝑁𝑠𝑝𝑓,3𝑆𝑇 = 𝑒−9.939𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.781𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.404 (45) 

 
Figure 64. Crash Trends for 3ST Intersections on Rural Multilane Roadways. 

The value of the overdispersion parameter associated with the recommended SPF for 3ST 

intersections is 0.512. 

Figure 65 shows the comparison of crash trends for 4ST intersections on rural multilane 

roadways predicted by the HSM-calibrated SPF and the Texas SPF. Given that there is a 

difference in crash trends, researchers recommend using the Texas-specific SPF. The 

recommended SPF for predicted average crash frequency for 4ST intersections is as follows: 

 𝑁𝑠𝑝𝑓,4𝑆𝑇 = 𝑒−5.702𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.262𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.535 (46) 
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Figure 65. Crash Trends for 4ST Intersections on Rural Multilane Roadways. 

The value of the overdispersion parameter associated with the recommended SPF for 4ST 

intersections is 0.355. 

Figure 66 shows the comparison of crash trends for 4SG intersections on rural multilane roadway 

segments predicted by the HSM-calibrated SPF and the Texas SPF. Given that there is no 

significant difference in crash trends, researchers recommend using the HSM-calibrated SPF. 

The recommended SPF for predicted average crash frequency for 4SG intersections is as 

follows: 

 𝑁𝑠𝑝𝑓,4𝑆𝐺 = 𝑒−8.420𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.722𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.337 (47) 

 
Figure 66. Crash Trends for 4SG Intersections on Rural Multilane Roadways. 
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The value of the overdispersion parameter associated with the recommended SPF for 4SG 

intersections is 0.79.  

Table 70 provides the proportions for intersections on rural multilane highways developed using 

Texas data for crash severity. Table 71, Table 72, and Table 73 provide the proportions for 

collision type by crash severity level. These tables may be used to separate the crash frequencies 

from Equations 45 to 47 into components by crash severity level and collision type.  

Table 70. Distribution for Crash Severity Level—Rural Multilane Intersections. 

Crash Severity Level 

Percentage of Total Crashes 

Three-Leg 

Stop-Controlled 

Intersections 

Four-Leg 

Stop-Controlled 

Intersections 

Four-Leg 

Signalized 

Intersections 

Fatal 1.3 0.9 0.6 

Incapacitating Injury 5.3 6.0 4.2 

Nonincapacitating Injury 15.4 18.1 11.4 

Possible Injury 15.7 14.4 13.2 

Total Fatal Plus Injury 37.7 39.4 29.4 

Property Damage Only 62.3 60.6 70.6 

Total 100 100 100 

Table 71. Distribution for Collision Type at 3ST Intersections on Rural Multilane 

Highways. 

Crash Severity Level 
Percentage of Total Crashes by Crash Severity Level 

Fatal and Injury Property Damage Only Total  

Head-On 1.3 0.3 0.7 

Sideswipe 2.2 4.0 3.3 

Rear-End 11.4 6.1 8.1 

Angle 35.5 33.5 34.3 

Single 11.8 17.0 15.1 

Other 37.7 39.1 38.6 

Table 72. Distribution for Collision Type at 4ST Intersections on Rural Multilane 

Highways. 

Crash Severity Level 
Percentage of Total Crashes by Crash Severity Level 

Fatal and Injury Property Damage Only Total  

Head-On 0.6 0.7 0.7 

Sideswipe 0.0 0.4 0.2 

Rear-End 7.3 3.6 5.1 

Angle 60.7 54.7 57.1 

Single 7.3 12.0 10.2 

Other 24.2 28.5 26.8 
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Table 73. Distribution for Collision Type at 4SG Intersections on Rural Multilane 

Highways. 

Crash Severity Level 
Percentage of Total Crashes by Crash Severity Level 

Fatal and Injury Property Damage Only Total  

Head-On 0.3 0.3 0.3 

Sideswipe 1.9 2.4 2.2 

Rear-End 2.5 5.6 4.7 

Angle 42.1 26.1 30.8 

Single 6.0 5.6 5.7 

Other 47.3 60.0 56.3 

 

Urban Arterials 

Roadway Segments 

Figure 67 shows the comparison of MV non-driveway crash trends for U2U roadway segments 

predicted by the HSM-calibrated SPF and the Texas SPF. Although there is no significant 

difference in crash trends, the GOF measures showed that the HSM-calibrated SPF is not 

reliable. Thus, researchers recommend using the Texas SPF. The recommended SPF for 

predicted average MV non-driveway crash frequency for U2U segments is as follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑚𝑣 = 𝐿𝑒−12.824𝐴𝐴𝐷𝑇1.425 (48) 

 
Figure 67. MV Non-Driveway Crash Trends for U2U Segments. 

The value of the overdispersion parameter associated with the recommended SPF for MV non-

driveway crashes on U2U segments is 1.214.  

Figure 68 shows the comparison of SV crash trends for U2U segments predicted by the HSM-

calibrated SPF and the Texas SPF. Although there is no significant difference in crash trends, the 

GOF measures showed that the HSM-calibrated SPF is not reliable. Thus, researchers 
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recommend using the Texas SPF. The recommended SPF for predicted average SV crash 

frequency for U2U segments is as follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑠𝑣 = 𝐿𝑒−6.007𝐴𝐴𝐷𝑇0.62 (49) 

 
Figure 68. SV Crash Trends for U2U Segments. 

The value of the overdispersion parameter associated with the recommended SPF for SV crashes 

on U2U roadway segments is 0.563.  

Figure 69 shows the comparison of MV non-driveway crash trends for U3T roadway segments 

predicted by the HSM-calibrated SPF and the Texas SPF. Given that there is no significant 

difference in crash trends, researchers recommend using the HSM-calibrated SPF. The 

recommended SPF for predicted average MV non-driveway crash frequency for U3T segments is 

the following: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑚𝑣 = 𝐿𝑒−12.891𝐴𝐴𝐷𝑇1.41 (50) 
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Figure 69. MV Non-Driveway Crash Trends for U3T Segments. 

The value of the overdispersion parameter associated with the recommended SPF for MV non-

driveway crashes on U3T segments is 0.864.  

Figure 70 shows the comparison of SV crash trends for U3T roadway segments predicted by the 

HSM-calibrated SPF and the Texas SPF. Given that there is no significant difference in crash 

trends, researchers recommend using the HSM-calibrated SPF. The recommended SPF for 

predicted average SV crash frequency for U3T segments is as follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑠𝑣 = 𝐿𝑒−5.351𝐴𝐴𝐷𝑇0.54 (51) 

 
Figure 70. SV Crash Trends for U3T Segments. 

The value of the overdispersion parameter associated with the recommended SPF for SV crashes 

on U3T segments is 0.438.  
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Figure 71 shows the comparison of MV non-driveway crash trends for U4U roadway segments 

predicted by the HSM-calibrated SPF and the Texas SPF. Given that there is no significant 

difference in crash trends, researchers recommend using the HSM-calibrated SPF. The 

recommended SPF for predicted average MV non-driveway crash frequency for U4U segments 

is as follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑚𝑣 = 𝐿𝑒−11.337𝐴𝐴𝐷𝑇1.33 (52) 

 
Figure 71. MV Non-Driveway Crash Trends for U4U Segments. 

The value of the overdispersion parameter associated with the recommended SPF for MV non-

driveway crashes on U4U segments is 1.137.  

Figure 72 shows the comparison of SV crash trends for U4U roadway segments predicted by the 

HSM-calibrated SPF and the Texas SPF. Given the difference in crash trends, researchers 

recommend using the Texas SPF. The recommended SPF for predicted average SV crash 

frequency for U4U segments is as follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑠𝑣 = 𝐿𝑒−5.358𝐴𝐴𝐷𝑇0.58 (53) 
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Figure 72. SV Crash Trends for U4U Segments. 

The value of the overdispersion parameter associated with the recommended SPF for SV crashes 

on U4U roadway segments is 0.359.  

Figure 73 shows the comparison of MV non-driveway crash trends for U4D roadway segments 

predicted by the HSM-calibrated SPF and the Texas SPF Although there is no significant 

difference in crash trends, the GOF measures showed that the HSM-calibrated SPF is not 

reliable. Researchers recommend using the Texas SPF. The recommended SPF for predicted 

average MV non-driveway crash frequency for U4D segments is as follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑚𝑣 = 𝐿𝑒−13.943𝐴𝐴𝐷𝑇1.54 (54) 

 
Figure 73. MV Non-Driveway Crash Trends for U4D Segments. 
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The value of the overdispersion parameter associated with the recommended SPF for MV non-

driveway crashes on U4D segments is 1.68.  

Figure 74 shows the comparison of SV crash trends for U4D roadway segments predicted by the 

HSM-calibrated SPF and the Texas SPF. Although there is no significant difference in crash 

trends, the GOF measures showed that the HSM-calibrated SPF is not reliable. Researchers 

recommend using the Texas SPF. The recommended SPF for predicted average SV crash 

frequency for U4D segments is: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑠𝑣 = 𝐿𝑒−3.905𝐴𝐴𝐷𝑇0.436 (55) 

 
Figure 74. SV Crash Trends for U4D Segments. 

The value of the overdispersion parameter associated with the recommended SPF for SV crashes 

on U4D roadway segments is 0.567.  

Figure 75 shows the comparison of MV non-driveway crash trends for U5T roadway segments 

predicted by the HSM-calibrated SPF and the Texas SPF. Although there is no significant 

difference in crash trends, the GOF measures showed that the HSM-calibrated SPF is not 

reliable. Researchers recommend using the Texas SPF. The recommended SPF for predicted 

average MV non-driveway crash frequency for U5T segments is the following: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑚𝑣 = 𝐿𝑒−8.314𝐴𝐴𝐷𝑇0.989 (56) 
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Figure 75. MV Non-Driveway Crash Trends for U5T Segments. 

The value of the overdispersion parameter associated with the recommended SPF for MV non-

driveway crashes on U5T roadway segments is 1.222.  

Figure 76 shows the comparison of SV crash trends for U5T roadway segments predicted by the 

HSM-calibrated SPF and the Texas SPF. Although there is no significant difference in crash 

trends, the GOF measures showed that the HSM-calibrated SPF is not reliable. Researchers 

recommend using the Texas SPF. The recommended SPF for predicted average crash frequency 

for SV crashes on U5T segments is as follows: 

 𝑁𝑠𝑝𝑓,𝑟𝑠,𝑠𝑣 = 𝐿𝑒−4.583𝐴𝐴𝐷𝑇0.501 (57) 

 
Figure 76. SV Crash Trends for U5T Segments. 
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The value of the overdispersion parameter associated with the recommended SPF for SV crashes 

on U5T roadway segments is 0.664.  

Table 74 and Table 75 provide the proportions developed using Texas data for crash severity for 

MV non-driveway and SV crashes, respectively. Table 76 and Table 77 provide the proportions 

for collision type by crash severity level for MV non-driveway and SV crashes, respectively. 

These tables may be used to separate the crash frequencies from Equations 48 to 57 into 

components by crash severity level and collision type.  

Table 74. Distribution for MV Non-Driveway Crash Severity—Urban Arterials. 

Crash Severity Level 
Percentage of Total Crashes 

2U 3T 4U 4D 5T 

Fatal 0.7 0.8 0.6 0.7 0.8 

Incapacitating Injury 0.7 3.1 1.5 1.0 2.0 

Nonincapacitating Injury 8.3 8.6 11.8 7.6 11.5 

Possible Injury 18.7 24.3 18.5 18.1 16.9 

Total Fatal Plus Injury 28.3 36.9 32.3 27.4 31.3 

Property Damage Only 71.7 63.1 67.7 72.6 68.7 

Total 100 100 100 100 100 

Table 75. Distribution for SV Crash Severity—Urban Arterials. 

Crash Severity Level 
Percentage of Total Crashes 

2U 3T 4U 4D 5T 

Fatal 1.4 2.6 1.8 1.8 3.8 

Incapacitating Injury 6.8 7.0 4.5 7.6 7.8 

Nonincapacitating Injury 11.3 11.3 13.7 14.7 15.6 

Possible Injury 19.5 12.2 13.5 12.5 14.7 

Total Fatal Plus Injury 38.9 33.0 33.5 36.7 41.9 

Property Damage Only 61.1 67.0 66.5 63.3 58.1 

Total 100 100 100 100 100 

Table 76. Distribution for MV Non-Driveway Collision Type—Urban Arterials. 

Collision 

Type 

Percentage of Crashes by Collision Type and Crash Severity Level 

2U 3T 4U 4D 5T 

FI PDO FI PDO FI PDO FI PDO FI PDO 

Rear-End 32.9 38.1 39.4 36.6 45.7 39.6 45.7 39.2 41.2 39.1 

Head-On 15.3 7.9 14.9 2.5 3.2 1.1 8.0 1.7 9.8 2.4 

Angle 0.0 1.9 0.0 0.0 2.9 1.7 0.6 0.8 1.2 1.3 

Sideswipe 3.5 13.5 6.4 9.3 13.6 27.7 11.8 29.9 11.4 22.3 

Other 48.2 38.6 39.4 51.6 34.6 29.9 33.9 28.5 36.3 35.0 
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Table 77. Distribution for SV Collision Type—Urban Arterials. 

Collision Type 

Percentage of Crashes by Severity Level for Specific Road Types 

2U 3T 4U 4D 5T 

FI PDO FI PDO  FI PDO FI PDO FI PDO 

Collision with animal 2.3 17.0 5.3 6.5 3.7 15.4 0.0 10.1 4.8 15.9 

Collision with fixed object 64.0 57.0 44.7 71.4 57.9 68.0 49.2 70.5 53.8 67.7 

Collision with other object 0.0 3.7 0.0 3.9 2.4 4.3 1.7 2.4 2.1 5.5 

Other single-vehicle collision 33.7 22.2 50.0 18.2 36.0 12.3 49.2 16.9 39.3 10.9 

 

Multiple-Vehicle Driveway-Related Collisions for Urban Segments 

For the selected random sample of urban segments, the number of driveways along both sides of 

the road was collected using Google Earth and Google Street View based on the following 

driveway types: 

• Major commercial driveways. 

• Minor commercial driveways. 

• Major industrial/institutional driveways. 

• Minor industrial/institutional driveways. 

• Major residential driveways. 

• Minor residential driveways. 

• Other driveways. 

Major and minor driveways were classified using Google Earth view. The driveway data 

collected were used to calibrate the existing SPFs for MV driveway-related collisions within an 

urban roadway segment. GOF statistics were used to assess the quality of model’s calibration 

factor. 

The HSM-based SPF formula used to predict the average MV driveway-related crash frequency 

is as follows: 

 𝑁𝑏𝑟𝑑𝑤𝑦 =∑ 𝑛𝑗 ×𝑎𝑙𝑙
𝑑𝑟𝑖𝑣𝑒𝑤𝑎𝑦
𝑡𝑦𝑝𝑒𝑠

𝑁𝑗 × (
𝐴𝐴𝐷𝑇

15000
)
𝑡

 (58) 

where: 

𝑁𝑗 = number of driveway-related collisions per driveway per year for Driveway Type j obtained 

from Table 12-7 of the HSM. 

𝑛𝑗  = number of driveways within the roadway segment of Driveway Type j, including all 

driveways on both sides of the road. 

t = coefficient for traffic volume adjustment from Table 12-7 of the HSM. 

Table 78 summarizes the calibration factors for MV driveway-related collisions for each urban 

segment type. The results show that the calibration factors vary from 0.97 to 2.17. In most cases, 

the urban segments experienced more crashes than predicted by the model. 
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Table 78. Calibration Factors for MV Driveway-Related Collisions. 

Segment Type 
Number of 

Segments 

Crash Count Local Calibration 

Factor C Observed Predicted 

U2U 131 144 81.4 1.77 

U3T 124 118 94.4 1.25 

U4D 137 138 63.7 2.17 

U4U 157 646 600.4 1.08 

U5T 140 709 731.8 0.97 

 

Table 79 shows the results for the different GOF measures for MV driveway-related SPF 

models. The table reports the values for the calibration factor, SE of the factor, MAD, MSPE, 

modified R2, dispersion parameter, and the percentage of the CURE plot that lies beyond the 

95 percent CI. 

Table 79. GOF Measures for MV Driveway-Related Collisions. 
Segment 

Type C 

SE of 

C MAD MSPE Modified R2 

Dispersion 

Parameter CV 

Exceeding 

95% CI 

U2U 1.77 0.87 1.25 7.4 0.18 3.75 0.49 0% 

U3T 1.25 0.32 0.99 2.66 0.31 1.45 0.25 42% 

U4D 2.17 0.66 1.1 3.63 0.28 2.12 0.3 14% 

U4U 1.08 0.27 3.06 34.7 0.65 1.48 0.25 0% 

U5T 0.97 0.17 3.68 35.36 0.48 1.18 0.18 2% 

 

Vehicle-Pedestrian Collisions 

The number of vehicle-pedestrian crashes per year for a roadway segment is estimated by the 

following equation: 

 𝑛𝑝𝑒𝑑𝑟 = 𝑛𝑏𝑟 × 𝑓𝑝𝑒𝑑𝑟 (59) 

where: 

𝑛𝑏𝑟 = predicted average crash frequency of an individual roadway segment (excluding vehicle-

pedestrian and vehicle-bicycle collisions). 

𝑛𝑝𝑒𝑑𝑟 = predicted average crash frequency of vehicle-pedestrian collisions for a roadway segment. 

𝑓𝑝𝑒𝑑𝑟 = pedestrian crash adjustment factor. 

The pedestrian crash adjustment factor is estimated by dividing the vehicle-pedestrian crashes by 

the total segment crashes (excluding vehicle-pedestrian and vehicle-bicycle collisions) for each 

segment type as follows: 
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 𝑓𝑝𝑒𝑑𝑟 =
𝑁𝑝𝑒𝑑𝑟

𝑁𝑏𝑟
 (60) 

where: 

𝑁𝑝𝑒𝑑𝑟 = crash frequency of vehicle-pedestrian collisions for all segments combined. 

𝑁𝑏𝑟 = total crash frequency of all segments combined (excluding vehicle-pedestrian and vehicle-

bicycle collisions). 

Table 80 presents the values of fpedr. All vehicle-pedestrian collisions are considered FI crashes.  

