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Abstract: We aimed to investigate the reproducibility and accuracy of Radiofrequency Echographic
Multi-Spectrometry (REMS) for femoral BMD estimation and the reproducibility and discriminative
power of the REMS-derived femoral fragility score. 175 patients with primary and disuse-related
osteoporosis were recruited: one femoral Dual-energy X-ray Absorptiometry (DXA) scan and two
femoral REMS scans were acquired. No significant test—retest differences were observed for all
REMS-derived variables. The diagnostic concordance between DXA and REMS was 63% (Cohen’s
kappa = 0.31) in patients with primary osteoporosis and 13% (Cohen’s kappa: −0.04) in patients with
disuse-related osteoporosis. No significant difference was observed between REMS and DXA for
either femoral neck BMD (mean difference between REMS and DXA: −0.015 g/cm2) or total femur
BMD (mean difference: −0.004 g/cm2) in patients with primary osteoporosis. Significant differences
between the two techniques were observed in patients with disuse-related osteoporosis (femoral neck
BMD difference: 0.136 g/cm2; total femur BMD difference: 0.236 g/cm2). Statistically significant
differences in the fragility score were obtained between the fractured and non-fractured patients for
both populations. In conclusion, REMS showed excellent test-retest reproducibility, but the diagnostic
concordance between DXA and REMS was between minimal and poor. Further studies are required
to improve the REMS—derived estimation of femoral BMD.

Keywords: bone mineral density; fracture risk; fragility score; FRAX; spinal cord injury

1. Introduction

Dual-energy X-ray Absorptiometry (DXA) is widely accepted as the gold standard
technique for the assessment of bone mineral density (BMD) at the lumbar spine, proximal
femur, and distal radius. This assessment is the basis for osteoporosis diagnostic classifica-
tion and fracture risk estimation [1]. In recent years, an ultrasound–based technique has
also been developed to estimate BMD for the lumbar spine and femoral neck, with the name
of Radiofrequency Echographic Multi-Spectrometry (REMS) [2]. Its operating principle is
the analysis of the radiofrequency signals acquired during an ultrasound scan of the lumbar
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vertebrae and of the femoral neck. Ultrasound signals are processed to derive a patient-
specific spectrum that is compared with gender-, age-, site-, and body mass index-matched
reference spectral models to estimate the BMD and the fragility score [2,3]. Recent studies
showed high accuracy and precision of the REMS approach in comparison with DXA for
the diagnosis of osteoporosis on the lumbar spine and femoral neck in postmenopausal
women [3–5]. Adami et al. [6] have also showed that the REMS-derived T-score was an
effective predictor for the risk of fragility fracture in postmenopausal women. Other very
recent studies showed the feasibility and usefulness of REMS in pregnant women [7], in
elderly women with type 2 diabetes [8], and in acromegaly patients [9]. To our knowledge,
no previous study has investigated the accuracy of REMS in comparison with DXA in the
secondary (disuse-related) osteoporosis occurring in spinal cord injured patients. The bone
loss in these patients is always associated with disuse-related changes of muscle size and
quality [10–13] and can also be accompanied by the presence of heterotopic bone forma-
tions known as para-osteoarthropathies (i.e., periarticular ossifications) that frequently
involve the soft tissues around the hip [10,11,14]. However, the changes of muscle size and
quality as well as the presence of para-osteoarthropathies could affect the radiofrequency
signals acquired during an ultrasound scan of the proximal femur [13,14]. Therefore, we
hypothesized that the accuracy of REMS for the diagnosis of osteoporosis on the femoral
neck could be limited in patients with disuse-related osteoporosis.

The REMS-derived fragility score (i.e., a dimensionless number in the range 0–100)
has been proposed as a BMD-independent indicator of bone quality: the lower the value
of the fragility score, the higher the quality of the considered bone target [2]. Preliminary
studies showed that the lumbar spine fragility score discriminates between fractured and
non-fractured patients [15] and correlates with the FRAX-derived 10-year probabilities of
major and hip fracture [16]. To our knowledge, no previous study has investigated the
reproducibility and discriminative power of the femoral fragility score in patients with
osteoporosis.

