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1Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy,
2Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
Transcriptomics and metabolomics are methodologies being increasingly

chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing

either on plant and fruit development or on interaction with abiotic or biotic

factors. Currently, the integration of these approaches has become of utmost

relevance when studying key plant physiological and metabolic processes. The

results from these analyses can undoubtedly be incorporated in breeding

programs whereby genes associated with better fruit quality (e.g., those

enhancing the accumulation of health-promoting compounds) or with stress

resistance (e.g., those regulating beneficial responses to environmental

transition) can be used as selection markers in crop improvement programs.

Despite the vast amount of data being generated, integrative transcriptome/

metabolome meta-analyses (i.e., the joint analysis of several studies) have not

yet been fully accomplished in this species, mainly due to particular specificities

of metabolomic studies, such as differences in data acquisition (i.e., different

compounds being investigated), unappropriated and unstandardizedmetadata,

or simply no deposition of data in public repositories. These meta-analyses

require a high computational capacity for data mining a priori, but they also

need appropriate tools to explore and visualize the integrated results. This

perspective article explores the universe of omics studies conducted in V.

vinifera, focusing on fruit-transcriptome and metabolome analyses as leading

approaches to understand berry physiology, secondary metabolism, and

quality. Moreover, we show how omics data can be integrated in a simple

format and offered to the research community as a web resource, giving the

chance to inspect potential gene-to-gene and gene-to-metabolite

relationships that can later be tested in hypothesis-driven research. In the

frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we

present the first grapevine transcriptomic and metabolomic integrated

database (TransMetaDb) developed within the Vitis Visualization (VitViz)
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platform (https://tomsbiolab.com/vitviz). This tool also enables the user to

conduct and explore meta-analyses utilizing different experiments, therefore

hopefully motivating the community to generate Findable, Accessible,

Interoperable and Reusable (F.A.I.R.) data to be included in the future.
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Introduction

There has been more than 15 years of omics studies

accumulated in grapevine (Vitis vinifera L.) to understand

processes related to its development and interaction with the

environment. The vast amount of data generated has allowed us

to understand this species singularity in terms of its adaptive traits,

but has also permitted us to explore its diversity, especially related to

plant performance (e.g., stress resistance, vigor, yield, etc.) and fruit

quality. This data includes genome assemblies of many different
02
cultivars and clones of V. vinifera and their wild American or

Asian-related species and, in decreasing order of the number of

published studies, transcriptomic, metabolomic, proteomic, and

ionomic data (Figure 1 and Supplementary Table 1).

A significant achievement in the grapevine omics era was the

release of two independent genome sequences in 2007, with one

being accomplished by a French-Italian Public Consortium (Jaillon

et al., 2007), and the second through an Italian-American

Collaboration (Velasco et al., 2007). Grapevine then became the

first fruit genome to be sequenced and the fourth among plants after
A B

FIGURE 1

(A) Publication trend of grapevine omics studies. Data was collected from NCBI using different queries and keywords for each category to be as
comprehensive as possible and retrieve most of the works. Transcriptomics query: 1) RNA-Seq (excluding microarray data): (transcriptom*[Title/
Abstract] OR transcript profiling[Title/Abstract] OR mRNA expression[Title/Abstract] OR RNA-Seq[Title/Abstract] OR RNASeq[Title/Abstract] OR
RNA Sequencing[Title/Abstract] OR RNA-Sequencing[Title/Abstract]) AND (grapevine[Title/Abstract] OR grape[Title/Abstract] OR Vitis[Title/
Abstract] OR V. vinifera[Title/Abstract]). 2) Microarray: (microarray[Title/Abstract] OR Affymetrix[Title/Abstract] OR CombiMatrix[Title/Abstract] OR
NimbleGen[Title/Abstract]) AND (grapevine[Title/Abstract] OR grape[Title/Abstract] OR Vitis[Title/Abstract] OR V. vinifera[Title/Abstract]).
Proteomics query: (proteom*[Title/Abstract] OR protein profiling[Title/Abstract]) AND (grapevine[Title/Abstract] OR grape[Title/Abstract] OR Vitis
[Title/Abstract] OR V. vinifera[Title/Abstract]). Metabolomics query: (metabolom*[Title/Abstract] OR metabolite profiling[Title/Abstract] OR
metabolite analyses[Title/Abstract] OR metabolic response[Title/Abstract]) AND (grapevine[Title/Abstract] OR grape[Title/Abstract] OR Vitis[Title/
Abstract] OR V. vinifera[Title/Abstract]). Ionomics query: (ionom*[Title/Abstract] OR elemental profiling[Title/Abstract] OR mineral elements[Title/
Abstract] OR cations[Title/Abstract]) AND (grapevine[Title/Abstract] OR grape[Title/Abstract] OR Vitis[Title/Abstract] OR V. vinifera[Title/Abstract]).
Only the studies published until 12/2021 were considered. Data were manually curated to remove outliers. (B) Pie chart showing the percentage
of transcriptomics (top panel) and metabolomics (bottom panel) studies focusing on fruit tissues, leaves or other grapevine organs.
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Arabidopsis thaliana (Arabidopsis Genome Initiative, 2000), rice

[Oryza sativa subsp. indica and subsp. japonica (Goff et al., 2002; Yu

et al., 2002)] and poplar (Populus trichocarpa) (Tuskan et al., 2006).