Table 80. Pedestrian Crash Adjustment Factor for Urban Arterials. 

Road 

Type 

Pedestrian Crash Adjustment Factor (fpedr) 

Posted Speed 30 mph or Lower Posted Speed Greater Than 30 mph 

Total Pedestrian 

Crashes 

Total MV and 

SV Crashesa 
𝒇𝒑𝒆𝒅𝒓 

Total Pedestrian 

Crashes 

Total MV and 

SV Crashesa 
𝒇𝒑𝒆𝒅𝒓 

U2U 5 465 0.011 0 35 0.000 

U3T 6 302 0.020 2 49 0.041 

U4D 17 1485 0.011 0 32 0.000 

U4U 24 1291 0.019 1 187 0.005 

U5T 24 1242 0.019 0 31 0.000 

a Excludes pedestrian and bicycle crashes.  

Vehicle-Bicycle Collisions 

The number of vehicle-bicycle collisions per year for a roadway segment is estimated as follows: 

 𝑛𝑏𝑖𝑘𝑒𝑟 = 𝑛𝑏𝑟 × 𝑓𝑏𝑖𝑘𝑒𝑟 (61) 

where: 

𝑛𝑏𝑟 = predicted average crash frequency of a segments (excluding vehicle-pedestrian and vehicle-

bicycle collisions). 

𝑛𝑏𝑖𝑘𝑒𝑟 = predicted average crash frequency of vehicle-bicycle collisions of a segment. 

𝑓𝑏𝑖𝑘𝑒𝑟 = bicycle crash adjustment factor. 

The bicycle crash adjustment factor is estimated by dividing the vehicle-bicycle crashes by the 

total crashes for each segment type, excluding vehicle-pedestrian and vehicle-bicycle collisions, 

as follows: 

 𝑓𝑏𝑖𝑘𝑒𝑟 =
𝑁𝑏𝑖𝑘𝑒𝑟

𝑁𝑏𝑟
 (62) 

where: 

𝑁𝑏𝑟 = crash frequency of all roadway segments combined (excluding vehicle-pedestrian and 

vehicle-bicycle collisions). 

𝑁𝑏𝑖𝑘𝑒𝑟 = crash frequency of vehicle-bicycle collisions of all segments combined. 
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Table 81 presents the values of 𝑓𝑏𝑖𝑘𝑒𝑟. All vehicle-bicycle collisions are considered FI crashes.  

Table 81. Bicycle Crash Adjustment Factor for Urban Arterials. 

Road 

Type 

Bicycle Crash Adjustment Factor (fbiker) 

Posted Speed 30 mph or Lower Posted Speed Greater Than 30 mph 

Total Bicycle 

Crashes 

Total MV and 

SV Crashesa 
𝒇𝒑𝒆𝒅𝒓 

Total Bicycle 

Crashes 

Total MV and 

SV Crashesa 
𝒇𝒑𝒆𝒅𝒓 

U2U 1 465 0.002 0 35 0.000 

U3T 0 302 0.000 0 49 0.000 

U4D 3 1485 0.002 0 32 0.000 

U4U 5 1291 0.004 2 187 0.011 

U5T 4 1242 0.003 2 31 0.065 
a Excludes pedestrian and bicycle crashes.  

Intersections 

Figure 77 shows the comparison of MV crash trends for 3ST intersections on urban arterials 

predicted by the HSM-calibrated SPF and the Texas SPF. Given that there is no difference in 

crash trends, researchers recommend using the HSM-calibrated SPF. The recommended SPF for 

predicted average MV crash frequency at 3ST intersections is as follows: 

 𝑁𝑠𝑝𝑓,3𝑆𝑇,𝑚𝑣 = 𝑒−14.159𝐴𝐴𝐷𝑇𝑚𝑎𝑗
1.11𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.41 (63) 

 
Figure 77. MV Crash Trends for 3ST Intersections on Urban Arterials. 

The value of the overdispersion parameter associated with the recommended SPF for MV 

crashes on 3ST intersections is 5.56. 

A reliable SPF for SV crashes at 3ST intersections on urban arterials could not be developed 

using Texas data due to the small sample size. Researchers recommend using the HSM-
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calibrated SPF. The recommended SPF for predicted average crash frequency for SV crashes at 

3ST intersections is the following: 

 𝑁𝑠𝑝𝑓,3𝑆𝑇,𝑠𝑣 = 𝑒−8.643𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.16𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.51 (64) 

The value of the overdispersion parameter associated with the recommended SPF for SV crashes 

at 3ST intersections is 7.57. 

Figure 78 shows the comparison of MV crash trends for 4ST intersections on urban arterials 

predicted by the HSM-calibrated SPF and the Texas SPF. Given that there is a significant 

difference in crash trends, researchers recommend using the Texas SPF. The recommended SPF 

for predicted average MV crash frequency for 3ST intersections is as follows: 

 𝑁𝑠𝑝𝑓,4𝑆𝑇,𝑚𝑣 = 𝑒−18.091𝐴𝐴𝐷𝑇𝑚𝑎𝑗
1.168𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.336 (65) 

 
Figure 78. MV Crash Trends for 4ST Intersections on Urban Arterials. 

The value of the overdispersion parameter associated with the recommended SPF for MV 

crashes at 3ST intersections is 3.82. 

A reliable SPF for SV crashes at 4ST intersections on urban arterials could not be developed 

using Texas data due to the small sample size. Researchers recommend using the HSM-

calibrated SPF. The recommended SPF for predicted average SV crash frequency for 4ST 

intersections is the following: 

 𝑁𝑠𝑝𝑓,4𝑆𝑇,𝑠𝑣 = 𝑒−6.80𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.33𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.12 (66) 

The value of the overdispersion parameter associated with the recommended SPF for SV crashes 

at 4ST intersections is 2.55. 
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A reliable SPF for MV and SV crashes at 3SG intersections on urban arterials could not be 

developed using Texas data due to the small sample size. Researchers recommend using the 

HSM-calibrated SPFs. The recommended SPF for predicted average MV crash frequency at 3SG 

intersections is as follows: 

 𝑁𝑠𝑝𝑓,3𝑆𝐺,𝑚𝑣 = 𝑒−12.247𝐴𝐴𝐷𝑇𝑚𝑎𝑗
1.11𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.26 (67) 

The value of the overdispersion parameter associated with the recommended MV crash SPF for 

3SG intersections is 4.34. 

Equation 68 shows the recommended SPF for predicted average SV crash frequency for 3SG 

intersections: 

 𝑁𝑠𝑝𝑓,3𝑆𝐺,𝑠𝑣 = 𝑒−8.99𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.42𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.40 (68) 

The value of the overdispersion parameter associated with the recommended SV crash SPF for 

3SG intersections is 2.98. 

Figure 79 shows the comparison of MV crash trends for 4SG intersections on urban arterials 

predicted by the HSM-calibrated SPF and the Texas SPF. Given that there is no significant 

difference in crash trends, researchers recommend using the HSM-calibrated SPF. The 

recommended SPF for predicted average MV crash frequency for 4SG intersections is as 

follows: 

 𝑁𝑠𝑝𝑓,4𝑆𝐺,𝑚𝑣 = 𝑒−10.825𝐴𝐴𝐷𝑇𝑚𝑎𝑗
1.07𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.23 (69) 

 
Figure 79. MV Crash Trends for 4SG Intersections on Urban Arterials. 

The value of the overdispersion parameter associated with the recommended MV crash SPF for 

4SG intersections is 3.43. 
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A reliable SPF for SV crashes at 4SG intersections on urban arterials could not be developed 

using Texas data due to the small sample size. Researchers recommend using the HSM-

calibrated SPF. The recommended SPF for predicted average SV crash frequency for 4SG 

intersections is the following: 

 𝑁𝑠𝑝𝑓,4𝑆𝐺,𝑠𝑣 = 𝑒−10.011𝐴𝐴𝐷𝑇𝑚𝑎𝑗
0.68𝐴𝐴𝐷𝑇𝑚𝑖𝑛

0.27 (70) 

The value of the overdispersion parameter associated with the recommended SV crash SPF for 

4SG intersections is 1.77. 

Table 82 and Table 83 provide the proportions developed using Texas data for crash severity for 

MV and SV crashes, respectively. Table 84 and Table 85 provide the proportions for collision 

type by crash severity level for MV and SV crashes, respectively. These tables may be used to 

separate the crash frequencies from Equations 63 to 70 into components by crash severity level 

and collision type.  

Table 82. Distribution for MV Crash Severity Level—Urban Intersections. 

Crash Severity Level 

Percentage of Total MV Crashes 

Three-Leg 

Stop-Controlled 

Intersections 

Four-Leg 

Stop-Controlled 

Intersections 

Three-Leg 

Signalized 

Intersections 

Four-Leg 

Signalized 

Intersections 

Fatal 0.1 0.1 0.1 0.1 

Incapacitating Injury 1.9 1.3 1.6 1.5 

Nonincapacitating Injury 10.3 9.8 8.8 9.5 

Possible Injury 22.3 19.8 23.1 21.5 

Total Fatal Plus Injury 34.6 31.1 33.7 32.5 

Property Damage Only 65.4 68.9 66.3 67.5 

Total 100 100 100 100 

Table 83. Distribution for SV Crash Severity Level—Urban Intersections. 

Crash Severity Level 

Percentage of Total SV Crashes 

Three-Leg 

Stop-Controlled 

Intersections 

Four-Leg 

Stop-Controlled 

Intersections 

Three-Leg 

Signalized 

Intersections 

Four-Leg 

Signalized 

Intersections 

Fatal 1.0 1.5 1.0 1.0 

Incapacitating Injury 3.8 9.0 3.1 7.7 

Nonincapacitating Injury 18.1 9.0 10.4 19.6 

Possible Injury 8.6 14.9 16.7 21.7 

Total Fatal Plus Injury 31.4 34.3 31.3 50.0 

Property Damage Only 68.6 65.7 68.8 50.0 

Total 100 100 100 100 
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Table 84. Distribution for Collision Type of MV Crashes—Urban Intersections. 

Collision Type 

Percentage of Crashes by Collision Type and Crash Severity Level 

3ST 3SG 4ST 4SG 

FI PDO FI PDO FI PDO FI PDO 

Rear-End 5.4 5.7 6.9 7.7 2.9 5.5 4.6 7.0 

Head-On 0.8 0.0 0.6 0.2 0.4 0.9 0.1 0.1 

Angle 56.8 55.4 22.8 22.6 67.6 59.3 32.2 21.4 

Sideswipe 1.2 3.7 1.2 2.8 1.3 3.8 1.1 4.9 

Other 35.9 35.2 68.4 66.6 27.7 30.5 62.0 66.7 

 

Table 85. Distribution for Collision Type of SV Crashes—Urban Intersections. 

Collision Type 

Percentage of Crashes by Collision Type and Crash Severity Level 

3ST 3SG 4ST 4SG 

FI PDO FI PDO FI PDO FI PDO 

Collision with parked vehicle 2.9 12.2 0.0 1.5 8.0 6.4 0.0 0.7 

Collision with animal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 

Collision with fixed object 41.2 73.2 56.7 83.6 36.0 78.7 33.6 81.3 

Collision with other object 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.7 

Other single-vehicle collision 55.9 13.4 43.3 14.9 56.0 14.9 66.4 16.0 

 

Vehicle-Pedestrian Collisions 

The HSM provides a model to estimate the number of vehicle-pedestrian crashes at signalized 

intersections (i.e., 3SG and 4SG), which is described using Equations 71 and 72 (Equations 12–

28 and 12–29, respectively, in the HSM). 

 𝑁𝑝𝑒𝑑𝑖 = 𝑁𝑝𝑒𝑑𝑏𝑎𝑠𝑒 × 𝐶𝑀𝐹1𝑝 × 𝐶𝑀𝐹2𝑝 × 𝐶𝑀𝐹3𝑝 (71) 

 𝑁𝑝𝑒𝑑𝑏𝑎𝑠𝑒 = exp(𝑎 + 𝑏 × ln(𝐴𝐴𝐷𝑇𝑡𝑜𝑡𝑎𝑙) + 𝑐 × ln (
𝐴𝐴𝐷𝑇𝑚𝑖𝑛

𝐴𝐴𝐷𝑇𝑚𝑎𝑗
) + 𝑑 × ln(𝑃𝑒𝑑𝑉𝑜𝑙) + 𝑒 × 𝑛𝑙𝑎𝑛𝑒𝑠𝑥) 

  (72) 

where: 

Npedbase = predicted number of vehicle-pedestrian collisions per year for base conditions at 

signalized intersections. 

AADTtotal = sum of the average daily volumes (veh/day) for the major and minor roads (= AADTmaj 

+ AADTmin). 

PedVol = sum of daily pedestrian volumes (ped/day) crossing all intersection legs. 

nlanesx =  maximum number of traffic lanes crossed by a pedestrian in any crossing maneuver 

at the intersection considering the presence of refuge islands.  

CMF1p = CMF for bus stops (HSM Table 12-28). 

CMF2p = CMF for schools (HSM Table 12-29). 
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CMF3p  = CMF for alcohol sales establishment (HSM Table 12-30). 

a, b, c, d, e = regression coefficients (HSM Table 12-14). 

In NCHRP 17-58 (Lord et al., 2016), the HSM model for vehicle-pedestrian crashes at urban 

signalized intersections is applicable to Texas intersections as well. The calibration factor was 

found to be 0.51. The recommended SPF for predicted vehicle-pedestrian average crash 

frequency for 3SG intersections is the following: 

 𝑁𝑝𝑒𝑑𝑏𝑎𝑠𝑒 = exp(−7.27 + 0.05 × ln(𝐴𝐴𝐷𝑇𝑡𝑜𝑡𝑎𝑙) + 0.24 × ln (
𝐴𝐴𝐷𝑇𝑚𝑖𝑛

𝐴𝐴𝐷𝑇𝑚𝑎𝑗
) + 0.41 ×

ln(𝑃𝑒𝑑𝑉𝑜𝑙) + 0.09 × 𝑛𝑙𝑎𝑛𝑒𝑠𝑥)  (73) 

The value of the overdispersion parameter associated with the recommended SPF for 3SG 

intersections is 0.52. 

The recommended SPF for predicted vehicle-pedestrian average crash frequency for 4SG 

intersections is as follows: 

 𝑁𝑝𝑒𝑑𝑏𝑎𝑠𝑒 = exp(−10.20 + 0.40 × ln(𝐴𝐴𝐷𝑇𝑡𝑜𝑡𝑎𝑙) + 0.26 × ln (
𝐴𝐴𝐷𝑇𝑚𝑖𝑛

𝐴𝐴𝐷𝑇𝑚𝑎𝑗
) + 0.45 ×

ln(𝑃𝑒𝑑𝑉𝑜𝑙) + 0.04 × 𝑛𝑙𝑎𝑛𝑒𝑠𝑥)  (74) 

The value of the overdispersion parameter associated with the recommended SPF for 4SG 

intersections is 0.24. 

For 3ST and 4ST, the number of vehicle-pedestrian collisions per year for an intersection is 

estimated using Equation 75. The pedestrian crash adjustment factor is estimated by dividing the 

vehicle-pedestrian crashes by the total intersection crashes (excluding vehicle-pedestrian and 

vehicle-bicycle collisions) for each intersection type: 

 𝑛𝑝𝑒𝑑𝑖 = 𝑛𝑏𝑖 × 𝑓𝑝𝑒𝑑𝑖 (75) 

where: 

𝑛𝑏𝑖 = predicted average crash frequency of an individual intersection (excluding vehicle-pedestrian 

and vehicle-bicycle collisions). 

𝑛𝑝𝑒𝑑𝑖= predicted average crash frequency of vehicle-pedestrian collisions for an intersection. 

𝑓𝑝𝑒𝑑𝑖 = pedestrian crash adjustment factor. 
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The adjustment factors are developed as follows: 

 𝑓𝑝𝑒𝑑𝑖 =
𝑁𝑝𝑒𝑑𝑖

𝑁𝑏𝑖
 (76) 

where: 

𝑁𝑝𝑒𝑑𝑖 = crash frequency of vehicle-pedestrian collisions for all intersections combined. 

𝑁𝑏𝑖 = crash frequency of all intersections combined (excluding vehicle-pedestrian and vehicle-

bicycle collisions). 

Table 86 presents the values of 𝑓𝑝𝑒𝑑𝑖. All vehicle-pedestrian collisions are considered FI crashes.  

Table 86. Pedestrian Crash Adjustment Factors for Urban Intersections. 

Intersection Type Total Pedestrian Crashes Total MV and SV Crashesa 
𝒇𝒑𝒆𝒅𝒊 

 

3ST 8 836 0.010 

4ST 10 820 0.012 
a Excludes pedestrian and bicycle crashes. 

Vehicle-Bicycle Collisions 

The number of vehicle-bicycle collisions per year for an intersection is estimated by the 

following equation: 

 𝑛𝑏𝑖𝑘𝑒𝑖 = 𝑛𝑏𝑖 × 𝑓𝑏𝑖𝑘𝑒𝑖 (77) 

where: 

𝑛𝑏𝑖 = predicted average crash frequency of all intersections combined (excluding vehicle-

pedestrian and vehicle-bicycle collisions). 

𝑛𝑏𝑖𝑘𝑒𝑖= predicted average crash frequency of vehicle-bicycle collisions of all intersections 

combined. 

𝑓𝑏𝑖𝑘𝑒𝑖 = bicycle crash adjustment factor. 

The bicycle crash adjustment factor is estimated by dividing the vehicle-bicycle crashes by the 

total intersection crashes for each intersection type.  

The adjustment factors are developed as follows: 

 𝑓𝑏𝑖𝑘𝑒𝑖 =
𝑁𝑏𝑖𝑘𝑒𝑖

𝑁𝑏𝑖
 (78) 

where: 

𝑁𝑏𝑖𝑘𝑒𝑖 = crash frequency of vehicle-bicycle collisions for all intersections combined. 

𝑁𝑏𝑖 = crash frequency of all intersection combined (excluding vehicle-pedestrian and vehicle-

bicycle collisions). 
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Table 87 presents the values of 𝑓𝑏𝑖𝑘𝑒𝑖. All vehicle-bicycle collisions are considered FI crashes.  

