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Abstract
In this paperwe consider a numerical scheme for the treatment of an integro-differential
equation. The latter represents the formulation of a nonlocal diffusion type equation.
The discretization procedure relies on the application of the line method. However,
quadrature formulae are needed for the evaluation of the integral operator. They are
based on generalized Bernstein polynomials. Numerical evidence shows that the pro-
posed method is a suitable and reliable approach for the problem.
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1 Introduction

The application of mathematics to physics and life sciences allows the formulation
of models to interpret the phenomena that are observed by the experimentalists. A
wealth of examples can be drawn for instance frommechanics, material sciences, fluid
mechanics [4] or human population dynamics [1]. For instance, with the advancement
of technology, new materials have appeared that exhibit features that depart from the
classical assumptions of Newtonian fluids. They are at the boundary between fluids
and soft solids, with a behavior that is plastic and not elastic. Rheology investigates
the properties of these soft solids. For their understanding, new reformulations of the
classical equations of mathematical physics are required.

In physics in particular, attention has recently been paid to situations in which the
energy at a point depends also on the neighboring points, up to a threshold distance
which is a function of the range of the molecular forces. Thus a material that has two
possible stable states can be set up from these microscopic interactions over a lattice
of points. This gives a dynamical system, in which the sum of the lattice interactions
represent an approximated integral. In this way nonlocal alternatives of well-known
equations such as Phase-Field Klein-Gordon as well as Allen-Cahn, are obtained [5].
For instance, expressing the concentration of a species at a point in a two-element
alloy gives rise to the nonlocal version of the Cahn-Hilliard equation [6–8].

To give another example, also a nonlocal version of the nonlinear Schrödinger
equation, which is based on a convolution, has been investigated. A numerical method
has been proposed to ease the computational costs involved in the simulation of the
original equation.Bymeans of a suitable reformulation that employs partial differential
equation techniques, the original integro-differential equation is reformulated as a
system of partial differential equations. The latter can then be numerically integrated
by means of an improvement of a finite integration method [13].

Many numerical methods for nonlocal equations have been developed based essen-
tially on techniques related to partial differential equations, see for instance the
unconditionally energy stable finite difference convex splitting schemes of [2], one
being first order accurate in time and second order accurate in space, the second one
instead representing a fully second-order scheme, both solved by efficient nonlinear
multigrid methods. Also consider the more recent second order methods presented in
[3].

In this paper we would like to address the problem of nonlocal diffusion type
equations describing a fourth order scheme for its solution. The main novelty of this
investigation consists in the fact that the proposed line method avoids any reformu-
lation of the problem, dealing instead directly with the original integro-differential
formulation. To illustrate the method, we consider a relatively simple diffusive equa-
tion.

The paper is organized as follows. In the next section we describe the equation
under study, the numerical scheme is presented in Sect. 3, the needed quadratures are
contained in Sect. 4 and numerical evidence in support of our results concludes the
paper.
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2 The samplemodel

We illustrate the numerical method on a simple example. Our starting point is a sim-
ple diffusion equation in which nonlocal interactions are considered. Specifically we
consider the following nonlinear diffusion equation subject to nonlocal interactions

∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
− u(x, t)

∫ a

−a
ϕ(y − x)u(y, t) dy, a ∈ R

+, (1)

where the kernel function ϕ(y − x) is sufficiently smooth. The initial condition is

u(x, 0) = k(x), k ∈ C([−a, a])

while the Dirichlet boundary conditions read

u(−a, t) = H−(t), u(a, t) = H+(t), t > 0, H± ∈ C([0,∞)). (2)

In the examples, we will simply take H− = H+. For the subsequent illustration
of the numerical method it is convenient to set a specific notation for the nonlocal
interactions, namely

J (u, x, t) =
∫ a

−a
ϕ(y − x)u(y, t) dy, a ∈ R

+.

3 Themethod

We propose to use the method of lines, suitably adapted for this task. It can be sum-
marized in the following steps:

• Collocate (1) in a set of n − 1 equispaced internal points {xi }n−1
i=1 of the interval

(−a, a);

• Approximate the spatial derivatives ∂2u(x,t)
∂x2

∣∣∣
x=xi

by means of finite differences

schemes;
• Approximate the integrals J (u, xi , t)with a quadrature formula based on the Gen-
eralized Bernstein polynomials;

• Solve the obtained ordinary differential system by applying the standard Runge-
Kutta-Fehlberg (4,5) method.

