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1 Introduction and summary

Our modern understanding of Quantum Field Theories (QFT) suggests that symmetries

and dualities are the correct paradigm to unveil non-perturbative features that are not

accessible to a Lagrangian description. This is especially true in the presence of conformal

invariance, when we have the concrete hope that symmetries and internal consistency may

suffice to completely fix the dynamics of a Conformal Field Theory (CFT). The (super-

)conformal bootstrap program, based on this philosophy, has provided a large wealth of

results on correlation functions of strongly coupled (super-)conformal field theories, see [1]

for a recent review. While restricting to local operators is a consistent truncation of the

CFT operator algebra that allows to study a more tractable problem, the goal is to move

beyond this restriction and enlarge our set of observables to include correlation functions

in the presence of non-local operators, or defects. This is especially important if we take

into account that extended excitations probe aspects of a CFT that are not accessible

to correlation functions of local operators only. Even more surprisingly, it is now clear

that CFTs with the same spectrum of local operators may support different and incom-

patible spectra of defects, resulting in different low-energy dynamics and interesting phase

transitions [2–4].

A conformal defect generically preserves conformal invariance along its profile and

rotations in the orthogonal directions. The spectrum splits into defect and bulk operators.

Correlation functions involving only the former are constrained by the residual symmetry

in the same way as for a lower dimensional CFT (notice, however, that the exchange

of energy with the bulk prevents the presence of a conserved stress energy tensor). In

particular, one can take the OPE of defect operators inside correlation functions until

reaching the only defect operator with non-vanishing one-point function, i.e. the defect

identity. The latter corresponds to the empty defect and its one-point function is given

by the defect expectation value. To fully characterize a conformal defect, however, one

needs to include interactions with the bulk degrees of freedom. One-point functions of

bulk operators and bulk to defect couplings are then added to the defect spectrum and

OPE coefficients to describe the full set of defect CFT data [5]. Their allowed values

are further constrained by crossing relations involving bulk, defect, and mixed correlators

and the long term goal of the defect bootstrap program is to put stringent bounds on the

space of consistent defects. In this context, numerical techniques can be directly applied

to correlation functions of defect operators [6–8], however, the naive application fails if

one wishes to study correlation functions that probe the bulk to defect couplings. In this

case, one of the OPE channels lacks the positivity required for the numerical tools to
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apply.1 As such, the task of obtaining non-perturbative information on these couplings is

harder than in the case of CFTs without defects, and has only been studied in the case of

boundaries where positivity was assumed [17]. Supersymmetry gives us additional tools for

constraining the dynamics of defect CFTs and this is the approach we will use in this paper.

Generically, a conformal defect is characterized by an infinite number of defect CFT

data. Nevertheless, it is interesting to isolate a subset which is both physically inter-

esting and universal. For the case of homogeneous CFTs in four dimensions, the Weyl

anomaly coefficients a and c match these requirements. On the one hand, they appear in

the two- and three-point functions of the stress tensor operator, implying that they must

be present in any local CFT. On the other hand, they feature in the energy flux mea-

sured in “conformal collider experiments” [18]. Requiring that the integrated energy flux

is positive provides important bounds on their allowed values [18]. For the case of con-

formal defects, the set of physically interesting operators is enlarged by defect excitations.

Among them, a distinguished role is played by the displacement operator that is related

to the broken invariance under translations in the orthogonal directions and, as such, it

is present for any extended excitation inserted in a local CFT. Its two-point function is

an important piece of defect CFT data and, together with the one-point function of the

stress tensor, they determine two of the three defect anomaly coefficients featured by a

two-dimensional defect [19, 20]. Their relation with deformations in the shape of the de-

fect, or in the background geometry [21–23], as well as their role in the computation of

the emitted radiation [22, 24, 25], make these two parameters a good starting point for the

full characterization of an extended excitation. One of the main results of this paper is to

show that for any superconformal surface defect in four dimensions these two quantities

are related by a simple, theory independent, numerical factor.

The interest in surface defects in four-dimensional superconformal theories (SCFTs)

has taken different directions. The initial attention for defects in N = 4 Super Yang-

Mills was triggered by the AdS/CFT correspondence and it led to the discovery of sys-

tems of intersecting branes corresponding to supersymmetry preserving surface defects [26].

This holographic description received a field theoretical counterpart in the work of [27],

which was followed by several generalizations and explicit computations [28–32]. For

lower supersymmetry, the most studied examples are surely surface defects preserving

a two-dimensional N = (2, 2) superconformal algebra inside a four-dimensional N = 2

SCFT [4, 33–48]. A protected subsector of these defects is also captured by a two-

dimensional chiral algebra [42, 49], and its study will be one of the main focuses of this

work. Finally, supersymmetric surface defects in N = 1 SCFTs preserve an N = (2, 0)

superconformal algebra, and have been studied in [50–52].

In [53] it was shown that any N > 2 SCFT possesses a subsector of protected operators

isomorphic to a two-dimensional chiral algebra.2 This subsector is obtained by restricting

1An alternative approach to study the crossing equations that does not rely on positivity has been

applied to the case of defect CFTs in [9, 10]. In this approach one does an extreme truncation of the

CFT spectrum to find approximate solutions to the crossing equations. By contrast with the numerical

bootstrap one does not get rigorous bounds on the CFT data, but rather estimates with unknown errors.

See also [11–16] for progress in analytical approaches to defect CFTs.
2A similar construction holds for 6d SCFTs with N = (2, 0), and 2d SCFTs with at least N = (4, 0) [54].
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the operators to a plane, and passing to the cohomology of a certain nilpotent supercharge

Q, with the cohomology classes of Q having the structure of a two-dimensional chiral alge-

bra. This provides a powerful tool to obtain non-perturbative dynamical information on

interacting N = 2 SCFTs, by knowledge of their associated chiral algebras, independently

of whether they admit a Lagrangian description or not. The construction can be further

enriched by adding surface defects as anticipated in [53], and made precise in [42, 49].3

Specifically, an N = (2, 2) surface defect intersecting the chiral algebra plane at a point

preserves Q, and in chiral algebra it appears as the insertion of a local operator. In [42, 49]

it was shown that the defect gives rise to a module over the original chiral algebra of the

bulk SCFT, and the (graded) partition function of the module is obtained by computing

the four-dimensional Schur index.

1.1 Summary of results

Constraints on superconformal surfaces. In the first part of this work, we consider

uncharged codimension two superconformal defects in four-dimensional SCFTs. In partic-

ular, our results are valid for N > 1 SCFTs in the presence of surface defects that preserve

at least an N = (2, 0) subalgebra. We are interested in the correlation functions of the

most universal multiplets in these theories, namely the stress tensor of the bulk SCFT,

present in any local theory, and the displacement operator, associated with the breaking of

translation invariance in the orthogonal directions. In a SCFT these two operators belong

in superconformal multiplets, and the multiplets’ correlation functions are the subject of

our work. Following the bootstrap approach, the first task is to fix all that is dictated by

symmetry, i.e. fixing the kinematics of the correlation functions. The lowest non-trivial

n−point functions involving these operators are the bulk one-point functions of operators

in the stress tensor multiplet, the defect two-point functions of those in the displacement

multiplet, and the bulk to defect two-point functions between operators in each of these

multiplets. We find in section 2 that superconformal symmetry fixes all of these correlators

in terms of a single dynamical number. This follows from the following universal relation:

Result. For supersymmetric surface defects in 4d N > 1 SCFTs, the one-point function

of the stress tensor, h, and the two-point function of the displacement operator, CD, are

related by supersymmetry as

CD = 48h ,

where the precise definitions of CD and h are given in (2.11) and (2.12) respectively.

Following [25], where a similar relation was obtained for half-BPS line defects in N =

2 SCFTs, this relation is obtained by studying the bulk to defect coupling of the full

stress tensor and displacement superconformal multiplets. By imposing supersymmetric

Ward identities for the preserved and broken supersymmetries we find that this coupling is

determined by a single parameter and this yields to the relation quoted above. The latter

implies two of the Weyl anomaly coefficients are equal, as described in section 3, along

3In a similar way, for N = 4 SCFTs one can obtain a subsector captured by a topological theory that

can be enriched by adding half-BPS defects [55].
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with a few examples and consequences for the stress tensor defect OPE. Finally, based on

cases where a relation between CD and h is known, or conjectured, we also put forward

the proposal that

Conjecture. For a supersymmetric defect of dimension p and codimension q, the one-

point function of the stress tensor and the two-point function of the displacement operator

are related as

CD =
2p+1(q + p− 1)(p+ 2)

q − 1

Γ(p+1
2 )

π
p+1

2

π
q
2

Γ( q2)
h .

While we cannot say what amount of supersymmetry is needed for such a relation to hold

in dimensions d = p+ q 6= 4, if it exists, consistency with known results fixes the proposed

relation.

N = (2, 2) surfaces and chiral algebras. The rest of this work concerns N > 2

SCFTs in the presence of uncharged two-dimensional N = (2, 2) defects. In section 2.2 we

identify the superconformal multiplet that accommodates the displacement supermultiplet

for these defects [38], and fix the one-point function of the stress tensor supermultiplet,

the two-point function of the displacement supermultiplet, and the two-point function

between the displacement and stress tensors supermultiplets, in terms of h. Turning to

dynamics, we study the chiral algebras of these defects in section 4. We show that the

scaling dimension, in chiral algebra, of the operator inserted by the defect identity is

given in terms of h, thus providing a new way to compute it in SCFTs.4 Apart from

the defect identity, the superprimaries of certain short defect supermultiplets are captured

by the chiral algebra, and we describe a few noteworthy cases. In particular, we notice

that not all defect operators in cohomology can be obtained as descendants of the defect

identity under the action of the chiral algebra generators. In other words, the defect can

insert a reducible module over the original chiral algebra. Among the defect operators

in cohomology, one finds the superprimary of the displacement supermultiplet, which is

the defect operator associated with the breaking of the su(2)R symmetry. This allows to

compute correlation functions in the presence of the defect if one can identify the defect

identity in chiral algebra. To this end, we determine how the bulk chiral algebra modes

act on the defect identity, from defect OPE selection rules in four dimensions,

Result. The defect identity introduces in chiral algebra a state |σ〉 that obeys

LTn>0|σ〉 = 0 , LT0 |σ〉 = −3π2h|σ〉+ (defect marginal
operators ) , LT−1|σ〉 ∼ |O↑〉 , Jn>1|σ〉 = 0 ,

where LTn are modes of the two-dimensional stress tensor, Jn those of affine Kac Moody

currents associated to possible bulk flavor symmetries of the bulk theory, and O↑ is the

superprimary of the displacement operator.

By studying the form of correlation functions involving bulk and defect operators

in chiral algebra, we make a proposal for the two-dimensional scaling weight of defect

4Here and in the following we use the expression defect identity to denote the empty defect, i.e. the

vacuum of the defect CFT.
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operators. Finally, we see how these results are realized in a few examples. We also test

the proposal of [42], that monodromy defects are obtained in chiral algebra by the spectral

flow, in the case of a single free hypermultiplet, by explicitly computing the one-point

function of the stress tensor and of the flavor currents.

2 Kinematics of supersymmetric correlation functions

In the first part of this paper, our considerations are purely algebraic and we do not need

to specify any microscopic detail of the defect. We will use the preserved and broken

superconformal symmetries to constrain the kinematics of defect correlation functions,

and obtain a relation between the one-point function of the stress tensor and the two-

point function of the displacement operator, valid for any four-dimensional supersymmetric

defect. Half-BPS surface defects in four dimensions preserve a superalgebra

su(1, 1|N1)⊕ su(1, 1|N2) ⊂ su(2, 2|N ) , (2.1)

for non-negative integers N1 and N2 such that N1 +N2 = N . In (2.1) it is understood that

su(1, 1|0) ≡ sl(2), and there will often be a commutant of the defect superalgebra inside the

four-dimensional one leading to an extra u(1) factor. One may wonder why a surface defect

could not preserve a osp(N|2) subalgebra. It is a straightforward exercise to verify that the

embedding of such an algebra inside su(2, 2|N ) must involve a linear combination of Qs and

Q̃s which breaks invariance under rotations in the directions orthogonal to the defect.5 In

this paper, we only consider superconformal defects preserving rotations in the orthogonal

directions. Given this restriction, defects preserving less than half supersymmetry can be

viewed as half-BPS defects in a bulk theory with less supersymmetry. For example, one

quarter-BPS defects in N = 2 theories would preserve su(1, 1|1) ⊕ sl(2) ⊕ u(1) and can

be seen as a half-BPS defects in N = 1, the only difference being that the extended R-

symmetry may produce some additional global symmetry commuting with all fermionic

generators. Nevertheless, it should be clear from this reasoning that every constraint

that is found for half-BPS defects in N = 1 applies to any BPS defect with extended

supersymmetry.

Even though eq. (2.1) is in Lorentzian signature, in what follows we will study defects in

Euclidean four-dimensional space. Let us consider a flat conformal surface defect stretched

along the directions x1 and x2, where we introduce complex coordinates

w = x1 + ix2 , w̄ = x1 − ix2 . (2.2)

5A related result was obtained in [56] where the authors wrote a superconformal algebra with four

supercharges in dimensions 2 6 d 6 4. The authors start from a four-dimensional N = 1 superconformal

algebra and reduce to lower dimensions by restricting to the conformal algebra of a lower dimensional theory.

This could be thought of as placing a codimension one or two defect in the four-dimensional theory. In

their construction invariance under rotations in the orthogonal directions is automatically preserved, ending

up as an R−symmetry in the lower dimensional theory. The two-dimensional superconformal algebra they

obtain inside the 4d N = 1 one is precisely the su(1, 1|1)⊕ su(1, 1) we consider in this work. Similar results

were obtained with eight supercharges in [57] starting from six dimensions, thus relevant for defects in 6d

(1, 0) theories. We thank N. Bobev for very useful discussions on these points.
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We require that the preserved superalgebra includes the global part of the two-dimensional

conformal algebra as well as the u(1) generator M = M1
1 + M 1̇

1̇ of rotations in the

orthogonal directions parameterized by6

z = x3 − ix4 , z̄ = x3 + ix4 . (2.3)

In our conventions, summarized in appendix A, the preserved two-dimensional conformal

algebra is generated by

L−1 =
1

2
(P1 − iP2) , L0 =

1

2
(D +M‖) , L1 =

1

2
(K1 + iK2) , (2.4)

L̄−1 =
1

2
(P1 + iP2) , L̄0 =

1

2
(D −M‖) , L̄1 =

1

2
(K1 − iK2) , (2.5)

with M‖ = M1
1 −M 1̇

1̇ generating rotations along the defect plane.

In the following, we will consider a set of correlation functions involving the stress

tensor Tµν and the displacement operator D↑,↓. The latter is a defect degree of freedom

defined by the Ward identity associated with the breaking of translational invariance in

the directions orthogonal to the defect

∂µTµz = −δ2(z)D↑ , ∂µTµz̄ = −δ2(z)D↓ , (2.6)

with Tµz = 1
2(Tµ3 + iTµ4) and Tµz̄ = 1

2(Tµ3− iTµ4), and µ is a 4d bulk index. As such, it is

associated to deformations in the shape of the surface. In particular, we can consider an

arbitrary correlation function of local operators in the presence of the defect Σ defined by

〈X 〉Σ := 〈O(x1) . . . O(xn)Ô(w1) . . . Ô(wm)〉Σ :=
〈O(x1) . . . O(xn)Ô(w1) . . . Ô(wm)Σ〉

〈Σ〉
.

(2.7)

Here O(xi) are operators living in the bulk 4d SCFT, while Ô(wi) are defect operators, i.e.

operators of the two-dimensional conformal theory on the defect. Here and in the following

we will add a hat to distinguish defect operators and their quantum numbers from bulk

ones. The displacement operator accounts for the variation of this correlation function

after a small deformation of the defect, δz(w),

〈X 〉δΣ ∼
∫

d2w 〈XD↑(w)〉Σ δz(w) +

∫
d2w 〈XD↓(w)〉Σ δz̄(w) . (2.8)

Alternatively, one can consider the insertion of the displacement operator as the action

of the broken translation generators P↑ and P↓ on the non-local operator Σ. To make this

precise, we consider for a moment a spherical defect and we define the charges in radial

quantization

P↑ = −
∫
σ

dΩµTµz , P↓ = −
∫
σ

dΩµTµz̄ , (2.9)

6Note that we are using α = 1,2 for the ± spinor indices, and similarly for the dotted ones. This is to

avoid confusion with the ± appearing later in the two-dimensional supercharges.
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where the integral is performed over a sphere σ. As usual, one can compute the action of the

generator by considering the commutator [P↑,Σ] and, using the fact that P is topological,

deform the contour to a shell surrounding the defect. Then, using (2.6), we get

[P↑,Σ] =

∫
d2w D↑Σ , [P↓,Σ] =

∫
d2w D↓Σ , (2.10)

where both sides of these equations must be thought of as inserted in a radially ordered

correlator. We will see below that a similar derivation applies to global bosonic symmetry

as well as for fermionic generators.