Table 87. Bicycle Crash Adjustment Factors for Urban Intersections. 
Intersection  

Type 

Total Bicycle  

Crashes 

Total MV and SV 

Crashesa 

𝒇𝒃𝒊𝒌𝒆𝒊 
 

3ST 9 836 0.010 

3SG 5 1540 0.006 

4ST 3 820 0.012 

4SG 41 5439 0.010 
a Excludes pedestrian and bicycle crashes. 

REGION-SPECIFIC AND TEMPORAL CALIBRATION 

Given the large size of Texas, different regions may experience different numbers of crashes, 

which can be attributed to differences in terrain, population, weather, and other unobserved 

characteristics. Consequently, it can impact the calibration procedure and the calibration factor 

when it is used for the whole state. Researchers developed calibration factors by distinct regions 

for each facility type. Figure 80 shows the calibration factors by region for urban four-lane 

divided arterials, as an example. In almost all cases, the east region has the highest crash rate. 

 
Figure 80. Region-Specific Calibration Factors for Urban Four-Lane Divided Arterials. 
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An adjustment factor is then developed by dividing the region-specific factor with the statewide 

factor as follows: 

 𝑓𝑟 =
𝐶𝑟

𝐶𝑠
 (79) 

where: 

𝑓𝑟 = adjustment factor for region r. 

𝐶𝑟 = calibration factor developed using data from region r. 

𝐶𝑠 = calibration factor developed using statewide data. 

Table 88 presents the region-specific adjustment factors for non-freeway facilities that can be 

used in conjunction with the statewide calibration factor for estimating crashes by region. These 

adjustment factors are applicable to both segments and intersections.  

Table 88. Calibration Adjustment Factors for Non-freeway Facilities. 

Region District Numbers 
Facility Type 

R2U R4D R4U U2U U3T U4D U4U U5T 

North 1, 2, 3, 9, 10, 18, 19, 23 1.10 0.91 0.89 0.91 1.02 0.82 0.80 0.68 

South 13, 14, 15, 16, 21, 22 0.60 1.11 1.03 1.05 0.83 0.91 0.86 0.80 

East 11, 12, 17, 20 1.20 1.01 1.23 0.82 1.46 1.42 0.85 1.63 

West 4, 5, 6, 7, 8, 24, 25 0.94 0.90 0.71 1.19 1.00 1.41 1.59 1.00 

Table 89 presents the region-specific adjustment factors for freeway main lane segments that can 

be used in conjunction with the statewide calibration factor to estimate crashes by region.  

Table 89. Calibration Adjustment Factors for Freeway Facilities. 

Region District Numbers 
Collision Type/Severity 

SV FI SV PDO MV FI MV PDO 

North 1, 2, 3, 9, 10, 18, 19, 23 1.00 1.18 0.83 1.07 

South 13, 14, 15, 16, 21, 22 0.82 0.67 0.82 0.62 

East 11, 12, 17, 20 1.33 1.10 1.57 1.84 

West 4, 5, 6, 7, 8, 24, 25 0.72 1.03 1.08 1.68 

 

Temporal Calibration Factors 

It is possible that the calibration factors developed in the current period may not necessarily be 

applicable in future years due to the temporal change in traffic safety. To identify when 

recalibration is needed, Shirazi et al. (2017) developed a procedure that can assist agencies in 

making a decision. To use the procedure, the agency should secure these three variables 

periodically: (1) total number of crashes, (2) the average ADT or AADT (or the average traffic 

flow on major and minor streets in case of intersections), and (3) total segment length (or the 
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total number of intersections). The following steps are used to decide when to calibrate for 

segment models (similar guidelines for intersection models can be used as well). 

• Step 1. Find the total number of crashes (𝑁𝑜𝑏𝑠
𝑇 ) and the total segment length (𝐿𝑇) on the 

network facility.  

• Step 2. Find the average ADT (𝐴𝐷𝑇̅̅ ̅̅ ̅̅ ) (or AADT) on the facility. Note that if the average 

ADT is not available to the agency on all sites, it is advised to randomly collect ADT for 

a limited number of sites that provide the overall representation of the network to find the 

mean value of the ADT.  

• Step 3. Consider the base SPF model (i.e., the model without CMFs). Let 𝑏0 and 𝑏1 

denote the intercept and the coefficient of ADT, respectively. Estimate the approximate 

average predicted number of crashes (�̃�𝑝𝑟𝑒) using the following functional formula: 

 �̃�𝑝𝑟𝑒 = 𝑒𝑏0+𝑏1×ln(𝐴𝐷𝑇̅̅ ̅̅ ̅̅ ) (80) 

• Step 4. Find �̃� (calibration proxy)using the following equation: 

 �̃� =
𝑁𝑜𝑏𝑠
𝑇

�̃�𝑝𝑟𝑒×𝐿𝑇
 (81) 

• Step 5. Find the variable �̃� as follows: 

 �̃� =
|�̃�−�̃�𝑅𝐸𝐹|

�̃�𝑅𝐸𝐹
× 100 (82) 

where: 

�̃�𝑅𝐸𝐹 = the �̃� that was calculated in the reference year. The reference year is the latest or most 

recent year that the model was calibrated. 

• Step 6. If �̃� > 10%, the model needs to be recalibrated; calibrate the model and set the 

current �̃� as the new �̃�𝑅𝐸𝐹. Otherwise, keep the current �̃�𝑅𝐸𝐹 and use the calibration 

factor that was estimated in the reference year.  

SAFETY PERFORMANCE FUNCTIONS 

Researchers developed new safety prediction models for frontage road and ramp segments. The 

HSM does not contain the SPFs for frontage roads, and ramps in Texas usually connect the 

freeway mainline to the adjacent frontage road rather than a ramp terminal that connects directly to 

the perpendicular road, as is typical in the states used for developing the SPFs in the HSM..  

Frontage Roads 

The predictive model calibration process consisted of simultaneous calibration of multi-vehicle 

and single-vehicle crash models and CMFs using an aggregate model. The simultaneous 

calibration approach was needed because several CMFs are common to multi-vehicle and single-

vehicle crash models. The database assembled for calibration included two replications of the 
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original database. The dependent variable in the first replication was set equal to multiple-vehicle 

crash count. The dependent variable in the second replication was set equal to single-vehicle 

crash count. Then, the predicted average crash frequency in the managed lanes of a freeway can 

be calculated as follows: 

 𝑁𝑗 = (𝑁𝑠𝑣𝐼𝑠𝑣 + 𝑁𝑚𝑣𝐼𝑚𝑣) (83) 

where: 

Nj = predicted annual crash frequency for crash type j (single-vehicle or multiple-vehicle). 

Nsv = predicted annual single-vehicle crash frequency for configuration i. 

Isv = indicator variable for single-vehicle crashes and configuration i (= 1.0 for single-vehicle crash 

data, 0.0 otherwise). 

Nmv = predicted annual multiple-vehicle crash frequency for configuration i. 

Imv = indicator variable for multiple-vehicle crashes and configuration i (= 1.0 for multiple-vehicle 

crash data, 0.0 otherwise). 

For one-way frontage roads, the predicted annual single- and multi-vehicle crash frequencies are 

calculated as follows: 

 𝑁𝑗 = (𝑁𝑠𝑣𝐼𝑠𝑣 + 𝑁𝑚𝑣𝐼𝑚𝑣)𝐶𝑀𝐹𝑟𝑢𝑟𝐶𝑀𝐹𝑙𝑠𝑤𝐶𝑀𝐹𝑟𝑠𝑤 (84) 

 𝑁𝑠𝑣 = 𝑁𝑠𝑝𝑓,𝑠𝑣𝐶𝑀𝐹𝑝𝑠𝑙 (85) 

 𝑁𝑚𝑣 = 𝑁𝑠𝑝𝑓,𝑚𝑣𝐶𝑀𝐹𝑑𝑤𝐶𝑀𝐹𝑖𝑛𝑡𝐶𝑀𝐹𝑒𝑛𝑡 (86) 

with: 

 𝑁𝑠𝑝𝑓,𝑠𝑣 = 𝐿𝑒𝑏𝑠𝑣,0+𝑏𝑠𝑣,1 ln(𝐴𝐴𝐷𝑇) (87) 

 𝑁𝑠𝑝𝑓,𝑚𝑣 = 𝐿𝑒𝑏𝑚𝑣,0+𝑏𝑚𝑣,1 ln(𝐴𝐴𝐷𝑇) (88) 

 𝐶𝑀𝐹𝑟𝑢𝑟 = 𝑒𝑏𝑟𝑢𝑟𝐼𝑟𝑢𝑟 (89) 

 𝐶𝑀𝐹𝑙𝑠𝑤 = 𝑒𝑏𝑙𝑠𝑤(𝑊𝑙𝑠𝑤−2) (90) 

 𝐶𝑀𝐹𝑟𝑠𝑤 = 𝑒𝑏𝑟𝑠𝑤(𝑊𝑟𝑠𝑤−4) (91) 

 𝐶𝑀𝐹𝑝𝑠𝑙 = 𝑒𝑏𝑝𝑠𝑙(𝑃𝑆𝐿−45) (92) 

 𝐶𝑀𝐹𝑖𝑛𝑡 = 𝑒(𝑏𝑖𝑛𝑡[𝑛𝑖𝑛𝑡 𝐿⁄ ]) (93) 

 𝐶𝑀𝐹𝑑𝑤 = 𝑒(𝑏𝑑𝑤[𝑛𝑑𝑤 𝐿⁄ ]) (94) 

 𝐶𝑀𝐹𝑒𝑛𝑡 = 𝑒(𝑏𝑒𝑛𝑡[𝑛𝑒𝑛𝑡 𝐿⁄ ]) (95) 
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where: 

Nspf,sv = base predicted annual single-vehicle crash frequency, cr/yr. 

Nspf,mv = base predicted annual multiple-vehicle crash frequency, cr/yr. 

CMFrur = rural area CMF. 

CMFlsw = left shoulder width CMF. 

CMFrsw = right shoulder width CMF. 

CMFpsl = posted speed limit CMF. 

CMFint = number of minor intersections CMF. 

CMFdw = number of driveways CMF. 

CMFent = number of entrance ramps CMF. 

L = segment length, mi. 

AADT = annual average daily traffic on the frontage road, veh/day. 

Irur = indicator variable for the rural area (= 1 if rural; = 0 otherwise). 

Wlsw = left shoulder width, ft. 

Wrsw = right shoulder width, ft. 

PSL = posted speed limit, mph. 

nint = number of minor intersections on the frontage road. 

ndw = number of driveways on the frontage road. 

nent = number of entrance ramps on the frontage road. 

bi = calibration coefficient for variable i. 

For two-way frontage roads, the predicted annual single- and multi-vehicle crash frequencies are 

calculated as follows: 

 𝑁𝑗 = (𝑁𝑠𝑣𝐼𝑠𝑣 + 𝑁𝑚𝑣𝐼𝑚𝑣)𝐶𝑀𝐹𝑟𝑢𝑟𝐶𝑀𝐹𝑠𝑤𝐶𝑀𝐹ℎ𝑐 (96) 

 𝑁𝑠𝑣 = 𝑁𝑠𝑝𝑓,𝑠𝑣 (97) 

 𝑁𝑚𝑣 = 𝑁𝑠𝑝𝑓,𝑚𝑣𝐶𝑀𝐹𝑑𝑤𝐶𝑀𝐹𝑖𝑛𝑡𝐶𝑀𝐹𝑒𝑛𝑡𝐶𝑀𝐹𝑒𝑥𝑡 (98) 

with: 

 𝐶𝑀𝐹ℎ𝑐 = 𝑒(𝑏ℎ𝑐[𝑛ℎ𝑐 𝐿⁄ ]) (99) 

 𝐶𝑀𝐹𝑒𝑛𝑡 = 𝑒(𝑏𝑒𝑥𝑡[𝑛𝑒𝑥𝑡 𝐿⁄ ]) (100) 

where: 

CMFhc = number of horizontal curves CMF. 

CMFent = number of exit ramps CMF. 

nhc = number of horizontal curves on the frontage road. 

next = number of exit ramps on the frontage road. 

Table 90 and Table 91 contain the calibrated coefficients for one-way and two-way frontage road 

segments, respectively. The SPF coefficients show that rural frontage roads experience fewer 

crashes than the urban frontage roads. Figure 81 shows this trend graphically. 
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Table 90. Calibrated Coefficients for One-Way Frontage Roads. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑠𝑣,0 Intercept, SV crashes −2.741 0.822 −3.34 0.0009 

𝑏𝑚𝑣,0 Intercept, MV crashes −6.024 0.987 −6.1 <.0001 

𝑏𝑠𝑣,1 AADT, SV crashes 0.227 0.100 2.26 0.024 

𝑏𝑚𝑣,1 AADT, MV crashes 0.644 0.117 5.53 <.0001 

𝑏𝑟𝑢𝑟 Rural area indicator −0.476 0.250 −1.9 0.0577 

𝑏𝑙𝑠𝑤  Left shoulder width −0.049 0.019 −2.64 0.0086 

𝑏𝑟𝑠𝑤 Right shoulder width −0.049 0.019 −2.64 0.0086 

𝑏𝑝𝑠𝑙 Posted speed limit  0.022 0.021 1.04 0.2996 

𝑏𝑑𝑤 Driveway density 0.021 0.008 2.64 0.0084 

𝑏𝑖𝑛𝑡 Minor intersection density 0.021 0.008 2.64 0.0084 

𝑏𝑒𝑛𝑡  Entrance ramp density 0.101 0.094 1.08 0.2822 

𝛿𝑠𝑣 Dispersion parameter, SV crashes 1.030 0.415 2.49 0.0132 

𝛿𝑚𝑣 Dispersion parameter, MV crashes 1.229 0.428 2.87 0.0042 

Table 91. Calibrated Coefficients for Two-Way Frontage Roads. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑠𝑣,0 Intercept, SV crashes −3.606 0.682 −5.29 <.0001 

𝑏𝑚𝑣,0 Intercept, MV crashes −5.627 0.859 −6.55 <.0001 

𝑏𝑠𝑣,1 AADT, SV crashes 0.274 0.097 2.84 0.0047 

𝑏𝑚𝑣,1 AADT, MV crashes 0.477 0.121 3.95 <.0001 

𝑏𝑟𝑢𝑟 Rural area indicator −0.720 0.248 −2.91 0.0037 

𝑏𝑠𝑤 Average shoulder width −0.110 0.052 −2.1 0.0356 

𝑏𝑝𝑠𝑙 Posted speed limit  0.016 0.013 1.21 0.2282 

𝑏𝑑𝑤 Driveway density 0.016 0.013 1.21 0.2282 

𝑏𝑖𝑛𝑡 Minor intersection density 0.255 0.102 2.5 0.0125 

𝑏𝑒𝑛𝑡  Entrance ramp density 0.095 0.056 1.69 0.0905 

𝑏𝑒𝑥𝑡  Exit ramp density 0.027 0.016 1.7 0.0904 

𝛿𝑠𝑣 Dispersion parameter, SV crashes 0.945 0.602 1.57 0.117 

𝛿𝑚𝑣 Dispersion parameter, MV crashes 0.689 0.612 1.13 0.2602 

 

Figure 81 shows the relationship between the number of single- and multi-vehicle crashes and 

traffic flow for frontage roads. In general, rural frontage roads experienced fewer crashes than 

urban frontage roads. In addition, one-way frontage roads experienced more crashes than two-

way frontage roads for similar conditions.  

  
a. Single-Vehicle Crashes b. Multi-Vehicle Crashes 

Figure 81. Graphical Form of the Frontage Road SPFs. 
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Figure 82 shows the comparison of the SPFs developed in this research project and the models 

developed by Lord and Bonneson (2007). Both studies show similar results for the two-way 

frontage roads. However, for one-way frontage roads, models developed in this research project 

predict slightly higher number of crashes than Lord and Bonneson (2007). The difference could 

be attributed to different set of base conditions and total number of variables considered in the 

models. 

 
Figure 82. Comparison of Total Crashes Estimated by Different Studies. 

 

Crash Modification Factors for Frontage Roads 

Several CMFs were calibrated in conjunction with the SPFs. They describe the relationship 

between various operational and geometric factors and crash frequency.  

Shoulder Width CMF 

The right shoulder width CMF of the one-way frontage roads is described using Equation 101:  

 𝐶𝑀𝐹𝑠𝑤 = 𝑒−0.049(𝑟𝑠𝑤−4) (101) 

The left shoulder width CMF of the one-way frontage roads is described using Equation 102:  

 𝐶𝑀𝐹𝑠𝑤 = 𝑒−0.049(𝑙𝑠𝑤−2) (102) 

The average shoulder width CMF of the two-way frontage roads is described using Equation 

103:  

 𝐶𝑀𝐹𝑠𝑤 = 𝑒−0.1102(𝑠𝑤−4) (103) 

The base condition for this CMF is a right shoulder width of 6 ft and a left shoulder width of 2 ft 

for one-way frontage roads. For two-way frontage roads, the average shoulder width at base 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 1000 2000 3000 4000 5000 6000 7000 8000

C
ra

sh
e

s 
p

e
r 

Y
e

ar
 p

e
r 

M
ile

Average Daily Traffic (veh/day)

0-7083

Lord and Bonneson, 2007

Two-way

One-way



 

144 

conditions is 2 ft. The width used in this CMF is an average for outside shoulders in both 

directions for two-way frontage roads. The shoulder width CMF developed in this study was 

compared against the CMF developed by Lord and Bonneson (2007) and is shown in Figure 83. 

The shoulder width has a more pronounced safety effect on two-way frontage roads than on one-

way frontage roads.  

 
Figure 83. CMF for Shoulder Width on Frontage Roads. 