Therefore, the aim of this study was to fill the above-mentioned research gaps (no
previous study adopted REMS to investigate spinal cord injured patients and no previous
study investigated the reproducibility and discriminative power of the femoral fragility
score in osteoporotic patients) by analyzing the reproducibility and accuracy of REMS for
femoral BMD estimation and the reproducibility and discriminative power of the femoral
fragility score in patients with primary and disuse-related osteoporosis.

2. Materials and Methods
2.1. Study Design and Participants

This was a cross-sectional study performed in patients of both genders who were
recruited from the rehabilitation units of five different hospitals: AOU Città della Salute e
della Scienza (Torino, Italy), Presidio Sanitario San Camillo (Torino, Italy), Casa di Cura Villa
Serena (Piossasco, Italy), Presidio Riabilitativo Borsalino (Alessandria, Italy), Istituto Clinico
Scientifico Maugeri (Torino, Italy). Inclusion criteria were: age ≥18 years and medical
prescription for femoral DXA. The exclusion criteria were body mass index ≥ 40 kg/m2

and presence of osteoporosis secondary to disorders other than the spinal cord injury: other
causes of secondary osteoporosis were excluded on the basis of anamnestic, clinical, and
biochemical findings.

The American Spinal Injury Association (ASIA) impairment scale [17] was adopted to
assess the disease severity in patients with spinal cord injury.

A total sample of 175 patients (primary osteoporosis: n = 140; disuse-related osteo-
porosis: n = 35) was recruited. All participants provided their written informed consent
before participating.

Ethics approval (protocol n. 133282) was granted by Ethics Committee of the Univer-
sity of Turin (Italy) and the procedures were conducted according to the Declaration of
Helsinki.



J. Clin. Med. 2022, 11, 3761 3 of 12

2.2. DXA and REMS

One femoral DXA scan and two femoral REMS scans (of the same side investigated
by DXA) were acquired in all patients: the median interval between the DXA and REMS
acquisitions was 29 days.

DXA scanning of the proximal femur (the left side was investigated in all non–fractured
patients, while the non–fractured side was investigated in all patients with a previous
femoral fracture) was performed using Hologic scanner (models: Horizon A, Horizon Wi,
Discovery Wi-Hologic Inc., Bedford, MA, USA) or GE scanner (models: Lunar Prodigy, Lu-
nar iDXA-GE-Lunar Inc., Madison, WI, USA) according to the standard clinical routine pro-
cedures. Since the BMDREMS was highly correlated with BMDDXA measurements obtained
with Hologic densitometers [18,19], the comparison between BMDDXA and BMDREMS was
performed after the conversion of BMDDXA values obtained by GE scanners in Hologic–
equivalent values, as previously described [3], by using the following equations: femoral
neck standardized BMD (g/cm2) = ((0.939 × observed BMD) − 0.023] [20]; total femur
standardized BMD (g/cm2) = [(0.979 × observed BMD) − 0.031) [21]. For the purposes of
the present study, diagnostic classifications (osteopenia or osteoporosis) were based on the
T-score values.

Two REMS scans of the proximal femur (of the same side investigated by DXA) were
performed by the same physician (MAM) with 10 years of experience in musculoskeletal
ultrasonography: after the first scan, the subject was allowed to move and the transducer
was repositioned. The REMS scans were performed with a dedicated echographic device
(EchoStation, Echolight SpA, Lecce, Italy) equipped with a convex transducer that was
placed parallel to the head-neck axis in order to visualize the proximal femur profile. For
the two acquisitions performed in each patient, the transducer focus and scan depth were
adjusted to have the target bone interface in the ultrasound beam focal zone at about
halfway through the B-mode image depth. REMS acquisitions were analyzed with the
EchoStudio (version 2.0-Echolight SpA, Lecce, Italy) software package.

