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ABSTRACT 8 

The enormous potential of multi-omics approaches to unravel microbiome-related links between food 9 

quality, sustainability and safety still requires experimental work and extensive data integration to 10 

increase knowledge and understand the biological and ecological processes involved in the assembly 11 

and dynamics of microbial communities along the production chains. Data spanning from DNA 12 

sequences to transcripts and metabolites need to be integrated in order to be translated at industrial 13 

level and literature showed several successful examples. The application of microbiome studies in 14 

food systems has shown the potential to improve food quality. Nevertheless, classical microbiological 15 

methods are still highly relevant even if isolation and characterization of strains in pure culture is 16 

often laborious and time-consuming and requires the use of several specific growth media that take 17 

into the account microbial growth characteristics as well as food characteristics. Studies on 18 

microbiomes has become a popular topic in the food industry since it can be used as a tool to improve 19 

quality and safety in the food chain. 20 

 21 
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 24 
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1. Introduction 27 

As recently re-defined, the term microbiome refers to “the community of microorganisms and their 28 

“theatre of activity” (structural elements, metabolites/signal molecules, and the surrounding 29 

environmental conditions) in a defined habitat”(Berg et al., 2020). 30 

Microbiome theme in food systems has been identified as a key priority research area due to its 31 

potential to improve safety, sustainability, production yield or to discover new strains, probiotics or 32 

mobile genetic elements. A better knowledge of the microbiome resource is helping in precision food 33 

system management not only at research level but especially at industrial level. Several European 34 

projects are currently active in microbiome research along the food chain: CIRCLES 35 

(https://circlesproject.eu/), HoloFood (https://www.holofood.eu/), MASTER (https://www.master-36 

h2020.eu/), SIMBA (https://simbaproject.eu) as well as MicrobiomeSupport 37 

(https://www.microbiomesupport.eu/). The latter, supports the set-up of an internationally agreed 38 

microbiome definition (Berg et al., 2020), best practices and standards (Ryan et al., 2021) as well as 39 

tutoring public and stakeholders about microbiomes and microbiome applications (Schelkle and 40 

Galland, 2020). As currently reviewed, microbiome-based applications are expected to be important 41 

contributors to the global economy in the coming years, however an effort is needed in food science 42 

to transit from observational to mechanistic studies (Meisner et al., 2022). The rapid development of 43 

high throughput techniques in the last 20 years has improved the ability to characterize microbiomes 44 

from complex food matrices. It is now common to apply two or more omics techniques in parallel, 45 

referred to as multi-omics analysis (Dugourd et al., 2021) to decipher in depth the biological features 46 

of the microbiome systems. In the last decades several authors successfully applied multi-omics 47 

analysis in food microbiology. The application of two or even more omics techniques is needed to 48 

move from theoretical conclusions to reliable and valuable results (Zapalska-Sozoniuk et al., 2019). 49 

For example, the application of genomics and transcriptomics alone cannot fully depict the events 50 

taking place within a cell; even when the information from DNA is transcribed to mRNA, proteins 51 

may not be biologically active. In this light an appropriate study design plays a central role. Most of 52 
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the times, monetary resources are one of the determining factors that have an incidence on a 53 

successful experiment. As a consequence, study design suffers from low number of samples collected 54 

or biological replicates in favor of depth of information pursued (in terms of number of 55 

sequences/metabolites detected). However, it has been recently reported that collecting more samples 56 

with less depth (number of information obtained from each sample) enriches the value of a study 57 

(Tripathi et al., 2018). Sampling depth and collection procedure are critical points when an -omics 58 

platform is chosen since specific standard requirements characterize the different platforms. In this 59 

light comparing targeted and untargeted techniques generates different considerations. Targeted 60 

analysis includes the detection or quantification pre-defined analytical target that can be chemicals or 61 

biologicals while the application of the untargeted is referred to a detection of several unspecified 62 

analytes (Ballin and Laursen, 2019). 63 

It is obvious that an untargeted technique (like DNAseq, shotgun proteomics or GC-MS-based 64 

metabonomics approach) requires a lower number of samples but higher sampling depth (Pinu et al., 65 

2019). The development of several platforms for data integration is helping researchers to move from 66 

a single -omics approach to applying different tools, since the basic requirements essential for 67 

genomics are fully compatible with metabolomics, transcriptomics and proteomics (Pinu et al., 2019). 68 