 

Access Point Density CMF 

Two types of access points considered in this study are minor intersections and driveways. The 

minor intersection and driveway density CMFs for one-way frontage roads are described using 

Equation 104 and Equation 105:  

 𝐶𝑀𝐹𝑖𝑛𝑡 = 𝑒0.021([𝑛𝑖𝑛𝑡 𝐿⁄ ]) (104) 

 𝐶𝑀𝐹𝑑𝑤 = 𝑒0.021([𝑛𝑑𝑤 𝐿⁄ ]) (105) 

The minor intersection and driveway density CMFs for two-way frontage roads are described 

using Equation 106 and Equation 107:  

 𝐶𝑀𝐹𝑖𝑛𝑡 = 𝑒0.016([𝑛𝑖𝑛𝑡 𝐿⁄ ]) (106) 

 𝐶𝑀𝐹𝑑𝑤 = 𝑒0.016([𝑛𝑑𝑤 𝐿⁄ ]) (107) 

The base condition for this CMF is no minor intersections or driveways on the segment. This 

CMF is applicable to multi-vehicle crashes only. Figure 84 shows the access-point density CMF 

developed in this study. The access points have more pronounced safety effect on one-way 

frontage roads than on two-way frontage roads.  
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Figure 84. CMF for Access-Point Density on Frontage Roads. 

Ramp Presence CMF 

This CMF quantifies the effect of the presence of entrance or exit ramps on the frontage road. 

The entrance ramp density CMF on one-way frontage roads is described using Equation 108:  

 𝐶𝑀𝐹𝑒𝑛𝑡 = 𝑒(0.101[𝑛𝑒𝑛𝑡 𝐿⁄ ]) (108) 

The entrance ramp density CMF on two-way frontage roads is described using Equation 109:  

 𝐶𝑀𝐹𝑒𝑛𝑡 = 𝑒(0.255[𝑛𝑒𝑛𝑡 𝐿⁄ ]) (109) 

The exit ramp density CMF on two-way frontage roads is described using Equation 110:  

 𝐶𝑀𝐹𝑒𝑛𝑡 = 𝑒(0.095[𝑛𝑒𝑥𝑡 𝐿⁄ ]) (110) 

The base condition for this CMF is no entrance or exit ramps on the frontage road. The effect of 

exit ramp density on traffic crashes was not statistically significant for one-way frontage roads. 

Figure 85 shows the ramp presence density CMF on the frontage roads developed in this study. 
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Figure 85. CMF for Ramp Presence Density on Frontage Roads. 

Posted Speed Limit CMF 

This CMF quantifies the effect of speed on the one-way frontage road. The posted speed limit 

CMF on frontage roads is described using Equation 111:  

 𝐶𝑀𝐹𝑝𝑠𝑙 = 𝑒0.022(𝑃𝑆𝐿−45) (111) 

The base condition for this CMF is 45 mph. This CMF is applicable to single-vehicle crashes 

only and is not significant for two-way frontage roads. Figure 86 shows the posted speed limit 

CMF on one-way frontage roads developed in this study. 

 
Figure 86. CMF for Posted Speed Limit on One-Way Frontage Roads. 
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Horizontal Curve Density CMF 

This CMF quantifies the effect of horizontal curves on the frontage road. The horizontal curve 

density CMF on two-way frontage roads is described using Equation 112: 

 𝐶𝑀𝐹ℎ𝑐 = 𝑒(0.027[𝑛ℎ𝑐 𝐿⁄ ]) (112) 

The base condition for this CMF is no horizontal curves. The safety effect of horizontal curves 

on one-way frontage roads is not statistically significant. Figure 87 shows the horizontal curve 

density CMF on two-way frontage roads developed in this study. 

 
Figure 87. CMF for Horizontal Curves on Two-Way Frontage Roads. 

Ramps 

Researchers calibrated a model that can be used to predict the crashes on entrance or exit ramps 

in urban and rural areas. This model accounts for the safety effect of key geometric variables, 

including inside and outside shoulder width and horizontal curve and barrier presence.  

The predicted annual single- and multi-vehicle crash frequencies are calculated as follows: 

 𝑁𝑗 = (𝑁𝑠𝑣𝐼𝑠𝑣 + 𝑁𝑚𝑣𝐼𝑚𝑣)𝐶𝑀𝐹ℎ𝑐𝐶𝑀𝐹𝑙𝑠𝑤𝐶𝑀𝐹𝑟𝑠𝑤 (113) 

 𝑁𝑠𝑣 = 𝑁𝑠𝑝𝑓,𝑠𝑣𝐶𝑀𝐹𝑏𝑎𝑟 (114) 

 𝑁𝑚𝑣 = 𝑁𝑠𝑝𝑓,𝑚𝑣 (115) 

with: 

 𝑁𝑠𝑝𝑓,𝑠𝑣 = 𝐿𝑒𝑏𝑠𝑣,0+𝑏𝑠𝑣,1 ln(𝐴𝐴𝐷𝑇)+𝑏𝑒𝑛,𝑠𝑣(𝐼𝑒𝑛) (116) 

 𝑁𝑠𝑝𝑓,𝑚𝑣 = 𝐿𝑒𝑏𝑚𝑣,0+𝑏𝑚𝑣,1 ln(𝐴𝐴𝐷𝑇)+𝑏𝑒𝑛,𝑚𝑣(𝐼𝑒𝑛) (117) 
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 𝐶𝑀𝐹ℎ𝑐 = 𝑒(𝑏ℎ𝑐𝐼ℎ𝑐) (118) 

 𝐶𝑀𝐹𝑙𝑠𝑤 = 𝑒𝑏𝑙𝑠𝑤(𝑊𝑙𝑠𝑤−3) (119) 

 𝐶𝑀𝐹𝑟𝑠𝑤 = 𝑒𝑏𝑟𝑠𝑤(𝑊𝑟𝑠𝑤−5) (120) 

 𝐶𝑀𝐹𝑏𝑎𝑟 = (1 − 𝐼𝑏𝑎𝑟)1.0 + 𝐼𝑏𝑎𝑟𝑒
𝑏𝑏𝑎𝑟(1 𝑊𝑠𝑤⁄ ) (121) 

where: 

Nspf,sv = base predicted annual single-vehicle crash frequency, cr/yr. 

Nspf,mv = base predicted annual multiple-vehicle crash frequency, cr/yr. 

CMFhc = horizontal curve CMF. 

CMFlsw = left shoulder width CMF. 

CMFrsw = right shoulder width CMF. 

CMFbar  = roadside barrier CMF. 

L = ramp length, mi. 

AADT = annual average daily traffic on the ramp, veh/day. 

Ien = indicator variable for entrance ramp (= 1 if entrance ramp; = 0 otherwise). 

Ihc = indicator variable for presence of more than two horizontal curves on the ramp (= 1 if present; 

=0 otherwise). 

Wlsw = left shoulder width, ft. 

Wrsw = right shoulder width, ft. 

𝐼𝑏𝑎𝑟 = indicator variable for presence of roadside barrier (= 1 if present on any side; = 0 otherwise). 

Wsw = shoulder width on the side the barrier is present, ft. 

bi = calibration coefficient for variable i. 

Table 92 contain the calibrated coefficients for ramp segments. The SPF coefficients show that 

the entrance ramps experience fewer crashes than exit ramps. Figure 88 and Figure 89 show this 

trend graphically. 

Table 92. Calibrated Coefficients for Ramp Segments. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑠𝑣,0 Intercept, SV crashes −3.827 0.540 −7.08 <.0001 

𝑏𝑚𝑣,0 Intercept, MV crashes −9.803 1.036 −9.46 <.0001 

𝑏𝑠𝑣,1 AADT, SV crashes 0.364 0.078 4.65 <.0001 

𝑏𝑚𝑣,1 AADT, MV crashes 1.154 0.130 8.9 <.0001 

𝑏𝑒𝑛,𝑠𝑣 Entrance ramp indicator, SV crashes −1.550 0.307 −5.06 <.0001 

𝑏𝑒𝑛,𝑚𝑣  Entrance ramp indicator, MV crashes −0.803 0.309 −2.6 0.0095 

𝑏ℎ𝑐 Horizontal curve indicator 0.481 0.244 1.97 0.0486 

𝑏𝑙𝑠𝑤  Left shoulder width −0.045 0.031 −1.47 0.1427 

𝑏𝑟𝑠𝑤 Right shoulder width −0.045 0.031 −1.47 0.1427 

𝑏𝑏𝑎𝑟  Presence of roadside barrier  0.267 0.183 1.46 0.1443 

𝛿𝑠𝑣 Dispersion parameter, SV crashes 0.849 0.461 1.84 0.0658 

𝛿𝑚𝑣 Dispersion parameter, MV crashes 2.299 0.559 4.11 <.0001 

 

Figure 88 and Figure 89 also show the relationship between the number of single- and multi-

vehicle crashes and traffic flow by ramp type. In general, entrance ramps experienced fewer 
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crashes than the exit ramps. The number of crashes were compared against the crashes predicted 

by the HSM models for diagonal ramps. The comparison clearly shows that the HSM models 

cannot be used to predict crashes on ramps in Texas.  

  
a. Exit Ramp b. Entrance Ramp 

Figure 88. Single-Vehicle Crash SPF. 

  
a. Exit Ramp b. Entrance Ramp 

Figure 89. Multi-Vehicle Crash SPF. 

Figure 90 shows the comparison for total crashes of the SPFs developed in this research project, 

the HSM models, and the models developed in the TxDOT Project 0-4538 (Bonneson et al., 

2004). The models in the HSM and TxDOT Project 0-4538 are for ramps without frontage roads. 

The models developed in this study and the HSM models track closely to each other for exit 

ramps. However, for entrance ramps, the models from this study predict much fewer crashes than 

the other two studies. The difference can be attributed to a different set of base conditions and 

geometric design. 
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a. Exit Ramp b. Entrance Ramp 

Figure 90. Comparison of Total Crashes Estimated by Various Studies. 

Crash Modification Factors for Ramps 

Several CMFs were calibrated in conjunction with the SPFs. They describe the relationship 

between various operational and geometric factors and crash frequency.  

Horizontal Curve CMF 

The horizontal CMF is described by Equation 122: 

 𝐶𝑀𝐹ℎ𝑐 = 𝑒0.481(𝐼ℎ𝑐) (122) 

The base condition for this CMF is no horizontal curves on the segment. Figure 91 shows the 

horizontal curve CMF and is applicable to both single- and multi-vehicle crashes. It is very 

common for ramps to contain at least one horizontal curve. The results show that ramps with 

more than one horizontal curve experience about 60 percent more crashes than ramps with one 

horizontal curve or less. 

 
Figure 91. CMF for Horizontal Curves on Ramps. 
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Right Shoulder Width CMF 

The right shoulder width CMF is described using Equation 123:  

 𝐶𝑀𝐹𝑟𝑠𝑤 = 𝑒−0.045(𝑟𝑠𝑤−5) (123) 

The base condition for this CMF is a shoulder width of 5 ft. The right shoulder width CMF 

developed in this study was compared against the CMF presented in the HSM and is shown in 

Figure 92. This CMF is applicable to both single- and multi-vehicle crashes. 

 
Figure 92. CMF for Right Shoulder Width on Ramps. 

Left Shoulder Width CMF 

The left shoulder width CMF is described using Equation 124:  

 𝐶𝑀𝐹𝑠𝑤 = 𝑒−0.045(𝑙𝑠𝑤−3) (124) 

The base condition for this CMF is a shoulder width of 3 ft. The left shoulder width CMF 

developed in this study was compared against HSM CMFs and is shown in Figure 93. This CMF 

is applicable to both single- and multi-vehicle crashes. 
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Figure 93. CMF for Left Shoulder Width on Ramps. 

Barrier Presence CMF 

The barrier presence CMF is described using Equation 125:  

 𝐶𝑀𝐹𝑏𝑎𝑟 = (1 − 𝐼𝑏𝑎𝑟)1.0 + 𝐼𝑏𝑎𝑟𝑒
0.267(1 𝑊𝑠𝑤⁄ ) (125) 

The base condition for this CMF is no barrier on either side of the ramp segment. Figure 94 

shows the barrier presence CMF and is applicable to single-vehicle crashes only. The CMF 

shows that the single-vehicle crashes increase when the barrier is present. With an increase in the 

distance of the barrier from the traveled way, the single-vehicle crashes reduce. 

 
Figure 94. CMF for Roadside Barrier. 
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Table 93 presents the region-specific adjustment factors for frontage and ramp segments that can 

be used in conjunction with the calibrated SPFs for estimating crashes by region.  

Table 93. Calibration Adjustment Factors for Frontage and Ramp Segments. 

Region District Numbers Adjustment Factor 

North 1, 2, 3, 9, 10, 18, 19, 23 1.07 

South 13, 14, 15, 16, 21, 22 0.70 

East 11, 12, 17, 20 1.39 

West 4, 5, 6, 7, 8, 24, 25 0.96 
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CHAPTER 5: VALIDATION OF SAFETY PREDICTION METHOD 

This chapter presents the results of the accuracy tests of the safety prediction method developed 

in Chapter 4 on several Texas highways. The chapter is divided into two sections. The first 

section discusses the validation process and provides an example. The second section documents 

the validation results of the models at selected regions and districts. 

VALIDATION PROCESS 

This section discusses the methodology for validating the safety models, using U5T segments in 

the Austin District as an example. The sample has 98 segments, as shown in Table 94. The 

“Observed” column lists the number of observed crash counts on the segment, while the 

“Predicted” column shows the number of predicted crashes at the site using the calibrated SPF 

with the calibration factor estimated by the statewide data. 

Table 94. Sample of U5T Segments in Austin District. 

No Unique Identifier  Observed Predicted 

1 SH0016_0291-01_258.037_258.076 0 0.51 

2 SH0016_0291-01_257.996_258.037 0 0.53 

3 US0077_0211-07_236.041_236.084 1 0.57 

4 US0290_0114-07_174.163_174.208 1 0.89 

… … … … 

94 SH0071_0700-03_110.176_110.661 6 31.33 

95 FM1626_1539-01_4.898_6.115 0 40.48 

96 RM2244_2102-01_6.65_7.268 15 40.56 

97 SH0071_0700-03_113.018_114.566 24 57.60 

98 RM0620_0683-02_4.218_5.724 9 83.48 

 

The correlation coefficient between the observed and predicted average crash frequency is 0.40. 

Two error-based methods are used to analyze the GOF (Lord et al., 2021; Lyon et al., 2016): 

• The MAD, which calculates the absolute difference between the predicted number of 

crashes and observed number of crashes, is derived as shown in Equation 31.𝑀𝐴𝐷 =


1

𝑛
∑ |𝜇𝑖 − 𝑦𝑖|
𝑛
𝑖=1  (31 

• The RMSE, which calculates the square of difference between predicted and observed 

number of crashes, is calculated as follows: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝜇𝑖 − 𝑦𝑖)2
𝑛
𝑖=1  (126) 

where: 

yi = observed annual crash frequency for site i. 

𝜇𝑖 = predicted annual crash frequency for site i. 

n = number of sites. 
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Figure 95 shows the scatter plot between the observed and predicted crashes. As can be seen by 

examining the scatter plot and the correlation factor, the predicted crashes represent the overall 

trend of the observed crashes accurately.  

 
Figure 95. Scatter Plot between Observed and Predicted Crashes for U5T. 

In addition, researchers also estimated the crashes by using the calibrated SPFs adjusted to 

region-specific factors. The prediction was then compared with the observed crash frequency. 

The MAD and RMSE for the sample data were found to be 5.97 and 11.61, respectively. Both 

are smaller than that derived by using the statewide factor, indicating that the region-specific 

calibration factor improves the prediction accuracy. (Please note that applying the region-specific 

calibration factor does not affect the correlation coefficient or the pattern of the scatter plot.) 

VALIDATION RESULTS FOR SELECTED DISTRICTS 

After performing the validation process documented above, researchers conducted the tests for 

selected regions and districts. Only the regions that have around 50 crashes or more for a 

particular facility type were considered.  

Table 95 lists the validation results. The correlation coefficients in Table 95 show that overall, 

the calibrated safety models accurately estimate the crash frequency. The correlation coefficient 

of the selected cases ranged from 0.40 to 0.97. Sixteen out of 21 cases (76 percent) have a 

correlation coefficient of 0.70 or higher. The MAD and RMSE results show that the calibrated 

model with the region-specific factor provides a better fit than the statewide factor in almost all 

cases. 

Table 95. Validation Results for Selected Districts. 

Facility Region District N a Crash b 
Calibration 

Factor 
Corr. c MAD RMSE 

R4D East Lufkin 16 156 
State 

0.90 
3.46 4.76 

Region 3.42 4.72 
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Facility Region District N a Crash b 
Calibration 

Factor 
Corr. c MAD RMSE 

South 
Corpus 

Christi 
16 89 

State 
0.89 

2.69 4.42 

Region 2.85 4.16 

R4U 

East Beaumont 12 88 
State 

0.97 
2.63 4.87 

Region 2.42 3.37 

North Atlanta 22 49 
State 

0.92 
1.07 1.69 

Region 1.07 1.86 

South Austin 29 129 
State 

0.77 
3.09 5.45 

Region 3.16 5.54 

U2U 

East Houston 17 107 
State 

0.71 
3.51 5.35 

Region 3.25 5.39 

South 
San 

Antonio 
24 90 

State 
0.40 

3.53 6.07 

Region 3.60 6.15 

West El Paso 11 77 
State 

0.95 
4.41 12.18 

Region 3.99 11.27 

U3T 

East Beaumont 37 107 
State 

0.75 
1.74 3.02 

Region 1.93 2.96 

North Tyler 58 90 
State 

0.97 
1.01 1.95 

Region 1.00 1.90 

South Austin 68 174 
State 

0.45 
2.07 4.07 

Region 1.87 3.92 

U4D 

East Houston 18 168 
State 

0.90 
3.67 5.59 

Region 3.39 4.56 

North Fort Worth 27 122 
State 

0.70 
3.69 6.85 

Region 3.30 5.66 

South Austin 20 279 
State 

0.76 
12.55 28.30 

Region 11.34 24.79 

South 
San 

Antonio 
35 189 

State 
0.75 

4.63 12.62 

Region 4.59 12.92 

U4U 

East Houston 17 266 
State 

0.71 
9.27 16.03 

Region 9.03 14.64 

South Pharr 24 138 
State 

0.58 
5.63 8.04 

Region 5.27 7.50 

South 
San 

Antonio 
20 232 

State 
0.89 

8.60 21.60 

Region 8.55 23.48 

West Amarillo 21 126 
State 

0.92 
4.57 11.50 

Region 4.64 9.37 

U5T 

East Beaumont 53 472 
State 

0.52 
6.64 10.10 

Region 7.46 11.07 

South Austin 98 801 
State 

0.40 
6.61 13.10 

Region 5.97 11.61 
a Sample size (i.e., number of sites); b Total number of observed crashes; c Correlation coefficient. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

SPFs are the predictive models that relate site crash frequency to traffic, geometric, and 

environmental characteristics. SDFs are used in conjunction with SPFs to predict crash 

frequency by severity. There are two options an agency can use to obtain SPFs: (1) develop a 

jurisdiction-specific model for the facility that is being analyzed, or (2) calibrate the existing 

models to the jurisdiction conditions. A jurisdiction must determine if the best option is to 

develop new SPFs or to calibrate existing SPFs for local conditions. Calibration is recommended 

to curtail data collection and processing costs. According to Srinivasan et al. (2013), the hours 

required for data collection and preparation for developing SPFs are three times the hours 

required for calibrating existing SPFs. Numerous states have conducted statistical analyses to 

develop local calibration factors for HSM models. Many of the local calibration factors are 

outside the range of 0.5–1.5, indicating that the HSM models overpredicted or underpredicted 

crash frequency in the state of interest by more than 50 percent. Some researchers have 

developed new SPFs for states instead of deriving local calibration factors.  