A rigorous quality check of all examinations was performed a posteriori in order to
guarantee the maximum reliability of the diagnostic output [3,4]. Two experienced opera-
tors (PL, CB) checked all DXA and REMS reports in order to identify possible acquisitions
errors (see Section 3).

2.3. Statistical Analysis

Changes in the values of femoral neck BMD, total femur BMD, and fragility score
between the two REMS scans (REMS 1 vs. REMS 2) were analyzed with the Wilcoxon
signed rank sum test to assess the presence of systematic bias and with the intraclass corre-
lation coefficient (ICC2,1: two–way mixed model, single measures, absolute agreement)
to assess the REMS reproducibility. A sample size of at least 30 subjects (in each of the
two groups) was considered necessary for the test-retest reproducibility analysis, using
the approximate method developed by Walter et al. [22] based on α = 0.05 and β = 0.20,
indicating an expected level of reproducibility (ρ1) of 0.98 [3] and a minimally acceptable
level of reproducibility (ρ0) of 0.95.

The criteria used for the interpretation of the ICCs were as follows: 0.00–0.25: no
correlation; 0.26–0.49: low correlation; 0.50–0.69: moderate correlation; 0.70–0.89: high
correlation; and 0.90–1.00: very high correlation [23]. The ICC was also adopted to estimate
the standard error of measurement (SEM: standard deviation of all values obtained with the
two scans ×

√
1-ICC) and the smallest detectable change (SDC = SEM × 1.96 ×

√
2) [24].

Moreover, the least significant change (LSC) was also calculated for the three variables by
using the ISCD Precision Calculating Tool (https://iscd.org/learn/resources/calculators/,
accessed on 14 February 2022).

The diagnostic concordance between DXA end REMS was assessed by calculating the
diagnostic agreement percent (i.e., the percentage of patients being classified in the same
diagnostic category) and Cohen’s kappa. The criteria used for the interpretation of the
Cohen’s kappa were as follows: negative values and positive values in the range 0–0.20: no

https://iscd.org/learn/resources/calculators/
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agreement; 0.21–0.39: minimal agreement; 0.40–0.59: weak agreement; 0.60–0.79: moderate
agreement; 0.80–0.90: strong agreement; >0.90: almost perfect agreement [25].

The differences between the values of femoral neck BMD and total femur BMD
obtained by DXA and REMS were analyzed with the Wilcoxon signed rank sum test.
Additionally, the Bland–Altman method was adopted to show the differences between the
two measurements against their averages and to check whether the measurement difference
was independent of the magnitude of the average: the strength of the relationship between
differences and averages was evaluated by the Spearman test.

The Mann–Whitney U test was adopted to compare the fragility scores between
different subgroups (fractured vs. non-fractured patients) and the Spearman test was
adopted to investigate the association between fragility score and the FRAX-derived 10-year
probabilities of fracture [26,27].

Data were expressed as median and 1st–3rd quartile and threshold for statistical
significance was set to p = 0.05. All statistical tests were performed with the IBM SPSS
Statistics (version 20-IBM Corporation, Armonk, NY, USA) software package, with the
exception of the Bland-Altman plots that were performed with MedCalc (version 19-
MedCalc Software Ltd., Ostend, Belgium) software package.

3. Results

The clinical characteristics of two groups of patients are reported in Table 1.

Table 1. Clinical characteristics of two groups of patients. Data are reported and median (1st–3rd
quartile). AIS: American spinal injury association Impairment Scale.