Since then, the grapevine community has witnessed an increase of

high-throughput next-generation sequencing techniques (e.g., long-

read sequencing of RNA and DNA) and the availability of updated

grapevine genome assemblies of the reference PN40024 (Canaguier

et al., 2017; unpublished data), with updated gene functional

annotations incorporated in the recently developed Grape Gene

Reference Catalogue (Navarro-Payá et al., 2022). We have observed

a cascade of genome sequences of V. vinifera top-quality wine-

making cultivars, and genomes of Vitis species important for

breeding purposes (da Silva et al., 2013; Venturini et al., 2013;

Chin et al., 2016; Minio et al., 2019a; Minio et al., 2019b Vondras

et al., 2019; Zhou et al., 2019; Massonnet et al., 2020; Magris et al.,

2021). In parallel with genomic/transcriptomic advances, the

technological improvement of analytical techniques such as high-

resolution liquid and gas chromatography coupled to mass

spectrometry, in terms of sensitivity, accuracy, and resolution, has

led to a massive amount of metabolomic data from heterogeneous

experimental designs, many of which are not public to date.

Comprehensive studies pointing to the expression of the

transcriptome or the abundance of the so-far known grape

metabolites have boosted the understanding of grapevine

physiology in the context of crop and fruit improvement.

However, data/metadata interpretation generally encounters

difficulties of reusability, for example in meta-analysis studies,

either due to high variability and heterogeneity of the associated

data or to the presence of partial, misleading, or incomplete

experimental descriptions. These descriptors should typically

include detailed information on the experimental set-up, report

the plant materials used and adopt standardized cultivar names,

organs, and developmental stages. Although this comprehensive

praxis is highly recommended, in most cases, we notice that even

raw data is not entirely available in public databases. Different

guidelines have been generated to fill this gap, focusing on

harmonizing plant and experiment descriptors. These include

standard ontologies, lists of tools, and systematic information for

describing omics analyses and tutorials for data submission in

public repositories. These guidelines have been recently adopted

by the viti-oenology community, sponsored by the COST Action

CA17111 INTEGRAPE, in order to adhere to the findable,

accessible, interoperable and reusable (F.A.I.R) principles

(Wilkinson et al., 2016). A section specifically related to grape

and wine metabolomics has been recently published (Savoi et al.,

2021a) to encourage the grapevine community to follow these

guidelines and share metabolomic data in open repositories such

as MetaboLights (Haug et al., 2020). These efforts were made

because, contrary to the wave of transcriptomic data available

online, unfortunately, only very few metabolomic studies are so

far accessible to the public.
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History of omics studies
in grapevine

Transcriptomics

The first records of high-throughput grapevine transcriptomic

studies date back to 2005, exploring the changes in gene

expression during berry development. Terrier et al. (2005)

generated 50-mers oligoarrays bearing a set of approximately

3,200 unigenes from Vitis vinifera from nine berry

developmental stages to provide the first global picture of the

genetic program of grape berry development. The authors were

able to discriminate differences in gene expression between hard

green and soft green berries at the onset of ripening (veraison),

pointing out that remarkable changes may occur within a short

period and that 25% of the transcripts were significantly activated

or repressed between the green and the ripening phases. In a

second study (da Silva et al., 2005), the authors retrieved all the

available Vitis sequences deposited in GenBank representing

numerous Vitis species, cultivars, organs, plant developmental

stages, and stress treatments. The analysis concluded that each

stage of development was characterized by distinct gene

expression patterns, including numerous stage-specific

transcripts. Interestingly, they identified a MADS-box gene as a

putative regulator of grape berry development. A third study

(Waters et al., 2005) used the same technology to explore gene

expression patterns throughout grape berry development

revealing sets of genes with distinctive or similar expression

profiles over the course of berry development. Finally, another

pioneering study (Grimplet et al., 2007) used a brand new

Affymetrix GeneChip® Vitis vinifera oligonucleotide microarray

to study tissue-specific mRNA expression in berry skin, flesh, and

seeds in well-watered and water deficit plants at fruit maturity,

listing a repertoire of expressed genes, highlighting those

modulated by drought stress. In particular, stress modulated

around 13% of the genes, mainly in the pulp and skin. In

synthesis, these groundbreaking studies paved the way for future

grapevine transcriptomic works developing compendiums of gene

expression, studying gene profiles during grape berry

development and setting the first milestone in understanding

grapevine physiology.