The researchers were first tasked with developing the calibration factors by calibrating HSM 

SPFs to Texas. Because the calibration requires that all variables in the SPF be known, any 

variables not readily available in the Texas databases (i.e., CRIS and RHiNo) must be collected 

manually, which can demand significant time and resources. Therefore, to plan activities and 

allocate resources, it is necessary to estimate the minimum sample size that would be required to 

successfully calibrate each SPF. Researchers reviewed the relevant literature and examined 

different approaches that have been proposed. After reviewing the relevant literature, the team 

determined calibration sample sizes based on the framework of an SPF as a statistical model and 

a set of sensible assumptions about the relevant parameters that influence the precision of a given 

sample size. Researchers then proceeded to develop a stratified simple random sample by 

including 10 percent more observations to account for any data loss, as is common in collection 

efforts. For this effort, the strata selected were the four TxDOT regions. 

For all roadway segments, the team used the TxDOT RHiNo database to develop the inventory. 

Since TxDOT Project 0-7067 (Enhancing Freeway Safety Prediction Models) dealt with urban 

freeways only, researchers assembled rural four-lane and six-lane freeway databases in this 

project. Unlike roadway segments, Texas does not have an inventory of intersections. 

Researchers used the HERE Traffic Analytics transportation network to develop the intersection 

layer for Texas. The team used various sources and obtained the area type, number of legs and 

lanes, traffic control, and highway design for about one-third of the intersections statewide. 

Following the labor-intensive process, researchers successfully created signalized and stop-

controlled intersections by number of legs for rural two-lane, rural multilane, and urban arterials.  

Based on the TxDOT RHiNo database, researchers also prepared four types of frontage road 

databases (R1W, R2W, U1W, and U2W). For ramps, researchers used the data provided by 

TxDOT and prepared the entrance and exit ramp databases by rural and urban areas. In Texas, all 

crashes on frontage roads and ramps are assigned to the centerline of the main roadway, and the 

precise location of the crash is unknown (left or right frontage road or ramp). To overcome this 

issue, researchers developed a procedure to assign the crash to an appropriate ramp or frontage 

road segment. With this procedure, researchers located about 70 percent of the relevant crashes. 
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For the remaining 574 frontage road and 499 ramp crash cases, the team manually checked the 

crash reports and primarily looked at the crash diagram in the crash report and compared it with 

the roadways on aerial photographs.  

The team developed the data collection protocol for every facility type and collected all the 

needed variables for the model calibration. Mainly, the team used Google Earth aerial 

photography and Google Street View to collect the required data.  

Researchers derived local calibration factors for the SPFs documented in HSM Chapters 10, 11, 

12, and 18 and used various GOF measures to assess the quality of the estimated calibration 

factors. The calibration results showed that the calibrated HSM SPFs predict the crashes in Texas 

accurately for most of the facilities. Although the GOF measures may show that the calibrated 

SPFs are accurate, sometimes the SPFs may not capture the crash trend due to differences in 

jurisdiction-specific factors. Researchers developed the Texas-specific SPFs with the same data 

that are used for developing calibration factors and for the same base conditions. The crash 

trends with these SPFs were compared with the crash trends obtained from the HSM-calibrated 

SPFs. In cases where the trends were similar, the team recommended the HSM-calibrated SPFs. 

Otherwise, Texas-specific SPFs were recommended. 

Researchers developed the calibration factors by region for all facility types. The regional factors 

are needed due to differences between different regions of the state. It is possible that different 

regions may experience different numbers of crashes. This phenomenon can be attributed to 

differences in terrain, population, weather, and other unobserved characteristics. Thus, regional 

variation can impact the calibration procedure and consequently the calibration factor when it is 

used for the whole state. Based on the region-specific and statewide factor, the team developed 

an adjustment factor that needs to be used in conjunction with the statewide factor to accurately 

estimate the crashes. 

Researchers validated the recommended safety prediction method by applying it to sites in 

different regions of the state. The validation showed that the safety models predict the crashes 

accurately on all facilities. It also showed that the region-specific factors provided better fit than 

statewide factors.  

Researchers also developed an analysis spreadsheet tool to help practitioners implement the new 

models to facilitate analysis of all rural and urban roadway segments and intersections. In 

particular, the tool will assist in estimating the average crash frequency at a particular site and in 

evaluating different cross-sectional alternatives. 



 

161 

REFERENCES 

AASHTO. (2010). Highway Safety Manual (American Association of State Highway and 

Transportation Officials, Ed.; 1st Edition). AASHTO. 

Abdel-Rahim, A., and Sipple, M. C. (2015). Calibration and development of safety performance 

functions for rural highway facilities in Idaho. FHWA-ID-15-225, University of Idaho, 

Moscow. 

Ahmed, M., and Chalise, R. (2018). Calibration of the Highway Safety Manual’s Safety 

Performance Functions for Rural Two-Lane Highways with Regional Considerations for 

the Rocky Mountains and Plain Regions. MPC-18-344, University of Wyoming, Laramie. 

Ahmed, M. M., Gaweesh, S., Hossain, M. J., Sharmin, S., Peel, T., and Consortium, M. P. 

(2019). Highway Safety Manual Part D: Validation and Application in Wyoming. Mountain 

Plains Consortium. 

Alluri, P., and Ogle, J. (2012). Effects of state-specific SPFs, AADT estimations, and 

overdispersion parameters on crash predictions using Safety Analyst. Paper no. 12-4332, 

Transportation Research Board 91st Annual Meeting, Washington DC, United States 

Alluri, P., Saha, D., and Gan, A. (2016). “Minimum sample sizes for estimating reliable 

Highway Safety Manual (HSM) calibration factors.” Journal of Transportation Safety & 

Security, 8(1), 56–74. 

Asal, H. I., and Said, D. G. (2019). “An approach for development of local safety performance 

functions for multi-lane rural divided highways in Egypt.” Transportation Research Record, 

2673(10), 510–521. 

Bahar, G., & Hauer, E. (2014). “User’s Guide to Develop Highway Safety Manual Safety 

Performance Function Calibration Factors”. HR 20-7 (332). National Cooperative Highway 

Research Program. Transportation Research Board, Washington, DC.  

Banihashemi, M. (2011). “Highway Safety Manual, new model parameters vs. calibration of 

crash prediction models.” Moving Toward Zero. 2011 ITE Technical Conference and 

Exhibit Institute of Transportation Engineers (ITE). 

Banihashemi, M. (2012). “Sensitivity analysis of data set sizes for Highway Safety Manual 

calibration factors.” Transportation Research Record, 2279(1), 75–81. 

Biancardo, S. A., Russo, F., Zhang, W., and Veropalumbo, R. (2019). “Design criteria for 

improving safety performance of rural intersections.” Journal of Advanced Transportation, 

2019. 

Biancardo, S. A., Russo, F., Žilionienė, D., and Zhang, W. (2017). “Rural two-lane two-way 

three-leg and four-leg stop-controlled intersections: predicting road safety effects.” The 

Baltic Journal of Road and Bridge Engineering, 12(2), 117–126. 

Bonneson, J., Zimmerman, K., Messer, C., & Wooldridge, M. (2004). “Recommended Ramp 

Design Procedures for Facilities Without Frontage Roads”. Texas Transportation Institute, 

College Station, TX. 

Bonneson, J. A., and Pratt, M. P. (2008). Calibration factors handbook: safety prediction models 

calibrated with Texas highway system data. Citeseer. 

Bornheimer, C., Schrock, S. D., Wang, M.-H., and Lubliner, H. (2012). Developing a regional 

safety performance function for rural two-lane highways. Paper no. 12-4549, Transportation 

Research Board 91st Annual Meeting, Washington DC, United States. 

 

https://trid.trb.org/Results?q=&serial=%22Transportation%20Research%20Board%2091st%20Annual%20Meeting%22
https://trid.trb.org/Results?q=&serial=%22Transportation%20Research%20Board%2091st%20Annual%20Meeting%22


 

162 

Brimley, B. K., Saito, M., and Schultz, G. G. (2012). “Calibration of Highway Safety Manual 

safety performance function: development of new models for rural two-lane two-way 

highways.” Transportation Research Record, 2279(1), 82–89. 

Chauvet, G., and Tillé, Y. (2006). “A fast algorithm for balanced sampling.” Computational 

Statistics, 21(1), 53–62. 

Claros, B., Sun, C., and Edara, P. (2020). “HSM calibration factor, calibration function, or 

jurisdiction-specific safety model–A comparative analysis.” Journal of Transportation 

Safety & Security, 12(2), 309–328. 

Colonna, P., Berloco, N., Intini, P., Perruccio, A., Ranieri, V., and Vitucci, V. (2016). Variability 

of the Calibration Factors of the HSM Safety Performance Functions with Traffic, Region, 

and Terrain: The Case of the Italian Rural Two-Lane Undivided Road Network. Paper no. 

16-3413, Transportation Research Board 95th Annual Meeting, Washington DC, United 

States. 

Connors, R. D., Maher, M., Wood, A., Mountain, L., and Ropkins, K. (2013). “Methodology for 

fitting and updating predictive accident models with trend.” Accident Analysis & 

Prevention, 56, 82–94. 

Dadvar, S., Lee, Y.-J., and Shin, H.-S. (2020). “Improving crash predictability of the Highway 

Safety Manual through optimizing local calibration process.” Accident Analysis & 

Prevention, 136, 105393. 

Dissanayake, S., and Aziz, S. R. (2016). Calibration of the Highway Safety Manual and 

development of new safety performance functions for rural multilane highways in Kansas. 

Kansas. Dept. of Transportation. Bureau of Research. 

Dixon, K., Monsere, C., Xie, F., and Gladhill, K. (2012). Calibrating the future Highway Safety 

Manual predictive methods for Oregon state highways (No. FHWA-OR-RD-12-07). 

Oregon. Dept. of Transportation. Research Section. 

Farid, A., Abdel-Aty, M., and Lee, J. (2018a). “A new approach for calibrating safety 

performance functions.” Accident Analysis & Prevention, 119, 188–194. 

Farid, A., Abdel-Aty, M., and Lee, J. (2018b). “Transferring and calibrating safety performance 

functions among multiple States.” Accident Analysis & Prevention, 117, 276–287. 

Farid, A., Abdel-Aty, M., and Lee, J. (2019). “Comparative analysis of multiple techniques for 

developing and transferring safety performance functions.” Accident Analysis & Prevention, 

122, 85–98. 

Feng, M., Wang, X., Lee, J., Abdel-Aty, M., and Mao, S. (2020). “Transferability of safety 

performance functions and hotspot identification for freeways of the United States and 

China.” Accident Analysis & Prevention, 139, 105493. 

Gattis, J., Chimka, J., Newton, J., and Evans, A. (2017). Safety Performance Functions for 

Arkansas. 

Gaweesh, S. M., Ahmed, M. M., and Piccorelli, A. v. (2019). “Developing crash prediction 

models using parametric and nonparametric approaches for rural mountainous freeways: a 

case study on Wyoming Interstate 80.” Accident Analysis & Prevention, 123, 176–189. 

Geospatial Roadway Inventory Database (GRID), 2022. TxDOT Roadways. Available at: 

https://gis-txdot.opendata.arcgis.com/datasets/txdot-roadways/explore?location=29.607553 

%2C-98.524077%2C21.24. 

Geedipally, S. R., Gates, T. J., Stapleton, S., Ingle, A., and Avelar, R. E. (2019). “Examining the 

safety performance and injury severity characteristics of rural county roadways.” 

Transportation Research Record, 2673(10), 405–415. 

https://trid.trb.org/Results?q=&serial=%22Transportation%20Research%20Board%2091st%20Annual%20Meeting%22
https://gis-txdot.opendata.arcgis.com/datasets/txdot-roadways/explore?location=29.607553%20%2C-98.524077%2C21.24
https://gis-txdot.opendata.arcgis.com/datasets/txdot-roadways/explore?location=29.607553%20%2C-98.524077%2C21.24


 

163 

Geedipally, S. R., Shirazi, M., and Lord, D. (2017). “Exploring the need for region-specific 

calibration factors.” Transportation Research Record, 2636(1), 73–79. 

Hadayeghi, A., Shalaby, A. S., Persaud, B. N., and Cheung, C. (2006). “Temporal transferability 

and updating of zonal level accident prediction models.” Accident Analysis & Prevention, 

38(3), 579–589. 

Kaaf, K. al, and Abdel-Aty, M. (2015). “Transferability and calibration of Highway Safety 

Manual performance functions and development of new models for urban four-lane divided 

roads in Riyadh, Saudi Arabia.” Transportation Research Record, 2515(1), 70–77. 

Khattak, A., Ahmad, N., Mohammadnazar, A., MahdiNia, I., Wali, B., and Arvin, R. 

(2019). Highway Safety Manual safety performance functions and roadway calibration 

factors: Roadway segments. Tennessee. Department of Transportation. 

Kim, D., Kim, D.-K., and Lee, C. (2013). “Safety performance functions reflecting categorical 

impact of exposure variables for freeways.” Transportation Research Record, 2398(1), 67–

74. 

Kononov, J., Hersey, S., Reeves, D., and Allery, B. K. (2012a). “Relationship between freeway 

flow parameters and safety and its implications for hard shoulder running.” Transportation 

Research Record, 2280(1), 10–17. 

Kononov, J., Reeves, D., Durso, C., and Allery, B. K. (2012b). “Relationship between freeway 

flow parameters and safety and its implication for adding lanes. “Transportation Research 

Record, 2279(1), 118–123. 

Kweon, Y.-J., and Lim, I.-K. (2014). Development of safety performance functions for multilane 

highway and freeway segments maintained by the Virginia Department of Transportation. 

Report no. FHWA/VCTIR 14-R14, Virginia Department of Transportation, Richmond, VA. 

Kweon, Y.-J., Lim, I.-K., Turpin, T. L., and Read, S. W. (2014). “Guidance on customization of 

Highway Safety Manual for Virginia: Development and application.” Transportation 

Research Record, 2435(1), 27–36. 

la Torre, F., Meocci, M., Domenichini, L., Branzi, V., and Paliotto, A. (2019). “Development of 

an accident prediction model for Italian freeways.” Accident Analysis & Prevention, 124, 1–

11. 

Li, L., Gayah, V. v, and Donnell, E. T. (2017). “Development of regionalized SPFs for two-lane 

rural roads in Pennsylvania.” Accident Analysis & Prevention, 108, 343–353. 

Liu, J., Khattak, A. J., and Wali, B. (2017). “Do safety performance functions used for predicting 

crash frequency vary across space? Applying geographically weighted regressions to 

account for spatial heterogeneity.” Accident Analysis & Prevention, 109, 132–142. 

Lohr, S. L. (2009). Sampling: Design and Analysis. 2nd Ed., Pacific Grove, CA: Duxbury Press. 

Lord, D., & Bonneson, J. A. (2007). Development of accident modification factors for rural 

frontage road segments in Texas. Transportation Research Record, 2023(1), 20-27. 

Lord, D., Geedipally, S. R., Shirazi, M., and Center, A. (2016). Improved guidelines for 

estimating the Highway Safety Manual calibration factors. University Transportation 

Centers Program (US). 

Lord, D., Qin, X., and Geedipally, S. R. (2021). Highway safety analytics and modeling. 

Elsevier. 

Lu, J., Gan, A., Haleem, K., Alluri, P., and Liu, K. (2012). Comparing Locally Calibrated and 

Safety Analyst-Default Safety Performance Functions for Florida’s Urban Freeways. 



 

164 

Lu, J., Gan, A., Haleem, K., and Wu, W. (2013). “Clustering-based roadway segment division 

for the identification of high-crash locations.” Journal of Transportation Safety & Security, 

5(3), 224–239. 

Lyon, C., Persaud, B., and Hahn, J. (2011). Safety performance functions for ramp terminals at 

diamond interchanges. Colorado. Dept. of Transportation. Research Branch. 

Lyon, C., Persaud, B. N., and Gross, F. B. (2016). The Calibrator-An SPF Calibration and 

Assessment Tool User Guide. United States. Federal Highway Administration. Office of 

Safety. 

Matarage, I. C., and Dissanayake, S. (2020). “Quality assessment between calibrated Highway 

Safety Manual safety performance functions and calibration functions for predicting crashes 

on freeway facilities.” Journal of Traffic and Transportation Engineering (English Edition), 

7(1), 76–87. 

Mehta, G., and Lou, Y. (2013). “Calibration and development of safety performance functions 

for Alabama: Two-lane, two-way rural roads and four-lane divided highways.” 

Transportation Research Record, 2398(1), 75–82. 

Miaou, S.-P. (2013). “Some limitations of the models in the Highway Safety Manual to predict 

run-off-road crashes.” Transportation Research Record, 2377(1), 38–48. 

Monsere, C. M., Johnson, T., Dixon, K., Zheng, J., van Schalkwyk, I., and Hill, C. (2011). 

Assessment of Statewide Intersection Safety Performance. Oregon. Dept. of Transportation. 

Research Section. 

Montella, A., and Mauriello, F. (2012). “Procedure for ranking unsignalized rural intersections 

for safety improvement.” Transportation Research Record, 2318(1), 75–82. 