More in detail, let n denote the number of nodes in the spatial mesh; the nodes and
the stepsize are

xi = −a + hi, i = 0, 1, . . . , n, h = 2an−1;

equation (1) is collocated at the internal nodes xi , i = 1, . . . , n − 1:

∂u(xi , t)

∂t
= ∂2u(xi , t)

∂x2
− u(xi , t)J (u, xi , t), i = 1, . . . , n − 1; (3)
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At the points x0 and xn the boundary conditions (2) are employed. The restriction of the
solution at the nodes becomes a function solely of time, denoted by ui (t) = u(xi , t);
its second partial derivative in space is discretized by means of the divided central
difference scheme of order O(h4) (see for instance [10]):

∂2u(x, t)

∂x2

∣∣∣∣
x=xi

� 1

h2

[
− 1

12
ui−2(t) + 4

3
ui−1(t) − 5

2
ui (t)

+4

3
ui+1(t) − 1

12
ui+2(t)

]
, i = 2, . . . , n − 2; (4)

For nodes involving points that lie outside the mesh, we suitably modify the finite
difference formulae, while keeping their accuracy commensurable with the one of
(4), namely order O(h4). These meshpoints near the boundary are those with index
i = 1 and i = n − 1; the modified finite difference formulae are:

∂2u(x, t)

∂x2

∣∣∣∣
x=x1

� 1

h2

[
5

6
u0(t) − 15

12
u1(t) − 1

3
u2(t) + 7

6
u3(t)

− 1

2
u4(t) + 1

12
u5(t)

]
, (5)

∂2u(x, t)

∂x2

∣∣∣∣
x=xn−1

� 1

h2

[
1

12
un−5(t) − 1

2
un−4(t) + 7

6
un−3(t)

− 1

3
un−2(t) − 15

12
un−1(t) + 5

6
un(t)

]
; (6)

Moreover in (3) we approximate the integrals J (u, xi , t) by means of one of the two
quadrature formulae that will be illustrated in Sect. 4; both of them are based on the
uniform mesh xi , i = 0, . . . , n. The choice between these quadratures depends on the
nature of the kernel ϕ(y− x). Hence, denoting by Jn(u, x, t) the quadrature rule used
for the discretization of J , see (16), from the divided difference scheme (4)-(6), we
get the following system of ODEs

du1(t)

dt
= 1

h2

[
5

6
u0(t) − 15

12
u1(t) − 1

3
u2(t) + 7

6
u3(t) − 1

2
u4(t)

+ 1

12
u5(t)

]
− u1(t)Jn(u, x1, t),

dui (t)

dt
= 1

h2

[
− 1

12
ui−2(t) + 4

3
ui−1(t) − 5

2
ui (t) + 4

3
ui+1(t)

− 1

12
ui+2(t)

]
− ui (t)Jn(u, xi , t), i = 2, . . . , n − 2,

dun−1(t)

dt
= 1

h2

[
1

12
un−5(t) − 1

2
un−4(t) + 7

6
un−3(t) − 1

3
un−2(t)

− 15

12
un−1(t) + 5

6
un(t)

]
− un−1(t)Jn(u, xn−1, t), (7)
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Fig. 1 For x ∈ [−1, 1], y ∈ [0, 10], graphics of the kernels ϕ(y − x) = sin(5(y − x)) (left) and
ϕ(y − x) = cos(25(y − x)) (right)

with initial conditions ui (0) = k(xi ), i = 0, . . . , n. The final discretized system of
ordinary differential equations (7) is then solved by means of the Runge-Kutta (4, 5)
method, implemented by the ode45 Matlab integrator.

4 The quadrature formulae

Let us fix x and t . To approximate the integral

J (u, x, t) =
∫ a

−a
ϕ(y − x)u(y, t) dy, a ∈ R

+ (8)

we suggest two possible strategies, according to the nature of the kernel ϕ. The first
case deals with very smooth kernels, the second one is reliable in all the cases where
the kernel presents some kind of pathologies: weak singularity, high oscillations (see
Fig. 1), “near” strong singularity, etc. In such cases the standard rules fail, and product
integration rules provide satisfactory results because they integrate exactly the pathol-
ogy. Each kernel has to be treated with specific approaches based on its very nature,
and this entails different ways of implementing the computation. For the pathological
case we consider oscillating kernels of the type

