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Summary

Informatics is a relatively young field within sci-
ence and engineering. Its research and develop-
ment methodologies build on the scientific and de-
sign methodologies in the classical areas, often with
new elements to it. We take an in-depth look at one
of the less well-understood methodologies in infor-
matics, namely experimentation.

What does it mean to do experiments in in-
formatics? Does it make sense to ‘import’ tradi-
tional principles of experimentation from classical
disciplines into the field of computing and informa-
tion processing? How should experiments be docu-
mented? These are some of the questions that are
treated.

The report argues for the key role of empiri-
cal research and experimentation in contemporary
Informatics. Many IT systems, large and small,
can only be designed sensibly with the help of
experiments. We recommend that professionals
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and students alike are well-educated in the prin-
ciples of sound experimentation in Informatics. We
also recommend that experimentation protocols are
used and standardized as part of the experimental
method in Informatics.
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1. INTRODUCTION
(Letizia Tanca and Jan van Leeuwen)

The ability to design and support experiments is

a vital but still little appreciated part of Com-

puter science (K. Keahey et al., 2011)

Experimentation in Informatics? Does it apply,
as in other sciences? Do we understand how ex-
perimental methods work in the field? How should
they be documented? Despite the wide use of em-
pirical studies and experiments, computer scientists
do not seem to agree on the role and relevance of
experiments in their field.

In this paper we argue that experimentation
should be better understood and appreciated as a
key methodology in Informatics. The basic ideas
of the ‘experimental method’ should be included in
Informatics curricula like in all other science curric-
ula. We also argue that experimentation requires
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detailed protocolisation. The conclusions are based
on the results of the Workshop on ‘Experimenta-
tion’ held prior to the ECSS’12 summit meeting of
Informatics Europe in Barcelona (2012).

1.1 A View of Informatics
Informatics emerged in the 20th century as the

field that underlies all uses of computing and in-
formation technology. Owing to its many origins,
Informatics is often described both as a science and
as an engineering discipline. Due to its far-reaching
implications for the understanding of natural phe-
nomena and systems, Informatics is sometimes even
called a natural science. Due to its emphasis on the
construction of computational artifacts (e.g. soft-
ware), Informatics is sometimes called a technical
design science as well. As a consequence, the scien-
tific methodologies of Informatics have varied ori-
gins as well and are not always uniquely defined or
understood.

Empirical methods and experimentation have
been part of Informatics for many years. In fact
already in 1967, one of the founding fathers of the
discipline, George Forsythe, pointed out that ‘Com-
puter Science’ is to be valued both as a theoretical
and as an experimental science. Using the analogy
with physics, he wrote:

Whether one is primarily interested in
understanding or in design, the conclu-
sion is that [. . . ] good experimental work
in computer science must be rated very
high indeed, ([21], p. 4)

but, with great foresight, he also noted that:

[. . . ] computer science is in part a young
deductive science, in part a young exper-
imental science, and in part a new field of
engineering design. Because of this broad
sweep of activity, the nature of computer
science is usually misunderstood and dep-
recated by those with an acquaintance,
however close, to only one aspect of com-
puting. ([21], p. 4)

In a nutshell this explains the complexity of the
methodological landscape in the field of Informatics.
Many different concerns developed simultaneously
and, in-as-much as the development of the field has
been influenced by sociological factors [47], the in-
terest for experimentation has varied greatly over
the years and per sub-discipline [30]. With experi-
mentation currently gaining recognition in the field
at large, the principles of experimentation should
be well-understood in the discipline.

In this paper we highlight both the philosophy
and some concrete ramifications of the experimental
method in Computer Science. The paper leads to
several conclusions which will become clear in the
subsequent sections.

Our first, main thesis is:

A: Experimentation is a key methodology
in Informatics, and its principles should
be fully recognized in the field’s philoso-
phy. Informatics curricula should give
an adequate background in the under-
standing and practical use of experimen-
tal methods.

In particular Sections 2, 3, and 6 will provide
further background to thesis A.

1.2 Experimentation
Experimentation is well-understood in the phi-

losophy of science. In his classic on The principles
of science, W.S. Jevons [26] already noted in the
nineteenth century that (observations and) exper-
iments are the primary source of experience (and
thus knowledge, in his view). He proceeded to ex-
plain how experiments are intended to give insight
in the causal effects of different (and ideally inde-
pendent) parameters on a phenomenon or system,
when they are varied in a controlled setting. They
reveal unknown properties, confirm or refute hy-
potheses, help in debugging theories or prototypes,
and set the stage for alternate explanations or de-
signs.

One can only guess why experimentation has de-
veloped so unevenly in the various subareas of Infor-
matics (or: Computer Science). There is no short-
age of experimental methods in the field. Some
were developed to great sophistication, like visuali-
sation, case studies, simulation and parameter tun-
ing. Sometimes statistical methods are employed,
as e.g. in the analysis of optimization methods [7].
In areas like Information Systems there is a lot of
experience with experimentation e.g. on the inter-
play between human behaviour and design as well
(see e.g. [29]). An often confirmed experience is that
good experimentation is hard.

It seems that the more formalized and theory-
driven subareas of Informatics have long suppressed
the possible role of experimentation. Milner [35]
made the case that ‘theory’ and ‘experiment’ can
well go together. For example, in a classical field
like algorithm design it has long beenl common
practice to assess algorithms by their asymptotic
properties only. However, their actual behaviour in
practice is now increasingly being studied as well,
even though the models for the latter are typically



still theoretical. With Informatics becoming ever
more interactive, large-scale, and distributed, ex-
perimentation is increasingly called for in all areas,
to understand the unknown behaviours of a design
or system, in any realistic setting.

The essential role of experimentation in Informat-
ics was explicated before, notably by Denning [12],
and later by Tichy [48] when he wrote:

To understand the nature of information
processes, computer scientists must ob-
serve phenomena, formulate explanations
and theories, and test them. ([48], p. 33)

Interestingly, in those areas where experimentation
did not come naturally, the approach to science
through experimentation has led to a kind of re-
discovery of the experimental methodology. It has
occasionally led to separate fields like experimental
algorithmics [33] and empirical software engineer-
ing c.q. software engineering experimentation [8, 27,
52], which isn’t an simple way to get experimenta-
tion integrated in a field. In other cases, the ‘experi-
mental methodology’ is explicitly brought under at-
tention as a possible way to publishable results pro-
vided suitable standards are followed, as done e.g.
by the IEEE journal Pervasive Computing [31].

1.3 Protocols
Despite this positive, albeit gradual, develop-

ment we note that there seems to be hardly any
effort in Informatics to standardize its experimen-
tal methodologies. Fletcher[19] observed already in
1995 that:

When we do have occasion to do experi-
ments, we should adopt the same rigorous
protocols as practiced in the natural and
social sciences. ([19], p. 163)

Fletcher’s advice is commendable, but does not
seem to have been implemented widely in the dis-
cipline (with notable exceptions again e.g. in the
area of Information Systems). Good experiments
require that they have sound designs and that their
outcome can be validated. This is why many ar-
eas require explicit experimentation protocols. We
believe that Informatics should do the same.

Experimentation protocols depend on the theory,
behaviour or properties one is trying to assess by
experiment. A protocol typically documents the
approach, the parameters and hypotheses involved,
the ways of measurement and analysis (with the
reasoning behind it), and the way outcomes are
recorded and stored for later inspection. As exper-
iments must be sound and verifiable, experimenta-
tion protocols are indispensable. Clearly, different

subareas of Informatics may require different types
of protocols.