The class of correlation functions we will be interested in includes the displacement

two-point function7

〈D↑(w)D↓(0)〉Σ =
CD

2w3w̄3
, (2.11)

and the stress tensor one-point function, with non-vanishing components8

〈Tzz〉Σ = − h

z3z̄
, 〈Tz̄z̄〉Σ = − h

zz̄3
,

〈Tzz̄〉Σ = 〈Tz̄z〉Σ =
h

2z2z̄2
, 〈Tww̄〉Σ = 〈Tw̄w〉Σ = − h

2z2z̄2
,

(2.12)

where an index w corresponds to Xw = 1
2(X1 − iX2) and Xw̄ = 1

2(X1 + iX2). The form

of these correlators is fixed by conformal symmetry, see e.g., [5]. However, for a general

defect CFT, CD and h are independent pieces of CFT data that depend on the particular

theory being studied. Nevertheless, in the presence of supersymmetry we will prove that

CD = 48h , (2.13)

following only from symmetry considerations, and independently of the dynamics of the

CFT in question. Note that in particular this implies h is non-negative, due to positivity

of the displacement two-point function. To that end, we will consider a third correlator,

namely the bulk to defect two-point function of the stress tensor and the displacement

operator. Generically, a correlator of a spin two bulk conformal primary and an orthogonal

defect vector, is fixed in terms of three parameters. However, it was shown in [5] that this

specific two-point function is fully determined by CD and h. The derivation of [5] is valid

for any dimension and codimension and is based on two sets of Ward identities. We rewrite

them here in our notation for a surface defect in 4d. The first set of identities relates the

two-point function to h and it is a direct consequence of (2.10)

∂z 〈Tµν(z, 0)〉Σ = −
∫

d2w 〈Tµν(z, 0)D↑(w)〉Σ , (2.14)

where µ and ν run over the two sets of complex coordinates and other inequivalent identities

are obtained by complex conjugation. The second set of identities is realized in terms of

distributions and it descends from (2.6)

∂µ 〈Tµz(z, w)D↓(0)〉Σ = −δ2(z) 〈D↑(w)D↓(0)〉Σ . (2.15)

7The factor of two is included to make contact with the usual definition in terms of orthogonal indices.
8h defined here is related to aT of [5] by aT = −4h.
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This equation and its conjugate establish a relation between the bulk to defect correlator

and CD. As we already remarked above, if a relation like (2.13) holds for all N = 1 surface

defects, then it will automatically hold for extended supersymmetry. We thus consider

the N = 1 case and show explicitly that (2.13) is a consequence of supersymmetric Ward

identities. After that, we also describe in some detail the case of surface defects preserving

N = (2, 2), in an N = 2 four-dimensional SCFT. This analysis, though unnecessary for

the sake of proving (2.13), will be extremely useful in the second part of the paper, where

we will explore the two-dimensional chiral algebras in the sense of [53] associated to this

type of defects [42, 49].

2.1 Half-BPS surfaces in N = 1 SCFTs

Following the pattern (2.1), for N = 1 the only possible preserved symmetry is

su(1, 1|1)⊕ sl(2)⊕ u(1)Z ⊂ su(2, 2|1) , (2.16)

corresponding to an N = (2, 0) surface defect. The commutation relations for the N = 1

generators in four dimensions can be found in appendix A.1. In order to generate the

full N = (2, 0) subalgebra the bosonic generators (2.4) must be supplemented by the

fermionic charges

G+
− 1

2

= Q1 , G−− 1
2

= Q̃2̇ , G+
1
2

= S̃2̇ , G−1
2

= S1 , (2.17)

as well as the bosonic generator J and the commutant Z, which are linear combinations of

the u(1)r̂ R-symmetry generator, r̂, and the orthogonal rotations, M

J = 3r̂ −M , Z = −r̂ +M . (2.18)

The resulting 2d commutation relations are given in appendix A.2. Defect operators can

be organized in representations of this preserved subalgebra. Representations of su(1, 1|1),

and a convenient superspace formalism, have been known for a long time [58–60] (see

also [61–63] for the computation of the superblocks). However, here we are interested in

the coupling between bulk and defect degrees of freedom and, in order to fully exploit the

symmetries of the problem, we find it more convenient to work in components. We start

by determining which 2d supermultiplet can accommodate the displacement operator. The

exact same question was asked and answered in [64] in the context of line defects in three

dimensions. Here we review that argument using a more algebraic approach.

2.1.1 Displacement supermultiplet

We start by looking at broken supercharges. The defect breaks two supercharges

Q−↑ = Q̃1̇ , Q+
↓ = −Q2 , (2.19)

and the associated supercurrents are no longer conserved. Analogously to (2.6), one

can write

∂µJ̃µ1̇ = −δ2(z)Λ−↑ , ∂µJµ2 = δ2(z)Λ+
↓ , (2.20)

– 8 –
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where Λ−↑ and Λ+
↓ are fermionic defect operators that are produced by the action of the

broken supercharges on the defect

[Q−↑ ,Σ] =

∫
d2w Λ−↑ (w)Σ , [Q+

↓ ,Σ] =

∫
d2w Λ+

↓ (w)Σ . (2.21)

The defect operators Λ−↑ and Λ+
↓ have L0 = 1, L̄0 = 3

2 , J = ∓2. As such, the former

is an anti-chiral operator, and the latter a chiral operator, with respect to the left N =

2 superalgebra and thus they must be superconformal primaries. We can act with the

preserved supercharges to build the whole multiplet, and use the commutator of broken

and preserved supercharges to identify the displacement supermultiplet (2.10) as the action

of preserved supercharges on (2.21) It is a purely algebraic exercise to show that

{G+
− 1

2

,Λ−↑ } = D↑ , {G−− 1
2

,Λ−↑ } = 0 , {G+
− 1

2

,Λ+
↓ } = 0 , {G−− 1

2

,Λ+
↓ } = D↓ ,

{G+
− 1

2

,D↑} = 0 , {G−− 1
2

,D↑} = ∂wΛ
−
↑ , {G

+
− 1

2

,D↓} = ∂wΛ
+
↓ , {G

−
− 1

2

,D↓} = 0 .
(2.22)

Therefore, the displacement supermultiplets have the following structure

Z = 1 Z = −1

Λ−↑

D↑ D↓

Λ+
↓

−2 −1 1 2

3

5
2

∆̂/J

where ∆̂ is the eigenvalue of L0 + L̄0. These multiplets were also obtained in superspace

in [51].

2.1.2 Correlation functions

We start by considering the one-point function of the operators in the stress tensor multi-

plet. The N = 1 supercurrent multiplet contains the stress tensor operator, the supercur-

rents Jµα and J̃µα̇ and theR−symmetry current jµ. Our conventions for the supersymmetry

transformations are summarized in appendix A.1. Using the Ward identities

〈{G+
− 1

2

, J̃µα̇}〉
Σ

= 0 , 〈{G−− 1
2

, Jµα}〉
Σ

= 0 , (2.23)

we find the following non-vanishing components for the R-current one-point function,9

〈jz〉Σ = − h

2z2z̄
, 〈jz̄〉Σ =

h

2zz̄2
, (2.24)

9The reason why a spin one operator can acquire a non-vanishing one-point function is related to the

non-chiral nature of the R−symmetry current. If one allows for parity odd contributions, it is not hard

to see that, in the presence of a surface defect in four dimensions, a spin one current jµ can acquire a

non-vanishing one-point function only for the orthogonal directions i = 3, 4

〈ji〉Σ = a
εikx

k

|x⊥|∆+1
,

where a is, in general, some undetermined constant. In our case we saw that this constant is determined in

terms of h, the one-point function of the stress tensor (2.12).
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where jz = 1
2(j3 + ij4) and jz̄ = 1

2(j3− ij4). Notice that the U(1) R-symmetry is preserved

by the defect, but this does not imply that the current one-point function is vanishing

as one can easily show using Stokes theorem. This statement holds true for any abelian

symmetry that is preserved by the defect (the requirement of being abelian is crucial for

the current itself to be uncharged under the preserved symmetry).

We now consider the defect two-point function of the operators in the displacement

supermultiplet. Using the results of the previous section one can derive relations between

fermionic and bosonic correlators simply by considering the Ward identity

〈{G+
1
2

,Λ−↑ (w)D↓(0)}〉
Σ

= 0 , (2.25)

which leads to

∂w 〈Λ−↑ (w)Λ+
↓ (0)〉

Σ
= 〈D↑(w)D↓(0)〉Σ , (2.26)

and, in turn

〈Λ−↑ (w)Λ+
↓ (0)〉

Σ
= − CD

w2w̄3
. (2.27)

We are now ready to consider the bulk to defect coupling.

In this case there are two types of supersymmetric Ward identities one needs to con-

sider. First, we have the ordinary Ward identities with the preserved supercharges

〈{G+
1
2

, J̃µα̇(z, 0)D↓(w)}〉
Σ

= 0 , 〈{G+
1
2

, Tµν(z, 0)Λ−↑ (w)}〉
Σ

= 0 , (2.28)

and analogous relations with other operators and other preserved supercharges. Secondly,

we have other Ward identities, along the lines of (2.14) and (2.15), generated by broken

supercharges. For instance

〈{Q−↑ , Jµα(z, 0)}〉
Σ

=

∫
d2w 〈Jµα(z, 0)Λ−↑ (w)〉

Σ
, (2.29)

∂µ 〈J̃µ1̇(z, w)Λ+
↓ (0)〉

Σ
= −δ2(z) 〈Λ−↑ (w)Λ+

↓ (0)〉
Σ
. (2.30)

Implementing all the constraints we find that the only consistent solution requires the va-

lidity of (2.13). For completeness, we report the result of all the correlators in appendix C,

all of which are fixed in terms of h. As we have already stressed, the argument we just

outlined is sufficient to prove the validity of (2.13) for any superconformal surface defect

in four dimensions. Nevertheless, in section 4 we will be interested in the specific case of

N = (2, 2) surfaces in N = 2 superconformal theories. For this reason, in the next section

we provide some additional details on the N = (2, 2) example.

2.2 N = (2, 2) surfaces in N = 2 SCFTs

An N = (2, 2) surface defect preserves

su(1, 1|1)⊕ su(1, 1|1)⊕ u(1)C ⊂ su(2, 2|2) . (2.31)
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Out of the generators of the 4d N = 2 superconformal algebra collected in appendix A.3

the defect superalgebra has as fermionic generators the supercharges

G+

−1
2

= Q2
1 , G−

−1
2

= Q̃2,2̇ , Ḡ+

−1
2

= Q1
2 , Ḡ−

−1
2

= Q̃1,1̇ , (2.32)

and conjugate conformal supercharges

G−
+

1
2

= S1
2 , G+

+
1
2

= S̃22̇ , Ḡ−
+

1
2

= S2
1 , Ḡ+

+
1
2

= S̃1,1̇ , (2.33)

with the commutation relations given in appendix A.4. The defect also preserves the u(1)r
generator r and the Cartan of the su(2)R symmetry, R = 1

2(R1
1 − R2

2), which together

with the orthogonal rotations M, also preserved by the defect, can be recombined in the

three u(1) generators

J = −2R−M+ r , J̄ = 2R+M+ r , C = R+M . (2.34)

The first two are part of the 2d N = (2, 2) superconformal algebra, and the last is a

commutant.

Following same procedure used in section 2.1, we now obtain the structure of the

displacement supermultiplet, which has been worked out in [38]. We start from the broken

currents. In this case, the lowest dimensional conserved currents that are broken are

precisely the su(2)R currents, tµI
J with I 6= J , and, accordingly, two dimension two

defect scalar operators are produced by the Ward identities

∂µtµ2
1 = −δ2(z)O↑ , ∂µtµ1

2 = −δ2(z)O↓ . (2.35)

Also in this case, these defect excitations can be interpreted as the result of the action of

two broken generators R↑ = R1
2 and R↓ = R2

1 on the defect

[R↑,Σ] =

∫
d2w O↑(w)Σ , [R↓,Σ] =

∫
d2w O↓(w)Σ . (2.36)

Similarly, the action of the broken supercharges

Q+
↑ = Q1

1 , Q−↑ = Q̃21̇ , Q+
↓ = −Q2

2 , Q−↓ = −Q̃12̇ , (2.37)

produces a total of four defect fermions

[Q±↑ ,Σ] =

∫
d2w Λ±↑ (w)Σ , [Q±↓ ,Σ] =

∫
d2w Λ±↓ (w)Σ . (2.38)

Finally, the broken translations produce the displacement operator which must be a top

component, since [G±1
2

,P↑] = [G±1
2

,P↓] = [Ḡ±1
2

,P↑] = [Ḡ±1
2

,P↓] = 0. It is then a purely

algebraic exercise to compute the action of the preserved supercharges on these defect op-

erators and one easily realizes that they fit in the two short multiplets shown in figure 1.

The multiplet on the left is an (a, c) short multiplet, i.e. it is annihilated by G−− 1
2

and Ḡ+
− 1

2

.

Consistently with su(1, 1|1) representation theory, the superprimary operator has quantum
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∆̂/r

3

5
2

2

−1
2 0 1

2

C = 1

Λ−↑

D↑

Λ+
↑

O↑ G+
−1/2

Ḡ−−1/2

∆̂/r

3

5
2

2

−1
2 0 1

2

C = −1

Λ−↓

D↓

Λ+
↓

O↓ Ḡ+
−1/2

G−−1/2

Figure 1. The supermultiplets containing the displacement operator, and the operators appearing

from the breaking of su(2)R and supersymmetry. Both supermultiplets are short, with the one on

the left being (a, c) and the one on the right (c, a).

numbers L0 = −J2 = L̄0 = J̄
2 = 1. All operators in this multiplet have charge one under

the commutant u(1)C . Analogously, the multiplet on the right is a (c, a) multiplet, anni-

hilated by G+
− 1

2

and Ḡ−− 1
2

, and it has charge C = −1 under the commutant. The quantum

numbers of the remaining operators can be obtained from those of the supercharges, but for

convenience we present the values of ∆̂ = L0 +L̄0 and r = 1
2

(
J + J̄

)
. The supersymmetry

variations of these supermultiplets are collected in appendix A.4.

2.2.1 Correlation functions

As we did for the N = 1 case, we list the non-vanishing correlation functions involving

the stress tensor and the displacement supermultiplets. Since we have already learned that

supersymmetry requires the validity of the relation (2.13), in the following we express all

the correlators in terms of h. We start again from the one-point function of the stress tensor

supermultiplet. The components of the N = 2 supercurrent multiplet are summarized in

appendix A.3. Together with the stress tensor operator, whose one-point function was

given in (2.12), also the scalar superprimary O2 and the su(2)R current tµI
J acquire a

non-vanishing one-point function

〈O2〉Σ = − 3h

2zz̄
, 〈tz11〉Σ =

3h

4z2z̄
, 〈tz̄11〉Σ =

3h

4zz̄2
. (2.39)

where tzI
J = 1

2(t3I
J + it4I

J ) and tz̄I
J = 1

2(t3I
J − it4IJ ) Moving to defect correlation

functions, it is not hard to see that the only non-vanishing correlators are

〈O↑(w)O↓(0)〉Σ =
−6h

w2w̄2
, 〈D↑(w)D↓(0)〉Σ =

24h

w3w̄3
,

〈Λ+
↑ (w)Λ−↓ (0)〉

Σ
=

12h

w3w̄2
, 〈Λ−↑ (w)Λ+

↓ (0)〉
Σ

=
12h

w2w̄3
.

(2.40)

Finally, there is a long list of bulk to defect correlators. We only spell out those that are

relevant for the discussion in section 4, where we will be interested in a subsector of states

that are in cohomology of a particular supercharge. Specifically, we will need correlators
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involving the su(2)R current and the displacement superprimary O. These are given by

〈tw2
1(z, w)O↓(0, 0)〉Σ =

3hw̄

π(ww̄ + zz̄)3
, 〈tw̄2

1(z, w)O↓(0, 0)〉Σ =
3hw

π(ww̄ + zz̄)3
,

〈tw1
2(z, w)O↑(0, 0)〉Σ =

3hw̄

π(ww̄ + zz̄)3
, 〈tw̄1

2(z, w)O↑(0, 0)〉Σ =
3hw

π(ww̄ + zz̄)3
,

〈tz̄21(z, w)O↓(0, 0)〉Σ = − 3hz

π(ww̄ + zz̄)3
, 〈tz21(z, w)O↓(0, 0)〉Σ =

3hww̄

πz(ww̄ + zz̄)3
,

〈tz12(z, w)O↑(0, 0)〉Σ = − 3hz̄

π(ww̄ + zz̄)3
, 〈tz̄12(z, w)O↑(0, 0)〉Σ =

3hww̄

πz̄(ww̄ + zz̄)3
,

(2.41)

where twI
J = 1

2(t1I
J − it2IJ ) and tw̄I

J = 1
2(t1I

J + it2I
J ). This concludes our discussion

on the kinematics of superconformal defects. We now briefly explore some of the physical

consequences of the relation (2.13).

3 Physical consequences

The relation (2.13) provides an interesting identity between apparently independent pieces

of defect CFT data. The physical relevance of the operators involved, moreover, leads to

a relation between two of the Weyl anomaly coefficients. We also discuss the implications

of this relation in different examples, and put forward the proposal of a relation between

CD and h for defects of arbitrary dimension, in d−dimensional SCFTs, (3.10), which could

hold for sufficiently supersymmetric defects. Finally, we discuss the implications of the

relation (2.13) for the stress tensor defect OPE.