ϕ(y − x) = eiω(y−x)

for a “large” oscillation frequency ω.
Both the rules that we consider are based on the same Generalized Bernstein oper-

ator

Bn,� = I − (I − Bn)
�, n, � ∈ N∗ := N�{0},

where Bn is the ordinary Bernstein operator, shifted to the interval [−a, a]. Boolean
sums based on the Bernstein operator Bn represent an adequate tool to attain our goal,
since they are based on n + 1 equally spaced points in [−a, a]. Furthermore, unlike
the “originating” operator Bn , the speed of convergence accelerates as the smoothness
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of the approximating function increases. To be more precise, first we recall that for
r ∈ N∗, with 1 ≤ r ≤ 2�, the r−th Sobolev-type space is defined as

Wr ([−a, a]) =
{
f (r−1) ∈ AC : ‖ f (r)φr‖∞ < ∞

}
, ‖ f ‖Wr = ‖ f ‖∞ + ‖ f (r)φr‖∞,

where ‖ f ‖∞ := max
x∈[−a,a]| f (x)| is the uniform norm, φ(x) = √

a2 − x2 and AC
denotes the space of all locally absolutely continuous functions on [−a, a]. Conse-
quently, for each f ∈ Wr ([−a, a]) the error is estimated as ‖ f − Bn,�( f )‖∞ =
O(

√
n−r ), 1 ≤ r ≤ 2�. In other words, the convergence rate behaves like the

square root of the best approximation error for this functional space. Note that
Cr ([−a, a]) ⊂ Wr ([−a, a]). A survey on the Generalized Bernstein polynomials
and their applications is contained in [12].

In what follows by writing gx (y) we mean that any bivariate function g(x, y) is
taken as function just of the variable y. Furthermore, from now on we use C in order to
denote a positive constant, which may have different values at different occurrences,
and we write C 
= C(n, f , . . .) to mean that C > 0 is independent of n, f , . . ..

4.1 First case: the“smooth” kernel'(y− x)

In this case we use the Generalized Bernstein quadrature formula studied in [11] and
based on shifted Generalized Bernstein Polynomials:

∫ a

−a
f (y)ϕ(y − x) dy �

∫ a

−a
Bn,�( f ϕx , y) dy =

n∑
j=0

f (x j )ϕ(x j − x)D(�)
j ,

D(�)
j = 2a

n + 1

n∑
i=0

c(n,�)
i, j , xk := −a + k

2a

n
, (9)

where c(n,�)
i, j are the entries of the matrix Cn,� ∈ R

(n+1)×(n+1),

Cn,� = I + (I − A) + . . . + (I − A)�−1, Cn,1 = I, (10)

and I denotes the identity matrix. Furthermore

A := (Ai, j ), Ai, j := pn, j (xi ), i, j ∈ {0, 1, . . . , n},

pn,i (x) :=
(
n

i

) (
a + x

2a

)i (a − x

2a

)n−i

, i = 0, 1, . . . , n.

Letting

εn( f ϕx ) =
∫ a

−a

[
f (y)ϕ(y − x) − Bn,�( f ϕx , y)

]
dy,
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under the assumption

sup
x∈[−a,a]

( f ϕx ) ∈ Wr ([−a, a]), 1 ≤ r ≤ 2�

and setting

M := sup
x∈[−a,a]

‖ f ϕx‖Wr ,

we have [9]

sup
x∈[−a,a]

|εn( f ϕx )| ≤ C
(
ar+1M
(
√
n)r

)
, C 
= C(n, f , ϕ). (11)

An analogous estimate was derived in [11] in the classical case on the interval [0, 1].

4.2 Second case: the kernel'(y− x) = ei!(y−x)

By splitting this kernel into its real and imaginary parts, we obtain integrals of the type

∫ a

−a
f (y)κ(ω(y − x)) dy, κ(ω(y − x)) =

{
sin(ω(y − x)),

cos(ω(y − x)).
(12)

Hence, by approximating f by Bn,�( f ) we have

∫ a

−a
f (y)κ(ω(y − x)) dy �

∫ a

−a
Bn,�( f , y)κ(ω(y − x)) dy

=
n∑
j=0

f (x j )
n∑

i=0

c(n,�)
i, j

∫ a

−a
pn,i (y) κ(ω(y − x)) dy

=:
n∑
j=0

f (x j )
n∑

i=0

c(n,�)
i, j qi (x). (13)

where pn,i (y) and c(n,�)
i, j are defined as in the previous subsection.