Our second main thesis is therefore:

B: Experimentation in Informatics re-
quires sound and verifiable experimen-
tation protocols. In the case of multi-
disciplinary research, these protocols
should follow standard practices that are
recognizable across discipline boundaries.

We will see examples of thesis B in Sections 4 and
5 of this paper. Section 6 reviews where we stand
overall.

1.4 Workshop
The discussion of experimentation in Informatics

requires a good understanding of the issues. With
this in mind, we organized a small workshop on
the Role and Relevance of Experimentation in Com-
puter Science and a subsequent panel discussion on
the same issue within the 8th European Computer
Science Summit (ECSS’12). This paper contains
the written text of the contributions.

Among the questions that were discussed, were
the following:

- What does it mean to make experiments in In-
formatics. Is it possible to ask this question in gen-
eral terms, or does it have to be asked separately
for each subfield?

- Is it possible to single out some common features
that characterise ‘good experiments’ in Informatics?

- Does it make sense to ‘import’ traditional exper-
imental principles from the classical scientific disci-
plines into Informatics?

We believe that the discussion on experiments in
Informatics (or: computer science and engineering)
can contribute to a better understanding of the sci-
entific approach in the discipline. We also believe
that it may contribute to the debate on the rela-
tionship between Informatics and science.

1.5 This Paper
The paper is organized as follows. In Section 2

(by V. Schiaffonati) the philosophical premises of
experimentation in Informatics are presented. In
section 3 (by M. Tedre) the analysis is continued
with an assessment of the different types of exper-
iments that computer scientists have been using so
far. Sections 4 (by K. van Hee) and 5 (by C. An-
dujar) show how experiments and experimentation
protocols can be designed to great advantage in al-
gorithmic and user studies, respectively. Finally,
section 6 (by F. Schreiber) assesses whether the
methodological landscape, and experimentation in



particular, is really understood sufficiently across
the discipline. The section also includes a summary
of the comments and suggestions from the discus-
sions at the Workshop and in the panel session at
ECSS’12. In Section 7 we offer some final conclu-
sions.

2. ROLE AND RELEVANCE OF EX-
PERIMENTATION IN INFORMAT-
ICS

(Viola Schiaffonati)

Experiments play a fundamental role in empiri-
cal sciences, both in acquiring new knowledge and
in testing it, and modern science has its roots in
the very idea of experiment, as devised by Galileo
Galilei during the so called Scientific Revolution in
the XVII century. One of the main achievements of
this revolution has been to recognize that pure ob-
servations are not enough for the comprehension of
the natural world, and that to properly ‘interrogate’
Nature, interference with the natural world itself by
means of experiments is necessary. An experimen-
tal procedure aims, thus, at controlling some of the
characteristics of a phenomenon under investigation
with the purpose of testing the behavior of the same
phenomenon under some controlled circumstances.
Accordingly, an experiment can be defined as a con-
trolled experience, namely as a set of observations
and actions, performed in a controlled context, to
support a given hypothesis.

A trend has recently emerged toward making ex-
perimental scientific method take center stage in In-
formatics as well. Given that Informatics possesses
an empirical component, even without considering
here the debate about the prevalence of the empir-
ical versus the theoretical one [46], it is natural to
ask about the role and relevance of experimenta-
tion in it. Thus experimental scientific method has
recently been under attention in computer science
and engineering both at a general level [23, 36] and
in specific disciplines (see for example the case of
empirical software engineering [27]). Experiments
are recognized as relevant in this field as they help
build a reliable base of knowledge, lead to useful and
unexpected insights, and accelerate progress [48].

Unfortunately computer scientists do not seem to
agree on how experimental methods are supposed
to impact their theory and practice. This section
is a first attempt to start reflecting on the role of
experiments in Informatics with the help of some
tools developed in the philosophy of science and the
philosophy of technology. The peculiarity of Infor-
matics in between science and engineering should

be taken as a starting point. Therefore, if on the
one side inspiration can be drawn from how exper-
iments are conducted in pure science, on the other
side this perspective should be enlarged to include
the analysis of how experiments are conducted in
engineering disciplines, a topic so far almost com-
pletely neglected by the traditional philosophy of
science.

2.1 Taking inspiration from science
It is commonly recognized that experimental

methodologies in Informatics have not yet reached
the level of maturity of other traditional scientific
disciplines. A possible way to start investigating the
role of experiments in this field is to analyze how
experiments are performed in traditional science in
order to evaluate whether some useful lessons can be
learned. This is a way to obtain, at least, a better
terminological and conceptual clarity in using terms
that are historically and conceptually loaded. For
example, in Informatics there still exists confusion
between generic empirical methods (only requiring
to be based on the aggregation of naturally occur-
ring data) and experimental methods (that must ad-
here to strict rules as assessed in the course of the
history of experimental science). Equally mislead-
ing is the idea that the replication of experiments is
sufficient to guarantee the requirements of a serious
experimental approach.

Generally speaking, an experiment is a controlled
experience, a set of observations and actions, per-
formed in a controlled context, to test a given hy-
pothesis. Accordingly, the phenomenon under in-
vestigation must be treated as an isolated object;
it is assumed that other factors, which are not un-
der investigation, do not influence the investigated
object. Despite the controversies about the sci-
entific experimental method and its role, experi-
ments possess some general features that are uni-
versally acknowledged and often are not even made
explicit. These are: comparison, repeatability and
reproducibility, justification and explanation.

• Comparison. Comparison means to know
what has been already done in the past, both
for avoiding to repeat uninteresting experi-
ments and for getting suggestions on what the
interesting hypotheses could be.

• Reproducibility and repeatability. These fea-
tures are related to the very general idea that
scientific results should be severely criticized
in order to be confirmed. Reproducibility, in
particular, is the possibility for independent
researchers to verify the results of a given ex-
periment by repeating it with the same ini-



tial conditions. Repeatability, instead, is the
property of an experiment that yields the same
outcome from a number of trials, performed at
different times and in different places.

• Justification and explanation. These features
deal with the possibility of drawing well justi-
fied conclusions based on the information col-
lected during an experiment. It is not suffi-
cient to have as many precise data as possible,
but it is also necessary to look for an expla-
nation of them, namely all the experimental
data should be interpreted in order to derive
the correct implications leading to the conclu-
sions.

Is it possible to decline these general principles
in a computer science and engineering experimental
context? And, if the answer is positive, is there any
utility in doing this? To try to decline these ques-
tions within specific areas of research offers some
preliminary, but promising, answers. The case of
autonomous mobile robotics, involving robots with
the ability to maintain a sense of position and to
navigate without human intervention, offers some
useful insights. In response to a quite recent inter-
est of this field in experimental methodologies, some
research projects funded by the European Commis-
sion, journal special issues, series of workshops, and
single papers have been produced with the aim of
assessing rigorous evaluation methods for empirical
results. In particular [1] and [2] have declined the
three aforementioned principles for the case of mo-
bile autonomous robotics, leading to the conclusion
that, even if some works in this field are addressing
in a more and more convincing way these experi-
mental principles thus bringing autonomous mobile
robotics closer to the standards of rigor of more ma-
ture scientific disciplines, its engineering component
cannot be put aside and needs to be included in the
discussion. Thus, importing these principles from
physics to autonomous robotics is only the first step
of a serious investigation on the relevance and role
of experiments in a computer engineering field.