Variable Primary Osteoporosis
n = 140

Disuse-Related
Osteoporosis n = 35

Age (years) 74.0
(64.0–81.0)

57.0
(49.0–63.5)

Gender distribution: number of females
(males)

120
(20)

14
(21)

Body mass index (kg/m2)
23.9

(21.3–27.3)
24.7

(22.9–29.1)

Previous major osteoporotic fracture (%) 69 83

% of all patients treated with
anti-osteoporotic drugs 21% 6%

% of non-fractured patients treated with
anti-osteoporotic drugs 12% 0%

% of fractured patients treated with
anti-osteoporotic drugs 26% 6%

FRAX score in non–complicated patients
(10-yr probability of major fracture %)

10.5
(6.2–17.5) -

FRAX score in non–complicated patients
(10-yr probability of hip fracture %)

3.3
(1.8–6.4) -

AIS score: grade A-B-C (%) - 66-14-20

Disease history
(years from the spinal cord injury) - 15.0 (9.0–23.5)

After exclusion of 25 and five erroneous DXA reports (due to inaccurate patient
positioning and/or incorrect placement of the regions of interest in the image) in patients
with primary and disuse-related osteoporosis, respectively, and after exclusion of five and
four erroneous REMS scans (due to wrong or suboptimal settings of the transducer position
or focus and/or scan depth) in patients with primary and disuse-related osteoporosis,
135 patients with primary osteoporosis and 31 patients with disuse-related osteoporosis
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were considered for REMS reproducibility assessment, while 113 patients with primary
osteoporosis and 30 patients with disuse-related osteoporosis were considered for REMS
accuracy assessment.

Figure 1 shows the comparisons of femoral neck BMD, total femur BMD, and fragility
score between the two REMS acquisitions (left panels: primary osteoporosis; right panels:
disuse-related osteoporosis).
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Figure 1. Values of femoral neck bone mineral density (BMD Fneck: panels (a,b)), total femur bone
mineral density (BMD Ftot: panels (c,d)), and fragility score (panels (e,f)) obtained for the two
REMS acquisitions (REMS 1 vs. REMS 2) in patients with primary osteoporosis (left panels) and
disuse-related osteoporosis (right panels).

No significant test—retest differences were observed in both groups of patients
(p > 0.05 for all comparisons). The ICC—SEM—SDC—LSC values obtained from the com-
parisons between the two REMS acquisitions in patients with primary and disuse-related
osteoporosis are reported in Table 2. Given the excellent (ICC values > 0.90) [23] repro-
ducibility of REMS, data from the two REMS acquisitions were averaged to perform the
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subsequent analyses (REMS accuracy assessment and fragility score comparisons between
different subgroups).

Table 2. REMS reproducibility results. BMD: bone mineral density; ICC: intraclass correlation
coefficient (all ICCs were statistically significant and are highlighted in bold); SEM: standard error of
measurement; SDC: smallest detectable change; LSC: least significant change.

Variable Primary Osteoporosis n = 135 Disuse-Related Osteoporosis n = 31

Femoral neck BMD

ICC 0.984 0.991

SEM (g/cm2) 0.012 0.013

SDC (g/cm2) 0.034 0.037

LSC (g/cm2) 0.034 0.006

Total femur BMD

ICC 0.976 0.987

SEM (g/cm2) 0.017 0.017

SDC (g/cm2) 0.047 0.048

LSC (g/cm2) 0.047 0.009

Fragility score

ICC 0.998 0.984

SEM (%) 1.02 2.08

SDC (%) 2.84 5.76

LSC (%) 2.96 1.05

The diagnostic concordance between DXA and REMS was 63% (Cohen’s kappa = 0.31,
p = 0.0001) in patients with primary osteoporosis and 13% (Cohen’s kappa: −0.04, p = 0.512)
in patients with disuse-related osteoporosis.

Figure 2 shows the comparisons of femoral neck BMD and total femur BMD between
DXA and REMS and the relative Bland-Altman plots in patients with primary osteoporosis:
no significant difference was observed between the two techniques for either femoral neck
BMD (mean difference between REMS and DXA of −0.015 g/cm2) or total femur BMD
(mean difference of −0.004 g/cm2). No significant correlations were observed between the
differences and the averages for either femoral neck BMD (R = −0.065, p = 0.49) or total
femur BMD (R = −0.013, p = 0.88).