Simultaneous analysis of all aspects of a microbiome dataset must be generally considered a hopeless 69 

task. So far, multi-omics studies in food science have been primarily applied to study fermented dairy 70 

products followed by meat/meat products and vegetable-based foods.  71 

Most of the studies (targeted or untargeted) can be applied for different purpose in food, such as: 72 

i) Map the microbiome along the food chain  73 

ii) Discover low abundance taxa or new taxa and microbial adaptation strategies 74 

iii) Connect specific microbiome assets with the final food quality and safety 75 

iv) Extend microbiome applications to the industry for actionable results 76 

v) Microbial Risk assessment 77 

 78 
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2. Microbiome mapping 79 

From a biological point of view, food microbiome can be considered part of the extended hologenome 80 

of a human individual (Dunn et al., 2021) and needs to be deeply studied and characterized. 81 

Metagenomics studies already confirmed the transmission of microbes from food products to gut 82 

environments (Pasolli et al., 2020) and also showed their persistence in the human gut (Milani et al., 83 

2019) (Figure 1). Since thousands of microbes, microbes’ metabolites and mobile genetic elements 84 

(MGEs) are daily ingested with foods it is important to deeply characterize them and discover how a 85 

particular biogeography can modify the autochthonous microbiome (Figure 1). Mapping the complex 86 

microbial communities in situ with high taxonomic and spatial resolution is a main challenge due to 87 

the high density and rich diversity of taxa (also at strain level) (Shi et al., 2020). Origins, 88 

diversification, biodiversity and biogeography of foods’ microbiome are becoming very relevant in 89 

recent years. With high throughput techniques (metataxonomic amplicon sequencing as the most 90 

applied) researchers have discovered vast and previously unrecognized ecological niches. 91 

Environmental factors (microclimatic conditions, pH, aw, availability of nutrients) determine what 92 

kind of microbes can succeed in a particular place. This detailed analysis can also reveal how those 93 

microbes can interact and work together (Woo, 2018). Mapping exercises are still a new research area 94 

widely explored in humans (Huttenhower et al., 2012; Nash et al., 2017), soils (Thompson et al., 95 

2017) and environment (Danko et al., 2021), however few studies reported an in-depth mapping or 96 

meta-analysis of foods and foodstuff. Food microbiota can originate from raw materials, 97 

environment, from the exposure to human manipulation and is influenced from the geographical area 98 

of cultivation/production (Figure 1). The mapping exercise to deeply characterize the food 99 

microbiome is one of the key fundamental actions that needs to be performed. Mapping can offer 100 

different possibilities in food microbiology, helps in microbe characterization and is essential in study 101 

design. Maps of molecules, MGEs and microbes across different food ecosystems will fundamentally 102 

transform the types of questions that can be asked of microbiome and metabolomics data. In this light 103 

the application of several biostatistics tools can help identify dynamic networks of species 104 
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interactions as well as relevant functions. Among them, ordination methods (principal coordinates 105 

analysis (PCoA)), gradient analysis (non-metric multidimensional scaling (NMDS)), dimensionality 106 

reduction, co-occurrence and network diagrams (Tripathi et al., 2018) are valuable tools to be used 107 

to resolve the degree of complexity of the microbiota. In food microbiology examples of extensive 108 

mapping and data integration methods are currently available.  109 

The mapping exercise approach has been recently applied to dairy products, where 184 cheese 110 

samples were analyzed in depth coupling DNA-seq and metabolome analysis (Walsh et al., 2020). 111 

By this mapping exercise the authors discovered new putative genomes (belonging to genera 112 

associated with the rind) that display highest correlation with unpleasant molecules. Findings of this 113 

type may help in designing strategies to control the microbiome during cheese production and obtain 114 

desired final products. However, it should be point out that culture independent high throughput 115 

techniques must be used with culture dependent in order to provided complementary information. 116 

Sequencing technique may lead to possible biases deriving from DNA extraction, RNA quality, PCR 117 

amplification steps, as well as the failure in discriminating between live or death cell. The presence 118 

of all this unmeasured confounding factors cannot be excluded but can be solved by culturomics. 119 

Several available online repository platforms offer the opportunity to collect high throughput 120 

information on microbiome in different research areas. The Earth Microbiome Project (Thompson et 121 

al., 2017) (available via QIITA website) contains a collection of more than 20.000 samples where 122 

microbial genomes as well as global metabolic models can be extracted and then re-analyzed and 123 

used in a comparative study or for meta-analysis purposes. In food microbiology, FoodMicrobionet 124 