2.2 From science to engineering
Engineering can be defined as an activity that

produces technology, and technology is a practice
focused on the creation of artifacts and artifact-
based services [22]. Hence, to move from a purely
scientific context to an engineering one means not
only to address different objects (natural objects
versus technical artifacts), but also to consider the
different purposes for which experiments are per-
formed. If in science the goal of experimentation is
understanding a natural phenomenon (or a set of

phenomena), in engineering the goal is testing an
artifact.

Technical artifacts are material objects deliber-
ately produced by humans in order to fulfill some
practical functions. They can be defined in accor-
dance with the three following questions.

• What is the technical artifact for? Namely its
technical function.

• What does it consists of? Namely its physical
composition.

• How must it be used? Namely its instructions
for use.

Informatics products are technical artifacts, as they
are physical objects with a technical function and a
use plan deliberately designed and made by human
beings [50].

The notion of technical artifact plays an impor-
tant role in analyzing the nature of experiments in
engineering disciplines: experiments evaluate tech-
nical artifacts according to whether and to what
extent the function for which they have been de-
signed and built is fulfilled. This is the reason why
normative claims are introduced in engineering ex-
periments. An artifact, such as an airplane, can
be ‘good’ or ‘bad’ (with respect to a given refer-
ence function), whereas a natural object, such as
an electron, whether existing in nature or produced
in a laboratory, can be neither ‘good’ nor ‘bad’; in
fact it is analyzed without any reference to its func-
tion and use plan and so is free from any normative
constraints regarding its functioning1.

Is the reference to the notion of technical artifact
enough to analyze the role and relevance of exper-
imentation in Informatics? Of course not. As the
inspiration from science represents just one facet
of this analysis, the attention to the way technical
artifacts are evaluated in engineering experiments
is also just only another partial facet. While dis-
cussing experiments and their role, the dual nature
of Informatics at the intersection between science
and engineering strongly emerges. Experiments are
performed to test how well an artifact works with
respect to a reference model and a metric (think for
example of a robot or a program); but, at the same
time, experiments are performed to understand how
complex artifacts, whose behavior is hardly pre-
dictable, work and interact with the environment
(in different degree if you think of the example of
the robot or the program).

1It is worth noticing, however, that although an electron
cannot be ‘good’ or ‘bad’ per se, a theory pertaining
electrons can be ‘good’ or ‘bad’.



Surely, the relevance of a better (in terms of rigor)
experimental approach in computer science and en-
gineering is an important first step in the method-
ological maturation of Informatics. Moreover, a
deeper and a wider analysis is required to under-
stand the peculiar role of experimentation in this
discipline. Informatics is composed of very hetero-
geneous subfields and whether it is possible to single
out some common features characterizing “good ex-
periments” across these subfields is still under dis-
cussion.

An interesting side effect of this discussion is to
promote a reflection on the disciplinary status of In-
formatics based on its methodological stances, and
not only on the nature of its objects. This, again,
evidences the peculiarity of Informatics also from
a methodological point of view. As said, it makes
sense to “import” traditional experimental princi-
ples (comparison, reproducibility and repeatability,
justification and explanation) from traditional sci-
entific disciplines into computer science and engi-
neering, thus promoting a more rigorous approach
to experimentation. This would avoid all those
cases in which published results are considered as
validated just by a single experiment that is impos-
sible to reproduce and/or repeat because the exper-
imental conditions are only vaguely described [6].
But it is worth remembering that these general prin-
ciples are valid for disciplines (such as physics and
biology) that aim at understanding and explaining
natural phenomena, whereas computer science and
engineering realize artifacts. This awareness can
represent a first step in the direction of the devel-
opment of a philosophy of engineering that should
have, among its goals, the analysis of the features
that characterize experiments in engineering disci-
plines.

3. COMPETING VIEWPOINTS ON EX-
PERIMENTATION IN COMPUTING

(Matti Tedre)

The discipline of computing was born at the con-
junction of a number of research traditions that
came together around the 1930s and the 1940s.
The first research tradition came from mathemat-
ical logic and from the attempts to formalize hu-
man patterns of rational thought; its pioneers were
mathematicians and logicians like George Boole,
Gottlob Frege, and Alan Turing [11]. The second
tradition was that of electrical engineering; its pio-
neers included engineers like Konrad Zuse, Claude
Shannon, and John Atanasoff [51]. The third tra-
dition came from the mechanization of numerical

computation for the purposes of science and applied
mathematics, with pioneers like Charles Babbage,
Herman Hollerith, and Vannevar Bush [10].

The research traditions that formed modern com-
puting continued to flourish within the discipline as
three intertwined, yet partially autonomous lines of
research, each with its own research agenda [14].
The theoretical tradition developed an identity au-
tonomous of mathematics, and it established the
groundwork for the development of theory and prac-
tice in computing. The engineering tradition drove
the unprecedented development of machinery (and
later software). The scientific tradition intertwined
with other disciplines, giving birth to countless vari-
ations of computational science as well as new in-
sights into computing itself.

The rapid growth of knowledge in computing
fields was fueled by the interplay of the three inter-
twined traditions. However, the three very different
intellectual traditions also caused continuous fric-
tion within the discipline of computing. The lack of
rigor in some branches of engineering work gave rise
to criticism from the science and theory camps of
computing. The abstract orientation of theoretical
computer science was accused of alienation from the
real problems in computing. The empirical side of
computing was criticized for improperly presenting
what computing really is about.

3.1 Experimental Computer Science
Movement

Science has always been a central part of com-
puting as a discipline. Although its roots are in
office machinery, the modern (fully electronic, Tur-
ing complete, digital) computer was born in uni-
versities, and the first modern computers were used
for applied sciences and numerical calculation. The
term ‘computer science’ was adopted into comput-
ing parlance in the late 1950s. As the discipline
matured, the discussions about the disciplinary
nature of computing frequently saw glimpses of
experiment-based empirical research. But it was
only at the turn of the 1980s when the role of ex-
perimentation in computing became a popular topic
in the field’s disciplinary discussions.

‘Experimental computer science’ was brought to
limelight at the turn of the 1980s by a strong cam-
paign for ‘rejuvenating experimental computer sci-
ence’. The campaign was initiated by a report to
the National Science Foundation [18] and ACM Ex-
ecutive Committee’s position paper on the “crisis
in experimental computer science” [32]. The initial
papers were followed by a number of position papers
about what experimental computer science actually



is (see e.g. [13, 38]).
However, despite the attempts to clarify experi-

mental computer science terminology, it was never
clear what exactly was meant by ‘experimental’
in computer science. The practitioners and pio-
neers from different traditions understood the term
‘experimental’ very differently. One sense of the
word refers to exploratory work on new, untested
techniques or ideas—the thesaurus gives words like
‘trial’, ‘test’, and ‘pilot’ as synonyms to ‘experimen-
tal’. Another, more specialized, sense of the word
refers to the use of experiments to test hypotheses.
The original ‘rejuvenating’ report [18] teetered be-
tween the two meanings of the word, never defining
what exactly was meant by ‘experimental’ computer
science. Rooted in the different disciplinary mind-
sets in the three traditions of computing, the ‘re-
juvenating’ report was followed by several decades
of polemics where discussants talked about experi-
mental computer science but meant different things.

3.2 Five Views on Experimentation
After the initial papers on experimental com-

puter science, the topic became a popular topic
for workshops, conferences, and journal articles. In
those arenas experimentation terminology was used
in various, often conflicting ways. One can easily
find in the debates numerous implicit and explicit
meanings of terms like ‘experiment’, ‘experiment-
ing,’ ‘experimental,’ and ‘experimentation’. Of the
various meanings of ‘experiment,’ five are relatively
common and easily distinguishable: the demonstra-
tion experiment, the trial experiment, the field ex-
periment, the comparison experiment, and the con-
trolled experiment.

