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Glutamine synthetase desensitizes differentiated adipocytes
to proinflammatory stimuli by raising intracellular
glutamine levels
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a b s t r a c t

The role of glutamine synthetase (GS) during adipocyte differentiation is unclear. Here, we assess the
impact of GS on the adipocytic response to a proinflammatory challenge at different differentiation
stages. GS expression at the late stages of differentiation desensitized mature adipocytes to bacterial
lipopolysaccharide (LPS) by increasing intracellular glutamine levels. Furthermore, LPS-activated
mature adipocytes were unable to produce inflammatory mediators; LPS sensitivity was rescued fol-
lowing GS inhibition and the associated drop in intracellular glutamine levels. The ability of adipo-
cytes to differentially respond to LPS during differentiation negatively correlates to GS expression
and intracellular glutamine levels. Hence, modulation of intracellular glutamine levels by GS expres-
sion represents an endogenous mechanism through which mature adipocytes control the inflam-
matory response.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Glutamine synthetase (GS; a.k.a. glutamate ammonia ligase,
GLUL, EC 6.3.1.2) is a key enzyme involved in nitrogen metabolism,
acid–base homeostasis, and cell signaling across multiple species
of prokaryotes and eukaryotes [1,2]. One of the main roles of GS
in vertebrates is to produce glutamine (Gln) from glutamate and
ammonia, which are toxic to the central nervous system (CNS)
[3–5]. Moreover, a continuous supply of Gln is required for several
physiological processes, including synthesis of glutamate and
GABA, synthesis of proteins, and osmoregulation [6]. Since GS is
the only known enzyme in humans capable of synthesizing Gln,
alterations in its expression and activity are likely to have signifi-
cant biological effects. While it is widely distributed among adult
mammalian tissues, GS activity is very high in adipose tissue, liver,
brain and kidney. GS mRNA is uniformly distributed in adipose
tissue, where it is most abundant, and in heart, spleen and skeletal
muscle [7]. During hormone-induced adipocyte differentiation of
cultured 3T3-L1 cells GS specific activity, cellular content and
mRNA are known to strongly increase [8–10]. With this respect a
study has identified a glucocorticoid responsive element in rat GS
[11]. However, its role in adipocytes has never been clarified. At
variance with myotubes and hepatocytes, adipocytic GS is only
marginally feed-back inhibited by Gln [12], similarly to brain GS
[13], where it holds the important task of removing excitoxic glu-
tamate. Brain GS has been extensively studied because of its sus-
ceptibility to oxidative stress. Indeed ROS-mediated loss of
function of GS has been demonstrated in many neurodegenerative
disorders [14–16].

A close link between inflammation and metabolism control has
also been highlighted through studies on adipocytes, suggesting
that adipocyte might represent a cellular nexus for the processes
of inflammation and metabolic dysregulation by sensing and pro-
ducing inflammatory mediators. The adipocyte displays a high
level of sensitivity to bacterial lipopolysaccharide (LPS), tumor
necrosis factor-a (TNF-a), interleukin-6 (IL-6), interferon-c (IFN-
c), and retains the ability to induce nitric oxide synthase (iNOS)
under proinflammatory stimulus [17]. Activation of nuclear
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Fig. 1. 3T3-L1 preadipocytes differentiation followed as PPARc expression. 3T3-L1
preadipocytes were grown and differentiated, as indicated in Section 2, over
14 days. Differentiation into mature adipocytes was followed with Western blotting
analysis by evaluating PPARc expression in cells lysed at different maturation
times.
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factor-jB (NF-jB) reverses differentiation of cultured adipocytes,
which is prevented by the adipogenic transcription factor peroxi-
some proliferator-activated receptor c (PPARc) [18,19].

In this study we investigate the role of GS in differentiating adi-
pocytes. We demonstrate that GS is expressed at late stages of dif-
ferentiation in a glucocorticoid-independent manner and abolishes
adipocytic sensitivity to LPS by increasing intracellular Gln levels.
These results demonstrate that raising intracellular Gln levels
through GS expression is a novel endogenous mechanism that
inhibits the response of mature adipocytes to proinflammatory
stimuli. To our knowledge, this is the first study describing a mech-
anism by which adipocytes regulate, through intracellular produc-
tion of the signal metabolite Gln, the inflammatory response to an
external challenge.

2. Materials and methods

2.1. Materials

Dulbecco modified Eagle medium (DMEM), fetal bovine serum
(FBS), insulin, dexamethasone, 3-isobutyl-1-methylxanthine,
methionine sulfoximine (MSO), protease inhibitors, phen-
ylmethanesulfonyl fluoride (PMSF) and Gln were obtained from
Sigma Aldrich. Bacterial lipopolysaccharides (LPS) from Escherichia
coli 0.111:B4 was purchased by Calbiochem. Bradford protein assay
was obtained from Bio-Rad. Anti-GS primary antibody and the
Immobilon Western Chemiluminescent horseradish peroxidase
(HRP) substrate were purchased from Millipore. Anti-PPARc anti-
body was purchased from Abcam. Anti-actin antibody was pur-
chased from Santa Cruz Biotechnology. The HRP-conjugated
secondary antibody was obtained from Thermo. IL-6 ELISA kit
was purchased from USCN Life Sciences. DetectX High Sensitivity
PGE2 Enzyme Immunoassay Kit was purchased from Arbor Assays.
3T3-L1 murine fibroblasts were obtained from the Biological Bank
and Cell Factory IRRCS San Martino.