(Parente et al., 2019, 2016) and its extension DairyFoodMicrobionet 125 

(https://data.mendeley.com/datasets/3cwf729p34/4) is one of the main examples of public repository. 126 

It includes 180 studies and 10,155 samples belonging to 8 major food groups and can be considered 127 

the largest database on bacteria communities based on amplicon sequencing dataset. The database 128 

contains also information including pH, aw, presence and/or concentration of preservatives and redox 129 

potential value (Eh). Collectively these databases have enormous potential and allow microbial 130 
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information from a particular food/condition to be extracted and used for comparative, statistical and 131 

graphical analysis. An example of the potential of this information is the analysis of spoilage-132 

associated core microbiota in meats, seafoods and their production environment that highlights a 133 

common core shared between different food types and their environment in relation to the degree of 134 

spoilage (De Filippis et al., 2018). It should be highlighted that researchers need to understand that 135 

sharing datasets as well as associated metadata is fundamental for the progress of food microbiology 136 

in the era of big data. By the power size effect, all this information collectively can help in discovering 137 

new potential ecological niches or uncommon microbial associations that are often disregarded when 138 

using only few samples. Importantly, efforts are needed in updating information and that those 139 

databases are constantly updated in terms of taxonomy and nomenclature (Zheng et al., 2020). 140 

However, many of the largest microbiome mapping studies have been performed with the cost-141 

effective 16S rRNA gene amplicon sequencing that provides genus-level assignments as highest level 142 

of taxonomic resolution. 143 

The global sourdough project (http://robdunnlab.com/projects/sourdough/) is a multi-omics, 144 

intercontinental scale study with the aim to collect metadata, taxonomic and metabolomic information 145 

over 500 bread bakers in North America, Europe and Australasia. By using such extensive sampling 146 

procedure coupled with integration tools it was possible to demonstrate that geographic location does 147 

not determine changes in structural sourdough microbial composition, even if previous studies on 148 

few samples revealed the opposite and indicated that variations in acetic acid bacteria (AAB) 149 

abundance are the key driver during fermentation and boost the development of volatile compounds 150 

(Landis et al., 2021). This finding clearly implies that a large number of samples is needed for a better 151 

overview of the structure-function linkages. Co-occurrence/co-exclusion network analysis reveals the 152 

complementarity or competitiveness of inter-species interactions and for example allowed to observe 153 

that Levilactobacillus brevis is able to persist in a community while Fructilactobacillus 154 

sanfranciscensis displays the ability to persist only when grown with the yeast Kazachstania humilis 155 

(Landis et al., 2021). The ability to predict from a set of known species what community will be 156 
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formed is crucial in designing, predicting and controlling new microbial communities for food 157 

fermentations, probiotic therapeutic developments, bioremediation or biomanufacturing and offers 158 

valuable insight into biotechnologically important processes (Friedman et al., 2017).  159 

 160 

3. Discovering low abundance taxa or new taxa and microbial adaptation strategies 161 

Currently, there is no real consensus regarding which next-generation sequencing platforms or 162 

techniques are most suitable for low-complexity microbial communities, such as those in foods. 163 

Metagenomic shotgun sequencing or amplicon-based ones are widely used by researchers in food 164 

microbial ecology. 16S amplicon sequencing is still preferred due to the apparently lower cost per 165 

sample but is biased by the number of 16S rRNA encoding genes per genome and by the lower power 166 

in discriminating at species level. On the opposite, deep shotgun sequencing allows to reach the 167 

species level since most of the tools are based on the alignments with species-specific marker gene 168 

sequences like MetaPhlAn (Beghini et al., 2021) however suffers from the size of the reference 169 

genome. Despite this bias, the advantages of DNAseq is the ability to detect also genes and mobile 170 

genetic elements important in food microbiology (Walsh et al., 2018). Recently, it was proposed to 171 

use shallow shotgun sequencing as an alternative to 16S amplicon based sequencing at the same 172 

cost/sample of the 16S, with the advantages of retrieving also microbial functional profiles,more 173 

precise taxonomic resolution than 16S (Hillmann et al., 2018) and obtain informations on  novel 174 

putative bacterial taxa (Lugli et al., 2022). Rare or low abundance taxa often play an important role 175 

in the overall metabolic flux and the differential functions of the rare species remain poorly 176 