Figure 3 shows the comparisons of femoral neck BMD and total femur between DXA
and REMS and the relative Bland-Altman plots in patients with disuse-related osteoporosis:
significant differences were observed between the two techniques for both femoral neck
BMD (mean difference between REMS and DXA of 0.136 g/cm2) and total femur BMD
(mean difference of 0.236 g/cm2). The Spearman test showed significant negative corre-
lations between the differences and the averages for both femoral neck BMD (R = −0.36,
p = 0.05) and total femur BMD (R = −0.55, p = 0.001), thus indicating that the lower the
BMD values, the higher the REMS overestimation.
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Figure 4 shows the comparisons of fragility score values between non-fractured and
fractured patients with primary and disuse-related osteoporosis: statistically significant
differences were obtained between the two subgroups of patients in both populations.
Significant positive correlations were observed between fragility score and FRAX-derived
10-year probability of both major fractures (R = 0.65, p = 0.0001) and hip fracture (R = 0.62,
p = 0.0001) in the subgroup of non-fractured patients with primary osteoporosis.
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4. Discussion

This study investigated the reproducibility and accuracy of REMS for femoral BMD
estimation and the reproducibility and discriminative power of the REMS-derived femoral
fragility score in patients with primary and disuse-related osteoporosis. The main findings
of our study were: (i) REMS showed excellent test-retest reproducibility for the estimation
of femoral neck BMD, total femur BMD, and femoral fragility score in both populations of
patients; (ii) no significant differences (i.e., no systematic bias) were observed between DXA
and REMS for the estimation of femoral neck BMD and total femur BMD in patients with
primary osteoporosis. However, the diagnostic concordance between the two techniques
was minimal; (iii) REMS overestimated (with respect to DXA) both femoral neck BMD and
total femur BMD in patients with disuse-related osteoporosis: the lower the BMD values,
the higher the REMS overestimation. Moreover, the diagnostic concordance between the
two techniques was poor; (iv) REMS–derived femoral fragility score differed between
non-fractured and fractured patients in both populations of patients.

The demonstration of excellent test-retest reproducibility of REMS was obtained in a
large group of patients of both genders with primary and disuse-related osteoporosis: this
finding confirms and extends previous results that were obtained for both lumbar spine
BMD and femoral neck BMD in small (n = 30) groups of women with postmenopausal
osteoporosis [3–5]. The SDC and LSC values we obtained for both femoral neck BMD and
total femur BMD are within the range of the measurement precision recommended for
the DXA-derived estimations of both femoral neck BMD (LSC ≤ 6.9%) and total femur
BMD (LSC ≤ 5%) [28]. However, further studies are required to assess the long-term
reproducibility of the REMS estimates in different populations of patients with primary
and secondary osteoporosis.