3.2.1 The Demonstration “Experiment”
The first common use for the term ‘experiment’

can be found in reports on new tools and techniques.
In those texts, it is not known if a task can be au-
tomated efficiently, reliably, feasibly, or by meet-
ing some other simple criterion. A demonstration
of ‘experimental’ technology shows that it can in-
deed be done (e.g., [25]). Although this view was
criticized already in some of the first texts on ex-
perimental computer science, it is still a relatively
common use of the term—often defended and often
criticized.

3.2.2 The Trial Experiment
The second common use of the term ‘experi-

ment’ can be found in reports that evaluate the
performance, usability, or other aspects of a sys-
tem against some previously defined specifications
or variables. In those texts, it is not known how

well a newly developed system meets its require-
ment specifications or how well it performs. A trial
experiment is set up to evaluate the system. Vari-
eties of trial experiments include, for instance, em-
ulation, benchmarking, and simulation [24].

3.2.3 The Field Experiment
The third common use of the term ‘experiment’

can be found in reports that evaluate systems in
their intended use environment. In those texts, it
is not known how well the system works in the full
richness of the live environment. In a field experi-
ment [39], or ‘in-situ’ experiment [24], the system’s
qualities are tested in its intended sociotechnical
context of use, and evaluated against a pre-defined
set of criteria.

3.2.4 The Comparison Experiment
The fourth common use of the term ‘experiment’

can be found in reports that compare two or more
competing solutions for the same problem. In those
texts, it is not known whether the author’s proposed
solution performs better than the previous solutions
with some data set, parameters, and set of criteria.
An experiment is set up to compare the solutions,
and to show that the author’s solution is in some
ways better than the other candidates [19]. Often-
times objectivity is improved by not involving the
author’s own solutions, and in many research fields
the test data and parameters are standardized.

3.2.5 The Controlled Experiment
The fifth common use of the term ‘experiment’

can be found in reports that test models or hy-
potheses under a controlled environment, where the
effects of extraneous and confounding variables can
be controlled [17]. The controlled experiment comes
in various types for various purposes, but often con-
trolled experiments are used in situations where it is
not known whether two or more variables are associ-
ated, or if one thing causes another. The controlled
experiment is the approach of choice if the results
should be generalizable.

4. BEYOND BENCHMARKING: STA-
TISTICALLY SOUND EXPERIMEN-
TATION

(Kees van Hee)

As noticed already computer science has two
founding fathers: mathematics and electrical engi-
neering. Mathematicians live in a world of mod-
els they create themselves, therefore mathematics
is a pure theoretical discipline without an empiri-



cal component. The empirical law of large numbers
seems to be the only empirical phenomenon that
is mentioned in mathematical statistics. This law
was the motivation for the derivation of the theo-
retical law of large numbers. Electrical engineering
is based on empirical phenomena, such as the em-
pirical laws of electricity. But experiments play a
little role in the research domain of electrical en-
gineering. Of course systems are built as a proof-
of-concept, which is in fact an empirical existence
proof. So the founding fathers of computer science
had no experience and probably little interest in ex-
perimentation, which most likely caused of the lack
of an experimental component in computer science.

Today model-driven engineering is a successful
approach in almost all engineering disciplines and
in particular in software engineering. There are sev-
eral reasons to build a mathematical model of a sys-
tem, such as: (1) to document or explain a system,
(2) to specify or construct a system, (3) to optimize
or control a system and (4) to analyze or predict the
behavior of a system. In all these cases the model
should have so much similarity with system that
properties derived for the model should hold for the
system and vice versa. Although this sounds obvi-
ous, it is far from easy to establish such a similarity
relationship. Since a system is a physical object
the only way to do this, is by experimentation. So
one has to make a bijection between structural el-
ements of the model and to the system. And one
has to observe the behavior of the system and com-
pare it with the modeled behavior. In most cases
the behavior is an infinite set of sequences of events
or activities. Hence it is often impossible to estab-
lish the similarity completely by experimentation.
Then statistical methods should offer a solution. If
we have enough evidence that a model is a good
description of a system then one may extrapolate,
by claiming that properties verified for the model
also will hold for the system. This is in particular
important if we want to analyze the behavior of a
system under extreme circumstances that are diffi-
cult or impossible to realize in a experiment, such
as the behavior of an aircraft during a crash.

In software engineering it was long time believed
that we would reach a stage where we should be able
to build a model from requirements and afterwards
the program code from a model and that we should
be able to verify formally that the model satisfies
the requirements and the program code is conform
to the model. Today model checkers can deal with
models of systems of a realistic size. So part of the
dream has come true. However we know that this is
only a partial solution, since: (1) the program code

is executed on a physical device, (2) requirements
are never complete and often informal and (3) the
model of a system is always a simplification in which
we abstracted from certain details. So experimen-
tation will be necessary to establish the similarity
between a system and its model. This form of ex-
perimentation is called software testing. Although
it is essential from an engineering point of view, the
topic is far from mainstream research in computer
science.

Software testing is only one form of experimenta-
tion in computer science. There are other questions
that can only be answered by experimentation e.g.:

• effectiveness and efficiency of algorithms;

• quality of software engineering methods;

• usability of human-machine interfaces;

• visualization of very large data sets.

In the rest of this section we will focus on the first
topic, quality of algorithms. Of course there are
simple algorithms that can be analyzed formally:
for example for a sorting algorithm we can prove
that it delivers a right answer and we can compute
the complexity. Note that complexity gives an an-
swer for the worst case, while we often want an an-
swer for something as the ‘average case’. There are
many complex problems in practice for which there
are no best solutions known and where we develop
heuristic algorithms. For example for combinatorial
problems like the traveling salesman or timetabling
for schools, we only have algorithms for which we
do not know if it produces always the best possible
answer (effectiveness) and the efficiency may vary
strongly over the problem instances. In principle
an algorithm is a function that can be applied to
an argument and it delivers a result. The argument
is a structured data set, which we will call a model.
(Note that such a data set represents a part of the
real world.) The set of all possible models is the
model class. So a model is an instance of a model
class. These concepts may also be called problem
instance and problem type. The effectiveness of an
algorithm is informally defined as: the ‘fraction’ of
models where the algorithm gives the right answer,
and the efficiency as: the ‘average’ computing time
it takes to answer to produce the result. However,
in most cases, the model class has infinitely many
instances. So the ‘fraction’ and the ‘average’ are not
even defined! If we have two or more algorithms for
the same model class then we would like to compare
them and then we run into the same problem. This
is a similar problem as in software testing, where
we may have to test an infinite set of behavior.



In order to solve these problems in practice, we
seek resort in benchmarking. The idea is that some
group of experts has chosen a finite sample from the
model class and that all algorithms are applied to
models of this benchmark set. Although it is a fea-
sible solution it does not really answer the original
questions. In order to do this in a more sophisti-
cated way, we have to consider the model class. If
we could define a probability distribution over this
class, then we could speak about the probability of
producing the right result and the mean comput-
ing time. So the solution to the problem is to find
probability distributions for model classes!

This is what we will consider in the next subsec-
tion. We will restrict us to the case where models
are represented by graphs and we will show how we
can define probability distributions on the class of
graphs. We also will discuss how we could obtain
this distribution in an empirical way. Finally we
describe a case study of this approach.