Ozbay, K., Nassif, H., Bartin, B., Xu, C., and Bhattacharyya, A. (2019). 

Calibration/Development of Safety Performance Functions for New Jersey. 

Pan, G., Fu, L., and Thakali, L. (2017). “Development of a global road safety performance 

function using deep neural networks.” International Journal of Transportation Science and 

Technology, 6(3), 159–173. 

Qin, X., Chen, Z., and Cutler, C. (2013). Evaluating Local and Tribal Rural Road Design with 

the Interactive Highway Safety Design Model (IHSDM). South Dakota State University, 

Brookings, SD. 

Qin, X., Zhi, C., and Vachal, K. (2014). Calibration of Highway Safety Manual Predictive 

Methods for Rural Local Roads. Proceedings of 93rd Annual Meeting of Transportation 

Research Board. Washington, D.C. 

Qin, X., Chen, Z., and Shaon, R. R. (2019). “Developing jurisdiction-specific SPFs and crash 

severity portion functions for rural two-lane, two-way intersections.” Journal of 

Transportation Safety & Security, 11(6), 629–641. 

Raicu, S., Costescu, D., and Burciu, S. (2014). “The evaluation of road safety performances in 

urban areas.” Urban Transport XX. WIT Transactions on The Built Environment, 138, 447–

458. 

Ramsey, F., and Schafer, D. (2012). The statistical sleuth: a course in methods of data analysis. 

Cengage Learning. 

Robicheaux, B., and Wolshon, B. (2015). Calibration of the Louisiana Highway Safety Manual. 

Southwest Region University Transportation Center (US). 

Rodegerdts, L., Blogg, M., Wemple, E., Myers, E., Kyte, M., Dixon, M. P., List, G., Flannery, 

A., Troutbeck, R., and Brilon, W. (2007). Appendixes to NCHRP Report 572: Roundabouts 

in the United States. 



 

165 

Rodrigues Silva, K. C., and Pinto Ferraz, A. C. (2019). Transferability and Calibration of 

Highway Safety Manual Safety Performance Function for Two Lane Highways in Brazil. 

Russo, F., Biancardo, S. A., Busiello, M., Dell’Acqua, G., and Coraggio, G. (2014). Crash 

Severity Prediction Functions on Italian Rural Roads. 

Sacchi, E., Persaud, B., and Bassani, M. (2012). “Assessing international transferability of 

Highway Safety Manual crash prediction algorithm and its components.” Transportation 

Research Record, 2279(1), 90–98. 

Schrock, S. D., and Wang, M.-H. (2013). Evaluation of Interactive Highway Safety Design 

Model Crash Prediction Tools for Two-Lane Rural Roads on Kansas Department of 

Transportation Projects. Kansas Department of Transportation. 

Shin, H., Lee, Y.-J., and Dadvar, S. (2014). The development of local calibration factors for 

implementing the Highway Safety Manual in Maryland. Maryland. State Highway 

Administration. 

Shin, H.-S., Yu, J. W., Dadvar, S., and Lee, Y.-J. (2015). “Statistical evaluation of different 

sample sizes for local calibration process in the Highway Safety Manual.” Transportation 

Research Record, 2515(1), 94–103. 

Shirazi, M., Geedipally, S. R., and Lord, D. (2017). “A procedure to determine when safety 

performance functions should be recalibrated.” Journal of Transportation Safety & Security, 

9(4), 457–469. 

Smith, S., Carter, D., and Srinivasan, R. (2017). Updated and regional calibration factors for 

Highway Safety Manual crash prediction models. North Carolina. Dept. of Transportation. 

Srinivasan, R., and Carter, D. (2011). Development of safety performance functions for North 

Carolina. North Carolina. Dept. of Transportation. Research and Analysis Group. 

Srinivasan, S., Haas, P., Dhakar, N. S., Hormel, R., Torbic, D., and Harwood, D. 

(2011). Development and calibration of Highway Safety Manual equations for Florida 

conditions (No. TRC-FDOT-82013-2011). University of Florida. Transportation Research 

Center. 

Srinivasan, R., Carter, D., and Bauer, K. M. (2013). Safety performance function decision guide: 

SPF calibration vs SPF development. United States. Federal Highway Administration. 

Office of Safety. 

Srinivasan, R., Colety, M., Bahar, G., Crowther, B., and Farmen, M. (2016). “Estimation of 

calibration functions for predicting crashes on rural two-lane roads in Arizona.” 

Transportation Research Record, 2583(1), 17–24. 

Strauss, J., Miranda-Moreno, L., and Morency, P. (2014). Multimodal Injury Risk Analysis 

Between Road Users at Signalized and Nonsignalized Intersections. Paper no. 14-2875, 

Transportation Research Board 93rd Annual Meeting, Washington DC, United States. 

Sun, C., Brown, H., Edara, P. K., Claros, B., and Nam, K. (2013). Calibration of the Highway 

Safety Manual for Missouri. Mid-America Transportation Center. 

Sun, C., Edara, P., Brown, H., Berry, J., Claros, B., and Yu, X. (2018). Missouri Highway Safety 

Manual Recalibration. Missouri Department of Transportation, Mid-America 

Transportation Center, Missouri. 

Tang, H., Gayah, V. v, and Donnell, E. T. (2019). “Evaluating the predictive power of an SPF 

for two-lane rural roads with random parameters on out-of-sample observations.” Accident 

Analysis & Prevention, 132, 105275. 

Tarko, A. P., Dey, A., and Romero, M. A. (2015). Performance Assessment Measure that 

Indicates Geometry Sufficiency of State Highways: Volume I—Network Screening and 

https://trid.trb.org/Results?q=&serial=%22Transportation%20Research%20Board%2091st%20Annual%20Meeting%22


 

166 

Project Evaluation. Report no. FHWA/IN/JTRP-2015/06, Purdue University, Joint 

Transportation Research Program West Lafayette, IN, United States. 

Tarko, A. P., Romero, M., Hall, T., & Sultana, A. (2018). Updating the crash modification 

factors and calibrating the IHSDM for Indiana (Joint Transportation Research Program 

Publication No. FHWA/IN/JTRP-2018/03). West Lafayette, IN: Purdue University. 

https://doi.org/10.5703/1288284316646. 

arko, A. P., Romero, M., Thomaz, J., Ramos, J., Sultana, A., Pineda, R., & Chen, E. 

(2016). Updating RoadHAT: Collision diagram builder and HSM elements (Joint 

Transportation Research Program Publication No. FHWA/IN/JTRP-2016/11). West 

Lafayette, IN: Purdue University. https://doi.org/10.5703/1288284316334. 

Trieu, V., Park, S., and McFadden, J. (2014). “Use of Monte Carlo simulation for a sensitivity 

analysis of Highway Safety Manual calibration factors.” Transportation Research Record, 

2435(1), 1–10. 

Troyer, D., Bradbury, K., and Juliano, C. (2015). “Strength of the variable: calculating and 

evaluating safety performance function calibration factors for the state of Ohio.” 

Transportation Research Record, 2515(1), 86–93. 

Vargas, H., Raihan, A., Alluri, P., and Gan, A. (2019). “Jurisdiction-specific versus Safety 

Analyst-default safety performance functions: case study on two-lane and multi-lane 

arterials.” Transportation Research Record, 2673(10), 501–509. 

Vayalamkuzhi, P., and Amirthalingam, V. (2018). Safety Performance Functions for Divided 

Four-Lane Inter-City Highway Under Heterogeneous Traffic Flow. Paper no. 18-06548, 

Transportation Research Board 97th Annual Meeting, Washington DC, United States. 

Wali, B., Khattak, A. J., Waters, J., Chimba, D., and Li, X. (2018). “Development of safety 

performance functions: incorporating unobserved heterogeneity and functional form 

analysis.” Transportation Research Record, 2672(30), 9–20. 

Wang, X., Tang, D., and Pei, S. (2019). Comparison of calibration methods for improving the 

transferability of safety performance functions. Paper no. 19-04352, Transportation 

Research Board 98th Annual Meeting, Washington DC, United States. 

Wankogere, E. J., Kwigizile, V., and Oh, J.-S. (2014). Safety Performance Functions for Partial 

Cloverleaf On-ramp Loops for Michigan. Paper no. 14-5034, Transportation Research 

Board 93rd Annual Meeting, Washington DC, United States. 

Wood, A. G., Mountain, L. J., Connors, R. D., Maher, M. J., and Ropkins, K. (2013). “Updating 

outdated predictive accident models.” Accident Analysis & Prevention, 55, 54–66. 

Xie, F., Gladhill, K., Dixon, K. K., and Monsere, C. M. (2011). “Calibration of Highway Safety 

Manual predictive models for Oregon state highways.” Transportation Research Record, 

2241(1), 19–28. 

Xie, Y., and Chen, C. (2016). Calibration of safety performance functions for Massachusetts 

urban and suburban intersections. Massachusetts. Dept. of Transportation. Office of 

Transportation Planning. 

  

https://trid.trb.org/Results?q=&serial=%22Transportation%20Research%20Board%2091st%20Annual%20Meeting%22
https://trid.trb.org/Results?q=&serial=%22Transportation%20Research%20Board%2091st%20Annual%20Meeting%22
https://trid.trb.org/Results?q=&serial=%22Transportation%20Research%20Board%2091st%20Annual%20Meeting%22
https://trid.trb.org/Results?q=&serial=%22Transportation%20Research%20Board%2091st%20Annual%20Meeting%22
https://trid.trb.org/Results?q=&serial=%22Transportation%20Research%20Board%2091st%20Annual%20Meeting%22


 

167 

APPENDIX A—DATA COLLECTION PROTOCOL 

APPENDIX A1: RURAL TWO-LANE HIGHWAYS 

Study Site Locations 

The TTI team identified a list of sites to be used for the data collection. In total, 220 segments 

were identified, and each segment has a unique identifier (RHI_KEY), such as R2U_001. One 

Google Earth kmz file was created to show the selected sites.  

Variables to Collect 

1. Lane width. 

2. Shoulder width. 

3. Shoulder type. 

4. Horizontal curves: Length, radius, and spiral transition. 

5. Horizontal curves: Superelevation. 

6. Grade (level (≤3 percent, moderate, and steep (>6 percent). 

7. Driveway density. 

8. Centerline rumble strips. 

9. Passing lanes. 

10. Two-way left-turn lanes (TWLTL). 

11. Roadside hazard rating (RHR). 

12. Lighting.. 

13. Automated speed enforcement. 

 

Data Collection 

problem_flag: populate the field with these codes: 

1 = no problems found. 

2 = Google Earth photo quality is poor or the Street View is not available. 

3 = segment under construction (Google Earth photo shows construction at some point during 

2015–2019). Use the Historical Imagery view in Google Earth and briefly review all available 

photos during the years 2015 to 2019 to determine if construction occurs on a given segment.  

 

lane_width (feet): Average lane width for the traveled way. This width is determined by first 

measuring the surface_width (i.e., excluding shoulders), and then this width is divided by 2. 

l_shld_width (feet): Enter the width of the shoulder that is on the left when vehicle is moving in 

the increasing milepost direction. Measure to the edge of pavement (exclude gravel). 

r_shld_width (feet): Enter the width of the shoulder that is on the right when vehicle is moving 

in the increasing milepost direction. Measure to the edge of pavement (exclude gravel). 

nbr_curves: Count of curves on the segment. Count includes any curve that is wholly or 

partially on the segment. A curve can be identified by drawing a straight construction line along 

a pavement marking. A curve begins where the marking diverges from the construction line. This 
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technique is illustrated in Figure A1. This figure shows one full segment. The left side of the 

segment includes an entire curve. The right side includes a part of a curve. The value for 

nbr_curves is 2. 

 

 
Figure A1. Horizontal Curve Location Technique. 

grade: Street View is used for this activity. Drive in Street View through the entire segment and 

take the measurement of the steepest vertical grade. Enter 1 if no grade is present (≤3 percent), 2 

if the grade is moderate (3–6 percent), 3 if the grade is steep (>6 percent). 

driveways: In most cases, Aerial View is sufficient, but Street View may need to be used for this 

activity. Enter the total number of driveways along the segment. 

minor_int: In most cases, Aerial View is sufficient, but Street View may need to be used for this 

activity. Enter the total number of minor intersections along the segment. Unlike driveways, the 

minor streets at intersections will have a name.  

center_rumble: Street View is used for this activity. Enter 1 if rumble strip is present, 0 

otherwise. Figure A2 shows a road segment with centerline rumble strip.  

 
Figure A2. Centerline Rumble Strip. 

Passing_lane: Enter 1 if passing lane is present, 0 otherwise.  

TWLTL: Enter 1 if TWLTL is present, 0 otherwise.  
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RHR: An average of the RHRs can be used to compile a homogeneous segment as long as the 

minimum and maximum values are not separated by a value greater than 2. If the RHRs are 

greater than 2 on a segment, then these results would not be considered homogeneous roadside 

conditions, and the segment needs to be divided into smaller sections. 

 

Figure A3. Guidelines for Roadside Hazard Ratings. 

 

Clear_zone_width (feet): Measure the width of the clear zone along the segment. This 

measurement is specific to vertical objects in the roadside zone. It does not consider sideslope or 

roadside barrier/guardrail. It is measured from the outside edge of highway traveled way to the 

nearest continuous line of vertical objects that are roughly parallel to the highway centerline and 

likely on the edge of the right-of-way. This line is typically indicated as a tree line, fence line, or 

utility poles, as shown in Figure A4. If the measured width exceeds 50 ft, then enter 50 ft.  

Occasionally, a vertical object of sufficient size to represent a hazard is found in the clear zone 

but it is not part of a continuous line of objects. A solitary tree is the most common example of 

this situation. The clear zone is not measured to this lone object. 

 
Figure A4. Clear Zone Width. 

Lighting: Enter 1 if lighting is present, 0 otherwise. 
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Protocol for Placing Pins on Horizontal Curves 

1. Right click on “Temporary Places” in Places, click Add, then click Folder; in Name enter 

in the following format: R2U_001; last, click OK. The folder is created for just those 

segments that have curves on them. 

2. Put placemarks along the curve. They MUST be listed in Places in the order below (also 

in the increasing direction of the mile point) 

Table A1. Guidelines for Placing Pins. 

Label Need Description 

s1 i Required Locate on tangent, at least 150 ft before the curve. 

s2 i Required Locate on tangent, at least 100 ft after s1 and before the curve. 

m1 i Required Locate on curve, at least 50 ft after start of the curve. 

m2 i Required Locate at least 50 ft and not more than 300 ft from m1. 

:  

Points m1, m2, ... mN are located along the curve with shorter spacing 

(maximum 300 ft). At least 3 points are needed.  

mN i Required Locate at least 50 ft from last point. 

e1 i Required Locate on tangent, at least 50 ft after the curve. 

e2 i Required 

Locate on tangent, at least 100 ft from e1 in the direction away from 

the curve (i.e., at least 150 ft from the curve). 

 

The letter “i” in each variable name is the curve number (i = 1, 2, 3, etc.). The total 

number of curves should be equal to the “number of curves” populated earlier.  

If there are two or more curves in the file, then enter a unique curve number for all 

placemarks associated with a curve. 

3. Name each placemark using the label in the list above.  

4. After adding the placemarks, right click on the file/folder created in Step 1 and go to next 

step. 

5. Click Save Place As (use default file name, do not change it at this point). Save the file as 

type .kml (select at bottom of the active file-save window) in this location (\S:\TxDOT 0-

7083\Task 3 Data collection\Horizontal curves\R2U). 

Note: 

1. Put placemarks on the centerline. 

2. If the segment begins on a curve, then measure to a point that is 250 ft away from the 

start of curve. Now, the first pin in the folder must be this point.  
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APPENDIX A2: RURAL FOUR-LANE DIVIDED HIGHWAYS 

Study Site Locations 

In total, 232 segments were identified and each segment has a unique identifier (RHI_KEY), 

such as R4D_001. One Google Earth kmz file was created to show the selected sites.  

Variables to Collect 

1. Lane width. 

2. Right shoulder width. 

3. Median width.  

4. Lighting. 

5. Automated speed enforcement. 

 

Data Collection 

problem_flag: populate the field with these codes: 

1 = no problems found. 

2 = Google Earth photo quality is poor or the Street View is not available. 

3 = segment under construction (Google Earth photo shows construction at some point during 

2015–2019). Use the Historical Imagery view in Google Earth and briefly review all available 

photos during the years 2015 to 2019 to determine if construction occurs on a given segment.  

 

lane_width (feet): Average lane width for the traveled way. This width is determined by first 

measuring the surface width (i.e., excluding shoulders) on each roadbed, and then that width is 

divided by 2. Take the average of two roadbeds. 

r_shld_width (feet): Enter the width of the shoulder that is on the right of each roadbed and then 

take the average. Measure to the edge of pavement (exclude gravel). 

Med_width (feet): Enter the width between the inside edges of the through travel lanes in the 

opposing direction of travel. Note that the inside shoulder and turning lanes are included in the 

median width. This measurement is not applicable to roadways with a median barrier. 

Lighting: Enter 1 if lighting is present, 0 otherwise. 
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APPENDIX A3: RURAL FOUR-LANE UNDIVIDED HIGHWAYS 

Study Site Locations 

In total, 232 segments were identified and each segment has a unique identifier (RHI_KEY), 

such as R4U_001. One Google Earth kmz file was created to show the selected sites.  

Variables to Collect 

1. Lane width. 

2. Shoulder width. 

3. Shoulder type. 

4. Sideslope.  

5. Lighting. 

6. Automated speed enforcement. 

 

Data Collection 

problem_flag: populate the field with these codes: 

1 = no problems found. 

2 = Google Earth photo quality is poor or the Street View is not available. 

3 = segment under construction (Google Earth photo shows construction at some point during 

2015–2019). Use the Historical Imagery view in Google Earth and briefly review all available 

photos during the years 2015 to 2019 to determine if construction occurs on a given segment.  

lane_width (feet): Average lane width for the traveled way. This width is determined by first 

measuring the surface_width (i.e., excluding shoulders), and then this width is divided by 4. 

l_shld_width (feet): Enter the width of the shoulder that is on the left when vehicle is moving in 

the increasing milepost direction. Measure to the edge of pavement (exclude gravel). 

r_shld_width (feet): Enter the width of the shoulder that is on the right when vehicle is moving 

in the increasing milepost direction. Measure to the edge of pavement (exclude gravel). 

sideslope: Street View is used for this activity. Check the sideslope and enter a value from 1 to 

7. A sideslope of 1:3 is illustrated in Figure A6. In this case, enter 3. 
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Figure A6. Example of Sideslope 1:3. 