3.1 Weyl anomaly coefficients

Even dimensional CFTs are generically affected by Weyl anomalies. The trace of the stress

energy tensor, in a generic curved background, acquires a non-vanishing expectation value

which can be expressed as a linear combination of geometric structures. The classification

of conformal anomalies can be formulated as a cohomology problem: one has to look for

solutions to the Wess-Zumino consistency conditions that cannot be expressed as a Weyl

variation of a local term. A similar procedure applies to the case of even dimensional

defects, where the presence of an induced metric and of the extrinsic curvature leads to a

richer range of possibilities [65]. For the case of a two-dimensional surface, a common basis

for the Weyl cohomology is given by [66]

〈Tµµ〉Σ = −δ
2(z)

2π

(
bRΣ + d1K̃

i
abK̃

ab
i − d2γ

abγcdWacbd

)
, (3.1)

where RΣ is the two-dimensional Ricci scalar, K̃i
ab is the traceless part of the extrinsic

curvature K̃i
ab = Ki

ab −
1
2K

iγab, with Ki = γabKi
ab, and Wabcd is the pullback of the bulk

Weyl tensor contracted with the inverse of the induced metric γab. The anomaly coefficients

b, d1 and d2 appear in several different contexts. The b coefficient, associated to a A-type

anomaly, is determined by the expectation value of the spherical defect and it was shown

to be monotonically decreasing under defect RG flows [67]. This prevents its dependence
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on defect marginal couplings, although it still allows for a non-trivial dependence on the

bulk marginal parameters [68, 69]. This dependence was shown to be absent in the case

of supersymmetric defects preserving at least two supercharges of opposite chirality [69].

The B-type anomaly coefficients d1 and d2, on the other hand, are non-trivial functions

of both defect and bulk marginal couplings and they can be mapped to defect CFT data.

In four dimensions [19, 20] they are related to the two-point function of the displacement

operator and to the one-point function of the stress tensor by

d1 =
π2

16
CD , d2 = 3π2h . (3.2)

This implies, in particular, that d1 > 0. Furthermore, assuming the validity of the averaged

null energy condition in the presence of a defect one can prove that d2 > 0 [70]. Crucially,

in section 2.1 we have shown that, for any supersymmetric surface defect

d1 = d2 , (3.3)

which, in particular, implies d2 > 0. We now consider the implications of this result for

some examples of superconformal surface defects.

3.2 Comparison with holography and higher codimension

The first holographic computation of the conformal anomaly for a two-dimensional sub-

manifold goes back to the seminal paper [65] (see [66] for a reorganization of the result

in the basis (3.1)). In that case, the authors find d1 = d2 for holographic theories with

an Einstein gravity dual. This is consistent with our result and suggests an extension of

the equality d1 = d2 to any superconformal surface defect in dimension higher than four.

In other words, if a relation exists between the displacement two-point function and the

stress tensor one-point function for superconformal surfaces, consistency with holography

requires it to be

CD =
q + 1

q − 1

16π
q−2

2

Γ( q2)
h , for p = 2 , (3.4)

where we use p to indicate the defect dimension and q for the codimension. We also used

the relation between d2 and h in arbitrary dimension [70]. For the Wilson surface defect

in d = 6 this gives CD = 80πh
3 , a result that was confirmed by a free theory computa-

tion for the theory of a single free tensor multiplet [71] and that is not valid for a free

non-supersymmetric theory [72]. Therefore, we have strong evidence that supersymmetry

enforces the relation (3.3) for any codimension.

After the initial study of [65, 73], various other holographic computations were per-

formed, both in four and six dimensions [28, 29, 31, 32, 74–80]. To the best of our knowl-

edge, however, all these results can be related to the value of b, i.e. to the spherical defect

expectation value, or to the value of d2, i.e. the stress tensor one-point function. Therefore,

the relation (3.3), provides a whole new set of predictions for the value of d1, which we

briefly summarize.
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For the case of the Gukov Witten surface defects [27] in N = 4 SYM theory, the

one-point function of the stress tensor operator was computed in various limits in [31].

Consistently with the supersymmetric Ward identities described in section (2.2), the scalar

superprimary O2 (in [31] it is called O2,0) and the stress tensor one-point function are

determined by the same function d2 (or equivalently h). The class of defects described

in [27] are disorder operators characterized by a codimension two singularity for the gauge

and scalar fields along the defect profile Σ. When a U(N) gauge group is broken to a

Levi subgroup L =
∏M
l=1 U(Nl), the defect is labeled by 4M parameters (αl, βl, γl, ηl),

where αl is associated to the gauge field configuration, ηl to the θ-angles and βl + iγl to a

complex scalar field (see [27] for a detailed description). Prescribing a singular behavior for

the complex scalar field breaks the symmetry of rotations in directions orthogonal to the

defect, which we are assuming throughout this work, and thus our results do not directly

apply. Henceforth we will set βl = γl = 0. A semiclassical gauge theory description of these

defects is effective in the limit of small ’t Hooft coupling λ � 1. In the opposite regime,

i.e. N � 1 and λ � 1, the same system admits two different gravitational descriptions.

In general, half-BPS surface defects in N = 4 are described holographically as a system of

intersecting D3 branes [26]. In the probe approximation, the conformal defect corresponds

to M stacks of probe D3 branes in AdS5 × S5 intersecting the boundary along the defect

profile Σ, where each stack contains Nl coincident D3-branes. Of course, for the probe

approximation to be valid, the number of probe D3 branes needs to be small compared to N .

The marginal parameters of the gauge theory solution are mapped to geometric parameters

of the gravity solution. The second strong coupling description consists in a smooth ten

dimensional solution of Type IIB supergravity, which is asymptotically AdS5 × S5 and it

captures the complete D3 brane backreaction [28]. The stress tensor one-point function has

been computed in all these different approximations and it has been reinstated in terms of

anomaly coefficients in [70]. Using the relation (3.3) we can now complete the list with10

d1 =
1

4

(
N2 −

M∑
l=1

Nl

)
. (3.5)

Notice that the classical gauge theory computation only captures the term of order 1
λ ,

which vanishes when βl = γl = 0, while the two holographic descriptions give a result that

is consistent with it when the corresponding approximations are taken into account. The

non-trivial agreement between computations in very different regimes of [28] hints that

the result (3.5) may be exact, even though eq. (3.5) was obtained as a large N result. It

would be interesting to confirm this expectation through an integrability or a localization

computation. Generalizations preserving less supersymmetry were considered in [32], but

these examples do not preserve orthogonal rotations and therefore we do not consider

them here.

3.3 Supersymmetric Rényi entropy

A physically interesting example of conformal defect is the twist operator [20, 81, 82],

an extended probe whose expectation value computes the Rényi entropy. The latter can

10The result of [28] also includes a term depending on the βl and γl parameters that we are setting to

zero such that our results can be directly applied. Note that our anomaly coefficients differ from those

in [70] by a factor of 12.
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be defined by taking a QFT in flat d-dimensional spacetime and considering its density

matrix ρ, which describes the state of the QFT in a given time slice. Tracing out all

the degrees of freedom associated to a region of space Ā, one obtains the reduced density

matrix associated to the complementary region A

ρA = TrĀ(ρ) . (3.6)

The Rényi entropy is defined as a function of a parameter n

Sn =
1

1− n
logTr(ρnA) , (3.7)

and the limit n → 1 gives the entanglement entropy between the regions A and Ā. The

evaluation of (3.7) in QFT is a notoriously hard task and it is usually tackled by a path

integral construction commonly known as the replica trick. For the case of CFTs, however,

one can treat the twist operator as a conformal defect [20]. This approach turned out to be

particularly useful in the study of the dependence of the Rényi entropy on the shape of the

entangling surface (the codimension two surface separating the two spacetime regions). In

this context, the relation (3.3) was observed for free theories in [19, 83] and conjectured to

hold for any CFT. At the same time various other conjectures on the shape dependence of

the Rényi entropy were put forward for different geometrical configurations [84–87]. In [20]

all these proposals were reinterpreted, in a defect perspective, as a relation between CD
and h

CD = (p+ 2)2p+2 Γ(p+3
2 )

π
p−1

2

h , for q = 2 , (3.8)

where both CD and h are now functions of the replica parameter n. The proposal was

shown to hold in the limit n → 1 [88], but it failed holographically [89, 90]. Interest-

ingly, a supersymmetric generalization of the Rényi entropy (3.7) was put forward in [91]

(see also [92–95] for higher dimensional generalizations). An important property of the

supersymmetric Rényi entropy is that it has the same n → 1 limit as the ordinary Rényi

entropy. Furthermore, for the four-dimensional case, our proof in section 2.1 obviously

applies, leading to the natural expectation that the relation (3.8) holds for supersymmetric

Rényi entropies in any dimension. As a consequence, if supersymmetry enforces a relation

between any superconformal defect of codimension 2, for consistency with supersymmetric

Rényi entropy this relation has to be (3.8). This observation, combined with other em-

pirical data, leads us to formulate a proposal for a general relation between CD and h in

arbitrary dimension, which we describe in the next subsection.

3.4 A conjecture for the general relation

The first instance of a conjectured relation between CD and h appeared in the context of

supersymmetric Wilson lines [21], where the displacement two-point function measures the

energy emitted by an accelerated particle [24]. Although in a conformal collider setup one

would expect the stress tensor one-point function to measure the same energy, it turns out

no universal relation can be found between CD and h, and only supersymmetry enforces
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such a connection [25].11 Nevertheless, consistency with the holographic predictions allows

us to propose that the relation found in [21]

CD =
q

q − 1

12π
q−2

2

Γ( q2)
h , for p = 1 , (3.9)

is valid for any superconformal line defect.

It is now a simple exercise to put together the relations (3.4), (3.8) and (3.9) to for-

mulate a general relation that is expected to hold for any superconformal defect in any

dimension

CD =
2p+1(q + p− 1)(p+ 2)

q − 1

Γ(p+1
2 )

π
p+1

2

π
q
2

Γ( q2)
h , (3.10)

where we assume q > 1 since the stress tensor one-point function vanishes for q = 1,

consistently with the pole in (3.10). Let us stress that, at the moment, we cannot make a

statement on the amount of supersymmetry that is needed for this relation to hold, but we

claim that, whenever a relation exists it has to take this form. Furthermore, to the best of

our knowledge, there is no counterexample to this relation for a defect that preserves a p-

dimensional superconformal algebra. Notice that, since superconformal algebras exist only

for d ≤ 6, only the p = q = 3 case is not included in the relations (3.4), (3.8) or (3.9). It is

important to mention that the procedure we used to derive the relation (2.13) in section 2.1

can be straightforwardly extended to higher dimensions and there is no conceptual obstacle

in testing the proposal (3.10). We leave this analysis for future work.

3.5 Stress tensor defect OPE

As it was already pointed out in [20], the relation (3.8) has intriguing consequences on the

stress tensor defect OPE. In light of our proof of the relation (2.13), we focus on the case

of a surface defect in 4d and we consider the terms in the stress tensor defect OPE which

involve the displacement operator and its conformal descendants. We will show that (2.13)

leads to a vanishing coefficient for the most singular terms in a Lorentzian sense, i.e. in our

language, for z → 0 with fixed z̄.12 Matching dimensions and charges under orthogonal

rotations it is easy to check that the most singular terms in this limit appear in

Tww̄(z) ∼ α
D↓
z
, Twz(z) ∼ δ

z̄∂wD↓
z

, (3.11)

Tzz̄(z) ∼ ζ
D↓
z
, Tzz(z) ∼ ζ

z̄D↓
z2

. (3.12)

Staring at the correlation functions in appendix C one immediately realizes that they

are not consistent with these defect OPE expansions and therefore we are forced to set

11The authors of [21] were forced to introduce a deterioration of the stress tensor (i.e. modify a traceless

stress tensor by an automatically conserved term, which spoils its tracelessness) to reproduce a relation

between CD and h that is consistent with holography. A recent discussion on the reasons why the argument

of [21] does not provide the correct result is given in [22]. It would be interesting to try and perform a

similar calculation for the case of surface defects.
12Here Lorentzian means that, if we were to insert a defect in Minkowski space, the limit z → 0 at fixed

z̄ would correspond to the stress tensor approaching the lightcone of a spacelike defect.
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α = δ = ζ = 0. As mentioned, it was noted in [20] that this is a consequence of (2.13).

Notice, however, that this does not mean that the stress tensor defect OPE is less singular

than one would normally expect. Indeed, other operators may appear that are lighter than

the displacement and would lead to more singular terms. Furthermore, it is important

to note that in the Tzz(z) defect OPE there is a term D↑/z with a non-vanishing OPE

coefficient which would compete with (3.12) in the Euclidean OPE. This is the reason why

we need to focus on the Lorentzian OPE limit. Actually, it turns out the contribution

to Tzz(z) is the only singular term in the stress tensor OPE containing the displacement

operator. Its OPE coefficient can be easily computed from the correlators in appendix C

Tzz(z) ∼
D↑
2πz

, Tz̄z̄(z) ∼
D↓
2πz̄

. (3.13)

All the other terms involving the displacement are non-singular and proportional to a

conformal descendant of the displacement operator.

4 Chiral algebras of N = (2, 2) surface defects

Any N > 2 four-dimensional superconformal field theory possess a subsector isomorphic

to a two dimensional chiral algebra [53]. This subsector is obtained by restricting local

operators to lie on a plane, and passing to the cohomology of a nilpotent supercharge, Q,

such that the anti-holomorphic dependence is Q-exact, and one obtains a two-dimensional

chiral algebra. We will denote the chiral algebra associated to a given SCFT, T , by χ(T ).

An N = (2, 2) surface defect orthogonal to the plane where we define the chiral algebra,

such that it intersects it at a point, preserves the supercharge Q used for the construction.

This defect insertion gives rise, in Q-cohomology, to non-vacuum modules of χ(T ) [42, 49].

The modules introduced by different defects in various SCFTs were studied in [42, 48, 49]

by obtaining the (graded) partition function of the module of the χ(T ) introduced by the

defect. This is achieved by computing, in four dimensions, the Schur limit of the super-

conformal index [96], which is an invariant of the SCFT that counts (with signs) certain

short multiplets that cannot recombine to form long multiplets. It was shown that this

particular limit of the superconformal index matches the (graded) partition function of the

chiral algebra [42, 49, 53], both with and without defects. While the superconformal index

provides information on which operators are in Q-cohomology, it suffers from ambiguities

and does not always provide enough information to fully identify the modules. An attempt

to obtain directly correlation functions in Lagrangian 2d-4d coupled was carried out in [46]

using supersymmetric localization. The authors set up the computation of the correlation

function between two defect operators and a bulk operator, however, they were unable to

evaluate the expressions and provide results for these correlation functions.

In what follows we determine which defect operators are in Q-cohomology and we find

that the two most universal operators, the defect identity and the displacement multiplet,

have a representative in chiral algebra. Other operators, such as defect exactly marginal

deformations, can also play a role in chiral algebra. This provides a new computational tool

for defect correlation functions. In particular, the one-point function of the stress tensor,
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h, is related to the dimension in chiral algebra of the defect identity (see footnote 4), hχσ ,

as given in (4.28). However, not all the defect operators in cohomology can be obtained by

the action of chiral algebra generators on the defect identity, namely the defect generically

inserts a reducible module over the original chiral algebra. Therefore, if we are handed

the module corresponding to a non-trivial defect, it is not simple to identify which chiral

algebra operators correspond to the defect operators we want to study, as most gradings

of defect operators are not preserved by the construction. From the quantum numbers

of defect operators only the commutant C (see (2.34)), and any flavor charges the theory

may have, are visible in chiral algebra. With the goal of identifying the defect identity,

we determine its chiral algebra properties following from four-dimensional OPE selection

rules. We also propose that all defect operators with charge C have chiral algebra dimension

hχσ + C, based on considerations involving correlation functions of defect operators and the

superconformal index. Finally, we see how our results are realized in a few examples.

4.1 Review: chiral algebras of 4d N > 2 SCFTs

We start by giving a quick review of the chiral algebra construction without defect inser-

tions, and refer to [53] for all details. For this construction we restrict operators to lie in

the (x3, x4) plane, which we parameterize by z and z̄ according to (2.3). The generators of

the sl(2)× sl(2) conformal symmetry on the chiral algebra plane are

2Lχ−1 = P11̇ , 2Lχ+1 = K 1̇1 , 2Lχ0 = D +M ,

2L̄χ−1 = −P22̇ , 2L̄χ+1 = −K 2̇2 , 2L̄χ0 = D −M ,
(4.1)

where we added the superscript χ to avoid confusion with the Lm and L̄m generators on

the defect plane introduced in section 2. The chiral algebra is obtained by passing to the

cohomology of a nilpotent supercharge. There are two such choices, up to an arbitrary

phase ζ, that give rise to the same cohomology [53]:

Q1 = Q1
2 + ζS̃22̇ , Q2 = S2

1 −
1

ζ
Q̃22̇ ,

Q
†
1 = S2

1 +
1

ζ
Q̃22̇ , Q

†
2 = Q1

2 − ζS̃22̇ .

(4.2)

At the origin of the chiral algebra plane, it was shown that the cohomology classes of Qi
consist of operators satisfying the conditions

1
2 (∆− (j1 + j2))−R = 0 , r + (j1 − j2) = 0 , (4.3)

where ∆ is the conformal dimension, j1, j2 are the eigenvalues of M 1
1 and M1̇

1̇
, R

the cartan of the su(2)R symmetry and r the u(1)r. These operators are dubbed Schur

operators as they are the ones that contribute to the Schur limit of the superconformal

index that we review in subsection 4.6.