4.1 Probabilistic model classes
In most cases an algorithm is applicable to an in-

finite model class. The ‘effectiveness’ should be the
‘fraction’ of models for which the algorithm gives
the right answer and the efficiency the ‘average’
computing time. However on an infinite set the
‘fraction’ and the ‘average’ are not defined. If we
have a probability distribution on the model class,
then the effectiveness and efficiency are at least de-
fined. The question is then how to compute them.
So there are four questions to be answered:

1. How to define a probability distribution for a
model class?

2. How to sample models from a model class?

3. How to identify the parameters of a probability
distribution from empirical data?

4. How to compute the quality measures if the
probability distribution is known?

We start with the last question. Since in most cases
we should really apply the algorithm on the models
to determine the quality. However this would re-
quire infinitely many runs. Since we have a proba-
bility distribution we can approximate effectiveness
and efficiency by computing it for a finite subset
of the model class, say a subset with probability q,
e.g q = 0.99. This subset is a sample from the
model class. The effectiveness can be computed
for the sample, say p, which means that the al-
gorithm gives the right result in fraction p of the
sample. Then we know that the probability p̃ of
the model class satisfies: q.p ≤ p̃ ≤ q.p + (1 − q),

i.e. 0.99.p ≤ p̃ ≤ 0.99.p + 0.01. For the comput-
ing time t we can use the law of large numbers and
the central limit theorem derive a confidence inter-
val for t. Actually the sample can be considered as
a benchmark! However in this case we know how
much the benchmark covers the whole model class
and we can generate for each experiment a different
benchmark.

The first and second question can be answered
simultaneously. Note that an infinite model class,
where each model has the same probability, does
not exists (they would all have probability zero and
their sum should be one). Observe that systems in
nature and man-made systems are not coming out
of the blue, but they are grown or constructed in a
systematic way. For instance live tissues are grown
by cell division and cell differentiation. Software
systems are normally built in a top down or bot-
tom up process. In the first case a simple program
is stepwise refined to a more complex one and in
the second case several small components are glued
together to construct a bigger one. Each interme-
diate step is also a system of the class. We will use
this idea to construct model classes together with a
probability distribution over it.

From now on we will assume that each model
is represented as a graph. In computer science
graphs are probably the most used data structure
(see [5]). A graph can be defined as a quintuple
(Node,Edge, σ, τ, λ) where Node is a set of nodes,
Edge a set of edges (connecting the nodes) and
σ : Edge → Node is called the source function,
τ : Edge→ Node is called the target function and λ
is a labeling function with Edge as domain. We will
define graphs by graph transformations that can be
applied to a given graph in the class in order to ob-
tain a new one in the class. Graph transformations
are defined by production rules. As in [5] we follow
[15] in a simplified way. A production rule is a triple
(L,K,R) where L, K and R are all graphs and K is
common subgraph of L and R. (Often K has only
nodes, i.e. the set of edges is empty). The first step
in the application of a production rule is that in a
graph G the graph L is detected, i.e. a subgraph
of G is found that is isomorphic with L. The sec-
ond step is that the graph G is transformed into
G̃ = G\(L\K) + (R\K). The graph K is the inter-
face between G and L and R, i.e. G\L and R\K
are only connected via K. (Here we use \ for graph
subtraction and + for graph addition, i.e. nodes and
edges). There are some “sanity” requirements for
these operations such that all intermediate results
are proper graphs. A graph transformation system
is a set of production rules and a graph transforma-



tion system together with an initial graph is called
a graph grammar. With a graph grammar we may
define a class of graphs: all graphs that can be de-
rived by applying the production rules in a finite
number of steps. The production rules may enforce
that we only produce graphs of a certain type. We
may distinguish transformation rules that expand
a graph, called expansion rules and transformation
rules that reduce a graph, called reduction rules. In
fact every expansion rule may be applied in the re-
versed order to become a reduction rule and vice
versa. (If (L,K,R) is an expansion rule, the cor-
responding (R,K,L) is a reduction rule). So if we
have one or more initial graphs and a set of expan-
sion rules, we have defined implicitly a, possibly
infinity, set of graphs. To add a probability distri-
bution we will endow the production rules with a
non-negative weight function. Given a graph G a
new graph G′ is generated by applying an expan-
sion rule, with probability equal to the weight of
the rule divided by the sum of the weights of all
rules that could be applied. Note that the same
rule can be applied maybe several times on graph
G. Now we are almost done: we only need a stop-
ping rule for this generation process. This can be
done in several ways, e.g. by sampling the num-
ber of generations from distribution before we start
the generation process, or ‘flipping a coin’ during
the generation process to determine to stop or to
continue. In both cases the number of expansion
steps is stochastically independent of the generated
graph. A more sophisticated stopping rule could be
based on a Markov chain where the state is the last
generated graph, but we will not consider this here.
So, by repeating the generation process, we have a
method to determine an arbitrary large sample from
a graph class with a specified total probability.

The third question is about the application of the
approach in practice. For comparison of the quality
of algorithms a team of experts could decide on the
production rules, their weights and a stopping rule.
Then every developer could evaluate an algorithm
by creating a large sample and test its algorithm.
This is much better than the existing benchmarking
practice since we have arbitrary large samples and
we know what the evaluation means for this whole
class.

However we can apply the approach in an even
better way, since we often have already an empiri-
cal sample of the class observed in practice, e.g. a
sample of problem instances of the traveling sales-
man or timetabling problems. So it would be inter-
esting to see if we can derive the stopping rule as
well as the weights of the expansion rules from this

empirical sample.
Sometimes this can be done in a quite straight-

forward way by applying the expansion rules as re-
duction rules to obtain one of the initial graphs,
while counting the number of applications of each
rule. So we obtain an estimate for the weights of the
rules and since we count the number of steps as well,
we have a sample of the stopping time distribution,
from which we may estimate the parameters of the
stopping rule distribution. In case there are more
reduction paths we have to be a little more careful,
but a similar approach seems feasible. Given these
parameters we can generate a large sample, much
larger than the empirical sample, and use this sam-
ple to evaluate the algorithm. As shown in [49]
this gives much better results than using the orig-
inal sample as benchmark. Although this sounds
as ‘magic’, it is a phenomenon similar to the boot-
strapping technique of statistics (see [44]). A simple
explanation is that the graphs in the empirical sam-
ple contain more information than we use when we
just use it as benchmark. Even in a small empirical
sample we may have a lot of information over the
weights of the production rules.

4.2 Case study: Petri nets
This case study is based on [49]. Here we will

illustrate the approach for Petri nets, which are bi-
partite graphs with two kind of nodes, called places
and transitions and they are only connected with
directed arcs to nodes of the other kind. Petri nets
have markings, which are distributions of objects,
called tokens, over the places. When a transition
has in each of its input places a token, the marking
may change by consuming these tokens and produc-
ing for each output place of the transition a new to-
ken. So a Petri net determines a transition system.
We consider a special class of Petri nets called work-
flow nets. These nets have one input place, one out-
put place (called initial and final place respectively)
and all other nodes are on a directed path from the
input place to the output places. As initial mark-
ing they have only one token in the initial place.
They are used frequently in practice to model busi-
ness processes or procedures. We used 9 very sim-
ple expansion rules, see Figure 1. The initial graph
consists of just one place. All 9 rules preserve the
property that the generated nets are workflow nets.
The first 6 rules also preserve a behavioral property,
the weak termination property which says that if a
marking is reachable from the initial marking, then
the marking with only one token in the final place
is reachable from here.