Lighting: Enter 1 if lighting is present, 0 otherwise. 
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APPENDIX A4: URBAN ARTERIALS 

Study Site Locations 

The TTI team identified a list of sites to be used for the data collection. Each segment has a 

unique identifier (RHI_KEY), such as U2U_001. One Google Earth kmz file was created for 

each lane count to show the selected sites.  

Variables to Collect 

1. On-street parking. 

2. Roadside fixed objects. 

3. Median width.  

4. Lighting. 

5. Automated speed enforcement. 

 

Data Collection 

problem_flag: populate the field with these codes: 

1 = no problems found. 

2 = Google Earth photo quality is poor or the street view is not available. 

3 = segment under construction (Google Earth photo shows construction at some point during 

2015-2019). Use the Historical Imagery view in Google Earth and briefly review all available 

photos during the years 2015 to 2019 to determine if construction occurs on a given segment.  

 

On-street parking 

Curb_leng_park (feet): Enter the sum of curb length with on-street parking for both sides of the 

road combined. 

Roadside fixed objects 

Fixed_object_count: Enter the number of fixed objects on the roadside for both sides of the road 

combined. Only point objects that are 4 inches or more in diameter and do not have breakaway 

design are considered. Point objects that are within 70 ft of one another longitudinally along the 

road are counted as a single object. Continuous objects that are not behind point objects are 

counted as one point object for each 70 ft of length. 

Fixed_object_offset: Enter the average distance from the edge of the traveled way to roadside 

objects over an extended roadway segment. If the average offset to fixed objects exceeds 30 ft, 

use the value of the offset for 30 ft. 

Med_width (feet): Enter the width between the inside edges of the through travel lanes in the 

opposing direction of travel. Note that the inside shoulder and turning lanes are NOT included in 

the median width. This element is only applicable to traversable medians without traffic barriers. 

Lighting: Enter 1 if lighting is present, 0 otherwise. 
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APPENDIX A5: RURAL STOP-CONTROLLED INTERSECTIONS 

Study Site Locations 

The TTI team identified a list of sites to be used for the data collection. One Google Earth kmz 

file was created to show the selected sites.  

Categories of Safety Performance Functions 

Unsignalized Three-Leg (3ST) 

Unsignalized Four-Leg (4ST) 

 

Variables to Collect for 3ST and 4ST Only 

1. Intersection skew angle (degrees departure from 90 degrees). 

2. Number of approaches with intersection left-turn lanes (0, 1, 2, 3, or 4), not including 

stop-controlled approaches. 

3. Number of approaches with intersection right-turn lanes (0, 1, 2, 3, or 4), not 

including stop-controlled approaches. 

4. Presence of intersection lighting. 

 

Data Collection 

Correct_int_type: populate the field with these codes: 

3SG—Three-leg signalized intersection. 

4SG—Four-leg signalized intersection. 

 3ST—Three-leg stop-controlled intersection (STOP on minor street only and no control on 

major street). 

4ST—Four-leg stop-controlled intersection (STOP on minor street only and no control on major 

street). 

ALL—All-way stop-controlled intersection (STOP on all legs). 

 

Notes: Note any abnormalities, such as construction or no proper Google Earth images. 

 

MaxNumLane: Verify the number of lanes on the major street (exclude turn-only lanes; if the 

lane is used for both thru and turn, then it should be counted). If different, enter the correct 

number of lanes in road font. 

MinNumLane: Verify the number of lanes on the minor street (exclude turn-only lanes; if the 

lane is used for both thru and turn, then it should be counted). If different, enter the correct 

number of lanes in red font. 

Open: https://www.txdot.gov/apps/statewide_mapping/StatewidePlanningMap.html 

• Under “Overlays,” select “AADT” and “Future Traffic & Percent Truck.” 

• Click on the search symbol ( ) on the top left.  

• Enter the coordinates of the intersection and search. 

 

https://www.txdot.gov/apps/statewide_mapping/StatewidePlanningMap.html
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Max_ADT: Click on the major street and verify if the existing value is correct. If not, replace 

with the correct value in red font. If two approaches have different ADT, then take the maximum 

value.  

Min_ADT: Click on the minor street and verify if the existing value is correct. If not, replace 

with the correct value in red font. If two approaches have different ADT, then take the maximum 

value. 

Int_skew: The skew angle for an intersection is defined as the absolute value of the deviation 

from an intersection angle of 90 degrees, as shown in Figure A7. The heading (i.e., azimuth) of 

the crossroad at the intersection is used for computing the skew angle. This value is obtained 

using the Line function in the Ruler for Google Earth. Draw the line (in the direction of travel) 

along the centerline of an imaginary vehicle stopped at the stop line. Use movement on any 

minor street approach leg as the basis for heading measurement. Read the heading angle and 

record it in the database (this angle is shown in red ellipse in the inset below). This angle is 

computed using the heading of the centerline of the main street and the cross street because they 

are oriented at the intersection. The skew angle is the angle between the two centerlines minus 

90 degrees. If the main street and the cross street intersect at a 90 degree angle, then the skew is 

0.0 degrees. 

 

 
Figure A7. Intersection Skew Angle. 

Int_left_lanes: Count the left-turn lanes on the intersection approaches. Stop-controlled 

approaches are not considered in determining the number of approaches with left-turn lanes.  

Int_right_lanes: Count the right-turn lanes on the intersection approaches. Stop-controlled 

approaches are not considered in determining the number of approaches with left-turn lanes. 
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Lighting: Enter 1 if lighting is present, 0 otherwise. 

Populate the information below when the existing location is not in the intersection center. 

lat_lon_coord: Geocoordinates of the center of the intersection. Use the Placemark feature in 

Google Earth (click Add, Placemark; or cntl+shift+P; or yellow push pin on toolbar). Use the 

mouse to put the tip of the push pin on the center of the intersection. Then, select the latitude 

information from the window shown in Figure A8 In Excel, put the cursor in the cell of interest 

and paste the data in the spreadsheet (see red arrow). Next, select the longitude from the window 

and paste it in as shown. Press “Enter” in Excel. Be sure there is a blank space between the two 

entries. 

 

Figure A8. Extraction and Entry of Latitude and Longitude. 
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APPENDIX A6: RURAL SIGNALIZED INTERSECTIONS 

Study Site Locations 

The TTI team identified a list of sites to be used for the data collection. In total, 223 signalized 

intersections were identified, and each intersection has a unique identifier (int_fac_id). One 

Google Earth kmz file was created to show the selected sites.  

Variables to Collect 

1. Number of approaches with intersection left-turn lanes (0, 1, 2, 3, or 4), not including 

stop-controlled approaches. 

2. Number of approaches with intersection right-turn lanes (0, 1, 2, 3, or 4), not including 

stop-controlled approaches. 

3. Presence of intersection lighting. 

 

Data Collection 

Correct_int_type: populate the field with these codes: 

3SG—Three-leg signalized intersection. 

4SG—Four-leg signalized intersection 

3ST—Three-leg stop-controlled intersection (STOP on minor street only and no control on major 

street) 

4ST—Four-leg stop-controlled intersection (STOP on minor street only and no control on major 

street) 

ALL—All-way stop-controlled intersection (STOP on all legs). 

 

Notes: Note any abnormalities, such as construction or no proper Google Earth images. 

 

Do the below only if it is a signalized intersection. 

 

MaxNumLane: Verify the number of lanes on the major street (exclude turn-only lanes; if the 

lane is used for both thru and turn, then it should be counted). If different, enter the correct 

number of lanes in red font. 

 

MinNumLane: Verify the number of lanes on the minor street (exclude turn-only lanes; if the 

lane is used for both thru and turn, then it should be counted). If different, enter the correct 

number of lanes in red font. 

 

Open: https://www.txdot.gov/apps/statewide_mapping/StatewidePlanningMap.html 

• Under “Overlays,” select “AADT” and “Future Traffic & Percent Truck.” 

• Click on the search symbol ( ) on the top left.  

• Enter the coordinates of the intersection and search. 

 

Max_ADT: Click on the major street and verify if the existing value is correct. If not, replace 

with the correct value in red font. If two approaches have different ADT, then take the maximum 

value.  

https://www.txdot.gov/apps/statewide_mapping/StatewidePlanningMap.html
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Min_ADT: Click on the minor street and verify if the existing value is correct. If not, replace 

with the correct value in red font. If two approaches have different ADT, then take the maximum 

value. 

 

Int_left_lanes: Count the left-turn lanes on the intersection approaches.  

 

Int_right_lanes: Count the right-turn lanes on the intersection approaches.  

 

Lighting: Enter 1 if lighting is present, 0 otherwise. 

 

Populate the information below when the existing location is not in the intersection center. 

lat_lon_coord: Enter the geocoordinates of the center of the intersection. Use the Placemark 

feature in Google Earth (click Add, Placemark; or cntl+shift+P; or yellow push pin on toolbar). 

Use the mouse to put the tip of the push pin on the center of the intersection. Then, select the 

latitude information from the window shown in Figure A9. In Excel, put the cursor in the cell of 

interest and paste the data in the spreadsheet (see red arrow). Next, select the longitude from the 

window and paste it in as shown. Press “Enter” in Excel. Be sure there is a blank space between 

the two entries. 

 

Figure A9. Extraction and Entry of Latitude and Longitude. 
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APPENDIX A7: URBAN INTERSECTIONS 

Study Site Locations 

The TTI team identified a list of sites to be used for the data collection. One Google Earth kmz 

file was created for each intersection type to show the selected sites.  

Variables to Collect 

1. Left-Turn Signal Phasing. 

2. Right-Turn-on-Red Prohibition. 

3. Presence of Lighting.  

4. Presence of Red-Light Cameras.  

5. Number of Lanes.  

6. Right-Turn Channelization.  

7. U-Turn Prohibition.  

 

Data Collection 

Correct_int_type: populate the field with these codes: 

3SG—Three-leg signalized intersection. 

4SG—Four-leg signalized intersection. 

 3ST—Three-leg stop-controlled intersection (STOP on minor street only and no control on 

major street). 

4ST—Four-leg stop-controlled intersection (STOP on minor street only and no control on major 

street). 

ALL—All-way stop-controlled intersection (STOP on all legs). 

 

Notes: Note any abnormalities, such as construction or no proper Google Earth images. 

 

MaxNumLane: Verify the number of lanes on the major street (exclude turn-only lanes; if the 

lane is used for both thru and turn, then it should be counted). If different, enter the correct 

number of lanes in red font. 

 

MinNumLane: Verify the number of lanes on the minor street (exclude turn-only lanes; if the 

lane is used for both thru and turn, then it should be counted). If different, enter the correct 

number of lanes in red font. 

 

Open: https://www.txdot.gov/apps/statewide_mapping/StatewidePlanningMap.html 

• Under “Overlays,” select “AADT” and “Future Traffic & Percent Truck.” 

• Click on the search symbol ( ) on the top left. 

• Enter the coordinates of the intersection and search. 

 

Max_ADT: Click on the major street and verify if the existing value is correct. If not, replace 

with the correct value in red font. If two approaches have different ADT, then take the maximum 

value.  

 

https://www.txdot.gov/apps/statewide_mapping/StatewidePlanningMap.html
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Min_ADT: Click on the minor street and verify if the existing value is correct. If not, replace 

with the correct value in red font. If two approaches have different ADT, then take the maximum 

value. 

 

Int_left_lanes: Count the left-turn lanes on the intersection approaches. Stop-controlled 

approaches are not considered in determining the number of approaches with left-turn lanes. 

 

Int_left_signal: Only applicable for 3SG or 4SG. Types of left-turn signal phasing considered 

include permissive, protected, protected/permissive, and permissive/protected. Street View will 

be needed to make the determination of left-turn protection. Enter 1 if protected, otherwise 0.  

 

To determine if a protected-only left-turn operation is provided on an approach, the following 

conditions must be satisfied: 

1. The intersection is signal controlled; 

2. A left-turn movement exists; and 

3. One of the following cases exists: 

a. The approach has a left-turn bay (or lane) with one lane for left turns and a three- or 

four-section head is provided for the sole use of the left-turn movement (see 

Figure A10); or 

b. The approach has a left-turn bay (or lane) with two or more lanes serving left turns. 

 

 
Figure A10. Example of Protected-Only Left-Turn Operation. 

Figure A11a and Figure A11b show a four- and three-section left-turn signal indication, 

respectively. The four-section head uses two indications for the red display. In both cases, it can 

be concluded that the protected-only operation exists. 
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a. Four-Section Head (top two indications are both red). 

 

b. Three-Section Head. 

Figure A11. Left-Turn Signal Indications for Protected-Only Operation. 

Int_right_lanes: Count the right-turn lanes on the intersection approaches. Stop-controlled 

approaches are not considered in determining the number of approaches with left-turn lanes. 

 

RTOR_proh: Only applicable for 3SG or 4SG. Enter 1 if right-turn-on-red prohibition (like the 

one shown in Figure A12) is present, 0 otherwise. 

 
Figure A12. Right-Turn-on-Red Prohibition. 
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Lighting: Enter 1 if lighting is present, 0 otherwise. 

lat_lon_coord: Enter geocoordinates of the center of the intersection. Use the Placemark feature 

in Google Earth (click Add, Placemark; or cntl+shift+P; or yellow push pin on toolbar). Use the 

mouse to put the tip of the push pin on the center of the intersection. Then, select the latitude 

information from the window shown in Figure A13. In Excel, put the cursor in the cell of interest 

and paste the data in the spreadsheet (see red arrow). Next, select the longitude from the window 

and paste it in as shown. Press “Enter” in Excel. Be sure there is a blank space between the two 

entries. 

 

Figure A13. Extraction and Entry of Latitude and Longitude. 
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APPENDIX A8: FRONTAGE ROADS 

Study Site Locations 

The TTI team identified a list of sites to be used for the data collection. Each segment has a 

unique identifier (RHI_KEY), such as 3_IH0035-XG_199.669. One Google Earth kmz file was 

created to show the selected sites for each facility type.  

Variables to Collect 

1. Edge markings. 

2. Lane width. 

3. Shoulder width. 

4. Driveway density. 

5. Rumble strips. 

6. Lighting. 

7. Speed limit. 

8. Horizontal curves.  

 

Data Collection 

problem_flag: populate the field with these codes: 

1 = no problems found. 

2 = Google Earth photo quality is poor or the Street View is not available. 

3 = segment under construction (Google Earth photo shows construction at some point during 

2015–2019). Use the Historical Imagery view in Google Earth and briefly review all available 

photos during the years 2015 to 2019 to determine if construction occurs on a given segment.  

 

Edge_markings: Enter 1 if edge markings showing shoulders are present, 0 otherwise. 

lane_width (feet): In case of more than one lane, it is the average lane width for the traveled 

way. This width is determined by first measuring the surface_width (i.e., excluding shoulders), 

and then this width is divided by number of lanes. 

l_shld_width (feet): Enter the width of the shoulder that is on the left when vehicle is moving in 

the increasing milepost direction. Measure to the edge of pavement (exclude gravel). 

r_shld_width (feet): Enter the width of the shoulder that is on the right when vehicle is moving 

in the increasing milepost direction. Measure to the edge of pavement (exclude gravel). 

driveways: In most cases, the Aerial View is sufficient, but the Street View may need to be used 

for this activity. Enter the total number of driveways along the segment. 

minor_int: In most cases, the Aerial View is sufficient, but the Street View may need to be used 

for this activity. Enter the total number of minor intersections along the segment. Unlike 

driveways, the minor streets at intersections will have a name.  
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shld_rumble: Street View is used for this activity. Enter 2 if rumble strip is present on two 

shoulders, 1 if present on one shoulder only, and 0 otherwise. 

cen_rumble: This is applicable for two-way frontage roads only. Street View is used for this 

activity. Enter 1 if rumble strip is present, and 0 otherwise. Figure A14 shows the road segment 

with a centerline rumble strip.  

 
Figure A14. Centerline Rumble Strip. 

Lighting: Enter 1 if lighting is present, 0 otherwise. 

Curb_pres: Enter 2 if curb is present on both sides, 1 if present on one side only, 0 otherwise. 

Figure A15 shows a road segment with a curb on both sides. 

 
Figure A15. Presence of Curb. 

Spd_lmt: Street View is used for this activity. If the speed limit sign does not exist on the 

concerned segment, then check the adjacent segment as well. 

nbr_curves: This entry represents the count of curves on the segment. Count includes any curve 

that is wholly or partially on the segment. A curve can be identified by drawing a straight 

construction line along a pavement marking. A curve begins where the marking diverges from 
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the construction line. This technique is illustrated in Figure A14. This figure shows one full 

segment. The left side of the segment includes an entire curve. The right side includes a part of a 

curve. The value for nbr_curves is 2. 

 
Figure A14. Horizontal Curve Location Technique. 
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APPENDIX A9: RAMPS 

Study Site Locations 

The TTI team identified a list of sites to be used for the data collection. Each segment has a 

unique identifier (RHI_KEY), such as RP_0009. One Google Earth kmz file was created to show 

the selected sites for each facility type.  

Variables to Collect 

1. Ramp type (entrance or exit). 

2. Entrance/exit side (left or right). 

3. Ramp length. 

4. Ramp configuration (curved or straight). 

5. Area type. 

6. Number of lanes. 

7. Lane width. 

8. Left shoulder width. 

9. Right shoulder width. 

10. Lighting. 

11. Speed limit. 

12. Left side barrier presence. 

13. Right side barrier presence. 

14. Lane add or drop. 

 

Data Collection 

problem_flag: populate the field with these codes: 

1 = no problems found. 

2 = Connector (connecting two freeways) 

3 = Google Earth photo quality is poor or the Street View is not available. 

4 = segment under construction (Google Earth photo shows construction at some point during 

2015–2019). Use the Historical Imagery view in Google Earth and briefly review all available 

photos during the years 2015 to 2019 to determine if construction occurs on a given segment.  