The first grapevine study that specifically employed RNA

sequencing using the Illumina platform corresponds to that of

Zenoni et al. (2010). The authors focused on three stages of berry

development indicated as post-setting, veraison, and ripening, to

gain insight into the wide range of transcriptional responses

associated with the development of fruits. They detected the

expression of 17,324 genes during berry development, of which

6,695 were expressed in a stage-specific manner. Moreover, they

identified alternative splicing events for 385 genes suggesting a

considerable transcript complexity in developing berries. The
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grapevine expression atlas of the cultivar (cv.) ‘Corvina’ (Fasoli

et al., 2012) was later released based on the Nimblegen

microarray platform (29,000 genes spotted) representing the

first wide study of global gene expression in a complete

repertoire of grape organs, including 54 reproductive and

vegetative tissues at different developmental stages. This work

highlighted a fundamental transcriptome reprogramming

during maturation with the activation of a mature/woody

developmental program, which was mainly inactive during the

vegetative/green stage. Subsequent studies also focused on berry

development, ripening, and post-harvest of different cultivars

(Pilati et al., 2007; Lijavetzky et al., 2012; Sweetman et al., 2012;

Cramer et al., 2014; Gouthu et al., 2014; Pilati et al., 2014; Guo

et al., 2016; Zenoni et al., 2016; Ghan et al., 2017; Massonnet

et al., 2017; Shangguan et al., 2017; Balic et al., 2018; Fasoli et al.,

2018; Savoi et al., 2019; Cramer et al., 2020; Guo et al., 2020;

Savoi et al., 2021b; Theine et al., 2021). At the same time, other

studies considered the development of tendrils and

inflorescences (Dı ́az-Riquelme et al., 2014), buds (Dı ́az-
Riquelme et al., 2012; Pucker et al., 2020; Shangguan et al.,

2020), flower (Sreekantan et al., 2010; Grimplet et al., 2017;

Vannozzi et al., 2021), leaf (Pervaiz et al., 2016), fruits of seeded/

seedless cultivars (Nwafor et al., 2014; Royo et al., 2016) and

roots from V. vinifera and Vitis rootstocks (Cookson et al., 2013;

Corso et al., 2015; Cochetel et al., 2017; Livigni et al., 2019).

Further studies investigated the plant responses to ozonated

water applications (Campayo et al., 2021), the circadian cycle

(Carbonell-Bejerano et al., 2014b; Rienth et al., 2014a), the

interaction with abiotic stresses such as temperature (Liu et al.,

2012; Carbonell-Bejerano et al., 2013; Xin et al., 2013; Rienth

et al., 2014b; Rienth et al., 2016), light (Pontin et al., 2010;

Carbonell-Bejerano et al., 2014a) and water availability (Perrone

et al., 2012; Dal Santo et al., 2016b).

Regarding pathogens, grapevine is highly susceptible to a

range of fungal diseases such as downy mildew (Plasmopara

viticola) and powdery mildew (Erysiphe necator), and the bunch

or noble rot (Botrytis cinerea). Therefore, several efforts have

been made to study these interactions by performing

transcriptomic analyses, although most of these have been

performed on leaves (Fung et al., 2008; Polesani et al., 2010;

Wu et al., 2010; Weng et al., 2014; Amrine et al., 2015; Li

et al., 2015).

A few studies have used transcriptomics to better understand

the impact of agronomic practices such as defoliation (Pastore

et al., 2013; Zenoni et al., 2017) or cluster thinning (Pastore et al.,

2011) on fruit quality, showing that these techniques, when

applied at the appropriate phenological stage, can improve the

quality of ripening fruits, in term of sugars and colors. Moreover,

an increasing interest in the transcriptome profiles of other Vitis

species has been asserted. A complete list of all transcriptomic

grapevine studies in fruits is available in Supplementary Table 1A.

Thanks to the large number of public experiments, several

transcriptome-related tools have been developed to explore this
Frontiers in Plant Science 04
type of data. The Vitis Co-expression database ‘VTCdb’ (Wong

et al., 2013) offered an online platform for exploring potential

regulatory networks by addressing gene co-expression. The

VTCdb was replaced by ‘VTC-Agg’ in Wong, 2020, by gene

rank of correlations and aggregate networks, being constructed

from 1,359 microarray samples (33 experiments). More recent

applications include ‘AggGCN’, present in the VitViz platform

(unpublished), which offers condition-dependent and

independent aggregated networks from all SRA-located RNA-

seq experiments, and ‘VESPUCCI’ (Moretto et al., 2016; Moretto

et al., 2022), a cross-platform expression compendium that was

carefully constructed by collecting, homogenizing, and re-

annotating the metadata of publicly available microarray and

RNA-Seq data (271 experiments). The GRape Expression Atlas

‘GREAT’ (unpublished) allows to query, visualize and analyze

genes of interest with interactive heatmaps or expression tables

by inferring public RNA-seq data (about 2,000 samples) from

Vitis vinifera. Finally, ‘OneGenE’ (One Gene network

Expansion) (Pilati et al., 2021) is a transcriptomic data mining

tool that finds direct correlations between genes, thus producing

association networks by using a causality-based method.
Metabolomics

The use of plant metabolite profiling as a new tool for gene

functional analyses and plant phenotyping has been

incorporated in the last two decades (Fiehn et al., 2000).