We applied the approach to a collection of 200



Figure 1: The generation rules for workflow
nets

workflow nets representing business processes from
a manufacturing company. We consider this set as
original model class, which is finite. In order to val-
idate our approach, we took 10 samples of 5 models
each from the given 200 models. And with each
of these samples we derived the parameters and we
generated 200 workflow nets. Instead of testing al-
gorithms with these generated sets, we computed
characteristics of the graphs themselves. In partic-
ular we considered two characteristics: the length
of the shortest path (LSP) from the initial place to
the final place, which is a structural property of the
nets and we determined if the net has the weak ter-
mination property (WTP) or not.

The results are as follows. First we consider the
LSP. In the original population the mean and stan-
dard deviation of the LSP are: 7.14 and 0.85. In
the first sample of five models it was: 6.0 and 2.9
respectively, which falls outside a 95 percent confi-
dence limit of the original mean. For the collection
of 200 generated from the first sample the values
are: 7.34 and 0.95 respectively and it fits in the in-
terval of the original mean, in fact the intervals are
almost the same. This was the case with the first
sample. We repeated this for the other 9 samples
and we computed the average and standard devia-
tion of the mean LSP values over these 10: 7.29 and
1.46 respectively.

For the weak termination property (WTP) we fol-
lowed the same procedure. All models in the orig-
inal collection had the WTP and so all the models
in the 10 samples of five as well. The reduction pro-

cess preferred the first 6 rules that preserve sound-
ness, however the original models were not gener-
ated with our rules (as far as we know!) and so
we also had to apply not WTP preserving rules. It
turned out that in only 3 of the 10 generated col-
lections there were models not satisfying the WTP.
They had a probability of WTP of 0.96, 0.89 an
0.85. They average probability was 0.97 with a stan-
dard deviation of 0.05.

4.3 Summary
We have seen that for the comparison of algo-

rithms empirical methods are essential and that
there is a better approach than classical benchmark-
ing. The key is that we need a probability distri-
bution over infinite sets of models. We sketched a
method to construct such a probability distribution
and to generate a large sample:

1. observe an empirical sample of models;

2. define a suitable model class by production
rules and an initial model;

3. define a stopping rule;

4. identify the parameters: estimate the weights
for the production rules and the stopping rule;

5. generate a large sample using the production
rules and the parameters;

6. run the algorithm for each model of the gen-
erated sample.

In a case study for a special class of Petri nets we
showed how the method works and that it is much
better to use a large amount of generated models
using the parameters obtained from a small empir-
ical sample, than using this sample directly. This
case study encourages us to apply the method for
other model classes.

5. ROLE OF USER STUDIES IN COM-
PUTER GRAPHICS AND VIRTUAL
REALITY

(Carlos Andujar)

We now take a closer look at a kind of experimen-
tation which also plays a major role in several of
computer science fields: experimentation involving
human subjects. Conducting experiments involving
humans is a challenging task and poses a number of
problems not found in other types of experiments.
We will focus on user studies in three user-centric
fields, namely Computer Graphics (CG), Virtual
Reality (VR), and 3D User Interfaces (3DUI).



Figure 2: Visual equivalence problem

5.1 Sample problems
Let us introduce some problems that will serve

to illustrate the need for user studies in CG-related
areas and to exemplify some major challenges. Our
first example refers to the visual equivalence prob-
lem. Consider for example the two images in Fig-
ure 2. These images look nearly identical de-
spite the image on the right has been rendered
with a level-of-detail algorithm which is much faster
but less accurate. This represents a speed/quality
tradeoff, and the most appropriate algorithm will
depend on the different conditions (such as view-
ing distance, saliency of the image differences) that
determine to which extent users will perceive the
two images as the same. This kind of question re-
quires a user study and probably a psychophysical
experiment [20]. Although several image metrics
have been proposed to compare pairs of images, and
some of them take into account key features of hu-
man perception, there is some evidence that these
metrics often fail to predict the human visual sys-
tem response [41]. Indeed, there is an increasing
interest of the CG community to get a deep under-
standing of the Human Visual System, as evidenced
by some top journals (e.g. ACM Transactions on
Applied Perception) aiming to broaden the synergy
between computer science and psychology.

The second example is the evaluation of pres-
ence in VR systems, that is, to which extent users
feel and behave as if physically present in a vir-
tual world. Users of immersive systems might forget
about the real environment and the virtual environ-
ment can become the dominant reality. The eval-
uation of presence is very important in many VR
applications, from phobia therapies to psychologi-
cal experiments through pain relief for patients with
serious injuries. Many presence evaluation studies
report surprising findings when analysing the hu-

Figure 3: Different interfaces for a puzzle-
solving problem

man behaviour when presented a stress situation in
a virtual environment [34, 43]. Nowadays, the com-
mon practice is to evaluate presence by observing
users’s behavior and measuring their physiological
response (as captured by specialized devices such as
heart rate monitors and galvanic skin sensors).

The last example is about the comparison of 3D
UIs in terms of their usability. Figure 3 shows three
different user interfaces to solve a 3D puzzle [42],
using either a physical puzzle, a classic keyboard-
and-mouse interface, or a Wii controller. For this
task, users must be able to select pieces, manip-
ulate them, and explore the model from different
viewpoints. The key problem thus is to determine
which UI is better in terms of usability, and the only
solution nowadays is to conduct a user study com-
paring these techniques. Despite some models have
been proposed to predict human performance for
some tasks (the well known Fitts’ law is the most
notable example), typical spatial tasks are just too
complex to be predicted by such simple models.

5.2 Major challenges in user studies for
CG and VR

The following list (adapted from [45]) shows the
typical steps involved in empirical methods involv-
ing human subjects.

1. Formulate a hypothesis;

2. Make the hypothesis testable;

3. Design an experiment;

4. Get approval by ethics committee;

5. Recruit participants;

6. Conduct the experiment and collect data;

7. Pay participants;

8. Analyze the data;

9. Accept or refute the hypothesis;

10. Explain the results;

11. If worthy, communicate your findings.

The list above will serve to guide the discussion
about some major challenges in user studies not
found in other types of experiments.



5.3 Hypothesis formulation
A first step is to formulate a hypothesis and make

it testable. Using the 3D puzzle problem as an ex-
ample, a general hypothesis might be formulated as
follows: using the Wii controller will make people
more effective when doing manipulation tasks. A
possible testable version of it could be formulated
as: we measured the time it takes for users to solve a
particular 3D puzzle, using either Wii or mouse; we
hypothesize users will be faster using the Wii. Here
we find a major problem: to make the hypothesis
testable, we had to choose a particular task which
we take as representative (besides fixing some other
important variables). Unfortunately, many prob-
lems have a task space so large and heterogeneous
that it can be really difficult to find a small set of
representative tasks. Here we wrote task for the
3D puzzle example, but we could have written 3D
model, image, movie, stimulus and whatever other
elements are fixed to make the hypothesis testable.

Complex tasks also depend on a number of vari-
ables. For example, the completion time for a
3D puzzle might depend on the interaction de-
vice (Wii, mouse), viewing conditions (stereoscopic,
mono), mapping between user actions and applica-
tion changes, and quality of the graphics [9]. The
more variables are controlled, the more general the
findings will be, but the more difficult will be the
data collection. Indeed, data collection is a fur-
ther issue in typical VR applications. Compare the
measurement of simple dependent variables such as
task completion times and error counts, with hard-
to-collect data such as user physiological response,
heart rate or galvanic skin response.