understood (Ranjan et al., 2016). Individual samples may harbor thousands of rare taxa that are often 177 

discarded from the analysis but can have a high transcription/abundance ratio. The functions of rare 178 

microbes are still unknown; they may however be relevant in total microbial community stability if 179 

rapidly respond to environmental changes (Shade et al., 2014). In foods several examples showed 180 

that rare members of a microbiome, especially those that are not expected to be present in the food, 181 

have a possible role in ripening and determining final product characteristics. Processing environment 182 
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is one of the main sources of rare microbes or uncommon ones that can easily affect the final structure 183 

of the microbiota in foods and are responsible for microbial food spoilage. Dairy (Sun and D’Amico, 184 

2021), raw meat processing environments (Stellato et al., 2016) or facilities for ready-to-eat meal 185 

(Pothakos et al., 2015) including fish and fruit preparations (Bokulich et al., 2015; Einson et al., 2018) 186 

are currently the main sources of uncommon food microbes. In the dairy production chain, brine tanks 187 

and ripening rooms are the main microbial sources and their distribution is strictly connected with 188 

cheese variety and layer (crust or core) (Calasso et al., 2016; Montel et al., 2014). Not only equipment 189 

but also human, extrinsic factors [air flow, temperature and humidity] and antagonistic microbial 190 

adaptations take part in the distribution of microbes in the environment (Doyle et al., 2017). 191 

Microbiomes distribution in processing plants could increase food safety through improved hygiene 192 

related SOPs. Novel disinfection interventions can be selected based on the occurrence in a particular 193 

environmental niches from which they were disseminated (Botta et al., 2020; Zwirzitz et al., 2020).  194 

Network analysis based on correlation methods is often used to identify significantly concomitant or 195 

co-exclusion relationships. Spearman’s or Pearson’s correlation are the most straightforward 196 

approaches for multi-omics data integration (Zhang et al., 2019) and for detecting interactions in 197 

meta-communities. However, the relative frequency or abundance (from OTUs or ASVs) used in the 198 

metataxonomic datasets instead of the absolute abundance can reduce the sensitivity of the methods. 199 

As suggested, including as many samples as possible (Berry and Widder, 2014) needs to be taken in 200 

consideration when assessing effectiveness and reliability. Studying and understanding structure, 201 

interaction and function of environmental microbes is helping increase food safety since bacteria from 202 

the environment may also harbor antimicrobial resistance genes (ARGs). Monitoring resistomes in 203 

the environment can provide essential information to better understand whether ARGs transfer 204 

actually occurs (Lopez et al., 2020) (Figure 1).  205 

DNA extracted from environmental samples can be directly sequenced without any prior PCR steps. 206 

In this way the global microbial community are sequenced. Data processing then helps obtain the 207 

structure of the microbial ecosystem, including detection of mobile genetic elements but also 208 
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information about all the microbial categories including fungi, yeast and viruses/phages. Obtaining 209 

information about virus is crucially important especially in a dairy environment since the viral 210 

communities especially phages can likely act as vectors for horizontal gene transfer (Somerville et 211 

al., 2019) and are involved in the mobilization of antimicrobial resistance genes or CRISPR defense 212 

mechanisms among bacterial populations (Colombo et al., 2018).  213 

In order to characterize microbial transmission along the process chain, several integration tools are 214 

adopted. This is crucial in order to obtain precise information about microbial structure. Among the 215 

statistical tools, the source attribution analyses are able to qualitatively determine possible microbial 216 

sources but also quantitatively estimate the proportion of source contributions to a sample 217 

community. SourceTracker utilizes a Bayesian classification model to map not only microbial 218 

populations but also gene flows in a variety of ecosystems (Bokulich et al., 2015; Zwirzitz et al., 219 

2020) and also for monitoring microbial transmission and gene dispersal (Figure 1). However, to 220 

reduce the effect of false predictions, a high number of samples should be analyzed (Chen et al., 221 

2019). 222 

 223 

4. Connecting specific microbiome asset with the final food quality and safety 224 

Microbes present in viable but not cultivable (VBNC) state or microbes not expected to be present in 225 

the food are then difficult to be detected by classical methods and this leads to losing several important 226 

pieces of information about the whole microbiome. A meta-omics approach can offer the possibility 227 

to deeply study the composition of the food microbiome by detecting also few cells in a sample 228 

brought the food industry closer to the theme of microbiome. An ‘omic-based analysis can include 229 

metagenomics (all the genetic repertoire in a community), meta-transcriptomics (the expressed 230 

genes), metabolomics, proteomics or lipidomics. In every biological system phenotype informations 231 

are transferred from nucleic acids to proteins and metabolites (Santiago-Rodriguez and Hollister, 232 