However, given the vast diversity of plant metabolites,

metabolomic approaches are often based on separately

analyzing different classes of metabolites having similar

physical or chemical properties or functional groups. Hence

metabolome studies are based on applying different analytical

methods, including variable extraction protocols and

instruments. A complete list of metabolomic studies in

grapevine is available in Supplementary Table 1B.

The first metabolomic profiling study comprehensively

reporting important grape secondary metabolites was achieved

by Mattivi et al. (2006), where 91 grape cultivars were

characterized for different polyphenols (focusing on the type

and amount of flavonols and anthocyanins) at ripening on the

berry skins. In particular and on average, the main flavonols

found in red and white grapes differed in abundance order, and

interestingly, the delphinidin-like flavonols were missing in all

white cultivars, suggesting that the genes coding for flavonoid

3′,5′-hydroxylases were not expressed in these cases. A further

study identified a hundred grape polyphenols by UHPLC/

QTOF, providing a compendium of grape flavonols,

anthocyanins, and stilbenes (Flamini et al., 2015). Other

studies examined anthocyanin profiles in berry skins during

the progress of ripening (Castellarin et al., 2006), the

polyphenolic composition of PIWI grape cultivars (from the

German fungus-resistant cv. ‘Pilzwiderstandsfähige’) (Ehrhardt
frontiersin.org
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et al., 2014; Gratl et al., 2021), or of wild American genotypes

(Narduzzi et al., 2015; Ruocco et al., 2017). Cultivar-specific

compositions of polyphenols have also been assessed, for

instance, in ‘Muscat’ cultivars with anthocyanin profiles

driving the main divergence between red and white cultivars,

followed by flavonols and flavanols discriminating among the

white accessions (Degu et al., 2015). Additionally, the responses

to several stresses (Degu et al., 2016), the changes in the

flavonoid profi les by early mechanical leaf removal

(VanderWeide et al., 2018), or the stimulatory effect of kaolin

application in leaves (Conde et al., 2016) have also been

accomplished. Metabolomic analyses have also been performed

to compare the primary metabolites of fruits (Dai et al., 2013;

Cuadros-Inostroza et al., 2016; Zhao et al., 2016) and leaves

(Harb et al., 2015; Conde et al., 2018). Other studies have

focused on the analysis of the volatile compounds in roots

(Lawo et al., 2011), leaves (Weingart et al., 2012), and berries

(Vrhovsek et al., 2014).

Research has also been carried out to study the berry late-

ripening program in skin, flesh, and seed (Vondras et al., 2017)

or to understand the role of drought conditions affecting several

metabolic pathways (Hochberg et al., 2013; Griesser et al., 2015;

Hochberg et al., 2015b; Herrera et al., 2017; Pinasseau et al.,

2017). In addition, the effect of temperature (Hochberg et al.,

2015a) and light (Reshef et al., 2017; Reshef et al., 2018) have also

been investigated.

Like for transcriptomics, metabolomic approaches have also

been deployed to understand plant-pathogen interactions. For

example, the identification of biomarkers of defense response to

Plasmopara viticola has been a trending topic (Adrian et al.,

2017; Chitarrini et al., 2017; Negrel et al., 2018; Ciubotaru et al.,

2021), as well as the action of Botrytis cinerea on the fruit

metabolism (Hong et al., 2012; Negri et al., 2017).

In recent years, metabolomics in grapevine has been coupled

to transcriptome analyses to understand in detail the

physiological mechanisms of berry ripening and the

interaction with biotic or abiotic stresses. This topic will be

further discussed later on.
Proteomics

Approximately one-hundred grapevine proteomic studies

can be found in the literature (a complete list of proteomic

studies in grapevine is available in Supplementary Table 1C).

The first extensive study on grapevine proteomics analyzed the

mesocarp (flesh)-allocated proteins of ripe berries in six different

cultivars using two-dimensional electrophoresis followed by

MALDI-TOF peptide mass fingerprinting (Sarry et al., 2004).