5.4 Experiment design
Independent variables can vary in two ways:

within-subjects (each participant sees all condi-
tions) and between-subjects (each participant sees
only one condition). The decision on which design
to use is often controversial. Within-subject de-
signs are more time consuming for the participants,
and require the experimenter to counterbalance for
learning effects and fatigue effects. But between-
subject designs are not free from limitations, as
more participants need to be recruited and we are
likely to loose statistical power (thus less chances to
proof our hypothesis).

5.5 Ethics
Many usability guides address in depth all the

ethical issues related with user studies [3, 16]. Most
organizations require experimenters to get the ap-
proval by an ethics committee before running the

experiment. After the approval, it is often a hard
task to recruit participants and get their informed
consent, in particular when participants should be
chosen from a specific target user group (such as
physicians).

Experiments involving immersive VR systems of-
ten need a detailed informed consent. Researchers
should never deceive participants about aspects
that would affect their willingness to participate,
such as risks (VR users might bump into walls,
trip over cables), discomfort (many 3D interaction
techniques for spatial tasks are physically demand-
ing) and unpleasant experiences (some VR systems
cause motion sickness). Frustration handling is also
important when measuring user performance. In
case of failure to complete a task, experimenters
should make it clear that the responsible is the tech-
nology. Usability tests should not be perceived as
tests of the participant’s abilities [16].

5.6 Experimenter issues
Experimenters should be careful to avoid manip-

ulating the experiment. Besides the well known
placebo effect, there are other experimenter issues
that often hinder data collection. The Hawthorne
effect occurs when increased attention from superi-
ors or colleagues increases user performance. The
performance of a participant might change if some-
body else, e.g. the previous participant, is observ-
ing. Observer-expectancy effect occurs when the
researcher unconsciously manipulates the experi-
ment, using for example body language. Experi-
ments should be double-blind, but researchers in
non-life critical fields often disregard these issues.

5.7 Data analysis
Proper data analysis is absolutely required to ac-

cept or refute the hypothesis and to provide sta-
tistical evidence of the findings. Unfortunately, a
part of the CG community seems to lack enough
background on experimental design and statistical
analysis to conduct the user studies required to eval-
uate their own research. This is evidenced by the
large number of submitted and even published pa-
pers with serious evaluation errors related with the
statistical analysis of the results. Not surprisingly,
some leading CG groups around the world count on
psychologists’ contributions.

5.8 Summary
In the last decades some computer science dis-

ciplines are experiencing a shift of focus from im-
plementing the technology to using the technology,
and empirical validation through user studies is be-
coming critical. In this section we have discussed



some major issues of such validation experiments:
lack of background on experimentation, psychology
and psychophysics, time-consuming and resource-
consuming nature of user studies, and the difficul-
ties to fulfill all requirements (double-blind experi-
ments, informed consent, representative users, rep-
resentative data sets/models/tasks).

The user performance during typical computer-
related task depends on a number of domain-specific
factors as well as hardware-related factors. Consid-
ering all these factors simultaneously as indepen-
dent variables in controlled experiments is clearly
not practical. This fact limits the validity of the
findings reported in the CG and VR literature to
a specific domain and a particular setup. The
lack of de-facto standard data sets for testing pur-
poses (more common in other scientific communi-
ties) along with the plethora of hardware setups
makes it difficult to make fair comparisons. Fur-
thermore, many techniques are still proposed and
evaluated in isolation, whereas in the real world user
tasks are mixed with other tasks. These are issues
that must still be addressed.

6. EXPERIMENTS IN COMPUTER
SCIENCE: ARE TRADITIONAL
EXPERIMENTAL PRINCIPLES
ENOUGH?

(Fabio A. Schreiber)

Francis Bacon, in his Novum Organum, observes
that “... simple experience; which, if taken as it
comes, is called accident, if sought for, experiment
...”[4]. This fundamental observation calls for the
establishment of a methodology in experimentation,
which cannot be based on the observation of ca-
sual events and their simplistic interpretation, but
must rely on accurately designed and rigorously per-
formed experiments. On the other hand, Louis Pas-
teur accepted some degree of casualty in discovery,
but stated that: “In the field of observation, chance
favors only the prepared mind ...” [40], so admitting
that only a precise framework can produce mean-
ingful research results.

Figure 4 shows how, in natural sciences, observa-
tional studies are performed: from the observation
of natural phenomena some hypotheses are formu-
lated which lead to experiments in order to formu-
late theories which, in turn, suggest further experi-
mentation until a well established theoretical frame-
work is reached (a); sometimes, however, observa-
tions are not casual, but they are induced by au-
tonomously formulated conjectures which must be
experimentally proved (b).

OBSERVATION HYPOTHESIS 
EXPERIMENT THEORY 

Observational studies 

CONJECTURE OBSERVATION EXPERIMENT/ 

SIMULATION 
THEORY 

Observational studies 

a) 

b) 

Figure 4: Observational studies

On this basis, the final panel 2 of ECCS 2012
Summit tried to answer some questions the first of
which is: Is this model applicable to Computer Sci-
ence/Engineering?

So, is Informatics a “natural science”? One of
those disciplines that are blessed with the legacy
of Galileo? If not so, would that be somehow de-
sirable? Would that even make any sense? And,
further: whether or not experiments are (or ought
to be) strictly related to the way computer science
advances, have they any other role in it?

6.1 Experimentation Goals and Properties
Matti Tedre, in Section 2, mentioned many rea-

sons for experimenting and here we recall four of
them:

• to discover the unknown - in this case we want
to answer questions like: “What does it hap-
pens if I mix Oxygen and Hydrogen?”;

• to test a hypothesis - “From a stoichiomet-
ric computation, it comes out that if I mix
two molecules of Hydrogen and one molecule
of Oxygen I get some energy and a molecule
of water; is it true?”;

• to determine the value of some physical vari-
able - “What is the speed of light in vacuum?”;

• to compare a set of different “objects” to de-
termine their relative merits (benchmarking)
- “Which, among a set of cars has the best
energetic performance?”

2The panelists were Francesco Bruschi, Natalia Juristo,
Antoine Petit, Matti Tedre moderated by Fabio A.
Schreiber



All of these classes must satisfy at least three
methodological conditions for an experience to be
considered an experiment:

• Repeatability at different times and in differ-
ent places to check the universality of results;

• Reproducibility by other scientists to confirm
that results are independent of the details of
the specific experiment;

• Comparison of the results of different instances
of the same experiment;

Then a second question is: How such goals and
properties apply to Computer Science/Engineering
theories and artifacts?

Francesco Bruschi put the focus on the fact that
hard experimentation is already present in the day
to day practice of applied informatics. Not only:
some of the requirements for an experience to be
considered an experiment have both a positive and
a normative role in the engineering fields related to
computer science.

Considering the cited methodological conditions
for an experience to be considered an experiment -
repeatability, reproducibility, and comparability of
the results - Francesco argued that there are two
ways in which these requirements have a role in the
practice of Informatics: they have positive value in
describing how some tasks are carried out and ac-
complished, and they have normative value with
respect to the definition of some tools and method-
ologies. Francesco proposed an example for each
role.

Let us start with the positive role, considering
the task of modifying a software system in order to
correct a behavior not compliant with the specifica-
tions (practice commonly referred to as debugging).
The cornerstone of debugging is the definition of at
least one test case able to highlight the aberration
from the expected behavior. A test case is but the
description of a setup (a set of boundary conditions)
such that: i) it must be possible to impose it on a
running instance of the system an arbitrary num-
ber of times (it must be repeatable); ii) it must be
possible to impose it for any other instance of the
computing architecture on which the software is in-
tended to be executable, everywhere else (it must be
reproducible); iii) the execution of the system with
the given conditions must highlight, in an unam-
biguous way, the deviation from the expected be-
havior (results of the test running after changing
the code must be clearly comparable). The inter-
esting thing is that, even though at various levels of

awareness, these requirements soak the engineering
practice at any level.