For the product rule to work, the integrals qi (y) need to be accurately computed. To
this end,weuse the formula proposed in [9]. For the benefit of the reader,wenowbriefly
recall it. Let N = ⌊

ω a
π

⌋ + 1 and consider the partition [−a, a] = ⋃N
h=1[th−1, th],

th = −a + 2a
N h. Hence, we have
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qi (x) =
N∑

h=1

∫ th

th−1

κ(ω(y − x))pn,i (y)dy

= a

N

N∑
h=1

∫ 1

−1
pn,i

(
γ −1
h (z)

)
κ

(
ω

(
γ −1
h (z) − x

))
dz,

where for h = 1, 2 . . . , N the transformations

y = γ −1
h (z) := a

N
(z + 1) + th−1, (14)

map [th−1, th] into [−1, 1]. Then, approximating each integral by the n-th Gauss-
Legendre rule,

∫ 1

−1
g(y)dy �

n∑
k=1

g(zk)λk

where {zk}nk=1 represent the zeros of the n−th Legendre polynomial and {λk}nk=1 the
corresponding Christoffel numbers, we have

qi (x) = a

N

N∑
h=1

(
n∑

k=1

pn,i

(
γ −1
h (zk)

)
κ

(
ω

(
γ −1
h (zk) − x

))
λk + εi,hn (x)

)
.

Combining the above equation with (13), we obtain the following quadrature rule:

∫ a

−a
f (y)κ(ω(y − x)) dy =

n∑
j=0

f (x j )P
(�)
j (x) + R(�)

n (x),

P(�)
j (x) = a

N

n∑
i=0

c(n,�)
i, j

N∑
h=1

(
n∑

k=1

pn,i

(
γ −1
h (zk)

)
κ

(
ω

(
γ −1
h (zk) − x

))
λk

)
.

(15)

For the quadrature error, for any f ∈ Wr ([−a, a]), 1 ≤ r ≤ 2�, and for n sufficiently
large, say n > n0 for a fixed n0, we have [9]

sup
x∈[−a,a]

|R(�)
n (x)| ≤ C‖ f ‖Wr

[
ar+1

(
√
n)r

+ n
3
2 ‖Cn,�‖∞

(
a

N
· n + ω

2n − 1

)n ]
,

where C 
= C(n, f ) and ‖Cn,�‖∞ denotes the infinity norm of the matrix Cn,� defined
in (10).
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4.3 The approximation of J(u, x, t)

In summary, by using the results of the previous two subsections, to calculate (8) we
have the following alternatives:

J (u, x, t) � Jn(u, x, t) :=
{∑n

j=0 u(x j , t)ϕ(x j − x)D(�)
j , first case∑n

j=0 u(x j , t)P
(�)
j (x), second case

(16)

where D(�)
j and P(�)

j (x) are defined in (9) and (15).

5 Numerical experiments

In this section we report the results of some numerical experiments on the nonlocal
diffusion model (1) for different choices of the kernel function ϕ(y− x). Without loss
of generality we assume a = 1 and integrate up to time T = 10 throughout all our
simulations, with the exception of Examples 5.5 and 5.6, in which we set a = 2 and
a = 3 respectively.

To show the reliability of the proposed algorithm,we consider at first some examples
constructed so that the analytical solution u(x, t) is known. In such cases we report the
maximum absolute errors attained by the scheme. Denoting by un(x, t) the numerical
solution of the discretized model for a fixed number n of meshnodes, we set

en(u) = sup
t∈[0,10]

max
x∈[−a,a]|u(x, t) − un(x, t)|.

The tables also display the Estimated Order of Convergence (EOC) and the Mean
Estimated Order of Convergence defined as follows:

EOCn =
log

(
en/2(u)

en(u)

)

log 2
, EOCmean = 1

M − 2

M∑
k=3

EOC2k ,

where M is a fixed integer. In our case we set M = 8.
All the computed examples are carried out in Matlab R2022a in double precision on
an M1 MacBook Pro under the macOS 12.4 operating system.
For the sake of brevity, from now on we also introduce the notation

x = (x0, x1, . . . , xn−1, xn) ∈ R
n+1.