The Lχ−1,0,1 generators of sl(2) commute with Qi, and so we are free to translate the

operators in the z direction. However, to translate the operators in z̄, and have them remain
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in cohomology, we must perform a twisted translation using the diagonal subalgebra ŝl(2)

of the sl(2)× su(2)R

L̂χ−1 = L̄χ−1 − ζR− , L̂χ+1 = L̄χ+1 +
1

ζ
R+ , L̂χ0 = L̄χ0 −R . (4.4)

The twisted ŝl(2) is Qi-exact

−{Q1, Q̃12̇} = ζ{Q2, Q
2
2} = L̂χ−1 , (4.5)

−1

ζ
{Q1, S

2
2 } = −{Q2, S̃

12̇} = L̂χ1 , (4.6)

{Q1, Q
†
1} = {Q2, Q

†
2} = L̂χ0 , (4.7)

and thus the Qi-cohomology classes are holomorphic, depending only on z. Operators are

then moved to an arbitrary (z, z̄) position by the twisted translations

O(z, z̄) := ezL
χ
−1+z̄L̂χ−1O(0, 0)e−zL

χ
−1−z̄L̂

χ
−1 , (4.8)

or equivalently, noting that operators obeying (4.3) always transform in non-trivial su(2)R
representations, by

O(z, z̄) := uI1(z̄) . . . uI2R(z̄)OI1...I2R(z, z̄) , with uI(z̄) = (1,−ζz̄) , (4.9)

where O is in the spin R representation of su(2)R and Ii = 1, 2 is an su(2)R fundamen-

tal index.

The cohomology classes of the twisted translated operators

O(z) := [O(z, z̄)]
Q
, (4.10)

depend only on z and have meromorphic OPEs, being those of a two-dimensional chiral

algebra. The Lχ0 weight of a four-dimensional operator in chiral algebra is given by

Lχ0 =
∆ + (j1 + j2)

2
= ∆−R . (4.11)

Stress tensor. Among the operators in Qi-cohomology the su(2)R current, tIJµ , will play

an important role in the rest of the paper. It gives rise to the chiral algebra stress tensor,

and is responsible for the enhancement of geometric sl(2) on the chiral algebra plane to a

full Virasoro symmetry. Explicitly, the chiral algebra stress tensor is obtained by

T (z) :=
[
κuI(z̄)uJ (z̄)tIJ

11̇
(z, z̄)

]
Q

=
[
κ
(
t11
11̇

(z, z̄)− 2z̄ζt12
11̇

(z, z̄) + z̄2ζ2t22
11̇

(z, z̄)
)]

Q
, (4.12)

where κ is fixed by demanding the canonical normalization for the two-dimensional stress

tensor. The OPE of the twisted translated su(2)R current becomes [53]13

T (z)T (0) ∼ −6cκ2ζ2

π4

1

z4
+

2κζ

π2

T (0)

z2
+ Qi-exact + . . . , (4.13)

13Our conventions for the su(2)R current and the stress tensor are given in appendix A.3.
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thus fixing the normalization to be

κ =
π2

ζ
. (4.14)

We recover the relation between the four-dimensional central charge c — the two-point

function of the stress tensor — and the two dimensional one14

c2d = −12c . (4.15)

The modes of the stress tensor LT0,±1 were argued in [53] to match the global sl(2) modes

Lχ0,±1, when acting on local operators. Thus, the dimension in chiral algebra, hχO, of a bulk

operator O is given by its eigenvalue under (4.11).

Flavor symmetries. If the four-dimensional theory has a continuos flavor symmetry, i.e.

a continuos symmetry that commutes with the superconformal algebra, the general lore

states that there will exist a conserved current that generates the symmetry. Conserved

flavor currents are a top component of a half-BPS superconformal multiplet — B̂1 in the

classification of [97] — whose superconformal primary is in the cohomology of Qi. The

superprimary corresponds to the moment map operator, a dimension two scalar that is a

triplet of su(2)R and, by belonging to the same multiplet of the current itself, transforms

in the adjoint representation of the flavor symmetry. In chiral algebra, flavor symmetries

give rise to affine Kac-Moody (AKM) current algebras [53], where the current is obtained

by the twisted translations of the moment map µ

JA(z) :=
[
κJuI(z̄)uJ (z̄)µA IJ (z, z̄)

]
Q

=
[
κJ
(
µA 11(z, z̄)− 2z̄ζµA 12(z, z̄) + z̄2ζ2µA 22(z, z̄)

)]
Q
. (4.16)

Here A is an adjoint index of the flavor symmetry algebra. The OPE of two moment maps,

given in (A.21), becomes

JA(z)JB(0) ∼
−k4dκ

2
Jζ

2δAB

32π4z2
+
κJζ if

ABCJC(0)

4π2 z
+ Q-exact + . . . , (4.17)

where A,B,C are again adjoint indices, and fABC the structure constants of the algebra.

After fixing

κJ =
4π2

ζ
, (4.18)

we recognize the OPE of AKM currents with level [53]15

k2d = −1

2
k4d . (4.19)

14We take the standard conventions for the central charge in N = 2 SCFTs in which a single free

hypermultiplet has c = 1
12

and a single free vector multiplet has c = 1
6
.

15Note that we work in conventions where the length of the longest root of the flavor algebra is
√

2,

which means the level of the current algebra, k2d, is equal to the two-point function of the AKM currents.

Our conventions for k4d are the standard for N = 2 SCFTs given for example in [98], where a single free

hypermultiplet enjoys an su(2) flavor symmetry with k4d = 1. The two-point function of the flavor current

is given in (A.20).
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4.2 Chiral algebras with defects

Next we consider introducing an N = (2, 2) surface defect extended along the (x1, x2)

directions and intersecting the chiral algebra plane at the origin. The generators of the

4d N = 2 SCFT preserved by this defect were discussed in section 2.2, and among them

one finds precisely the supercharges used for the cohomological construction of the chiral

algebra in (4.2).16 Note that when we insert the flat defect at the origin of the chiral

algebra plane it will also intersect the chiral algebra plane at infinity. We now want to

consider correlation functions of local operators in the presence of the defect. The local

operators can be both defect operators (inserted at the origin of the chiral algebra plane

or at infinity), or bulk operators inserted in an arbitrary position. Let us start by looking

at the latter.

Bulk operators. We start by noting that L̂χ±1 are still Q-exact, even though they are

given by the action of Q on a broken supercharge eq. (4.5), while L̂χ0 is Q-exact with respect

to preserved supercharges. The full construction briefly reviewed in the previous subsection

goes through, with operators in chiral algebra being those in (4.8). These operators and

their OPEs (both in four-dimensions and in chiral algebra) are precisely those of the theory

without defects, but they are no longer enough to compute correlation functions of bulk

operators. Note that the proof of the independence of chiral algebra correlation functions on

marginal deformations, used in [53, 99], does not hold in the presence of the surface defect,

as we now have less preserved symmetries. This means that chiral algebra correlation

functions, in the presence of the defect, can depend non-trivially on both bulk and defect

exactly marginal couplings. In particular, the one point function of the su(2)R current is

generically expected to depend on all couplings.

Defect operators. We now analyze which defect operators are in Qi-cohomology, when

inserted at the origin (both of defect plane and chiral algebra plane — these are defect op-

erators and thus cannot be translated in directions orthogonal to defect without translating

the defect). For defect operators to be in cohomology they must satisfy the two conditions

given in eq. (4.3), which we write in terms of defect quantum numbers (equations (2.4)

and (2.34)) as

L0 = −1

2
J , L̄0 =

1

2
J̄ . (4.20)

Unitarity of the defect theory implies that these are superprimaries of (a, c) supermultiplets

with respect to the two-dimensional N = (2, 2) defect superalgebra. The commutant of

the defect superalgebra inside the four-dimensional N = 2 algebra, denoted by C in (2.34),

matches Lχ0 for Schur operators, and this is the only quantum number of defect operators

that is visible in cohomology.

Note that the defect also intersects the chiral algebra plane at infinity, and defect

operators inserted at this intersection must satisfy the opposite condition — (c, a) — to

16In this work we restrict to a single defect introduced at the origin of the chiral algebra plane, and do

not try to translate the defect.
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be in cohomology.17 This makes two-point functions of defect operators in chiral algebra

non-trivial, with the insertion of conjugate operators at the origin and at infinity.

It was argued in [42, 46, 49] that the cohomological sector of defect operators forms a

module over the original chiral algebra without defects, with the chiral algebra generators

acting on the cohomology at the origin. In what follows we set out to study the properties

of this module. Since the known non-renormalization theorems, that guarantee coupling

independence of chiral algebra correlation functions without defects, do not apply, modules

can in principle depend on all couplings of the theory. Most work so far has focused on

the superconformal index and thus no example of coupling dependence is known to date.

While the localization computation for 2d-4d coupled systems of [46] provides a tool for

the exact computation of defect correlation functions, their final expression is too hard to

evaluate explicitly leaving the question of a possible coupling dependence unanswered. An

alternative recipe to obtain localization results for the stress tensor one-point function is

through the relation with a deformation in the background geometry and one could hope

to extend the derivation of [23] to the case of surfaces.

4.3 Notable defect operators in chiral algebra

We now look at a few noteworthy defect operators that are (a, c) and thus make it to the

Qi-cohomology at the origin. The conjugate (c, a) operators of the ones discussed here are

in cohomology when inserted at infinity, and have opposite charge under U(1)C .

Defect identity. A trivial example of a defect operator satisfying the conditions (4.20)

is the defect identity 1̂. As such, when inserting a defect orthogonal to the chiral algebra

plane, we should think that we are inserting the defect identity. We denote its cohomology

class by

σ(0) :=
[
1̂
]
Q
. (4.21)

Since the defect intersect the chiral algebra plane at infinity as well, and the defect identity

is both (a, c) and (c, a), σ is also always inserted at infinity. In what follows we will

normalize the defect to have a unit expectation value, such that there is no denominator

in (2.7).

Displacement supermultiplet. A universal defect operator that must be present in any

non-trivial defect is the displacement operator, arising from the breaking of translational

invariance (2.6). For defects that break the su(2)R symmetry down to a u(1), as the ones

we are considering here, the two displacement operators are the top components of the

(a, c) and (c, a) superconformal multiplets shown in figure 1. Both these superconformal

multiplets are guaranteed to be present in any non-trivial defect. The superprimary of the

former (O↑) is a Schur operator, thus visible in chiral algebra at the origin with C = 1,

while the superprimary of the latter (O↓) is in cohomology when inserted infinity, and has

C = −1.

17This also happens for local operators inserted without the defect: at the origin we get O1...1(0) and at

infinity O2...2(∞), as can be seen by defining the out state from O(z) = uI1(z̄) . . . uIn(z̄)OI1...In .
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Marginal deformations. Exactly marginal deformations of the defect N = (2, 2) theory

can be accommodated as top components of either (c, a), (a, c), (a, a) or (c, c) multiplets

with C = 0 and L0 = L̄0 = 1
2 . In particular this means that the defect conformal manifold

always has even real dimension, as we need a pair of conjugate multiplets. As pointed out

above, correlation functions in chiral algebra can be non-trivial functions on this conformal

manifold. Moreover, for marginal deformations arising from an (a, c) defect supermultiplet,

the superprimary of the multiplet makes it to the cohomology at the origin (4.20). It will

give rise, in chiral algebra, to an operator with C = 0, that appears indistinguishable from

the defect identity. The conjugate multiplet (c, a) will appear in cohomology at infinity.

Broken flavor symmetries. Whenever a defect breaks a flavor symmetry we have the

following Ward identity

∂µJ
µA = −δ2

D(x)JA(x) , (4.22)

where A runs over the generators of the flavor symmetry that were broken. This implies

there is a scalar defect operator J of dimension two for each broken generator of the flavor

symmetry. The flavor current is a top component of the B̂1 multiplet, and thus J is a defect

top component as well. Just like the exactly marginal deformations, this top component

can be accommodated in multiplets that are either (c, a), (a, c), (a, a) or (c, c). Note that

when J is uncharged under the preserved flavor symmetries, it corresponds to an exactly

marginal operator.

Broken extra supersymmetry. Bulk theories with supersymmetry algebras larger than

N = 2 will have extra supercurrents, as well as a larger R−symmetry. From an N = 2

point of view the extra R−symmetry appears as a flavor symmetry, namely u(1)f (su(2)f )

for theories with N = 3 (N = 4) supersymmetry. There will be a B̂1 multiplet for this

“flavor” symmetry, and if the symmetry is broken by the defect then all the considerations

above apply.

Furthermore, we are guaranteed there will exist additional four-dimensional supercon-

formal multiplets, containing the extra supercurrents and extra R−symmetry currents —

D 1
2
,(0,0) and D̄ 1

2
,(0,0) in the classification of [97]. Each of these multiplets contains a Schur

operator, and thus has a representative in the bulk chiral algebra. If the defect breaks

some of the extra supercharges, the non-conservation of the supercurrent in a D 1
2
,(0,0)

(D̄ 1
2
,(0,0)) multiplet gives rise to two top components of two multiplets. In this case, the

extra R−symmetry currents, transforming as an su(2)R doublet, with u(1)r charge +1 (−1

respectively), and charged under the “flavor” symmetry, will also be broken, giving rise to

defect operators in the aforementioned defect multiplets. The superconformal primaries

of these multiplets have ∆̂ = 3
2 , ˆ̀ = 0, and C = ±1

2 , and they can be accommodated

in (c, c), (c, a), (a, c) or (a, a) multiplets. Whenever they belong to (a, c) multiplets the

superconformal primary is a Schur operator, with the corresponding value of C, and seen

in chiral algebra.
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4.4 Correlation functions and defect operator dimensions in chiral algebra

We can now study in chiral algebra correlation functions involving any number of bulk

Schur operators and two defect operators (one at origin and one at infinity),

〈Ô0(∞)O1(z1) . . .On(zn)Ôn+1(0)〉Σ . (4.23)

Here Ôi denote defect Schur operators and Oi twisted translated bulk Schur operators,

which depend only on zi. Note that even if the defect operators are trivial, i.e. the defect

identity, they still give rise in chiral algebra to a non-vacuum operator, thus the above is

always a (n+ 2)-point function in chiral algebra (provided none of the Oi are the identity),

even if it is a lower point function in four dimensions.

In chiral algebra, a Schur bulk operator will give rise to a two-dimensional operator

with weight given by (4.11), as can be checked by showing that the OPE of the two-

dimensional stress tensor with a Schur operator reproduces precisely the action of Lχ0 [53].

To answer the same question for defect operators we must consider their OPE with the

stress tensor. We will do so for the two universal supermultiplets present in any defect

— the defect identity and the displacement supermultiplet. For a generic Schur operator

we will just constrain the form of correlation functions involving one bulk operator and

two defect operators. Altogether these results lead us to the following proposal for the

dimension in chiral algebra of an (a, c) defect operator Ô

hχ
Ô

= hχσ + CÔ , (4.24)

where hχσ is the dimension of the defect identity. In particular this relation means that

the monodromy as a bulk operator, O2, goes around the defect follows simply from its

dimension hχO2
in chiral algebra, and the values of C

〈[Ô1(∞)]QO(z) [Ô2(0)]Q〉 =
λ

z
hχO+hχ

Ô2
−hχ
Ô1

=
λ

z
hχO+CÔ2

−CÔ1

, (4.25)

thus allowing hχσ to be any real number without introducing branch cuts in the correlators.

4.4.1 One-point function of the su(2)R current

Denoting the operator that the defect identity inserts in the chiral algebra plane by σ, the

stress tensor one-point function gives rise to the following three-point function in chiral

algebra

〈σ(∞)T (z)σ(0)〉 = −2κz̄ζ〈t 1
11̇1

(z, z̄)〉Σ = −3π2h

z2
, (4.26)

where we used (2.39). Comparing with the expected result for the two-dimensional three-

point function

〈σ(∞)T (z)σ(0)〉 = lim
z3→∞

z2hχσ
3 〈σ(z3)T (z)σ(0)〉 =

hχσ
z2
, (4.27)

we find the dimension of the defect identity in chiral algebra

hχσ = −3π2h = −d2 = −π
2CD
16

6 0 . (4.28)
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where h and d2 are defined in (2.12) and (3.1). Note that the defect identity always gives

rise to a negative dimension operator in chiral algebra, due to the relation (2.13) and

positivity (unitarity) of the displacement two-point function CD.

4.4.2 Displacement supermultiplet correlation functions

The displacement supermultiplet is shown in figure 1. The superprimary of the (a, c)

multiplet, O↑, is in cohomology when inserted at the origin, while the superprimary of the

(c, a) multiplet, O↓, is in cohomology at infinity. The former has C = 1 and the latter

has C = −1. From the defect two-point function (2.40) of these operators we obtain the

following chiral algebra two-point function

〈[O↓(∞)]
Q

[O↑(0)]
Q
〉 = −6h , (4.29)

and from the bulk to defect two-point functions in eq. (2.41) we get

〈[O↓(∞)]
Q
T (z)σ(0)〉 = −6hπ

ζz
, 〈σ(∞)T (z) [O↑(0)]

Q
〉 = −6hζπ

z3
. (4.30)

where we used eqs. (4.12) and (4.14).18 From (4.30) together with (4.25), we find that the

dimension of O↑ in chiral algebra is

hχO↑ = hχσ + 1 , (4.31)

compatible with (4.24). Then we can predict, from a chiral algebra computation, the value

of the following twisted correlator

〈[O↓(∞)]
Q
T (z) [O↑(0)]

Q
〉 =

hχσ + 1

z2
, (4.32)

which may also follow from four-dimensional superconformal Ward identities.19

4.4.3 Correlation functions of Schur operators

Let us now consider a generic three-point function of a bulk Schur operator, O, restricted

to the chiral algebra plane, a defect (c, a) Schur operator Ô1 placed at infinity, and a

18Note that there is an explicit ζ appearing but it can be absorbed in the normalization of the chiral

algebra operator arising from O↑, which we took to be trivial.
19Note that even though the correlation function of two defect and one bulk operator has a cross-ratio, af-

ter passing to the Qi cohomology it becomes a chiral three-point function. In particular, the four-dimensional

correlator of two defect operators at positions x1,2 and a bulk operator at position x3 depends on a single

conformally invariant crossration given by

ξ =
|x⊥3 |2|x

‖
12|2

(|x‖13|2 + |x⊥3 |2)(|x‖23|2 + |x⊥3 |2)
,

where xij = xi − xj and ‖ (⊥) denotes the distance parallel (orthogonal) to the defect. When the bulk

operator is restricted to lie on the chiral algebra plane, and the defect operators are placed at the origin

and at infinity we have ξ = 1, and thus the chiral algebra captures the value of the three-point function

for ξ = 1.
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defect (a, c) Schur operator Ô2 placed at the origin. The Schur conditions fix the quantum

numbers of the defect operators to be

∆̂1 = −s1 − 2R1 > 0 , ∆̂2 = s2 + 2R2 > 0 , ˆ̀
1 = r1

ˆ̀
2 = −r2 , (4.33)

where ∆̂ = L0 + L̄0 and is positive due to defect unitarity, and s and ˆ̀ are the eigenvalues

ofM andM‖ respectively. The bulk operator transforms in a non-trivial representation of

su(2)R of spin R, obeying (4.3). The chiral algebra operator O(z) = [O(z, z̄)]
Q

is made from

the twisted translations in (4.9), and thus involves summing over all su(2)R components.