2021). From a quantitative point of view, proteins and metabolites abundances are the result of gene 233 

abundance and transcriptional activity. However, the use of a single omics technology cannot 234 
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guarantee an overview of what really happens in food systems. Metagenomics (amplicons or shotgun 235 

sequencing) reflects only the global view since DNA molecules, as the most stable, can be originated 236 

from live as well as dead cells and the absolute abundance of a gene is not necessarily associated with 237 

molecules/proteins synthesis. mRNA sequencing (a less stable molecule), if used to confirm 238 

(meta)genomic-data, does not necessarily predict the translation of the genetic information into 239 

functional/active protein/metabolites and does not provide taxonomic information. Metabolites or 240 

proteins on the other hand can be of mixed nature since they can originate from host or food 241 

ingredients, are highly labile and need specific collection, handling or preservation methods to 242 

maintain integrity. All these considerations highlight that at least two -omics techniques are required 243 

to have a more comprehensive overview of what happens in food system. Based on the initial 244 

biological questions and taking into account sample issues (e.g. host molecules/sequences) an 245 

appropriate study design based on combinations of two or more omics tools should be chosen in order 246 

to overcome those limitations (Ferrocino et al., 2022). The microbiome asset shapes the final 247 

characteristics of the product and by coupling RNA-seq with metabolomics it is possible to see that 248 

perturbations during the food process chain modify the function of the microbiome. Examples of this 249 

multi-omics approach showed that ripening temperature during cheese (De Filippis et al., 2016), fruit 250 

(Li et al., 2021; Xu et al., 2019), plant based fermentation (An et al., 2021; Kim et al., 2020) and 251 

vinegar production (Wu et al., 2021) modifies the gene expression of the microbiome with important 252 

changes in volatilome profile of the final products.  253 

Several examples of data integration between two or more omics in food-based systems are already 254 

available. DNA is most frequently the primary target molecule since it is easier to manipulate if 255 

compared to RNA and scientific literature in food-omics is mostly oriented to DNA based 256 

approaches. The advantages of using DNA are the simultaneous detection of bacteria, fungi, virus 257 

(Beghini et al., 2021; Manni et al., 2021), mobile genetic elements (ARGs, bacteriocins etc..) 258 

(Raymond et al., 2019) as well as the ability to reconstruct genome at strain level (De Filippis et al., 259 

2019; Franciosa et al., 2021; Walsh et al., 2018). To decipher the interaction among microbes in order 260 
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to shape the final characteristic of the product, DNA-seq with metabolomics can be considered the 261 

optimal combination of omics techniques. The most common data integration step is based on 262 

correlation-based network analysis in order to generate and easily visualize metabolic microbiome 263 

networks/models. Microbiome-scale metabolic reconstruction is now the most straightforward 264 

approach in order to discover how microbes shape the final characteristic of the products. In food 265 

microbiology several examples showed how this tool can be applied to detail for examples how color 266 

modification, variation of pH and flavor development are associated with shifts in microbiome 267 

composition and function in cheese (Bertuzzi et al., 2018), soy sauce (Sulaiman et al., 2014), 268 

fermented meat (Ferrocino et al., 2018; Franciosa et al., 2021), fermented cocoa (Mota-Gutierrez et 269 

al., 2021), fermented fish (Zhao and Eun, 2020), Daqu, Baijiu and Xiaoqu jiu chinese liquor (Huang 270 

et al., 2020; Yang et al., 2021; Zhao et al., 2021) or kefir (Verce et al., 2019). Correlation analysis 271 

seems to be the most common tool to decipher microbial putative functions or new co-abundance and 272 

interaction strategies. In food microbiology this statistical tool was successfully applied to discover 273 

interactions at sub-species level in Lactobacillus populations highlighting that L. helveticus and L. 274 

delbrueckii specifically co-evolved and in the same way also L. plantarum and L. paracasei (Milani 275 

et al., 2020). 276 

The correlation among bacteria and fungi is also of great interest because several bacteria are inhibited 277 

by the presence of certain fungi or are not able to grow without the synergic effect of fungi (Wolfe et 278 