In Examples 5.1 and 5.2 the solution u(x, t) is known and the functions ϕ(y − x)
are both smooth. Therefore, the chosen method is based on the Generalized Bernstein
formula given in Sect. 4.1. As Tables 1 and 2 show, the EOCmean is coherent with
the expected value 4, that coincides with the order of the divided difference schemes
employed.
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Table 1 Example 5.1 -
Numerical results

n en(u) EOCn

8 7.42e-04

16 6.41e-05 3.53

32 2.07e-06 4.95

64 6.90e-07 1.58

128 7.25e-09 6.57

256 8.38e-11 6.43

EOCmean 4.61

Table 2 Example 5.2 -
Numerical results

n en(u) EOCn

8 2.12e-03

16 4.55e-04 2.22

32 7.30e-06 5.96

64 8.07e-07 3.18

128 6.16e-08 3.71

256 4.78e-09 3.69

EOCmean 3.75

Example 5.3 considers a kernel of the type sin(ω(y−x)). In this case the quadrature
formula for the discretization of J (u, x, t) in (1) is the product formula described in
Sect. 4.2. Table 3 shows the performances of the method for four different choices
of the oscillatory parameter ω, while Table 4 makes a direct comparison between the
results obtained by the method based on the quadrature (9) and on the product rule
(15) respectively. Note that for high values of ω the results indicate that the latter turns
out to be the optimal choice to obtain good approximations of the solution u(x, t).

Example 5.4 has the same known solution u(x, t) of Example 5.3, but the kernel
ϕ(y−x) is of the type cos(ω(y−x)). This choice is made in order to consider the case
of applications in which the kernel function is of oscillatory type, namely ϕ(y − x) =
eiω(y−x), as described in Sect. 4.2. The good performances of the method based on the
product formula are displayed in Table 5 using the same four values ω of the previous
example. Note that also these examples share almost the same EOCmean, which again
is approximately 4, as underlined in Tables 6 and 7. Furthermore, according to the
theoretical estimates of the described quadrature formulae, convergence to the exact
solution is achieved.

Examples 5.5 and 5.6 are variations of Examples 5.1 and 5.4 respectively. We
consider them to underline that the increment of the value a does not substantially
affect the error propagation. In the first case we set a = 2 and in the second one a = 3
and ω = 80. Tables 8 and 9 display the obtained results.

Finally, in Examples 5.7 and 5.8 the solution u(x, t) of the problem (1) is not
known explicitly. Here the choices of ϕ(y − x) respectively are sin(ω(y − x)) and
e−(y−x). Since in the previous examples we already tested the accuracy of our method,
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Table 3 Example 5.3 -
Numerical results for different
values of ω

ω = 10 ω = 20

n en(u) EOCn en(u) EOCn

8 1.09e-02 3.08e-02

16 3.68e-03 1.56 6.70e-04 5.52

32 1.84e-05 7.64 8.00e-05 3.06

64 2.98e-06 2.63 1.02e-05 2.98

128 1.52e-07 4.29 1.67e-07 5.93

256 4.65e-09 5.03 4.80e-09 5.12

ω = 50 ω = 100

8 2.64e-02 2.60e-02

16 8.83e-04 4.90 3.49e-04 6.22

32 2.11e-05 5.39 4.66e-05 2.91

64 3.96e-06 2.41 7.69e-06 2.60

128 9.28e-07 2.09 1.22e-07 5.98

256 5.01e-09 7.53 5.02e-09 4.60

Table 4 Example 5.3 -
Performance comparison of the
quadrature formulae

ω = 100 Standard formula Product formula

n en(u) en(u)

8 1.40e+01 2.60e-02

16 1.39e+01 3.49e-04

32 1.40e+01 4.66e-05

64 3.06e-02 7.69e-06

128 1.11e-03 1.22e-07

256 1.32e-05 5.02e-09

ω = 1000 Standard formula Product formula

8 1.24e+01 1.58e-02

16 8.06e+00 1.73e-03

32 8.31e+00 3.02e-05

64 8.31e+00 4.12e-06

128 4.00e-03 7.45e-08

256 5.42e-05 5.02e-09

we just plot the approximated solution un(x, t) for n = 256. Hence, Figs. 2 and 3
display the approximated solutions, each of them obtained by the method based on
the more suitable quadrature formula, according to the nature of the considered kernel
ϕ(y − x). In both cases the plotted solutions u256(x, t) satisfy the given initial and
boundary conditions. Moreover, from Fig. 2 one can notice that the approximated
solutions inherit the oscillating behavior of the kernel sin(ω(y − x)): this can be
easily observed when approaching the end of the time span [0, 10].