Considering the component with Cartan eigenvalue R0, and imposing the symmetries of

the problem we find

z̄R−R
0〈[Ô1(∞)]QOR0(z, z̄) [Ô2(0)]Q 〉 =

λ12O

zh
χ
O+C1+C2

=
λ12O

z
hχO+hχ

Ô2
−hχ
Ô1

, (4.34)

where we must have R0 + R1 + R2 = 0 and r + r1 + r2 = 0. The three-point function of

the twisted translated bulk operator will be a sum of terms like (4.34), ranging over all the

values of R0 in the spin R representation, and with suitable coefficients. In chiral algebra, O
will have dimension hχO given by (4.11). Eq. (4.34) shows that if two defect Schur operators

have non-zero three-point function with some bulk operator, then their dimensions in chiral

algebra differ from their value of C by the same constant shift, compatible with (4.24).20

Taking Ô1 to be the defect identity we see that all operators that appear in the defect OPE

of bulk Schur operators have dimensions given by (4.24). Note that there can be defect

Schur operators that do not appear in the defect OPE of any bulk Schur operator.

Chiral algebra OPE from sending O to Ô2: sending z → 0 in chiral algebra amounts

to taking the chiral algebra OPE between O and [Ô2]Q, and extracting the operator conju-

gate to [Ô1]Q. Note that unless Ô2 is the defect identity, the limit z → 0 is not controlled by

the defect OPE of the bulk operator, since there is a defect operator inserted. However, in

chiral algebra both this limit and the defect OPE appear on the same footing, as an OPE

between two chiral algebra operators. While the strength of the singularity of the defect

OPE is controlled by the dimension of the bulk operator, when Ô2 is not the defect identity

we see from (4.34) that the OPE can be arbitrarily singular — the singularity is controlled

by C2 which is not bounded from above by unitarity. When Ô1 is the defect identity, i.e.

when Ô2 appears in the defect OPE of O, unitarity requires the defect operator at the

origin to obey

C2 > −R0 . (4.35)

The inequality is saturated only if Ô2 has zero dimension, which we only allow for R0 = 0,

since there should be a single defect identity and it should be uncharged under C to preserve

all the symmetries.

20Note that the conjugate operators appear at infinity and thus their dimensions are hχ
Ô

= hχσ−CO, since

they must have the same dimension in chiral algebra, and opposite value of C.
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Chiral algebra OPE from the defect OPE of O: taking instead Ô2 to be the defect

identity we can probe which operators are allowed to appear in the defect OPE of the bulk

Schur operator O. In this case unitarity of the defect operator at infinity requires

C1 6 R0 . (4.36)

This bounds the strength of the singularity of the defect OPE of a Schur operator in the

spin R representation of su(2)R by z−h
χ
O−R. The operators Ô1 that can have non-trivial

two-point function with the bulk Schur operator O have dimensions given by (4.33) with

R1 = −R0 and r1 = −r, and subject to (4.36). These operators are the conjugates of the

operators Ô that appear in the defect OPE of O, which must then satisfy

O(z)σ(0) ∼ [Ô(0)]Q , with ∆̂Ô = R0 + CÔ , R0 = −R, . . . , R , and where CÔ > −R0 ,

(4.37)

giving us OPE selection rules for O. The OPE of the twisted translated Schur operator is

obtained by summing the components with different R0 according to (4.9). In what follows

we will spell out a few of these selection rules in detail for relevant bulk operators such as

the su(2)R current and the moment maps.

4.5 OPE selection rules and properties of defect chiral algebras

We will use the preserved symmetries to obtain defect OPE selection rules for different

bulk Schur operators. This tells us which (a, c) defect Schur operators can appear in

the defect OPE of a given Schur bulk operator, which translates in chiral algebra to the

OPE of the twisted translated bulk operator with σ. Let us stress that there can be

Schur defect operators that do not appear in the defect OPE of twisted-translated bulk

Schur operators (see also the discussion in section 4.7). We will derive necessary but

not sufficient conditions for an operator to appear, and in particular we will not impose

particular shortening conditions the bulk operators may obey. As the rules we obtain are

already quite restrictive, and enough for the purposes of this work, we leave obtaining the

complete selection rules for the full superconformal multiplets for future work.

4.5.1 su(2)R current defect OPE

Using the conserved symmetries we find the following OPE between the components of the

su(2)R current and the defect located at the origin

t11
11̇
∼ |(a,c)Ô∆̂=C+1,ˆ̀=0,s=C−1 , C > −1 ,

t12
11̇
∼ |(a,c)Ô∆̂=C,s=C,ˆ̀=0 , C > 0 , (4.38)

t22
11̇
∼ |(a,c)Ô∆̂=C−1,s=C+1,ˆ̀=0 , C > 1 ,

where we listed only operators that are in the chiral algebra, and thus are (a, c). Here
ˆ̀ = L0 − L̄0, s is the eigenvalue of M, and the condition on C comes from imposing

unitarity of the defect operators, i.e. ∆̂ = L0 + L̄0 > 0. From the four-dimension selection
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rules (4.38) we obtain the chiral algebra OPE using (4.12)

T (z)σ(0) ∼ 0

z3
+ κ

∑
i b

11
i,∆̂=−s=1

[
Ôi,∆̂=−s=1(0)

]
Q
− 2ζb12

1̂
σ(0)

z2

+ κ
−2
∑

i ζb
12
i,∆̂=s=1

[
Ôi,∆̂=1,s=1(0)

]
Q

+ b11
O↑

[O↑(0)]
Q

z
+ . . . .

(4.39)

where the b coefficients are four-dimensional bulk to defect couplings, their superscript

labels the R-symmetry components in (4.38) and the sums run over possible degenaracies.

Although operators with the same value of C are indistinguishable in chiral algebra, for

this analysis we find it useful to keep track of their four-dimensional origin. In (4.39) we

excluded the most singular term, a defect operator with C = −1, scaling dimension zero,

and charged under transverse spin, i.e. a charged defect identity, since we do not expect

such an operator in a neutral defect that preserves u(1)C . The absence of z−3 and higher

terms means LT+n|σ〉 = 0, for n > 0. Operators with C = 0 and ∆̂ > 0 can contribute to

the z−2 pole of the OPE, implying the action of LT0 on σ is not necessarily diagonal. These

operators correspond to superprimaries of multiplets whose top component are exactly

marginal defect operators. Note that we have excluded half-integer powers of C since we

expect the stress tensor to be single valued around the defect.

The OPE coefficients of the defect identity, σ, and the displacement supermultiplet,

O↑, can be computed from 4d correlation functions, since defect operators of different

dimensions must be orthogonal. From (4.26) we find

b12
1̂

=
3

2
h = − hσ

2π2
. (4.40)

Then we have that LT−1|σ〉, that is ∂σ, is a linear combination of the displacement super-

multiplet and another type of multiplet:

∂σ(0) = −2κ
∑
i

ζb12
i,∆̂=s=1

[
Ôi,∆̂=1,s=1(0)

]
Q

+ κb11
O↑ [O↑(0)]

Q
, (4.41)

with i running over possible degenerate operators. Computing the 4d two-point func-

tion (4.30) from the chiral algebra OPE (4.39) and using the normalization of O↑ given

in (4.29) we also obtain

b11
O↑ =

1

π
. (4.42)

Then the chiral algebra two-point function

〈∂σ(∞)∂σ(0)〉 = 〈σ|2LT0 |σ〉 = 〈σ|(2hχσ |σ〉+ |extra〉) = 2hχσ , (4.43)

should match the computation in 4d following (4.41). After plugging the right coefficient

for O↑ we find that b12
i,∆̂=s=1

= 0.

All in all, we obtain the following properties for the defect identity |σ〉

LTn |σ〉 = 0 , n > 0 , LT0 |σ〉 = hχσ |σ〉+ b11
∆̂=−s=1

|Ô∆̂=−s=1〉 , LT−1|σ〉 =
κ

π
|O↑〉 , (4.44)
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allowing for logarithmic representations, where additional operators with the same dimen-

sion as the defect identity in chiral algebra appear under the action of LT0 . These other

operators indicate the presence of exactly marginal operators, so we expect them to be

present only in theories with a defect conformal manifold. Distinguishing these operators

from |σ〉 may be hard in chiral algebra, since they have the same properties.

4.5.2 Preserved flavor symmetries

Suppose now the bulk theory has a non-abelian flavor symmetry, that is not broken by the

defect, then selection rules fix the OPE of the AKM current (4.16) as

JA(z)σ(0) ∼ 0

z2
+ κJ

∑
i b

11
i,J∆̂=−s=1

[
ÔA
i,∆̂=−s=1

(0)
]
Q

z
+ . . . , (4.45)

where again the first term is absent since it would correspond to a defect identity charged

under transverse spin. In writing the above we assumed the current to be single valued

around the defect otherwise the powers would not be integers. This implies

JAn |σ〉 = 0 , n > 1 , JA0 |σ〉 =
∑
i

|ÔAi 〉 , (4.46)

where once again the multiplet containing ÔA accommodates a dimension two scalar, neu-

tral under all the u(1)s preserved by the defect, but now in the adjoint of the flavor group.

If the symmetry is instead abelian the moment map as well as the associated current are

clearly uncharged under the preserved symmetry and they can get a one-point function (see

the discussion around eq. (2.24) for the possibility of abelian preserved currents acquiring

a one-point function) consistently with supersymmetric Ward identities. In particular, for

the abelian AKM associated to the four-dimensional moment map we have

J(z)σ(0) ∼ 0

z2
+ κJ

∑
i b

11
i,J∆̂=−s=1

[
Ôi,∆̂=−s=1(0)

]
Q
− 2ζb12

J 1̂
σ(0)

z
+ . . . , (4.47)

for a single-valued current, and thus

Jn|σ〉 = 0 , n > 1 , J0|σ〉 =
∑
i

|Ôi〉 − 2κJζb
12
J 1̂
|σ〉 , (4.48)

where the multiplet Ô accommodates an exactly marginal operator, but now also the defect

identity can appear under the action of J0. We will see an example of this when computing

the one-point function of a u(1)f flavor current for a monodromy defect in section 4.7.

4.5.3 Broken flavor symmetries

If a non-abelian flavor symmetry is broken the moment maps can acquire a one-point

function and we find

JA(z)σ(0) ∼ 0

z2
+ κJ

∑
i b

11A
i,J∆̂=−s=1

[
Ôi,∆̂=−s=1(0)

]
Q
− 2ζb12A

J 1̂
σ(0)

z
+ . . . , (4.49)
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where b12
J 1̂

can be related to the one-point function of the moment map, and A runs over the

broken flavor currents. Note that if the Cartan of the flavor symmetry is preserved then

the one-point function must vanish. Here we have assume again that the moment map is

single valued around the defect, which does not hold generically, e.g., in the monodromy

defect considered in section 4.7. However, the modes JAn>1 will always annihilate the defect

identity, as the strength of the singularity is always less than two.

All in all, the defect identity is annihilated by the positive modes of the stress tensor

and, if the bulk theory has a flavor symmetry, also annihilated by modes with n > 1 of

the flavor current, irrespectively of the preservation or single-valuedness of the current. It

should also be uncharged under any preserved flavor symmetries.

4.6 Superconformal index

As shown in [53], and briefly reviewed in appendix B, the graded partition function of the

two-dimensional chiral algebra matches the Schur limit of the superconformal index

I(q) = TrH

(
(−1)2(j1−j2)qL

χ
0

)
= TrH

(
(−1)F qC

)
, (4.50)

where we used the two Cartans of the four-dimensional superconformal theory preserved

by the chiral algebra, F = 2(j1 − j2) and Lχ0 , which for Schur operators matches C. This

fact has also recently been proven using localization in [100]. In (4.50) the trace is taken

over the Hilbert space of the theory H in radial quantization, and the index counts (with

signs) operators that satisfy (4.3), i.e. that are in the cohomology of Q and thus make

it to the chiral algebra. The superconformal index can also be enriched by the presence

of defects, by doing radial quantization about a point in the defect, now counting (with

signs) the spectrum of defect operators. The Schur limit of the superconformal index in

the presence of an N = (2, 2) surface defect once again counts operators that have the

right quantum numbers to be in chiral algebra, i.e. that are (a, c) defect operators.21 It

was argued in [42, 49] that the Schur index should then match the character of the module

introduced by the defect. Note that Lχ0 does not match the action of the zero mode of the

stress tensor LT0 on a defect operator. For instance, the defect identity has C = 0, while

it was argued to have a dimension in chiral algebra, hχσ , given by the one-point function

of the stress tensor (4.28). This means that for the index to match the graded partition

function we must have

LT0 = Lχ0 + hχσ = C + hχσ , (4.51)

holding for all (a, c) defect operators, such that the partition function and index match,

up to an overall power of qh
χ
σ . This matches our proposal given in eq. (4.24). It also allows

for hχσ to have a dependence on both bulk and defect marginal couplings, while the index

is invariant under all continuous parameters.

It was shown in [101] that the character of the vacuum module, or equivalently the

superconformal index of the theory without defects, obeys certain linear modular differ-

ential equations (see also [102]). The solutions of these equations form a vector-valued

21These are precisely the same operators counted by the Schur index computed in [42], even though they

are referred to as (c, c) there.
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modular form, and thus one expects there to exist modules over the original chiral algebra

whose characters appear under the modular transformations of the vacuum module.22 The

dimension of these modules arising from interpreting the functional form of the character

as that of a highest weight module, are given for several N = 2 SCFTs in [101]. We would

then like to understand how these modules fit with those inserted by defects, particularly in

light of the properties of the module inserted by the defect identity established in the previ-

ous subsection. The q → 1 behavior of the Schur index, i.e. the vacuum module character,

was related to the a and c anomaly coefficients of the four-dimensional theory in [103–105].

Using the S-modular transformation the q → 1 behavior of the vacuum character maps to

the small q behavior of the characters into which the vacuum character transforms under

the S transformation. These characters are either solutions of the aforementioned modular

linear differential equation or of its conjugate, and the q → 0 limit is controlled by the

character with the lowest dimensional state.23 Thus one can relate the lowest dimension

among the characters appearing under the modular transformation, hχmin to the a and c

anomalies [101, 106], and bound it by the Hofman-Maldacena bounds [18]:

hχmin = 2a− 5

2
c , −3

2
c 6 hχmin 6 0 . (4.52)

As we have seen in (4.28) the defect identity always inserts a module of negative dimension,

thus being compatible with hχmin being identified with a defect insertion. However, the

dimensions identified from the functional form of the characters, of which hχmin is the

lowest, do not exhaust all modules of the VOA. An example is the case of Gukov Witten

defects in N = 4 SYM, which have been reviewed in section 3.2. From (3.5) we get that

the defect identity produces in chiral algebra an operator with dimension24

hχσ = −1

4

(
N2 −

M∑
l=1

N2
l

)
. (4.53)

It is curious to note that for N = 2, . . . , 7 the partitions of N of length two (i.e. M = 2)

produce exactly the dimensions of the modules that are solutions to the modular linear

differential equations of [101], given in table 5 of that reference. These dimensions appear

with large degeneracies, which are presumably distinguished by considering the differential

equations graded by the Cartan of the su(2)f flavor symmetry, that N = 4 SYM has when

viewed as an N = 2 theory, which is preserved by the defect [107].25 The dimensions

22The modular properties are of the chiral algebra partition function which is a trace of qL
T
0 −c2d/24. This

means that the characters that come out of this computation always have the prefactor qL
T
0 −c2d/24 and are

not normalized as the superconformal index where operators neutral under all cartans contribute as 1.
23Here and in the following we ignore the subtleties of the case of 1

2
− Z graded chiral algebras where

one needs to consider the conjugate differential equation — we refer to [101] for the precise treatment of

these cases.
24As discussed in section 3.2 this was obtained at large N but since there are hints it holds at finite N

we will assume it here.
25We thank W. Peelaers for many discussions on these solutions and on the defects they could correspond

to. While the unflavored solution of the differential equation is logarithmic [101], it has been checked that for

gauge group SU(2) this is not the case for the solution graded by the Cartan of the flavor symmetry [101, 107].
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of all defects with M 6= 2 do not appear in the lists of [101] and their dimension is

generically lower than (4.52) (for N = 4 SYM with gauge group SU(N) hχmin = −N2−1
8 ).