al., 2014).  279 

By using correlation analysis it was observed that Geotrichum candidum if present at high relative 280 

abundance can release growth factors that support bacterial growth, which in turn allows for the 281 

biosynthesis of some volatile compounds (Bertuzzi et al., 2018).  282 

Based on the correlation network analysis between microbes, metabolites and functional genes the 283 

role of several Lactobacillus during food fermentations was elucidated in different systems. For 284 

example the correlation between Lactobacillus acetotolerans and a high abundance of genes encoding 285 

alcohol dehydrogenases could explain why it was predominant at the late stage during grain 286 
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fermentation (Huang et al., 2020) or how Pediococcus pentosaceous contributes to flavor 287 

development in fermented meat by D-lactate dehydrogenase activity responsible for the formation of 288 

ethanol and ethyl lactate (Franciosa et al., 2021). In dairy industry it was observed that co-abundance 289 

and inter-species interactions are responsible for resilience toward colonization by spoilage or 290 

pathogenic microbes with detrimental effects on the final products for example in terms of safety, 291 

stability, organoleptic characteristics or colour (Milani et al., 2020). It was observed that the 292 

concomitance of Streptococcus thermophilus and Lacticaseibacillus rhamnosus determines an 293 

increase in the occurrence of Clostridium tyrobutyricum responsible for spoilage phenomena (Bassi 294 

et al., 2015), while with natural whey starter strains (formed by Lactobacillus delbrueckii, 295 

Lactobacillus helveticus and Lacticaseibacillus casei) the prevalence of spoilage microbial taxa is 296 

reduced (Alessandria et al., 2016). The univariate correlations used in those examples are relatively 297 

straightforward but lack context for interpretation in terms of biological plausibility and mechanistic 298 

insight (Chong and Xia, 2017).  299 

Studying interactions, functions and diversity of each of the microbial species harbored in this 300 

complex system is a key factor towards effective monitoring and easy manipulation of a food system 301 

with the aim to increase quality and safety. However, the numerical relationships identified by 302 

Pearson or Sperman correlation may not reflect biological significance, nor do they specifically 303 

account for complex interactions (Santiago-Rodriguez and Hollister, 2021). 304 

In the authors’ point of view, a more complete study of the microbiome of food products requires 305 

sequencing coupled with an extensive culture-based approach, in order to confirm the presence of 306 

particular microbes/consortia. In this light the use of synthetic microbial communities (SynComs) is 307 

receiving great interest as a validations tool of the mapping exercise as well as to confirm the results 308 

of the mathematical models. Its principle is to design a small groups or consortia of microbes in order 309 

to mimic functions and structure of the natural microbiome. By using this scale reduction of the 310 

microbiome the role and the interactions among each microbes can be detailed investigated (De Souza 311 

et al., 2020; Karkaria et al., 2021). SynComs were successfully used in food fermentations in order 312 
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to modulate the production of organic acids and several microbial metabolites to increase yield and 313 

final taste of Kombucha and Baijiu (Wang et al., 2020; Du et al., 2021; Li et al., 2022).  314 

Applications of synthetic microbial communities can be expanded to food industry helping in design 315 

new microbiome community to confer specific characteristic to the products in term of quality and 316 

safety.  317 

 318 

5. Extending microbiome applications to the industry for actionable results 319 

Observation studies in food microbiology are currently widely used for artisanal niche products made 320 

without the use of commercial starter cultures (Belleggia et al., 2020; Maoloni et al., 2020; Mota-321 

Gutierrez et al., 2021). All these studies highlight that natural and autochthonous microbes display a 322 

large interaction network that confers particular characteristics to the products if compared with 323 

samples obtained with selected starter cultures (Ferrocino et al., 2018). A single strain used as a starter 324 

culture is often not able to confer to the product all the desired characteristics, which are obtained by 325 

a mixture of different microbial genetic repertoires. For example, in the meat sector it is recognized 326 

that L. sakei has strain-dependent properties, distinct ecotypes but also intra-species, strain-level 327 

biodiversity and its large diversity represents a valuable and exploitable asset in the development of 328 

a variety of industrial applications (Chaillou et al., 2013; Franciosa et al., 2021). In fact one of the 329 

main challenges in improving and controlling industrial fermentation processes is the revealing 330 

microbial adaptation strategies also at strain level (Janßen et al., 2020). Multi omics network analysis 331 

clearly showed that autochthonous microbiome (AM) displays a higher number of genes involved in 332 