Previous studies performed in large groups of postmenopausal women showed mod-
erate to strong diagnostic agreement between DXA and REMS. In fact, Di Paola et al. found
a diagnostic concordance for femoral neck of 88% (Cohen’s kappa = 0.79) [3], while Cortet
et al. [4] showed an age-dependent reduction of diagnostic concordance and Cohen’s kappa
that were (for femoral neck) 92.1% and 0.90, respectively, in women aged 30–50 years,
84.9% and 0.84 in women aged 51–70 years, and 83.9% and 0.75 in women aged 71–90 years.
Recent real-life experience studies performed in either postmenopausal women [5] or
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subjects of both genders with primary osteoporosis [29] showed weak to moderate diag-
nostic agreement between DXA and REMS: diagnostic concordance and Cohen’s kappa
(for femoral neck) were 71.4% and 0.53 in the former study [5] and 84.8% and 0.67 in the
latter study [29]. We found minimal (in patients with primary osteoporosis) and poor (in
patients with disuse-related osteoporosis) diagnostic agreement between DXA and REMS.
All previous above-mentioned studies investigated adult and elderly non-fractured women
(with the exception of the study by Nowakowska-Plaza et al. who studied subjects of
both genders) [29], while our sample of patients with primary osteoporosis consisted in
non-fractured and fractured elderly patients of both genders. Therefore, the discrepancy
between the minimal diagnostic agreement between DXA and REMS we obtained in our
sample of patients with primary osteoporosis and the weak to strong agreement observed
in previous studies can be related to inter-sample differences in age, gender, and disease
severity. Moreover, an additional factor could underlie the poor diagnostic agreement
between DXA and REMS and the REMS overestimation of femoral BMD we obtained in
our sample of patients with disuse-related osteoporosis. Although no direct measurements
of fat and muscle size and quality were obtained in our study, we hypothesize that the
poor accuracy of REMS in patients with disuse-related osteoporosis can be related to the
well-known (although not completely understood) effects of disuse on subcutaneous fat
size, muscle size, and muscle composition [13,14]. The increased subcutaneous fat thickness
as well as the atrophy and myosteatosis of the iliopsoas muscle can modify the ultrasound
propagation between the ultrasound probe and the femoral neck. Consistently, it has been
documented in different neuromuscular disorders that the replacement of muscle tissue by
fat and fibrous tissue results in many transitions between tissues with different acoustic
impedance [30–32]: these transitions produce reflections and attenuation of the ultrasound
beam that could therefore modify the ultrasound signal spectrum and ultimately bias the
BMD estimation. However, a limitation of our study is that the number of patients with
disuse-related osteoporosis we included was relatively small: thus, significant differences
between DXA and REMS could also be a result of type I error. Future studies are therefore
required to confirm our preliminary observation as well as to improve the ultrasound signal
processing and the REMS—derived estimation of femoral BMD in patients with spinal
cord injury. This population of patients would indeed benefit from the availability of an
easy-to-use, portable, and radiation-free approach that can be adopted for early diagnosis
in the first weeks after the injury (when the execution of a DXA investigation is not easily
feasible) and for short- and long-term follow-up.

Spectral analyses of ultrasound signals can be used not only for estimating the BMD of
the bone target, but also for obtaining the fragility score that has been proposed as a BMD-
independent marker of bone quality [2,15,16]. The present demonstrations of excellent
reproducibility and between-subgroup (non-fractured vs. fractured patients) differences in
femoral fragility score represent original results of our study, while the observed positive
correlations between fragility score and FRAX-derived estimates of fracture probabilities
extend previous findings that were obtained for the lumbar spine fragility score [15,16].
In the present series, we also observed that several non-fractured patients with primary
osteoporosis had a fragility score above the median value of fragility score (57%: Figure 4a)
obtained in the population of fractured patients: this subgroup of non-fractured patients
could probably be considered at increased fracture risk. However, further studies are
required to establish whether the fragility score has true discriminative power for different
subgroups of patients (e.g., its discriminative power could be proved through a longitudinal
study investigating the occurrence of fragility fractures in non-fractured patients presenting
different baseline fragility scores) and can therefore be considered a relevant predictor
of the fracture risk similar to other well-known BMD-independent predictors such as
advancing age, previous fracture, glucocorticoid therapy, family history of hip fracture,
current smoking, and trabecular bone score (TBS) [33,34]. The latter is a texture index
obtained from the lumbar spine DXA that can be used to improve the FRAX-derived
estimates of fracture probabilities [34,35]. A possible implication of our findings is that the
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fragility score could also be used to adjust the FRAX-derived estimates if further studies
will confirm its fracture risk predictive value.

5. Conclusions

REMS showed excellent test-retest reproducibility for the estimation of femoral neck
BMD, total femur BMD, and femoral fragility score in patients with primary and disuse-
related osteoporosis. Moreover, the REMS–derived femoral fragility score differed between
non-fractured and fractured patients in both populations of patients. However, the di-
agnostic concordance between DXA and REMS was minimal in patients with primary
osteoporosis and poor in patients with disuse-related osteoporosis. Further studies are
required to improve the ultrasound signal processing and the REMS—derived estimation
of femoral BMD, especially in patients with spinal cord injury.
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