The authors determined the composition of 67 major proteins in

ripe fruits and provided new evidence on the metabolism of

sugar and organic acids in fruits. A second extensive work

studied the proteomic dynamic changes during berry
Frontiers in Plant Science 05
development and ripening in the mesocarp of cv. ‘Nebbiolo’

by profiling 101 proteins over seven time points (Giribaldi et al.,

2007). The authors found that the majority of proteins were

linked to metabolism, energy and protein synthesis and fate. In

the same year, another study investigated the impact of two

major abiotic stresses, water deficit and salt stress, on the shoot

proteome of two cultivars, cv. ‘Chardonnay’ and cv. ‘Cabernet

Sauvignon’, showing that the protein concentration varied

mainly in response to the cultivars, then with time, and lastly

with the abiotic stress (Vincent et al., 2007).

The knowledge of the grapevine berry proteome has been

improved over the years by different studies focusing on skin

proteome dynamics throughout berry ripening (Deytieux et al.,

2007; Negri et al., 2008a; Martıńez-Esteso et al., 2011a), on the

identification of the different proteins present in skin, flesh or

seed (Tian et al., 2015), on plasma membrane protein expression

either during berry ripening (Zhang et al., 2008) or at maturity

(Negri et al., 2008b), on the changes of the vacuolar proteome

during ripening (Kuang et al., 2019), on single-berry proteome

during development and ripening (Martıńez-Esteso et al., 2011b;

Martıńez-Esteso et al., 2013) or in the protein expression profiles

of grape berry during postharvest withering process (Di Carli

et al., 2011).

Proteomics has also been employed to identify proteins

associated with flavor volatile compounds found in fruits, such

as proteins involved in the phenylpropanoid pathway, terpene

synthesis, fatty acid derived volatiles and esters (Kambiranda

et al., 2016; Kambiranda et al., 2018), or with the effects of ABA

treatments on ripening Vitis vinifera berries (Giribaldi et al.,

2010), sunlight exposure (Niu et al., 2013) and water deficit

(Cramer et al., 2013). In addition, many other studies have tested

proteome changes in plant-pathogen responses. For example,

several studies investigated the leaf response to biotic stress, such

as Plasmopara viticola (Milli et al., 2012; Figueiredo et al., 2017;

Nascimento-Gavioli et al., 2017; Santos et al., 2020; Liu et al.,

2021), while another study identified potential protein markers

in berries affected by noble rot (Lorenzini et al., 2015).
Ionomics

So far, only a few ionomic studies have been performed in

grapevine. In 2011 the first ionomic work was published,

describing the accumulation pattern of 42 mineral elements in

cv. ‘Chardonnay’ berries during development and ripening

(Bertoldi et al., 2011). The authors described that seven

elements accumulate prior to veraison, other eighteen

accumulate mainly prior to veraison but also during ripening,

and seventeen progressively during growth and ripening. With

regard to distribution, eight, sixteen and eighteen elements

specifically accumulated in seeds, skin and flesh, respectively.

In another study, the concentration of 34 mineral elements in

grapevine berries was determined by ICP-MS in cv. ‘Corvina’
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berries, harvested from eleven vineyards, to trace their

geographical origin (Pii et al., 2017). Moreover, the analysis of

cations such as K+, Mg2+, Ca2+, NH+
4 in berries at different

developmental stages showed the diversity of their concentration

in several cultivars, providing additional information for the

selection of genotypes able to cope with the adverse effects of

climate change on fruit quality (Bigard et al., 2020). Finally, the

ionomic signature was also studied in leaves identifying a

mineral element-based response to Xylella fastidiosa (De La

Fuente et al., 2013) and the changes in mineral distribution

after Plasmopara viticola infection (Cesco et al., 2020). A

complete list of ionomic grapevine studies is available in

Supplementary Table 1D.
Multi-omics integration of
transcriptomics and metabolomics

In addition to single-omic studies, integrative omics analyses

can be applied to provide a deeper understanding of the regulatory

processes controlling different molecular phenotypes. To date,

around sixty multi-omic studies combine transcriptomics and

metabolomics, to study either the early and late responses to

abiotic stresses, such as water and salinity stress (Cramer et al.,

2007), the molecular mechanisms involved in berry development

(Deluc et al., 2007; Fortes et al., 2011; Degu et al., 2014; Fasoli et al.,

2018; Griesser et al., 2020) and over-ripening (i.e., post-harvest

withering; Zenoni et al., 2016; Zenoni et al., 2020), or the changes

in polyphenol and aromatic compound content in ripening

berries (Costantini et al., 2015; Malacarne et al., 2015;

Costantini et al., 2017). Other integrated approaches have

studied berry responses during ripening to water deficit (Deluc

et al., 2009; Savoi et al., 2016; Savoi et al., 2017; Yang et al., 2020),

light (Suzuki et al., 2015; Sun et al., 2019; He et al., 2020; Zhang K

et al., 2021) or temperature (Lecourieux et al., 2017). A few

additional studies have also studied the ‘genotype by

environment’ (GxE) interaction (i.e., the effect of terroir) on the

plasticity of red and white grapes (Dal Santo et al., 2013; Anesi

et al., 2015; Dal Santo et al., 2016a; Dal Santo et al., 2018).