fatty acid biosynthesis and amino acid metabolism, that in turn boosts the formation of medium- and 333 

long-chain fatty esters enhancing the sensory profile of sausages. As a result, consumers preferred 334 

the spontaneously fermented sausages because of the flavour and aroma characteristics (Ferrocino et 335 

al., 2018). Selection of an autochthonous microbiome starter culture can be one of the new potential 336 

exploration areas of food microbiology. The use of an AM can not only guarantee quality but can 337 

also offer the possibility to cover safety issues. Selection of a correct AM can help control pathogens 338 
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and reduce the use of nitrites/nitrates and reduce the prevalence of antimicrobial resistance genes 339 

(ARGs), mycotoxins or biogenic amines. The application of AM reveals also its importance in 340 

relation to the accumulation of mycotoxins especially in fermented meat due to the presence of 341 

indigenous fungi. For example Ochratoxin A (OTA) has negative effects including nephrotoxicity, 342 

immunotoxicity and neurotoxicity (Álvarez et al., 2020) and AM can be selected in order to obtain 343 

the same degree of protection as synthetic antifungal compounds. A mixture of autochthonous 344 

Debaryomyces hansenii and Penicillium chrysogenum was successfully used in dry cured meat in 345 

order to reduce the expression of genes involved in the production of OTA with a considerable 346 

reduction of contamination (Cebrián et al., 2019). Other example showed that AM strains possess the 347 

ability to reduce OTA accumulation by acting on the transcriptional level of the genes involved in 348 

OTA production (Peromingo et al., 2018). 349 

AM can also be selected with respect to the presence of enzymes like β-1,3 glucanases, lytic proteases, 350 

and chitinases able to hydrolyze microorganisms cell wall components (Cence et al., 2019). A 351 

reduction of nitrites and nitrates can be obtained by using an AM since several Debaryomyces 352 

hansenii strains possess antioxidant and antimicrobial properties as well as positive effects on aroma 353 

(Perea-Sanz et al., 2020). In addition risks often linked with indigenous Staphylococcus or 354 

Lactobacillus, Carnobacterium and Enterococcus are due also to the production of decarboxylases 355 

that can cause biogenic amine production like tyramine, putrescine, cadaverine and histamine (Van 356 

der Veken et al., 2020). In this light an accurate and extensive use of the meta-omics approach is 357 

helping in studying the AM and can be considered as the first step in the selection of a microbiome 358 

starter culture able to maintain safety and the desired characteristics of products. 359 

 360 

6. Risk assessment 361 

Monitoring microbial hazards along the food process chain still requires extensive sampling 362 

procedures based on classical microbial methodology, several types of growth media, sample pre-363 

treatments, specific incubation temperatures as well as several confirmation tests for pathogens or for 364 
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assessing the presence of genetic elements involved in virulence. Next generation sequencing can 365 

help in this context to obtain a quite rapid overview of potential microbial hazards along the chain. 366 

Literature reports several examples of recent applications of these technologies to identify pathogenic 367 

strains especially in low abundance. Compared to classical methods, the sensitivity of these 368 

approaches can help in identifying the persistence of low abundance pathogens or spore-forming 369 

bacteria strains in processing facilities to mitigate the risks associated with the development of those 370 

microbial groups along the chain (McHugh et al., 2018). Risk assessment could benefit from a more 371 

precise characterization of the populations and their surroundings, as it can identify risk factors or 372 

even mitigation strategies. The analysis of the microbiome along the food production and processing 373 

environments can also play a role in pathogen persistence and survival since interspecies interactions 374 

can increase pathogens surviving and colonization. It was shown that Pseudomonas can help Listeria 375 

monocytogenes attach to stainless steel surfaces, while Staphylococcus sciuri reduces the ability of 376 

L. monocytogenes to form biofilm due to competition phenomena mediated by metabolites production 377 

(Tan et al., 2019). The synergistic interactions between foodborne pathogens with resident microbiota 378 

associated with food processing environments have also been demonstrated by several authors. 379 

AM showed the potential to influence the growth survival and/or inactivation of pathogens It appears 380 

thus relevant to characterize the influence of the resident microbiome on both the pathogen survival 381 

and growth (Den Besten et al., 2018). Data analysis identify that Veillonella can be a possible 382 

indicator of the contamination of food processing surfaces by Listeria monocytogenes (Shedleur-383 