Ramp_type: Enter “Ent” if it is entrance ramp, “Ext” for exit ramp. 

Entrance/Exit Side: This entry indicates whether the ramp is entered on the right side of the 

freeway and curves to the right, or is entered on the left side and curves to the left. Most common 

are right-hand ramps. Enter “Right” or “Left.” 

ramp_length (miles): Enter the length of the ramp from one gore point to the other. Measure in 

feet and divide by 5280. Round to two decimals.  



 

188 

 
Figure A15. Horizontal Curve Location Technique. 

 

Ramp_Config: This entry describes the general shape of the ramp. Enter “Curved” or 

“Straight.” 

Num_lanes: Enter the number of through lanes. 

lane_width (feet): In case of more than one lanes, it is the average lane width for the traveled 

way. This width is determined by first measuring the surface_width (i.e., excluding shoulders), 

and then that width is divided by number of lanes. 

l_shld_width (feet): Enter the width of the shoulder on the left side of the travel direction. 

Measure to the edge of pavement (exclude gravel). 

r_shld_width (feet): Enter the width of the shoulder on the right side of the travel direction. 

Measure to the edge of pavement (exclude gravel). 

driveways: In most cases, Aerial View is sufficient, but Street View may need to be used for this 

entry.  

Lighting: Enter 1 if lighting is present, 0 otherwise. 

Spd_lmt: Street View is used for this activity. If the speed limit sign does not exist on the 

concerned segment, then check the adjacent segment as well. 

left_barr: Enter 1 if barrier is present throughout on the left side, 0.5 if present for more than 

half of the ramp, or 0 otherwise.  

right_barr: Enter 1 if barrier is present throughout on the right side, 0.5 if present for more than 

half of the ramp, 0 otherwise.  

Lane_add_drop: Enter “None” if no lanes are added or dropped. Enter “Add” if lane is added 

and “Drop” if lane is dropped within the ramp segment (i.e., between the gore points). 
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APPENDIX B—HSM PART C CMFS 

Table B1. CMFs from HSM Part C—Segments. 
Facility CMF CMF Description Calculation 

R2U 

CMF1r Lane Width HSM Table 10-8 

CMF2r Shoulder Width and 

Type 

𝐶𝑀𝐹2𝑟 = (𝐶𝑀𝐹𝑤𝑟𝑎 ×𝐶𝑀𝐹𝑡𝑟𝑎 − 1) ×𝑝𝑟𝑎 + 1 

CMF3r Horizontal Curves (1.55 × Lc) + (
80.2
𝑅

) − (0.012 × 𝑆)

(1.55 × Lc)
 

CMF5r Grades 1 for level grade, 1.10 for 3%-6% and 1.16 for >6% 

CMF6r Driveway Density 0.322 + 𝐷𝐷 × [0.05 − 0.005 × ln(𝐴𝐴𝐷𝑇)

0.322 + 5 × [0.05 − 0.005 × ln(𝐴𝐴𝐷𝑇)
 

CMF7r Centerline Rumble 

Strips 

0.94 if present, otherwise 1 

CMF8r Passing Lanes 0.75 if present, otherwise 1 

CMF9r Two-Way Left-Turn 

Lanes 

1.0 − (0.7 × 𝑝𝑑𝑤𝑦 × 𝑝𝐿𝑇
𝐷
) 

CMF10r Roadside Design 𝑒−0.6869+0.0668×𝑅𝐻𝑅

𝑒−0.4865
 

CMF11r Lighting 1 − [(1 − 0.72 × 𝑝𝑖𝑛𝑟 − 0.83 × 𝑝𝑝𝑛𝑟) × 𝑝𝑛𝑟] 

R4U 

CMF1ru Lane Width (𝐶𝑀𝐹𝑅𝐴 − 1) × 𝑝𝑅𝐴 + 1.0 

CMF2ru Shoulder Width and 

Shoulder Type 

(𝐶𝑀𝐹𝑊𝑅𝐴 ×𝐶𝑀𝐹𝑇𝑅𝐴 − 1.0) × 𝑝𝑅𝐴 + 1.0 

CMF3ru Sideslopes HSM Table 11-14  

CMF4ru Lighting 1 − [(1 − 0.72 × 𝑝𝑖𝑛𝑟 − 0.83 × 𝑝𝑝𝑛𝑟) × 𝑝𝑛𝑟] 

R4D 

CMF1rd Lane Width (𝐶𝑀𝐹𝑅𝐴 − 1)× 𝑝𝑅𝐴 + 1.0 

CMF2rd Right Shoulder Width HSM Table 11-17 

CMF3rd Median Width HSM Table 11-18 

CMF4rd Lighting 1 − [(1 − 0.72 × 𝑝𝑖𝑛𝑟 − 0.83 × 𝑝𝑝𝑛𝑟) × 𝑝𝑛𝑟] 

U2U 

U4U 

U4D 

U3T 

U5T 

CMF1r On-Street Parking 1 +𝑝𝑝𝑘 ×(𝑓𝑝𝑘 − 1) 

CMF2r Roadside Fixed 

Objects 
𝑓𝑜𝑓𝑓𝑠𝑒𝑡 × 𝐷𝑓𝑜 × 𝑝𝑓𝑜 +(1.0 − 𝑝𝑓𝑜) 

CMF3r Median Width HSM Table 12-22 and 1.00 for undivided segments 

CMF4r Lighting 1 − [(1 − 0.72 × 𝑝𝑖𝑛𝑟 − 0.83 × 𝑝𝑝𝑛𝑟) × 𝑝𝑛𝑟] 

 

where: 

Lc = length of horizontal curve (miles), which includes spiral transitions if present. 

R = radius of curvature (feet). 

S = 1 if spiral transition curve is present; 0 if spiral transition curve is not present; or 0.5 if a spiral 

transition curve is present at one but not both ends of the horizontal curve. 

DD = driveway density considering driveways on both sides of the highway (driveways/mile). 

𝑝𝑑𝑤𝑦 = driveway-related crashes as a proportion of total crashes. 

   =
(0.0047×𝐷𝐷)+(0.0024×𝐷𝐷(2))

(1.199+(0.0047×𝐷𝐷)+(0.0024×𝐷𝐷(2)))
. 

𝑝𝐿𝑇
𝐷

 = left-turn crashes susceptible to correction by a TWLTL as a proportion of driveway-related 

crashes (taken as 0.5). 

RHR = roadside hazard rating. 
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CMFRA = crash modification factor for related crashes (run-off-the-road, head-on, and sideswipe) 

(from Table 11-11, 11-16 in HSM). 

𝑝𝑅𝐴 = proportion of total crashes constituted by related crashes (default is 0.27 for R4U, 0.50 for 

R4D, and 0.574 for R2U). 

CMFWRA = crash modification factor for related crashes based on shoulder width (from Table 10-9, 

11-12). 

CMFTRA = crash modification factor for related crashes based on shoulder type (from Table 10-10, 

11-13). 

𝑝𝑖𝑛𝑟 = proportion of total nighttime crashes for unlighted roadway segments that involve a fatality 

or injury (Equal to 0.382 for R2U, 0.361 for R4U and 0.323 for R4D and HSM table 12-23 for 

urban segments). 

𝑝𝑝𝑛𝑟 = proportion of total nighttime crashes for unlighted roadway segments that involve property 

damage only (Equal to 0.618 for R2U, 0.639 for R4U and 0.677 for R4D and HSM table 12-23 

for urban segments). 

𝑝𝑛𝑟 = proportion of total crashes for unlighted roadway segments that occur at night (equal to 

0.370 for R2U, 0.255 for R4U, and 0.426 for R4D and HSM Table 12-23 for urban segments). 

𝑓𝑝𝑘 = HSM Table 12-19. 

𝑝𝑝𝑘  = proportion of curb length with on-street parking = (0.5𝐿𝑝𝑘/L). 

𝐿𝑝𝑘  = sum of curb length with on-street parking for both sides of the road combined (miles). 

L = length of roadway segment (miles). 

𝑓𝑜𝑓𝑓𝑠𝑒𝑡 = fixed object offset factor from HSM Table 12-20. 

𝐷𝑓𝑜 = fixed-object density (fixed objects/mi) for both sides of the road combined. 

𝑝𝑓𝑜 = fixed-object collisions as a proportion of total crashes (U2U = 0.059, U3T = 0.034, 

U4U = 0.037, U4D= 0.036, U5T=0.016). 
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Table B2. CMFs from HSM Part C—Intersections. 
Intersection CMF CMF Description  Calculation  

R2U_3ST 

R2U_4ST 

R2U_4SG 

CMF1i Intersection Skew Angle For 3ST: 𝑒(0.004×𝑠𝑘𝑒𝑤)  
For 4ST: 𝑒(0.0054×𝑠𝑘𝑒𝑤)  
For 4SG: 1.00 

CMF2i Intersection Left-Turn Signal Phasing HSM Table 10-13 

CMF3i Intersection Right-Turn Lanes HSM Table 10-14 

CMF4i Lighting  1 − 0.38 × 𝑝𝑛𝑖 

RMU_3ST 

RMU_4ST 

RMU_4SG 

CMF1i Intersection Skew Angle For 3ST: 
0.016×𝑠𝑘𝑒𝑤

0.98+0.16×𝑠𝑘𝑒𝑤
+ 1 

For 4ST: 
0.053×𝑠𝑘𝑒𝑤

0.72+0.48×𝑠𝑘𝑒𝑤
+ 1 

For 4SG: 1.00 

CMF2i Intersection Left-Turn Signal Phasing HSM Table 11-22 

CMF3i Intersection Right-Turn Lanes HSM Table 11-23 

CMF4i Lighting  1 − 0.38 × 𝑝𝑛𝑖 

Urban Arterial 

Intersections 

CMF1i Intersection Left Turn Lanes  HSM Table 12-24 

CMF2i Intersection Left-Turn Signal Phasing HSM Table 12-25  

CMF3i Intersection Right-Turn Lanes HSM Table 12-26 

CMF4i Right-Turn-on-Red 0.98(𝑛𝑝𝑟𝑜ℎ𝑖𝑏)  

where: 

𝑛𝑝𝑟𝑜ℎ𝑖𝑏 = number of signalized intersection approaches for which right-turn-on-red is prohibited. 

𝑝𝑛𝑖 = proportion of total crashes for unlighted intersections that occur at night (from HSM Table 

10-15 for Rural Two-Lane Two-Way, Table 11-24 for Rural Multilane, and Table 12-27 for 

urban arterials intersections). 

skew = intersection skew angle (in degrees); the absolute value of the difference between 

90 degrees and the actual intersection angle. 
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APPENDIX C—VALUE OF RESEARCH ANALYSIS 

OVERVIEW 

Researchers conducted a value of research (VOR) analysis of TxDOT Research Project 0-7083 

to produce an estimate of the benefit that the project will likely yield for TxDOT. The temporal 

scope for this analysis is an 11-year period (labeled as Years 0–10), starting with the beginning 

of the 2-year project. The value of the project is described in terms of net present value (NPV) 

and cost-benefit ratio (CBR), which are computed using economic discounting formulas. 

The primary objective of TxDOT Research Project 0-7083 was to calibrate the HSM models and 

develop safety predictive methods that road design engineers can use in project-level decision-

making for estimating the average crash frequency by severity level for existing conditions, 

alternatives to existing conditions, or proposed new roadways. The project quantifies the safety 

(in terms of reduced crash frequency) benefits that can be obtained by adopting the 

recommendations documented in this research. Therefore, researchers focused the VOR analysis 

on the safety benefits of installing passing lanes on rural two-lane highways and widening 

shoulders on rural two-way frontage roads and the resulting cost savings that can be obtained by 

improving this knowledge. 

METHODOLOGY 

Researchers used a VOR template provided by TxDOT to compute the NPV and CBR measures. 

The template requires the following items: 

• Project budget: $309,754 ($153,890 in Year 0 + $155,864 in Year 1). 

• Project duration: 2.0 years. 

• Expected value duration: 10 years (convention chosen by TxDOT). 

• Discount rate: 3 percent (default value assumed by TxDOT). 

• Expected value per year: $272,745. 

The project’s expected value per year is estimated based on savings obtained from reduced 

crashes. The following sections describe the analysis method. 

Concept 

An analysis method that can be used to estimate the benefit of conducting a research project on a 

safety treatment is documented in NCHRP Report 756 (Pratt et al., 2014; Zegeer, 2013).  

To conduct a VOR analysis, it is necessary to conduct the following steps: 

1. Identify target sites where a treatment can be implemented. 

2. Determine the total number of crashes at these sites. 

3. Determine the mean and standard deviation of a CMF for the treatment (i.e., describe the 

certainty of the safety knowledge of the treatment) based on previous research. 
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4. Determine the expected standard deviation of the CMF (i.e., estimate the degree to which 

knowledge of the treatment’s effectiveness can be improved) after the proposed new 

research project is completed. 

5. Apply the procedure to estimate the expected VOR. 

For TxDOT Research Project 0-7083, the treatments of interest are (a) installing a passing lane 

by restriping the existing markings on rural two-lane highways where the total paved width is at 

least 52 ft and (b) widening the shoulders by 2 ft on rural two-way frontage roads. Conducting 

this research project yielded improved knowledge of the base crash frequencies observed on the 

various types of urban freeways. This improved knowledge will reduce losses that TxDOT 

would otherwise incur from the following: 

• Installing a treatment at a site where the treatment is not justified based solely on safety 

considerations. 

• Failing to install a treatment at a site where the treatment is justified, thereby missing an 

opportunity to reduce the frequency and/or severity of crashes. 

INPUT DATA 

The VOR analysis method documented in NCHRP Report 756 is implemented using a 

spreadsheet program called Safety Research Prioritization Worksheet (SRPW), which is 

available from NCHRP and described in a user manual (Zegeer, 2013). The required input data, 

values, and sources are listed in Table C1. The input data provide information about the 

candidate sites for treatment, safety knowledge of the treatment, crash cost, and treatment cost. 

Safety knowledge is described in terms of CMFs. 

Sites 

Researchers queried the Texas Reference Marker (TRM) database to obtain an estimate of the 

total mileage of rural two-lane highways in Texas where the total paved width is at least 52 ft so 

that 8 ft or more shoulders can be accommodated. This query also revealed that the average ADT 

was 4,300 vpd, the average segment length was 0.147 mi, and the total mileage was 148 mi. The 

effect on safety performance for this treatment was estimated as a CMF value of 0.75. 

Researchers also queried the TRM database to obtain an estimate of the total mileage of rural 

two-way frontage roads in Texas. Based on the obtained distribution, researchers assumed that 

50 percent of the 2,543 total miles could be identified for widening the shoulders by 2 ft. This 

query revealed that the average ADT was 427 vpd and the average segment length was 0.506 mi. 

The effect on safety performance for this treatment was estimated as a CMF value of 0.80. 

Crash Costs 

To estimate the costs of crashes on rural highway curves, researchers chose 2021 as the analysis 

year and obtained the consumer price index (Consumer Price Index, 2021) and employment cost 

index (Employment Cost Index, 2021) values for that year. These values are 279 and 148, 

respectively. Researchers queried the merged TRM-CRIS dataset used in the modeling efforts to 

obtain crash severity distributions and applied crash cost values from TxDOT’s Highway Safety 

Improvement Program (HSIP) guidelines and National Safety Council estimates. 
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Table C1. VOR Analysis Input Data and Sources. 
Topic Input Data Value(s) Source/Notes 

S
it

es
 

Target highway miles 148 Rural two-lane highways where paved width is at 

least 52ft 

1,271 50 percent of the rural two-way frontage roads 

Average AADT, veh/day 4,300 Query of TRM database 

427 

S
af

et
y

 

k
n

o
w

-

le
d

g
e 

Mean CMF value (effect of 

countermeasure) 

0.75 “Typical” value based on calibrated SPFs 

0.80 

Lowest and highest likely 

CMF values 

0.525, 1.013 Used default assumptions of 70 percent and 135 

percent of mean value for SRPW 0.560, 1.080 

C
ra

sh
 c

o
st

 

Analysis year 2021 Assumed (most recent completed year) 

Consumer price index 279 US Department of Labor  

Employment cost index 148 US Department of Labor  

Crash distribution by severity K = 0.036,  

A = 0.061,  

B = 0.113,  

C = 0.130, 

PDO = 0.660 

Query of merged TRM-CRIS database,  

rural two-lane highways 

K = 0.044,  

A = 0.061,  

B = 0.114,  

C = 0.17, 

PDO = 0.610 

Query of merged TRM-CRIS database, rural two-

way frontage roads 

Cost of K, A, B crash $3.7 million, 

$3.7 million, 

and $520,000, 

respectively 

TxDOT’s HSIP guidelines (HSIP, 2021) 

Costs of C and PDO crashes $160,000, and 

$52,700, 

respectively 

National Safety Council 2020 estimates (NSC, 

2021) 

T
re

at
m

en
t 

co
st

 

Treatment implementation 

level 

All sites Assumed 

Countermeasure service life 10 years Assumed 

Initial cost of project $26,000/mi Assumed based on similar construction projects 

$300,000/mi 

Annual maintenance cost of 

project 

$0 per mile Assumed no added maintenance cost due to 

treatment 

 

Researchers assumed a service life of 25 years for both treatments and treatment costs of $26,000 

per mile and $300,000 per mile, respectively, for the two treatments. Researchers used an annual 

maintenance cost of $0 for analysis based on the assumption that maintenance costs would not 

increase following the installation of the treatments. 

RESULTS 

Researchers conducted the VOR analysis using the SRPW program and obtained an annual VOR 

estimate of $272,727. This value represents the benefit that can be obtained if (1) the research 

project is conducted, (2) the results of the research project are used to analyze all relevant urban 

freeway segments that were identified in the TRM database query, and (3) the treatment is 

installed at all sites found to be deserving of treatment. A site is considered to deserve treatment 
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if the cost of treatment is less than the cost of the crashes that would be reduced over the service 

life of the treatment if the treatment were installed. 

Figure C1 shows a summary of the VOR calculations. The payback period for Research Project 

0-7083 was found to be 1.14 years, and the cost-benefit ratio was found to be 5.51. These 

findings account for the construction costs and safety benefits incurred by TxDOT. 

 
Figure C1. VOR Analysis Results. 
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