As described in the example of a monodromy defect in section 4.7, different modules, of

distinct dimensions, can have the same functional form for their characters (and thus for the

superconformal index). This provides a possible resolution for accommodating the missing

modules in this case. We leave understanding how these modules are accommodated, and

what is the significance of the module corresponding to hχmin for future work.

The superconformal index in the presence of surface defects has been computed in dif-

ferent examples by a variety of approaches. For defects admiting a Lagrangian description

in terms of a 2d-4d coupled system the index was computed in [39, 43, 108]. In [42, 43, 109]

the index was computed via a conjectural formula in terms of the 2d-4d BPS spectrum in

the Coulomb branch of the theory, being thus applicable to non-Lagrangian theories as

well. Finally, for vortex defects a prescrisption to compute index was given in [37] and

used in a variety of different theories [42, 48, 110–112]. Since some of the examples we

will consider below are precisely vortex defects we will give a brief summary of how they

are obtained.

Vortex defects. Vortex defects admit a uniform construction using renormalization

group flows along Higgs branches [37].26 To consider a vortex defect in a specific SCFT T
one starts by embedding T in an ultraviolet theory, TUV , that flows to T upon Higgsing a

u(1)f flavor symmetry. By giving a constant expectation value to the Higgs branch opera-

tor, we find the original theory T in the infrared, together with free hypermultiplets [37].

Instead, by turning on a position dependent expectation value for the Higgs branch op-

erator that triggers the flow, we find T with a surface defect inserted. This construction

motivated the prescription of [37], whereby the Schur index of vortex defects in T is com-

puted from that of TUV by taking a certain residue in the fugacity associated to the u(1)f ,

and stripping off the index of the decoupled free hypermultiplets that arise in the infrared.

This prescription has been used to compute the Schur index of different vortex defects

in [42, 48, 112], which were then matched to the characters of non-vacuum modules of

χ(T ). Note that a particular theory T can be embedded in different TUV theories and the

vortex defects created from different ultraviolet theories can be distinct.

In [42] a proposal was put forward for creating vortex defects in chiral algebra. The

Higgsing of a flavor symmetry G, by giving a nilpotent expectation value to the moment

map operator of that flavor symmetry, has been given a conjectural image in chiral algebra

in [53, 113]. The nilpotent expectation value corresponds to giving an expectation value

to the raising component of an su(2) embedded in G. In the above discussion, the Higgsed

u(1)f corresponds to the Cartan of su(2) under the embedding. The chiral algebra proce-

dure that implements this Higgsing, taking χ(TUV ) to χ(T ), is a quantum Drinfeld-Sokolov

(qDS) reduction of the flavor symmetry of the chiral algebra, with respect to the aforemen-

tioned embedding. To produce a vortex defect instead, i.e. Higgsing with a non-constant

expectation value, the authors of [42] propose that one should first perform a spectral

26Some of these vortex defects have been given a microscopic description in terms of 2d-4d coupled

systems, see e.g., [39, 111].
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flow [114, 115] for the u(1)f in χ(TUV ), followed by a qDS reduction, with respect to the

su(2) embedding used. Thus the module introduced by the vortex defect is conjectured to

be the qDS reduction of a spectral flow of the vacuum module of χ(TUV ).

Spectral flow. The spectral flow [114, 115] of a û(1)f flavor symmetry with current J ,

by α units, acts as an outer automorphism of the current algebra, such that commutation

relations are unchanged. In section 4.7 we will need the action of the spectral flow for the

Cartan of an ŝu(2)f flavor symmetry. We will take the ŝu(2)f generators in the spin basis,

denoting the Cartan by J , under which the remaining two generators have charge ±1.27

Then the spectral flow acts as follows in the chiral algebra generators (see for example [116])

Jn → Jn + α
k

2
δn,0 , Ln → Ln + αJn +

k

4
α2δn,0 , Or → Or+αqO , (4.54)

whereO is any operator charged under u(1)f , with charge qO, and with uncharged operators

unaffected. The commutation relations of the chiral algebra are unaffected by the spectral

flow, but the spectral-flowed vacuum |α〉 now obeys

Jn>0|α〉 = −αk
2
δn,0|α〉 , Ln>0|α〉 =

α2k

4
δn,0|α〉 , L−1|α〉 = −αJ−1|α〉 ,

Or+αqO>−hχO+αqO |α〉 = 0 , for Or of dimension hO and charge qO .

(4.55)

Note that the spectral-flowed vacuum is still a Virasoro and AKM primary, but now it

has non-zero charge and dimension. However, for charged operators O, of charge qO and

dimension hχO, it is no longer the case that modes of weight larger than −hχO annihilate the

spectral-flowed vacuum. Indeed, from (4.55) we see that an operator of charge qO has the

following expansion

OqO(z)|α〉 =
∑

m6−hχO

1

zm+hχO+qOα
(OqO)m+qOα|α〉 , (4.56)

thus getting a pole of order qOα.

4.7 Chiral algebras of defect SCFTs

We now look at a few examples to see how the above results are realized.

Monodromy defect for the free hyper. Monodromy defects are codimension two

defects at the end of a topological domain wall that implements an action of the flavor

group.28 Introducing a monodromy defect for a u(1)f flavor symmetry makes operators of

charge q under that symmetry pick up a phase of

Oq(e2πiz) = e−2πiαqOq(z) , (4.57)

27Note that in (4.17) we took the length of the longest root of the flavor algebra to be
√

2, which means

that Jn = 1√
2
J3
n.

28A similar construction was used in [117] to define an R-symmetry monodromy defect.
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when going around the monodromy defect. The free hypermultiplet has an su(2)f flavor

symmetry, with the hypermultiplet scalars transforming as a doublet. We want to introduce

a monodromy defect for the Cartan of su(2)f , in the spin basis. Under this u(1)f the

scalars in the hypermultiplet have a charge ±1
2 , and thus pick up a phase between 0 and

2π according to (4.57), with 0 6 α < 2. In [42] it was proposed that the introduction of

a monodromy defect would correspond, in chiral algebra, to the spectral flow (4.54) with

respect to the u(1)f flavor symmetry. Under the spectral flow the vacuum is mapped to |α〉,
and obeys the conditions spelled out in eq. (4.55), which imply it is a Virasoro and AKM

primary, consistently with the conclusions of section 4.5 on the properties of the defect

identity. The form of (4.56) is also compatible with the monodromy condition (4.57) when

interpreted as a defect OPE, and after identifying α in both equations. In the following,

we will carefully analyze how to create a monodromy defect compatible with the preserved

N = (2, 2) supersymmetry and discuss how the spectral flow results are reproduced for

0 6 α < 2. Note that according to our discussion the spectral flow with α > 2 is not

interpreted as a monodromy defect, since the monodromy defect only exists for α < 2.

We start by checking that the most singular term in the defect OPE, produced by

the monodromy defect under this identification, is consistent with the OPE selection rules.

The free hypermultiplet gives rise in chiral algebra to a pair of free sympletic bosons [53],

that is a βγ system with weights hχβ = hχγ = 1
2 , which has central charge c2d = −1. The

su(2)f flavor symmetry of the free hypermultiplets gets enhanced in chiral algebra to an

AKM current algebra ŝu(2)− 1
2
, generated by the following currents in the spin basis:

J = −1

2
(βγ) , J+ =

1

2
(ββ) , J− = −1

2
(γγ) . (4.58)

The defect OPE of the free hypermultiplets (B̂ 1
2

multiplets in the classification of [97])

is constrained by the selection rules given in (4.37), to which we must supplement the

monodromy condition (4.57). This condition translates into the requirement that the

defect operators, Ô, appearing in the defect OPE obey

CÔ =
1

2
− qα+ Z , (4.59)

where the u(1)f charge is q = 1
2 (q = −1

2) for β (γ). We can thus write the β(z) defect

OPE as

β(z)σ(0) ∼
∑
C>− 1

2

bÔ Ô∆̂= 1
2

+C(0)

z
1
2
−C

, (4.60)

with C subject to (4.59). Here we also imposed that the dimensions of defect operators

appearing in a free scalar defect OPE are constrained as shown in [5] by the equation of

motion of a free scalar.29 γ(z) will have an analogous OPE. Recalling that β and γ have

charges ±1
2 , the singularity of order qα < 1 predicted by eq. (4.56) matches precisely the

most singular term allowed in the above selection rule. Similarly, since all bulk operators in

29The strict inequality follows from demanding that the only operator with ∆̂ = 0 is the defect identity

which has s = 0, where s is the eigenvalue of M.
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chiral algebra are made out of γ and β, selection rules will be consistent with an operator

Oq, of charge q having a pole of order qα < 2q, as predicted by (4.56).

However, the identification of the defect identity with the spectral flowed vacuum,

|σ〉 = |α〉 , (4.61)

allows us to infer dynamical information about the defect theory. From eq. (4.56) it is

clear that when α > 0, γ(z) has a regular OPE while β(z) does not. This is a dynamical

statement about the values of bÔ appearing in the OPE (4.60). More importantly, the

scaling weight of |α〉 given in (4.55) gives the one point function of the stress tensor in the

presence of a monodromy defect

h =
α2

24π2
, (4.62)

where we used that the û(1)f is the Cartan of the ŝu(2)f flavor symmetry of the free

hypermultiplets, and has level k2d = −1
2 . Similarly we can compute the one-point function

of the flavor current supermultiplet. Since the Cartans of the su(2)f flavor symmetry and

the su(2)R are preserved by the defect, only the neutral component of the moment map

will acquire a one-point function. Starting from (4.16), this gives rise in chiral algebra to

the three-point function

〈σ(∞)J3(z)σ(0)〉 = −2κJζz̄〈µ3 12(z, z̄)〉Σ , (4.63)

where J3 is related to the spin basis we took for the spectral flow by J
√

2 = J3. Identifying

the defect identity with the spectral-flowed vacuum we find

〈σ(∞)J3(z)σ(0)〉 =
α

2
√

2

1

z
, ⇒ 〈µ3 12(z, z̄)〉Σ = − α

16
√

2π2

1

zz̄
. (4.64)

Let us now check these predictions, and thus the identification of the monodromy defect

chiral algebra with the spectral flow in the range 0 6 α < 2, by computing these correlation

functions explicitly, using the fact that the bulk theory is free. The free hypermultiplet

contains two complex scalars, which we will denote by Q and Q̃, and which are highest

weights of su(2)R, and rotated under the su(2)f flavor symmetry. They can be grouped in

the following doublet of su(2)R and su(2)f

QIÎ :=

(
Q Q̃

Q̃∗ −Q∗

)
, (4.65)

where I (Î) is an su(2)R (su(2)f ) fundamental index. The chiral algebra fields are ob-

tained as

β(z) :=
[
QÎ=1(z, z̄)

]
Q
, γ(z) :=

[
QÎ=2(z, z̄)

]
Q
. (4.66)

We start from a trivial defect, where defect operators are obtained by evaluating bulk

operators at the location of the defect, keeping in mind that derivatives in directions
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orthogonal to the defect give rise to new defect primaries. The trivial defect OPE of a free

scalar is simply given by a Taylor expansion,

Q(z, z̄) ∼ Q(0, 0) +
∑
n>0

(
1

n!
zn∂nzQ(0, 0) +

1

n!
z̄n∂nz̄Q(0, 0)

)
, (4.67)

where we took into account the equations of motion to write only a sum over defect pri-

maries. The OPE of the remaining free scalars will be the same. We now introduce the

monodromy as a deformation of (4.67) according to (4.57), assuming 0 6 α < 2,

Q(z, z̄) ∼
∑

n> 1
2
α−1

n∈N0

bnz
n− 1

2
αÔ∆̂=1+n− 1

2
α,s=n− 1

2
α +

∑
n>0

b′nz̄
n+ 1

2
αÔ∆̂=1+n+ 1

2
α,s=−n− 1

2
α ,

Q̃(z, z̄) ∼
∑
n>0

b̃nz
n+ 1

2
αÔ∆̂=1+n+ 1

2
α,s=n+ 1

2
α +

∑
n> 1

2
α−1

n∈N0

b̃′nz̄
n− 1

2
αÔ∆̂=1+n− 1

2
α,s=−n+ 1

2
α ,

(4.68)

where we omit the R and r quantum numbers of defect operators since they are the same

for all operators as for the bulk operator. The range of n of the sums is further constrained

with respect to (4.67) by imposing ∆̂ > 0. In deforming (4.67) there is an ambiguity

of where to include Q(0, 0), that affects all of the n = 0 terms of the sums in (4.68).

Below we will fix this ambiguity imposing that the defect defined by (4.68) is compatible

with supersymmetry. The defect OPEs of the conjugate scalars are obtained trivially

from (4.68). From (4.66) we obtain the chiral algebra OPEs

β(z)|σ〉 ∼
∑

n> 1
2
α−1

bn
Ô∆̂=1+n− 1

2
α,s=n− 1

2
α

z−n+ 1
2
α

|σ〉 , γ(z)|σ〉 ∼
∑
n>0

b̃n
Ô∆̂=1+n+ 1

2
α,s=n+ 1

2
α

z−n−
1
2
α

|σ〉 ,

(4.69)

where we kept only (a, c) operators on the right hand side (notice that in this very sim-

ple case the defect OPEs of Q̃∗ and Q∗ do not contribute in chiral algebra). We recover

the spectral flow result (4.56) if b0 is not zero. We now show that b0 = 0 is incompat-

ible with having an N = (2, 2) supersymmetric defect in the free hypermultiplet theory.

Following [6] we can compute the two-point functions of the free scalars, by solving the

equation of motion imposing the correct monodromy.30 Since the Cartans of both su(2)

are preserved, we have two non-trivial two-point functions to compute, 〈Q(x1)Q∗(x2)〉
and 〈Q̃(x1)Q̃∗(x2)〉. The computation proceeds exactly as in [6], except that we impose

the monodromy condition (4.57), and that we allow for all operator dimensions present

in (4.68), namely

∆̂ = |s|+ 1 , s = −α
2

+ Z ; ∆̂ = 1 + s , s = −α
2
, (4.70)

for 〈Q(x1)Q∗(x2)〉, and

∆̂ = |s|+ 1 , s =
α

2
+ Z ; ∆̂ = 1− s , s =

α

2
, (4.71)

30We thank M. Meineri for discussions on this defect.
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for 〈Q̃(x1)Q̃∗(x2)〉. The aforementioned ambiguity, in the split of the s = 0 operator in

the trivial defect (α = 0), to a defect operator of dimension ∆̂ = 1 ± 1
2α, is parametrized

by giving a defect OPE coefficient b2Q (b2
Q̃

) to the operator with ∆̂ = 1 − 1
2α, in the

〈Q(x1)Q∗(x2)〉 (〈Q̃(x1)Q̃∗(x2)〉) two-point function. Then, the operator with ∆̂ = 1 +
1
2α gets an OPE coefficient of 1 − b2Q (1 − b2

Q̃
). The former operators do not appear

in computation of [6], and we add them by hand.31 However, the two-point functions

constructed, and quoted in eq. (D.1), are crossing symmetric, and are obtained assuming

0 6 α < 2. Setting both b2Q and b2
Q̃

to zero is not compatible with supersymmetry, as it

would make the defect OPE of the scalars non-singular, and in turn setting the one-point

function of the stress tensor superprimary to zero, which is not possible for a non-trivial

defect in an N = 2 SCFT. In free theory, we can construct the superprimary of the stress

tensor multiplet, the su(2)R current, and the moment map, out of Q and Q̃, as they do

not contain fermions. Their expressions with our normalizations are quoted in (D.3). We

can thus compute their one-point functions, from the two-point functions of the complex

scalars, by taking the coincident limit. We impose supersymmetry by demanding that

the one-point functions of the first two operators are related as given in eq. (2.39), which

fixes b2Q = 1 and b2
Q̃

= 0.32 Here we assumed the simplest possible defect, with b2
Q/Q̃

independent of α. After fixing these coefficients we get a value for h, as well as for the one-

point function of the moment map, that precisely match (4.62) and (4.64), thus confirming

the identification of the monodromy defect with the spectral flow.

Finally, we note that the functional form of the spectral flowed graded partition func-

tion for α > 1 is identical to that with spectral flow parameter α − 2, and in particular a

naive series expansion in q would not feature the correct dimension for the spectral flowed

vacuum. This follows from the radius of convergence of the q expansion being altered by

the spectral flow as discussed at length in [116]. This makes it hard to read off from the

superconfonformal index the module introduced by the defect. Note that evaluating (4.52)

for the free hyper one finds hχmin = −1
8 , which corresponds precisely to the dimension of

the spectral flowed vacuum with α = 1.