The integration of transcript and metabolite data has

contributed to the biological understanding of grape cultivar

differences for fruit composition. For example, Degu et al. (2014)

identified a cultivar-dependent regulation of specialized

metabolism towards fruit maturation when comparing the cv.

‘Shiraz’ and ‘Cabernet Sauvignon’, the former displaying a

higher upregulation of the entire polyphenol pathway, favoring

the accumulation of piceid and p-coumaroylated anthocyanins.

Moreover, in a post-harvest withering study, the expression of

stilbene biosynthesis genes increased after harvest in a genotype-

dependent manner, matching the varietal accumulation

differences (Zenoni et al., 2016).
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The integration of multi-omic datasets has been helpful in

the identification of putative candidate genes regulating the

accumulation of secondary metabolites in fruits. In this regard,

a nudix hydrolase was identified as a component of a terpene

synthase-independent pathway, enhancing monoterpene

biosynthesis together with other genes potentially involved in

terpenoid metabolism, such as cytochrome P450 hydroxylases,

epoxide hydrolases, and glucosyltransferases (Costantini et al.,

2015). Transcript and metabolite analyses determined that the

biosynthesis of anthocyanins was a consistent hallmark of noble

rot in white-skinned cv. ‘Sémillon’ (Blanco-Ulate et al., 2015), an

unexpected response due to the absence of functional alleles of

the MYBA1-A2 anthocyanin-regulators. This phenomenon led

to the hypothesis of novel regulators controlling berry skin

pigment production, which were later found by Matus et al.

(2017) and D’Incà et al. (2021). The use of metabolomics

(stilbenoid-oriented) and transcriptomics, coupled to the

genome-wide exploration of transcription factor binding sites

through DAP-seq, allowed Orduña et al. (2022) to identify new

candidate genes coding for resveratrol modifying enzymes

including laccasses, glycosyltransferases and O-methyl-

transferases, potentially producing viniferin, piceid and

pterostilbene, respectively. Finally, Savoi et al. (2016)

associated the up-regulation of the MYB24 transcription factor

with the observed increased biosynthesis of three key

monoterpenes under water deficit in white grapes, leading to

the hypothesis of its capacity to regulate terpene synthase (TPS)

gene expression. Indeed, this MYB24-TPS regulatory

relationship was recently confirmed by Zhang C et al. (2021),

who also integrated several omics including transcriptomics,

metabolomics, and DAP-seq.

Numerous works have applied integrative methods to

address responses to pathogen infection, most being conducted

in fruits or leaves. For example, the leaf analysis of ‘Regent’ and

‘Trincadeira’ cultivars, respectively resistant and susceptible to

mildew, has provided information on the different metabolic

pathways related to the defense process (Figueiredo et al., 2008).

The work of Malacarne et al. (2011) combined metabolic and

transcriptional profiles in a segregating population for resistance

to Plasmopara viticola, while Maia et al. (2020) suggested several

gene/metabolite biomarkers of fungal/oomycetes-associated

disease susceptibility in eleven Vitis genotypes. In addition,

combined approaches have been employed to study berries

infected with the fungus Botrytis cinerea (Agudelo-Romero

et al., 2015; Blanco-Ulate et al., 2015), and also to determine

how the interaction with this same pathogen at flowering

influences quiescence and egressed infection (Haile et al., 2017;

Haile et al., 2020). Recently, a few studies have examined the

defense responses in susceptible and resistant grape cultivars

(Eisenmann et al., 2019; Chitarrini et al., 2020), while others

have examined the transcriptional, hormonal, and metabolic

changes under powdery mildew infection caused by Erysiphe
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necator in leaves and berries (Pagliarani et al., 2020; Pimentel

et al., 2021).

To date, only three publications integrate transcriptomics,

proteomics, and metabolomics in a single study. By overlapping

genes, proteins, and metabolites, Zamboni et al. (2010) identified

stage-specific biomarkers for berry development and withering.

Moreover, multi-omic datasets were integrated to test the

uniqueness of three red-skinned and two white-skinned

cultivars at berry maturity, providing a detailed indication of

genotype differences (Ghan et al., 2015). Finally, multi-omic

analyses have been employed in the study of leaf responses to

copper stress, providing agronomic knowledge to improve

vineyard management and favor the breeding of copper-

resistant grape cultivars (Chen et al., 2021).
An illustration of data integration
and meta-analysis using the
TransMetaDb app