Overall from these results we infer that the proposed line method is a suitable and
reliable discretization method for the problem (1).
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Table 5 Example 5.4 -
Numerical results for different
values of ω

ω = 10 ω = 20

n en(u) EOCn en(u) EOCn

8 5.79e-03 4.38e-02

16 5.86e-04 3.30 9.53e-04 5.52

32 3.60e-05 4.02 3.66e-05 4.70

64 2.71e-06 3.73 3.45e-06 3.41

128 6.12e-08 5.47 5.25e-07 2.72

256 5.05e-09 3.60 4.76e-09 6.79

ω = 50 ω = 100

8 6.83e-02 5.71e-02

16 8.46e-04 6.33 6.32e-04 6.50

32 1.58e-05 5.74 2.94e-05 4.43

64 3.27e-06 2.28 3.23e-06 3.18

128 1.08e-07 4.91 8.66e-08 5.22

256 4.99e-09 4.44 5.02e-09 4.11

Table 6 Example 5.3 - Mean
EOC for different values of ω

ω = 10 ω = 20 ω = 50 ω = 100

EOCmean 4.23 4.52 4.46 4.46

Table 7 Example 5.4 - Mean
EOC for different values of ω

ω = 10 ω = 20 ω = 50 ω = 100

EOCmean 4.02 4.63 4.74 4.69

Table 8 Example 5.5-Numerical
results

n en(u) EOCn

8 2.11e−02

16 1.26e−03 4.07

32 1.55e−05 6.34

64 2.18e−06 2.83

128 5.89e−08 5.21

256 1.98e−08 1.57

EOCmean 4.00

Example 5.1

u(x, t) = x2t, ϕ(y − x) = sin(y − x),

u(x, 0) = (0, . . . , 0), u(−1, t) = u(1, t) = t .
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Table 9 Example 5.6-Numerical
results

n en(u) EOCn

8 3.05e−01

16 6.04e−03 5.66

32 6.48e−04 3.22

64 5.69e−05 3.51

128 7.17e−07 6.31

256 1.76e−07 2.02

EOCmean 4.14

Fig. 2 Example 5.5-Plot of the approximated solution u(x, t) for different values of ω

Example 5.2

u(x, t) = x2 + t, ϕ(y − x) = e−(y−x),

u(x, 0) = (x20 , . . . , x
2
n ), u(−1, t) = u(1, t) = 1 + t .
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Fig. 3 Example 5.6-Plot of the approximated solution u(x, t)

Example 5.3

u(x, t) = 2t − 3x2, ϕ(y − x) = sin(ω(y − x)),

u(x, 0) = (−3x20 , . . . ,−3x2n ), u(−1, t) = u(1, t) = 2t − 3.

Example 5.4

u(x, t) = 2t − 3x2, ϕ(y − x) = cos(ω(y − x)),

u(x, 0) = (−3x20 , . . . ,−3x2n ), u(−1, t) = u(1, t) = 2t − 3.

Example 5.5

a = 2, u(x, t) = x2t, ϕ(y − x) = sin(y − x),

u(x, 0) = (0, . . . , 0), u(−2, t) = u(2, t) = 4t .

Example 5.6

a = 3, u(x, t) = 2t − 3x2, ϕ(y − x) = cos(80(y − x)),

u(x, 0) = (−3x20 , . . . ,−3x2n ), u(−3, t) = u(3, t) = 2t − 27.

Example 5.7

ϕ(y − x) = sin(ω(y − x)),

u(x, 0) = (1, . . . , 1), u(−1, t) = u(1, t) = t2 + 1.
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Example 5.8

ϕ(y − x) = e−(y−x),

u(x, 0) =
(
1

5
, . . . ,

1

5

)
, u(−1, t) = u(1, t) = log(t + 1).

6 Conclusions

In this paper we have presented a line method for the numerical solution of evolution
equations of nonlocal type. It is fourth order accurate in both space and time. In con-
trast to other currently employed methods that, after possible previous reformulation
of the original integro-differential equation, use order-two-accurate finite difference
schemes, we propose a fourth order line method. Our numerical scheme relies on a
good and efficient discretization of the integral term. This is achieved by using state-
of-the-art quadratures based on Generalized Bernstein polynomials. The numerical
examples support the analytical findings, if the kernel of the integral is smooth or,
alternatively, presents weak singularities or high frequency oscillations. The case of
strongly singular kernels, presenting additional difficulties, is currently being under
investigation and will be examined in future research.
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