Vortex defect for the free hypermultiplet. Even though the bulk theory is free —

a single free hypermultiplet — vortex defects are strongly interacting and little is known

about their dynamics. The Schur index in the presence of a vortex defect was computed

in [42]. There, the authors started from the so-called (A1, D4) Argyres-Douglas theory, or

H2 theory, which has an su(3) flavor symmetry. To go to the free hypermultiplet theory,

we consider an embedding of su(2) in su(3), and give a constant expectation value to

the moment map component corresponding to the raising operator of su(2) under the

31Note that this split explicitly breaks the continuity if we were to consider α = 2. Taking α = 2 in (4.68)

we see that the condition n > 1
2
α + 1 removes the b0 and b̃′0 terms from the sum, and we recover the

α = 0 OPE, as expected from (4.57). If b0 = b̃′0 = 0 the spectrum would be continuous at α = 2, and all

quantities computed with the α < 2 assumption evaluated at α = 2 would yield the α = 0 result. Taking

these to be non-zero our expressions are valid strictly for α < 2 and the trivial defect is not recovered upon

setting α = 2.
32If we had assumed −2 < α < 0 the roles of Q and Q̃ would be interchanged.
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embedding.33 The infrared theory is then a single free hypermultiplet, that has an su(2)

flavor symmetry. If instead one turns on a position dependent expectation value, one finds

a vortex defect in the free hyper theory, which breaks the flavor symmetry of the free

hyper down to u(1). The canonical surface defect, i.e. with vortex number one, has a

well-understood spectrum of 2d-4d BPS particles [4], allowing for the computation of the

index by the Coulomb branch formula [42]. For defects Sr, with higher vortex numbers r,

the index was instead computed with the Higgsing prescription. Up to an overall power

of q this result matches the character of the qDS reduction of the spectral flowed vacuum

module of χ((A1, D4)), i.e. of the ŝu(3)− 3
2

AKM current algebra.34 The spectral flow by

r units is done with respect to the Cartan of an ŝu(2)− 3
2

subalgebra of ŝu(3)− 3
2
, on which

one then performs a qDS reduction. The result is [42]

ISr = (−1)r
+∞∑

n=−∞

xnq−
n
2

(q)∞

+∞∑
k=0

(1− q(2k+1+|n|)(r+1))q
1
2

(2k+|n|− r
2

)(2k+|n|+1− r
2 )

(q)∞
, (4.72)

where (q)∞ = (q; q)∞ is the q-Pochhammer symbol. The variable x keeps track of the u(1)

flavor symmetry preserved by the defect, i.e. the Cartan of the su(2) flavor symmetry of the

bulk chiral algebra, a βγ system. The representation theory of free hypermultiplet chiral

algebra is very rich and has been studied in detail in e.g., [116, 118]. Here we only make use

of some of the features relevant for accommodating the modules introduced by the vortex

defect and its operators.35 From (4.72) we see that for r 6= 1 the index displays the existence

of defect operators whose dimensions are unbounded from below. In particular, while for

each definite u(1) charge the weights of the operators are bounded from below, there can

be operators with arbitrarily large positive, or negative, u(1) charge and correspondingly

arbitrarily negative weight. Modules displaying these properties are present in the βγ

chiral algebra. They are obtained from the vacuum module by the spectral flow, and they

were dubbed “deeper twists” in [116]. The dimension of the spectral flowed vacuum is

−α2/8, and it can be made arbitrarily negative (see (4.54)). Furthermore spectral flowed

modules with α > 2 can have a spectrum of dimensions unbounded from below, as positive

modes of β and γ (and the charged flavor currents made from them) start having a non-

zero action (4.54). This action matches the type of structure seen in the index of more

33In an enlarged class S of type A1, the (A1, D4) theory is described by a sphere with a single regular

maximal puncture, and a single irregular puncture. The flavor symmetry of the theory is su(3), even though

in class S only an su(2) flavor symmetry, associated with the regular puncture, and a u(1) associated to

the irregular one are visible. The Higgsing corresponds to closing the regular puncture, and one ends up

with only the irregular puncture, finding the (A1, A1) theory, i.e. a single free hypermultiplet.
34Similarly for r = 1 the index in (4.72) matches the Coulomb branch computation up to an overall power

of q. For the purposes of identifying hχσ the normalization resulting from the chiral algebra computation is

the relevant one.
35As pointed out in [116] some care is needed when interpreting characters obtained from spectral flows,

due to the fact that the region of convergence of the character when written as a power series in q is

modified by the flow, even if the functional form of the character appears to fall back on the original module,

giving rise to fake periodicities, just like the ones described in the monodromy defect example above. To

have a one-to-one map between irreducible modules and characters one needs to view the characters as

distributions [119]. We thank L. Eberhardt for showing us this reference.
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negative dimensions having larger charges. Note that this, in turn, implies that the OPE

of β with the spectral flowed vacuum has a singularity larger than one. This singularity is

incompatible with the defect OPE of β — see the selection rules given in eq. (4.37). Thus,

in these cases the spectral flowed vacuum cannot be identified with
[
1̂
]
Q
. The chiral algebra

operator corresponding to a spectral flowed vacuum must arise from a non-trivial defect

operator, such that the chiral algebra OPE can be made arbitrarily negative as discussed

around (4.35). As such, the defect introduces at least two distinct modules, a “deeper

twist” as well as a module that can accommodate the defect identity. Finally, note that

due to the aforementioned selection rules the β and γ descendants of the defect identity

will never have dimension smaller than that of the defect identity. This implies the defect

operators with lower dimensions must belong to different modules, and not obtained from

the defect OPE of β and γ. Since the bulk theory is made out of β and γ composites we

conclude these defect operators do not appear in the defect OPE of Schur operators.

Vortex defects for the (A1, A2) Argyres-Douglas theory. With the purpose of

computing h from chiral algebra, the non-trivial step consists of identifying the defect

identity in chiral algebra. In [42] the Schur index in the presence of vortex defects for

the (A1, A2n) Argyres-Douglas SCFTs were also obtained. All these theories have minimal

models as their chiral algebras, making easier the task of identifying the defect identity,

which should be annihilated by the positive modes of the stress tensor, according to the

results of section 4.5. Let us focus on the Lee-Yang minimal model, which is the chiral

algebra of the (A1, A2) Argyres-Douglas theory. The chiral algebra is simply Virasoro

with central charge c2d = −22
5 , and all bulk operators can then be made out of normal

ordered products of the stress tensor and its derivatives. The only non-vacuum module

corresponds to a highest weight representation of dimension −1
5 . Since the defect identity

gives rise to a negative dimensional operator in chiral algebra this is the only module that

can accommodate it. Non-trivial defects in the (A1, A2) theory will then have

h =
1

15π2
. (4.73)

For Argyres-Douglas SCFTs with higher values of n there are more modules that can ac-

commodate the defect identity, and thus identifying σ, and obtaining h, requires analyzing

the chiral algebra in detail.

Acknowledgments

We are especially grateful to Marco Meineri for collaboration in earlier stages of this work

and many useful suggestions. We have greatly benefited from discussions with Philip
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A Conventions and superconformal algebras

In this appendix we summarize the conventions used throughout the paper and collect the

different superconformal algebras and supersymmetry variations used.

Conventions. We lift and lower su(2) indices as φa = εabφb, φa = εabφ
b, where we take

ε12 = 1, ε12 = −1. Our sigma matrix are taken to be

σµ
αβ̇

= (σa, i1) , (σ̄µ)α̇β = (σa,−i1) , (A.1)

where σa are the Pauli matrices, and α = 1, 2, α̇ = 1̇, 2̇. With the exception of Kα̇α

all fields go from vector to spinor indices by Oαα̇ = σµαα̇Pµ, and then spinor indices are

raised and lowered with epsilon tensors as described above. We will use the notation

Xz = 1
2σ

µ

11̇
Xµ, Xz̄ = −1

2σ
µ

22̇
Xµ, Xw = 1

2σ
µ

12̇
Xµ and Xw̄ = 1

2σ
µ

21̇
Xµ.

4d conformal algebra. The commutation relations for the 4d conformal algebra are

given by

[M β
α ,M δ

γ ] = δ β
γ M δ

α − δ δ
αM β

γ ,

[Mα̇
β̇
,Mγ̇

δ̇
] = δα̇

δ̇
Mγ̇

β̇
− δγ̇

β̇
Mα̇

δ̇
,

[M β
α , Pγγ̇ ] = δ β

γ Pαγ̇ −
1

2
δ β
α Pγγ̇ ,

[Mα̇
β̇
, Pγγ̇ ] = δα̇γ̇Pγβ̇ −

1

2
δα̇
β̇
Pγγ̇ ,

[M β
α ,K

γ̇γ ] = −δ γ
α K

γ̇β +
1

2
δ β
α K γ̇γ ,

[Mα̇
β̇
,K γ̇γ ] = −δγ̇

β̇
Kα̇γ +

1

2
δα̇
β̇
K γ̇γ ,

[D,Pαα̇] = Pαα̇ ,

[D,Kα̇α] = −Kα̇α ,

[Kα̇α, Pββ̇ ] = 4δ α
β δα̇

β̇
D + 4δ α

β M
α̇
β̇

+ 4δα̇
β̇
M α

β ,

(A.2)

where we took Pαα̇ = σµαα̇Pµ, Kα̇α = σ̄α̇αµ Kµ and

M α
β = −1

4
σ̄µα̇ασνβα̇Mµν , Mα̇

β̇
= −1

4
σ̄µα̇ασναβ̇Mµν . (A.3)
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A.1 Four-dimensional N = 1 superconformal algebra

The 4d N = 1 superconformal algebra supplements the generators whose commutation

relations are given in (A.2) by four Poincaré supercharges (Qα, Q̃α̇), four conformal super-

charges (Sα, S̃α), and a u(1)r̂ R−symmetry r̂ under which the supercharges are charged

as follows

[r̂, Qα] =
1

2
Qα , [r̂, Q̃α̇] = −1

2
Q̃α̇ , [r̂, Sα] = −1

2
Sα , [r̂, S̃α̇] =

1

2
S̃α̇ . (A.4)

The remaining commutation relations of the supercharges among themselves and with the

generators of the conformal algebra can be read from (A.12) and (A.13) where one should

set I,J = 1 and R1
1 = 3

2 r̂.

Stress tensor multiplet. The supersymmetry variations of the N = 1 stress tensor

multiplet are given by

δjµ =
1

2

(
Jαµ ξα − J̃µα̇ξ̄α̇

)
,

δJµα =
1

2
σναα̇ξ̄

α̇Tµν +
1

4

(
σµνσλ − 3σλσ̄µν

)
αα̇
ξ̄α̇∂νjλ ,

δJ̃µα̇ =
1

2
σναα̇ξ

αTµν −
1

4

(
σ̄µν σ̄λ − 3σ̄λσµν

)β̇α
εα̇β̇ξα∂νjλ ,

δTµν = −1

2
ξασµλα

β
∂λJ

ν
β −

1

2
ξ̄α̇σ̄

µλα̇

β̇
∂λJ̃

νβ̇ + µ↔ ν ,

(A.5)

where jµ is the u(1)r current, Jµα and J̃µα̇ the supersymmetry currents, and Tµν the stress

tensor which we take to be canonically normalized according to (A.14). Here δ is defined by

δO = [δ,O] =
[
ξαQα + ξ̄α̇Q̃α̇,O

]
, (A.6)

and the coefficients in the supersymmetry variations can be fixed by imposing the algebra

(δ1δ2 − δ2δ1)O = [[δ1, δ2] ,O] = −
(
ξα1 ξ̄

α̇
2 − ξα2 ξ̄α̇1

) [
{Qα, Q̃β̇},O

]
= −1

2

(
ξα1 ξ̄

α̇
2 − ξα2 ξ̄α̇1

)
(σµ)αα̇∂µO . (A.7)

A.2 Two-dimensional N = (2, 0) superconformal algebra

For the a surface defect preserving N = (2, 0) supersymmetry inside a 4d N = 1 SCFT the

bosonic generators of the conformal algebra on the defect (2.4) are supplemented by the

supercharges given in (2.17) and the R−symmetry generator given by J = 3r −M. They

obey the following algebra

{G+
r , G

−
s } = Lr+s +

r − s
2

J ,
[
Lm, G

±
r

]
=
(m

2
− r
)
G±m+r ,

[
J,G±r

]
= ±G±r ,

[Lm, Ln] = (m− n)Lm+n , [L̄m, L̄n] = (m− n)L̄m+n ,

(A.8)

where r, s = ±1
2 and m,n,= 0,±1, since we consider the global superalgebra, with no

Virasoro enhancement, due to the absence of a defect stress tensor. The commutant of

this superalgebra inside the 4d N = 1 superconformal algebra is Z = −r +M. A short

(anti)chiral multiplet is annihilated (G−− 1
2

) G+
− 1

2

and obeys (L0 = −1
2J) L0 = 1

2J .
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A.3 Four-dimensional N = 2 superconformal algebra

We collect here the commutation relations of the four-dimensional N = 2 superconformal

algebra used in sections 2.2 and 4. The bosonic subalgebra consists of the conformal

algebra displayed in eq. (A.2), together with the su(2)R ⊕ u(1)r R−symmetry. We define

the R−symmetry generators as RIJ as

R1
2 = R+ , R2

1 = R− , R1
1 =

1

2
r +R , R2

2 =
1

2
r −R , (A.9)

where we follow the conventions of [97] for the u(1)r charge r, and where the su(2)R
generators obey the standard algebra

[R+,R−] = 2R , [R,R±] = ±R± . (A.10)

Then, the R−symmetry generators RIJ obey the commutation relations

[RIJ ,RKL] = δKJRIL − δILRKJ . (A.11)

The eight conformal and eight superconformal supercharges have the following non-

zero commutation relations

{QIα, Q̃J α̇} =
1

2
δIJPαα̇ ,

{S̃Iα̇, S α
J } =

1

2
δIJK

α̇α ,

{QIα, S
β
J } =

1

2
δIJ δ

β
α D + δIJM β

α − δ β
α RIJ ,

{S̃Iα̇, Q̃J β̇} =
1

2
δIJ δ

α̇
β̇
D + δIJMα̇

β̇
+ δα̇

β̇
RIJ ,

(A.12)

and the commutators of the supercharges with the bosonic symmetry generators are

[M β
α , Q

I
γ ] = δ β

γ Q
I
α −

1

2
δ β
α QIγ , [Mα̇

β̇
, Q̃Iδ̇] = δα̇

δ̇
Q̃Iβ̇ −

1

2
δα̇
β̇
Q̃Iδ̇ ,

[M β
α , S

γ
I ] = −δ γ

α S
β
I +

1

2
δ β
α S γ

I , [Mα̇
β̇
, S̃Iγ̇ ] = −δγ̇

β̇
S̃Iα̇ +

1

2
δα̇
β̇
S̃Iγ̇ ,

[D,QIα] =
1

2
QIα , [D, Q̃Iα̇] =

1

2
Q̃Iα̇ ,

[D,S α
I ] = −1

2
S α
I , [D, S̃Iα̇] = −1

2
S̃Iα̇ ,

[RIJ , QKα ] = δ KJ QIα −
1

4
δIJQ

K
α , [RIJ , Q̃Kα̇] = −δ IK Q̃J α̇ +

1

4
δIJ Q̃Kα̇ ,

[Kα̇α, QIβ ] = 2δ α
β S̃Iα̇ , [Kα̇α, Q̃Iβ̇ ] = 2δ α̇

β̇
S α
I ,

[Pαα̇, S
β
I ] = −2δ β

α Q̃Iα̇ , [Pαα̇, S̃
Iβ̇ ] = −2δ β̇

α̇ QIα ,

(A.13)

where the commutators of RIJ with S and S̃ are omitted since they are identical to those

of the Q and Q̃ generators with the same index structure.
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Stress tensor supermultiplet. The stress tensor belongs to the Ĉ0,(0,0) superconformal

multiplet in the notation of [97], and its supersymmetry variations were obtained in [120].

Here we collect the variations, after correcting a few typos, and normalizing canonically

the stress tensor (Tµν), the supersymmetry currents ( JµIα and J̄µα̇,I ,), the u(1)r current

(jµ) and the su(2)R current (tµI
J ). For reference the canonically normalized stress tensor

has a two-point function given by (see e.g., [121])

〈Tµν(x)Tρσ(0)〉 =
40c

π4x8
Iµν,ρσ(x) , (A.14)

where

Iµν,ρσ(x) =
1

2
(Iµρ(x)Iνρ(x) + Iµρ(x)Iνσ(x))− 1

4
δµνδρσ , Iµν(x) = δµν−2

xµxν
x2

, (A.15)

and where c is the usual central charge normalized such that a free N = 2 hypermultiplet

has c = 1
12 . Similarly, the su(2)R current has two-point function36

〈tIJµ (x)tKLν (0)〉 = − 3c

π4

Iµν
x6

εK(IεJ )L , (A.16)

where supersymmetry fixes its two-point function in terms of c, see e.g., [122]. Here the

brackets mean indices are symmetrized and we always take symmetrizations with strength

one. The three-point function of conserved currents is given, for example, in [121], where

Ward identities are used to fix the coefficient of the three-point function that survives after

the chiral algebra twist of eq. (4.9) in terms of the two-point function.