Moving forward from single-omic studies and gene-to-gene

network exploring tools, the construction of gene-to-metabolite

networks via integrative approaches represents a promising

strategy for identifying novel gene functions and unprecedent

links between genes and metabolites (Hirai et al., 2005; Saito

et al., 2008). This concept has been reviewed in grapevine (Wong

and Matus, 2017; Matus et al., 2019), stating the need for

appropriate tools to visualize the integration of multi-omic

datasets. The first tool developed for data integration in

grapevine was ‘VitisNet’ (Grimplet et al., 2009; Grimplet et al.,

2012), which allowed the multiple combinations of omics data

by overlapping user data to 247 curated grapevine molecular

networks, reporting more than 16,000 genes; unfortunately, this

tool is no longer accessible. A second developed tool was

‘VitisCyc’ (Naithani et al., 2014), a grape-specific database for

browsing and visualizing metabolic pathways end enzymatic

reactions, compounds, genes and proteins, and for comparing

metabolic networks with other publicly-available resources from

other plant species (this tool is now hosted in the Gramene

database; Tello-Ruiz et al., 2021).

To date, there is no visualization tool in grape to explore the

correlation of transcriptomics and metabolomics data, and even

less to combine them in meta-analyses. Within the COST Action

CA17111 INTEGRAPE, we have developed TransMetaDb

(Figure 2), an application available in the Vitis Visualization

(VitViz) platform (https://tomsbiolab.com/vitviz), to freely

explore the correlation between metabolites and genes in

multiple transcriptomics/metabolomics integrated datasets.

The Integrated Transcriptomics and Metabolomics Database

Application (TransMetaDb) was developed in the Shiny R

environment and offers a user-friendly interface to explore

transcriptomic data (i.e., differentially expressed genes and co-
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expression modules) and its correlation to metabolites

quantified in the same conditions. The App takes an Excel or

comma/tab-separated file as an input, with only one column

containing the 12X.v2 VCost.v3 gene IDs of interest, and an

optional second column with the gene names/symbols, whose

purpose is to provide a descriptive name for the user-provided

genes. The output is a downloadable heatmap or table, with all

the genes of interest by row, compared with the different

metabolites on each column. Each cell contains the Pearson’s

correlation coefficient (PCC) value and its p-value in brackets,

calculated using the student asymptotic method. The

identification of gene candidates related to metabolite

phenotypic traits has often been inferred from association

measures, such as the commonly-used PCC method (to

measure linear correlation between two variables). Although

alternative measures can be employed, PCC is still the standard

for initial exploration of gene-to-gene and gene-to-metabolite

networks (Nikiforova et al., 2005; Mao et al., 2009). This is a first

general approach to discover functions in a set of genes and

metabolites of interest. On a second tab, the App allows the user

to explore co-expression clustered modules, downloading a table

with all gene-module categories.

So far, three studies have been uploaded to the App; Savoi

et al. (2016) and Savoi et al. (2017) focused on the impact of

drought on fruit secondary metabolism and have a similar

experimental design, the same metabolomic method, with all

data being publicly available. A third study detailed a

transcriptomic and metabolomic temporal map of berry

development in two cultivars for three consecutive years

(Fasoli et al., 2018). This data was first reanalyzed; briefly, the

transcriptomic data was re-aligned using STAR v. 2.7.3a (Dobin

et al., 2013) against the PN40024 12X.v2 assembly, and a raw

gene count matrix was extracted using the latest VCost.v3

annotation (Canaguier et al., 2017) and featureCounts (Liao

et al., 2014). Gene expression was normalized with FPKM

(Fragments per kilobase per million mapped reads) as this

normalization method takes into account both sequencing

depth of libraries and gene length, allowing the comparison of

expression between different genes across different samples

(other normalization methods will be applied in the future,

such as TMM).

Clustering of gene expression and metabolite profiles can

serve for mining useful information from noisy data, identifying

cohorts of genes that control metabolism and understanding

how metabolic pathways can be rewired in development and

stress. Detection of functional gene modules by classical

clustering methods, such as K-means or mean-shift, have been

outperformed in transcriptomic studies by a modification of the

algorithm, e.g., the fuzzy k-means applied in the fclust R package

(Ferraro et al., 2019), or by correlation networks using for

instance the Weighted Gene Correlation Network Analysis

(WGCNA) R package (Langfelder and Horvath, 2008). In

TransMetaDb, genes have been clustered in eigen modules
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(ME) by applying WGCNA, and metabolites have been

associated to these modules in the same way as for genes. As

explained in Langfelder and Horvath (2008), WGCNA works by

generating a network (or adjacency matrix) from the biological

data and then performing a hierarchical clustering. In order to

build the adjacency matrix, an intermediate co-expression

similarity matrix is defined using the biological data by

computing co-expression measures between genes. Once the
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co-expression similarity matrix is constructed, it is transformed