Bourguignon et al., 2021), while the initial adhesion of Salmonella enterica serovar Enteritidis (S. 384 

Enteritidis) was significantly enhanced in presence of Bacillus paramycoides (Xu et al., 2022). 385 

Longitudinal analysis in a meat processing revealed the co-occurence of Listeria spp. with biofilm 386 

producing microbes like Pseudomonas, Acinetobacter, and Janthinobacterium (Zwirzitz et al., 2022). 387 

The analysis of the huge amount of data obtained after sequencing requires significant time and 388 

computational power to perform genome assembly, however several tools have been developed in 389 

order to perform a comparison of single-nucleotide polymorphism (SNP) profiles without the need 390 
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of the assembly step, resulting in those methods being faster and less intensive computationally. Free 391 

software like MetaMLST (Zolfo et al., 2017), PanPhlAn and StrainPhlAn (Beghini et al., 2021) have 392 

the capability to perform SNP comparison of outbreak strain genomes versus non outbreak strains in 393 

a faster way (Figure 2). These approaches are more useful in the food industry that requires rapid 394 

testing (Martin et al., 2017). After this preliminary screening the application of more powerful 395 

computational tools can be used to reconstruct genomes directly from shotgun data. In particular SNP 396 

profiles have been used to obtain information about strains that can be transmitted from production 397 

plant to food and then to human with possible implications on human health (Milani et al., 2019). 398 

Several limitations of genome reconstruction should be highlighted since Metagenome-assembled 399 

genomes (MAGs) can be contaminated with sequences from phylogenetically close microbes or can 400 

share genes with prophages, plasmids or genomic islands. In this way, the determination of the 401 

pangenome may result in false genomes and data can be confirmed only by an extensive culture-402 

based approach (Ferrocino et al., 2022) (Figure 2). Culturomics may take the advantage of the high 403 

throughput rapid identification of the colonies by Matrix Assisted Laser Desorption Ionization/Time 404 

Of Flight Mass Spectrometry (MALDI-TOF-MS) a promising tool that can open new horizons by 405 

speeding up the procedure replicating microbiome reconstruction in vitro. MALDI-TOF-MS coupled 406 

with metataxonomic analysis was used in order to provided complementary information by producing 407 

a more comprehensive view of the microbial ecology in food fermentations. Since culture-dependent 408 

method identify at species level and culture-independent identify non-lactic acid bacteria and yeasts 409 

(Kim et al., 2021). In addition, MALDI-TOF-MS is a promising screening tool for the rapid 410 

identification of foodborne pathogens like Campylobacter jejuni and Listeria spp. (Bowen et al., 411 

2020, Campos Araújo et al., 2020). 412 

In this context, combining -omics techniques to obtained information on the microbiome with data 413 

obtained by culture base approach on presence/absence of a pathogen can help to develop more 414 

realistic models for risk assessment (Cocolin et al., 2018). 415 
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The advent of software and sequencing platforms for on-site analysis (like MinION) can move 416 

forward the research in order to improve the industrial risk assessment and management procedure. 417 

 418 

7. Conclusion 419 

We are now able to collect Gbytes of data spanning from DNA sequences, transcripts and metabolites 420 

from a single sample and the integration of this information is helping in deciphering the composition 421 

and function of the microbiome. However, a lack in standardization of procedures and databases, or 422 

the absence of explicit legal requirements in food law regarding the concept of microbiome analysis, 423 

especially in the context of risk assessment (Merten et al., 2020), make it difficult to define standards 424 

in the analysis along the food chain. Food industry and related stakeholders have now grown closer 425 

to the microbiome theme and researchers need to push the use of multi-omics tools to improve product 426 

quality and safety. However, it is important to remember that all these powerful tools require also 427 

implementing culture-based approaches to help in data interpretation. Several researchers report the 428 

discovery of new putative genomes from sequencing data, however a lack of confirmation due to the 429 

absence of a cultivation step puts in doubt the newly discovered strains/function.  430 

 431 
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Figure Legends 442 

 443 

FIGURE 1. Graphical representations of the food microbiome mapping analysis workflow. 444 

Processing environment, season, type of farm, temperature, operators and food chain parameters can 445 

be transmitted from production plant to food and then to human with possible implications on human 446 

health. Created with BioRender.com 447 

 448 

FIGURE 2. 449 

Graphical representations of the culture based and culture independent for strains characterization. 450 

Created with BioRender.com 451 
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