Defining

δO = [δ,O] =
[
ξαIQ

I
α + ξ̄α̇IQ̃α̇I ,O

]
, (A.17)

the supersymmetry variations of the stress tensor multiplet read

δO2 = χ̄α̇I ξ̄
α̇I + ξαIχ

I
α ,

δχIα = Hα
βξIβ +

1

2
σµαα̇jµξ̄

α̇I − 1

2
t I
µJ σµαα̇ξ̄

α̇J +
1

4
σµαα̇∂µO2ξ̄

α̇I ,

δχ̄α̇I = H̄ β̇
α̇ ξ̄Iβ̇ +

1

2
σµαα̇jµξ

α
I −

1

2
tµI
J σµαα̇ξ

α
J −

1

4
σµαα̇∂µO2ξ

α
I ,

δHα
β = −1

4

(
JβµIσ

µ
αα̇ξ̄

α̇I + ξ̄α̇I σ̄
α̇β
µ JµIα

)
+

1

6

(
ξ̄α̇I σ̄

µα̇β∂µχ
I
α + ∂µχ

β
Iσ

µ
αα̇ξ̄

α̇I
)
,

δH̄ β̇
α̇ =

1

4

(
J̄Iµα̇ξIασ̄

β̇α
µ + σµαα̇ξ

JαJ̄ β̇µJ

)
+

1

6

(
ξαI ∂µχ̄

I
α̇ε
γ̇β̇σµαγ̇ − ∂µχ̄

β̇IξIβσ̄
δ̇β
µ εδ̇α̇

)
,

δjµ =
1

2

(
JαµIξ

I
α − J̄µα̇I ξ̄α̇I

)
− 2

3

(
ξαIσµνα

β∂νχIβ + ξ̄α̇I σ̄
α̇

µν β̇
∂νχ̄β̇I

)
,

δtµI
J = −

(
JαµIξ

J
α + ξ̄α̇I J̄

α̇J
µ − 1

2
δJI
(
JαµKξ

K
α + ξ̄α̇K J̄

α̇K
µ

))
(A.18)

+
1

3

(
ξαIσµνα

β∂νχJβ − ∂
νχαIσµνα

βξJβ + ∂νχ̄α̇I σ̄
α̇

µν β̇
ξ̄β̇J − ξ̄α̇I σ̄ α̇

µν β̇
∂νχ̄β̇J

)
,

δJµIα =
1

2
σναα̇ξ̄

α̇ITµν −
(
∂νHα

βσµνβ
γ +

1

3
σµνα

β∂νHβ
γ

)
ξIγ

36This differs from the su(2)R current defined in [53] by tIJhere = 2iJIJthere.
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+
1

12

(
σµνσλ − 3σλσ̄µν

)
αα̇
ξ̄α̇J

(
δIJ ∂νjλ + 2∂νtλJ

I) ,
δJ̄µα̇I =

1

2
σναα̇ξ

α
ITµν −

(
∂νH̄α̇β̇σ̄µν

β̇
γ̇ +

1

3
σ̄µν

δ̇
β̇
∂νH̄

β̇

γ̇
εα̇δ̇

)
ξ̄γ̇I

+
1

12

(
σ̄µν σ̄λ − 3σ̄λσµν

)β̇α
εα̇β̇ξ

J
α (−εIJ ∂νjλ + 2∂νtλJI) ,

δTµν = −1

2
ξαIσ

µλ
α
β
∂λJ

νI
β −

1

2
ξ̄α̇I σ̄

µλα̇

β̇
∂λJ̄

νβ̇I + µ↔ ν .

The coefficients of all the variations can be checked by imposing that for all operators O
we have that

(δ1δ2 − δ2δ1)O = [[δ1, δ2] ,O] = −
(
ξα1,I ξ̄

α̇,J
2 − ξα2,I ξ̄

α̇,J
1

) [
{QIα, Q̃β̇J },O

]
= −1

2

(
ξα1,I ξ̄

α̇,I
2 − ξα2,I ξ̄

α̇,I
1

)
(σµ)αα̇∂µO , (A.19)

as follows from the N = 2 superalgebra.

Flavor currents supermultiplet. The conserved currents for a global symmetry of

an N = 2 SCFT are one of the top components of the half-BPS B̂1 multiplet in the

classification of [97]. We take the flavor current OPE following the conventions of [98],

which has two-point function

〈JAµ (x)JBν (0)〉 =
3k4d

4π4
δAB

Iµν
x6

, (A.20)

where A,B,C are adjoint flavor indices, and we are using normalizations such that long

roots of a Lie algebra have length
√

2 as in [98]. In the same conventions, using the

supersymmetric Ward identities of [123], the OPE of superprimary of the B̂1 multiplet, the

moment map of the flavor symmetry, reads37

µA IJ (x)µBKL(0) ∼ k4d

32π4

εK(IεJ )LδAB

x4
− 1

4π2

ifABCµC (I(KεL)J )

x2
+ · · · . (A.21)

A.4 Two-dimensional N = (2, 2) superconformal algebra

In sections 2.2 and 4 we consider a surface defect in a 4d N = 2 SCFT that preserves

a N = (2, 2) superconformal algebra. In this appendix we collect the commutation

relations of the algebra and the supersymmetry variations of the displacement super-

multiplet. The generators of the two-dimensional superconformal algebra are given in

eqs. (2.4), (2.32), (2.33) and (2.34). The N = (2, 2) two-dimensional superconformal alge-

bra reads

{G+
r , G

−
s } = Lr+s +

r − s
2
J , {Ḡ+

r , Ḡ
−
s } = L̄r+s +

r − s
2
J̄r+s ,

[Lm, Ln] = (m− n)Lm+n , [L̄m, L̄n] = (m− n)L̄m+n ,[
Lm, G

±
r

]
=
(m

2
− r
)
G±m+r ,

[
L̄m, Ḡ

±
r

]
=
(m

2
− r
)
Ḡ±m+r ,[

J , G±r
]

= ±G±r ,
[
J̄ , Ḡ±r

]
= ±Ḡ±r ,

(A.22)

37Note that the conventions here differ from those of [53] by µhere = i/
√

2µthere.
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where r, s = ±1
2 and m,n,= 0,±1 since there is no defect stress tensor, and thus we

consider the global superalgebra with no Virasoro enhancement. A short multiplet of the

left-moving part of the 2d superconformal algebra obeying L0 = 1
2J is annihilated by G+

− 1
2

and is called chiral, while an antichiral operator obeys L0 = −1
2J and is annihilated by

G−− 1
2

. A similar definition holds with adding bars in the generators for the right-moving

part of the algebra.

The displacement supermultiplet for a 2d N = (2, 2) defect. We take the su-

persymmetry variations of the 4d N = 2 superconformal algebra (A.17) and set to zero

the parameters corresponding to the non-preserved supercharges, getting the preserved

variations

δpO =

[
ξ21 Ḡ

+
− 1

2

+ ξ12G
+
− 1

2

+ ξ̄1̇1Ḡ−− 1
2

+ ξ̄2̇2G−− 1
2

,O
]
. (A.23)

Then the supersymmetry variations of the supermultiplet containing the displacement op-

erator shown in figure 1 are as follows:

δpO↑ = −ξ12Λ+
↑ + ξ̄1̇1Λ−↑ , δpO↓ = ξ21Λ

+
↓ − ξ̄

2̇2Λ−↓ ,

δpΛ
+
↑ = ξ̄1̇1D↑ − ξ̄2̇2∂wO↑ δpΛ

+
↓ = ξ̄2̇2D↓ + ξ̄1̇1∂w̄O↓ ,

δpΛ
−
↑ = ξ12D↑ + ξ21∂w̄O↑ , δpΛ

−
↓ = ξ21D↓ − ξ12∂wO↓ ,

δpD↑ = ξ21∂w̄Λ
+
↑ + ξ̄2̇2∂wΛ

−
↑ , δpD↓ = ξ12∂wΛ

+
↓ + ξ̄1̇1∂w̄Λ

−
↓ .

(A.24)

B Superconformal index

The superconformal index [124, 125] is an important invariant of 4d superconformal field

theories that encodes protected information about the spectrum of the theory. It counts

(with signs) all protected multiplets that cannot recombine to form long multiplets, and

is invariant under exactly marginal deformations of the SCFT. Here we briefly review the

superconformal index of an N = 2 SCFT and refer to the review [126] for all details.38

We compute the N = 2 superconformal index with respect to the Q̃22̇ supercharge, as the

trace over the Hilbert space of the SCFT in radial quantization

I(p, t, q) = TrH(−1)F tR+rp
∆−2j1−2R−r

2 q
∆+2j1−2R−r

2 e−β(∆−2j2+r−2R) , (B.1)

where F = 2(j1 − j2) is the fermion number. For theories with additional symmetries the

index can be further refined by additional fugacities conjugate to Cartans of the symmetry

that commute with the ones already introduced and with Q̃22̇ . The superconformal index

defined like this is independent of β, receiving only contributions from operators with

∆ = 2j2 − r + 2R , (B.2)

and is independent of any continuous parameters of the theory - see [126]. The index is

then the most general invariant that counts (with signs) the short multiplets of the theory

that cannot recombine to form long multiplets.

38We follow the conventions of [53, 126], which differ slightly from those [37, 96].
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The Schur limit of the superconformal index is obtained by setting t = q [96],

I(q) = TrH(−1)F q∆−Rp
∆−2j1−2R−r

2 e−β(∆−2j2+r−2R) . (B.3)

and it becomes independent of p, receiving only contributions from operators satisfying

also ∆− 2j1 − 2R− r = 0, which we already used to simplify the exponent of q. Together

with (B.2) we obtain precisely the conditions necessary for operators to contribute to

the chiral algebra (4.3). From the four-dimensional Cartans of the N = 2 SCFT the

chiral algebra preserves Lχ0 and r = j2 − j1, and thus one can define its graded partition

function as39

Z(q, x) = Tr
(
qL

T
0 x2(j2−j1)

)
= Tr

(
q∆−RxF

)
, (B.4)

where LT0 is the zero mode of the 2d stress tensor, which matches Lχ0 when acting on

local operators. For x = −1 matches precisely the definition of the Schur limit of the

superconformal index.

The same set of operators is also counted by the Macdonald limit of the index, obtained

by setting p = 0 in (B.1), meaning that we compute

I(t, q) = TrHM (−1)F tR+rqj1+j2−r , (B.5)

whereHM denotes a restriction of the Hilbert space to operators having ∆−2j1−2R−r = 0.

It thus counts the same operators as those contributing to the chiral algebra, but refines

the counting by the additional fugacity t. Recovering this information from the chiral

algebra itself is an open question, as the R grading of the four-dimensional SCFT is lost

when passing to the chiral algebra, and so the refinment is by a Cartan not preserved by

the chiral algebra. See, however, [128–132] for proposals on recovering the full Macdonald

index from the chiral algebra.

Superconformal index with defects. The index defined above counts local operators

in four-dimensional N = 2 SCFTs. To count operators living on the N = (2, 2) surface

defect we define the index instead by doing radial quantization centered on a point on

the defect

I(p, y, q) = TrHdef.
(−1)F tR+rpL̄0− 1

2
J̄ qCyJ̄ e−β(2L0+J ) . (B.6)

The above is precisely the same formula as (B.1), except that the trace is now over the

Hilbert space of the defect theory, and where we introduced the two-dimensional quantum

numbers and re-defined fugacities as t = qy. Written in this way it becomes clear the index

simply corresponds to an elliptic genus for the N = (2, 2) two-dimensional theory [133] on

the defect, refined by a flavor fugacity q that keeps track of the u(1)C global symmetry of

the defect theory [134]. Recall that the index is computed with respect to the G−− 1
2

= Q̃22̇

supercharge, and so it will count operators that are anti-chiral on the left, i.e. obeying

2L0 = −J .

39Here we omitted an overall power of q−c2d/24 which must be included in the partition function for it

to have the modular properties described in [101]. See also [127] for a discussion of this prefactor when

relating the index to the partition function on S1 × S3.
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The Schur limit of the index becomes y = 1, with the index once more becoming

independent of p, and thus receiving contributions only from operators that are also chiral

on the right, i.e. with 2L̄0 = J̄ . All in all it counts (a, c) defect operators, graded by their

u(1)C flavor charge, as written in (4.50). As shown in 4.2 (a, c) operators are precisely

those that contribute to the chiral algebra, and it was argued in [42] that it again matches,

up to an overall power of q since the index is normalized such that operators with C = 0

contribute as q0, the graded partition function of the chiral algebra, now in the presence

of the defect. The graded chiral algebra partition function is given by (B.4) with x = −1,

noting that now LT0 differs from Lχ0 by the dimension of the defect identity in chiral algebra,

hσ, producing an overall power of qhσ .

Finally, the Macdonald limit of the index, i.e. setting p = 0, becomes a trace over the

restricted Hilbert space of operators that are chiral on the right, thus counting the same

as the Schur index but keeping track of the J̄ quantum number of operators as well. As

such, it can distinguish some of the operators that appear degenerate in the chiral algebra.

Recall that this refinement involves refining the index by a Cartan that is not preserved

by the chiral algebra, and thus its interpretation in chiral algebra is not clear. In [112]

the conjectured prescription of [128] was used to attempt to recover the Macdonald index

from the chiral algebra, but the authors found disagreements with the expressions for the

superconformal indices in some examples.

C Stress tensor displacement correlator for N = (2, 0) surface in N = 1

In this appendix we spell out all the bulk to defect correlators of stress tensor and dis-

placement supermultiplet. In the following the defect operator is always taken to be in

the origin.

〈jzD↑〉 =
1

2
〈Jz1Λ−↑ 〉 =

3hz̄2

π(ww̄ + zz̄)4
, 〈jw̄D↑〉 =

1

2
〈Jz2Λ−↑ 〉 = − 3hwz̄

π(ww̄ + zz̄)4
,

〈jwD↑〉 =
1

2
〈Jw1Λ

−
↑ 〉 = − 3hw̄z̄

π(ww̄ + zz̄)4
, 〈jz̄D↑〉 =

1

2
〈Jw2Λ

−
↑ 〉 = − 3hww̄

π(ww̄ + zz̄)4
,

〈jzD↓〉 =
1

2
〈J̃z2Λ+

↓ 〉 =
3hww̄

π(ww̄ + zz̄)4
, 〈jwD↓〉 = 〈J̃w2Λ

+
↓ 〉 =

3hzw̄

π(ww̄ + zz̄)4
,

〈jw̄D↓〉 =
1

2
〈J̃w̄2Λ

+
↓ 〉 =

3hwz

π(ww̄ + zz̄)4
, 〈jz̄D↓〉 =

1

2
〈J̃z̄2Λ+

↓ 〉 = − 3hz2

π(ww̄ + zz̄)4
,

〈Jz̄2Λ−↑ 〉 = −〈J̃z1Λ+
↓ 〉 =

6hw2w̄

πz̄(ww̄ + zz̄)4
, 〈Jw̄2Λ

−
↑ 〉 = −〈J̃w̄1Λ

+
↓ 〉 =

6hw2

π(ww̄ + zz̄)4
,

〈TzzD↑〉 =
12hz̄3

π(ww̄ + zz̄)5
, 〈Tz̄z̄D↑〉 =

12hw2w̄2

πz̄(ww̄ + zz̄)5
,

〈TwwD↑〉 =
12hw̄2z̄

π(ww̄ + zz̄)5
, 〈Tw̄w̄D↑〉 =

12hw2z̄

π(ww̄ + zz̄)5
,

〈TzwD↑〉 = − 12hw̄z̄2

π(ww̄ + zz̄)5
, 〈Tzw̄D↑〉 = − 12hwz̄2

π(ww̄ + zz̄)5
(C.1)

〈Tzz̄D↑〉 = − 12hww̄z̄

π(ww̄ + zz̄)5
, 〈Tww̄D↑〉 =

12hww̄z̄

π(ww̄ + zz̄)5
,
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〈Twz̄D↑〉 =
12hww̄2

π(ww̄ + zz̄)5
, 〈Tw̄z̄D↑〉 =

12hw2w̄

π(ww̄ + zz̄)5
,

〈TzzD↓〉 =
12hw2w̄2

πz(ww̄ + zz̄)5
, 〈Tz̄z̄D↓〉 =

12hz3

π(ww̄ + zz̄)5
,

〈TwwD↓〉 =
12hzw̄2

π(ww̄ + zz̄)5
, 〈Tw̄w̄D↓〉 =

12hw2z

π(ww̄ + zz̄)5
,

〈TzwD↓〉 =
12hww̄2

π(ww̄ + zz̄)5
, 〈Tzw̄D↓〉 =

12hw2w̄

π(ww̄ + zz̄)5
,

〈Tzz̄D↓〉 = − 12hwzw̄

π(ww̄ + zz̄)5
, 〈Tww̄D↓〉 =

12hwzw̄

π(ww̄ + zz̄)5
,

〈Twz̄D↓〉 = − 12hz2w̄

π(ww̄ + zz̄)5
, 〈Tw̄z̄D↓〉 = − 12hwz2

π(ww̄ + zz̄)5
.

D Monodromy defect

In this appendix we collect the results for a monodromy defect in the free hypermulti-

plet theory described in section 4.7. Imposing (4.57), the two-point functions of the free

hypermultiplet scalars read

〈QQ∗〉 = aαe−i
1
2
αθ12

(
1

−1 + a2e−iθ12
+ a−2α

(
b2Q +

1

−1 + a2eiθ12

)
− b2Q + 1

)
,

〈Q̃Q̃∗〉 = aα

((
b2
Q̃

(
a−2α − 1

)
+ 1
)
eiαθ12 − ei

1
2
αθ12

1− a2eiθ12
+
a−2αei(

1
2
α+1)θ12

a2 − eiθ12

)
,

(D.1)

with

a =
1

2

√r1

r2
+
r2

r1
− 2 +

√
(r1 + r2)2

r1r2

 , (D.2)

and where we placed the two bulk operators on the same plane. Here r1 and r2 denote

the distance of each of the operators to the defect, and θ12 the angular separation between

the two operators. These two-point functions are normalized such that far away from the

defect the bulk scalars have unit two-point function. As such we have that

O2 =
1

4π2

(
QQ∗ + Q̃Q̃∗

)
, t12

i =
1

8π2

(
∂iQQ

∗ −Q∂iQ∗ + ∂iQ̃Q̃
∗ − Q̃∂iQ̃∗

)
,

µ3 12 =
1

8
√

2π2

(
QQ∗ − Q̃Q̃∗

)
,

(D.3)

and the respective one-point functions can be computed by taking the coincident limit

of (D.1). The results match precisely the prediction from the spectral flow quoted in (4.62)

and (4.64). Notice that to compute other one-point functions one would need the fermion

propagators as well.40

40Getting the one-point functions of the su(2)R current, or of the stress tensor, from the bulk conformal

block expansion of the two-point functions (D.1) is not straightforward as one needs to disentangle different

operators. For example the su(2)R and su(2)f currents appear degenerate.
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