in the adjacency matrix using a beta power value that is chosen

by the user in order to generate an adjacency matrix, and that

satisfies the scale-free network topology where the distribution

of node degree is adjusted to a potential law (i.e., high number of

nodes with a low number of edges and few nodes with a high

number of edges). For doing this analysis, the blockwiseModules

function was used with a deepSplit of 4, a mergeCutHeight of 0.1
A B

D

E

C

FIGURE 2

Omics integration in two studies that investigated the effect of a long-lasting water deficit on the metabolism of white (cv. ‘Tocai friulano’) and
red (cv. ‘Merlot’) cultivars during berry development and ripening (Savoi et al., 2016; 2017). (A) Methods scheme of the analyses performed for
each of the independent studies and the combination of them (i.e., study integration or meta-analysis). Genes with low expression are filtered-
out before WGCNA analysis. (B, C) Results obtained from the analyses depicted in (A), where (B) Improvement of statistical significance and/or
correlation between genes and metabolites for the combination of both studies. P-value representation is only shown when the value exceeds
the 0.05 threshold. (C) Improvement of statistical significance and/or correlation between gene modules and metabolites for the combination
of both studies. A −log10(p-value) scale is provided where a higher value represents a greater statistical significance. The red dashed line
depicts −log10(p-value) corresponding to a 0.05 threshold. (D) Visual interface of the TransMetaDb App, found at the Vitis Visualization (VitViz)
platform (https://tomsbiolab.com/vitviz). The resulting example heatmap is shown in (E).
frontiersin.org

https://tomsbiolab.com/vitviz
https://doi.org/10.3389/fpls.2022.937927
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Savoi et al. 10.3389/fpls.2022.937927
and a beta power of 30 for the integration of the ‘Tocai friulano’

and ‘Merlot’ studies and a power of 11, deepSplit of 4 and a

mergeCutHeight of 0.2 for Fasoli et al. (2018). Following

WGCNA authors’ recommendation, the deepSplit and

mergeCutHeight parameters were adapted to obtain a number

of eigen modules and a number of genes per eigen module

adaptable for subsequent analysis with a minimum module size

of 40 genes. Transcripts and metabolites were integrated in gene-

to-metabolite and eigen module-to-metabolite matrices for each

of the individual and combined studies.

While exploring the WGCNA results of the combined studies

we observed that the Pearson correlation coefficients (PCC) and/or

the significance (p-values) of specific eigen module (ME, Figure 2B)

or gene-metabolite (Figure 2C), often increased. This is expected,

because as the sample is larger the error is lower and the sample

correlation converges to the population parameter, in the same way

as increasing the number of replicates improves the inferences that

can be made about a population. For example, in the combined

eigen module “white”, PCC and p-values of linalool, geraniol, and

a-terpineol were higher and more significant in the ‘Tocai

friulano’+’Merlot’ set, just like the association between these same

three terpenes (present in the white cultivar only) and the genes

MYB24 and TPS35 (Savoi et al., 2016; Zhang C et al., 2021).

Moreover, the addition of an anthocyanin-free dataset (i.e., Tocai)

to the data belonging to an anthocyanin-pigmented cultivar (i.e.,

Merlot) also improved the transcript-metabolite correlations

between different pigments and related genes as the ‘no

expression’ and ‘no pigment accumulation’ is a positive

correlation in itself. The five glycosylated anthocyanins (only

present in the red cultivar) and the anthocyanin-related genes

UFGT (Boss et al., 1996) and MYBA1 (Kobayashi et al., 2004)

showed increased correlation and/or increased significance in the

meta-analysis compared to individual studies (where the correlation

was already high). This improvement is due to the coherent

behavior of the selected proteins as they correspond to the latest

enzyme of the pathway and the master regulator of anthocyanin

accumulation, respectively, representing a perfect case of expected

correlation. Finally, we observed the same trend for the light-

induced carotenoid zeaxanthin and the light/UV signaling gene

HYH (HY5 HOMOLOGUE; (Loyola et al., 2016). These results

clearly imply that meta-analyses of integrated transcriptomic/

metabolomic datasets improves the strength of correlation metrics

in the same way as adding new samples in the construction of a

gene co-expression network increases the network performance

until it reaches a plateau (Wong, 2020).

We plan to increase the number of combined transcriptomic

and metabolomic datasets in TransMeta Db, based on the

quality of the metadata. Metabolic data will be compared in
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the following submitted studies to see which metabolites can be

combined. If this data has been acquired by different platforms,

or if it is presented in different units, one possibility would be to

scale the data (e.g., Z-score) before integration. Nevertheless, this

effort would certainly push the community to improve the

annotation of their experiments in public repositories so their

data can be fully interoperable. Once more studies have been

uploaded, we also expect to showcase alternative correlation

metrics using other compatible software and pipelines.
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C., Torres-Viñals, M., et al. (2014b). Circadian oscillatory transcriptional programs
in grapevine ripening fruits. BMC Plant Biol. 14, 78. doi: 10.1186/1471-2229-14-78
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