As far as the normative role of the experimen-
tal requirements is concerned, let us now consider
the interest recently gained, in the software engi-
neering field, by purely functional languages such
as Haskell. It is advocated that these languages are
superior at developing robust, maintainable, com-
plex software systems. If we look closer at the fea-
tures that define functional purity, we find that the
core ones can be stated this way:

i) a function, whenever invoked with the parame-
ters, must always produce the same result (i.e., the
invocation must be repeatable);

ii) the invocation of a function contains all the
information on the boundary conditions for the ex-
ecution; this means, for instance, that there is no
hidden state, which makes it much easier to repro-
duce a given particular execution;

iii) all the possible side effects (i.e.: I/O, state
modification) produced by a function invocation are
explicitly inferable from the function call (i.e.: the
set of effects of two different functions calls are com-
parable). The remarkable thing here is that the fea-
tures which in the scientific domain are definitional
for experiments, somehow act as desiderata in the
field, noteworthily central to computer science, of
programming language design.

So, rigorous experimentation already has a role,
widespread albeit implicit, in at least two domains
of computer science, and it would be interesting
to deepen the possible epistemological and didac-
tic consequences of this fact.

Anyhow, Natalia Juristo pointed out that soft-
ware engineering (SE) experimental paradigm is
still immature: i) SE experiments are mostly ex-
ploratory and they lack mechanisms to explain, by
means of inference steps, the meaning of the obser-
vations results; ii) SE experiments have flaws since
they lack thoroughly thought-out designs to rule out
extraneous variables in each experiment, and proper
analysis techniques are not always used.

Natalia further observed that it is not enough
just to apply experimental design and statistical
data analysis to take experimental research in SE
forward, since a discipline’s specific experimental
methodology cannot be imported directly from oth-
ers.

6.2 Design and Simulation
A point on which all the speakers agreed is the

need of adopting a well defined language to give
rigor and precision to experimental data and of
using rigorous measurement methods and tools to



quantitatively describe the phenomena under inves-
tigation. The role of Statistics in both the design
of an experiment and in the interpretation of its
results emerged unanimously.

Antoine Petit also pointed out how software, be-
sides being the object of some experimental activ-
ity, as shown in 6.1, is also a tool for making ex-
periments in a similar way a telescope is the object
of research and experimentation in the field of op-
tics and a tool for astronomical research and discov-
ery. Computer scientists need to have their own re-
search infrastructures as physicists have their lasers
or the Large Hadron Collider, astronomers their
space telescopes, or biologists their animal houses.
Some of our research need such similar huge infras-
tructures, in particular to produce results at a right
scale to be transferred to industry. We can think
for instance to immersion systems, cloud comput-
ing, smart dust, robots, but these infrastructures
can be useful only if there is enough technical staff
besides the researchers.

A discussion followed about the usage of sim-
ulation models and frameworks to make scientific
experimentation cheaper and faster than in real-
life. While simulation, since longtime, is success-
fully used to predict the performance of computing
systems, its application to disciplines other than
Informatics (Natural Sciences, Physics, Economy,
etc.) requires a careful interaction between peo-
ple with different cultures and languages in order
to avoid misunderstandings leading to erroneous re-
sults which often are not the fault of “... that damn
computer”.

6.3 Other Issues
New experimental activities emerged in the re-

cent years in Information Management; two among
them have been explicitly mentioned in the discus-
sion: i) Data Mining for knowledge discovery in
large amount of operational data and ii) Pervasive
Systems support to sensing real-life physical data
to be used as input to application programs which
compute the experiments’ output. These applica-
tions are very far from each other, but how do they
compare to the classical notion of “experiment”?
Do we need any new vision?

Contrary to the position of Natalia Juristo, An-
toine Petit argued that there is no specificity of In-
formatics with respect to other sciences and that
its experimental dimension amounts to the experi-
mental dimension of software. We use software as
astronomers use telescopes, but to study and “con-
struct ” software is also part of our job, whereas
astronomers do not study or construct telescopes.

This induces that the work done by researchers to
study and construct software has to be evaluated, as
classical publications are. A difficulty comes from
the few number of conferences or journals devoted
to software; an organized Software Self-Assessment
could be an interesting option for such an evalua-
tion.

In the discussion which followed, a last impor-
tant question emerged: “Are CS/CE curricula suit-
able for giving our students an experimental aware-
ness?”. At a first sight, it seems that, generally,
engineering curricula include some separate, and
sometimes optional, courses about Measurement
Theory and Statistics, while these are not always
found in Computer Science curricula, but, in any
case there is no general treatment of the principles
of experimentation. This could be the topic for a
deeper survey on the state of art and a subsequent
proposal for the inclusion of an ad-hoc course in
CS/CE curricula.

7. CONCLUSIONS
(Viola Schiaffonati and Jan van Leeuwen)

The experimental method is clearly gaining
ground in computer science. It is now widely rec-
ognized that experimentation is needed as a key
step in the design of all complex IT applications,
from the design of the processes (Empirical Soft-
ware Engineering) to the design of the systems (as
in Robotics). The quest for experimentation man-
ifests a renewed attention for rigorous methodolo-
gies. Although many experiments have been put
to good use over the years, more recent efforts em-
phasize the systematic adoption of the experimental
approach. However, it is less clear that the precise
use of experimentation is always well-understood.
Can we simply adopt the experimental method from
classical disciplines or engineering? If not, in what
ways should it be modified to serve as a sound sci-
entific methodology for the computing and informa-
tion sciences?

In this paper we first focused on the origins and
the potential uses of the experimental method in the
field of Informatics (Section 1). We highlighted the
specific context of the design of artefactual systems
and their requirements (Section 2), and the different
views on experimentation that can be encountered
in the field (Section 3). We showed subsequently
that experimentation in Informatics can be aimed
at a variety of different properties not found in other
sciences (Section 4), and might involve e.g. the use
of human subjects as well (Section 5).

In a final appraisal, we observe that the exper-



imental method is well-recognized in various areas
within (applied) Informatics, but that its rigorous
application needs to be investigated further (Sec-
tion 6). Design and simulation methods need to be
carefully described and documented, so it is clear
to everyone when they count as instances of exper-
imentation and when they do not.

We recommend that modern Informatics curric-
ula offer an adequate background in both the phi-
losophy and the potential uses of the experimental
method. Furthermore, experiments in Informatics
should follow sound, replicable, and verifiable pro-
tocols, as is in all other sciences and in engineering
(Section 1). Experimentation should be recognized
in all branches of Informatics as a crucial method-
ology, with well-defined rules and practices.

This paper resulted from a collaborative effort of
the authors after the Workshop on the Role and Rel-
evance of Experimentation in Informatics, held in
Barcelona in 2012 prior to the 8th European Com-
puter Science Summit of Informatics Europe. The
paper also includes the conclusions from the sub-
sequent panel on experimentation at the Summit
(Section 6).

Both the workshop and the panel raised many in-
teresting questions about the experimental method
as it is to be used in Informatics. In this paper we
have only started to discuss some of the questions,
as one of our aims was rather to show how many rel-
evant issues are still open and need to be dealt with,
from a variety of different perspectives. When prop-
erly applied, experimentation is a powerful compo-
nent of the methodological basis of Informatics as a
fully fledged science.
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