2.2. Cell culture

3T3-L1 murine fibroblasts were propagated in DMEM supple-
mented with 10% FBS, glutamine (2 mM), penicillin–streptomycin
(2 mM) and differentiated according to described protocols [20–
22]. In brief, cells were allowed to reach confluence and after
2 days (day 0), the medium was changed to differentiation med-
ium, containing and 1 lg/ml insulin, 1 lM dexamethasone and
0.5 mM 3-isobutyl-1-methylxanthine. Unless indicated medium
Gln concentration was 2 mM. Four days later (day 4), the medium
was switched to adipocyte maintenance medium containing 1 lg/
ml insulin. Then the medium was changed every 48 h until reach-
ing day 14. Cells at various stages of differentiation (referred as day
4, day 7, and day 10) were stimulated with 2 lg/ml bacterial LPS for
48 h as described [17,23,24]. To inhibit GS activity 1 or 5 mM MSO
was added to cells right before LPS treatment. For experiments
with high Gln, 10 day cells underwent LPS/MSO treatment in the
presence of 10 mM Gln.

2.3. Western blot analysis

Whole cell lysates were prepared by treating pelleted adipo-
cytes at various stages of differentiation with ice cold RIPA buffer
(1% Nonidet P-40, 50 mM Tris–HCl pH 7.4, 150 mM NaCl, 0.1%
SDS, 2 mM EDTA, 0.5% sodium deoxycholate) containing 1� prote-
ase inhibitors and 1 mM PMSF for 30 min at 4 �C. Protein concen-
tration was determined by the modified Bradford protein assay
and 10 lg of proteins was electrophoresed in a 12% SDS–PAGE
under reducing conditions and transferred to nitrocellulose using
standard procedures. Anti-GS and PPARc primary antibodies were
used to immunodetect proteins. Western blots were processed also
for actin with a specific antibody as an equal total protein loading
control. Immunodetection of proteins was obtained after incuba-
tion with a HRP-conjugated secondary antibody.

2.4. Metabolites quantification by LC–MS/MS

For mass spectrometry analysis of Gln 2 � 105 cell pellets were
washed twice in PBS and finally resuspended in milli-Q water. The
suspension was extracted with phenol/chloroform 1:1 mixture. A
Quattro Premier mass spectrometer interfaced with an Acquity
UPLC system (Waters) was used for ESI-LC–MS/MS analysis as
described [16,25–28]. Calibration curves were established using
standards, processed under the same conditions as the samples,
at five concentrations. The best fit was determined using regres-
sion analysis of the peak analyte area. The multiple reaction mon-
itoring transitions in the positive ion mode was m/z 147.20 > 84.00
for Gln. Chromatographic resolution was achieved as indicated
[16,25,27–29] with a flow rate set at 0.3 ml/min.

2.5. Enzyme-linked immunosorbent assays for IL-6 and PGE2

To measure cytokines adipocytes at different stages of differen-
tiation were treated with LPS, LPS plus MSO and LPS plus MSO in
the presence of 10 mM Gln as indicated above. After 48 h 100 lL
of the cellular media supernatants were assayed for IL-6 with a
IL-6 ELISA kit and for PGE2 with a DetectX High Sensitivity PGE2

Enzyme Immunoassay Kit as indicated [23].

2.6. Statistical analysis

Results are shown as means ± S.E.M. Comparisons between
groups were carried out by unpaired Student’s t-test. P val-
ues < 0.05 were considered significant.

3. Results

3.1. GS is dynamically expressed in differentiating adipocytes

To study changes in GS expression during differentiation, 3T3-
L1 fibroblastic cells were differentiated to lipid-laden fat cells. Dif-
ferentiation was followed by monitoring triglyceride droplets by
microscopy (not shown) and by Western blotting of the differenti-
ation marker PPARc, peculiar to mature adipocytes [30] (Fig. 1).

Over the 14-days differentiation process, there was a significant
induction of GS at day 10 (Fig. 2A). The expression window ranged
from day 9 up to day 12, with a peak at day 10 (Fig. 2A). The induc-
tion at day 4 is a result of the differentiation cocktail used in the
experiments [11] (see Section 2). Indeed at day 7 expression of
GS was low, consistent with the day 4 removal of dexamethasone
from the medium. Following GS expression levels (Fig. 2B), intra-



Fig. 2. GS expression and intracellular Gln levels during 3T3-L1 preadipocytes
differentiation. (A) 3T3-L1 preadipocytes were grown and differentiated, as
indicated in Section 2, over 14 days and GS expression was assayed by Western
blotting. (B) GS protein levels are expressed in percentage considering control as
100% and normalized to b-actin densitometric levels. Data are reported as
mean ± S.E.M. of four independent experiments (⁄P < 0.05 versus day 0, #P < 0.05
versus day 4, %P < 0.05 versus day 7, –P < 0.05 versus day 10). (C) Gln levels were
assessed by LC–MS/MS analysis of cellular extracts of differentiating cells and
normalized to total protein levels. Data are reported as mean ± S.E.M. of four
independent experiments (⁄P < 0.05 versus day 0, #P < 0.05 versus day 4, %P < 0.05
versus day 7, –P < 0.05 versus day 10).
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cellular Gln levels were significantly higher at day 10 compared to
day 7 cells but lower that day 4 (Fig. 2C).

These results show that adipocytes express GS in a dexametha-
sone-independent fashion at very late differentiation times and
this is linked to intracellular Gln accumulation.

3.2. GS expression influences the response of adipocytes to
proinflammatory stimuli

Since evidences show that adipocytes are involved in inflamma-
tion processes [30,31], we evaluated if GS expression plays a role in
regulating adipocytes susceptibility to an inflammatory challenge
at different stages of differentiation. 3T3-L1 cells at 4, 7 and
10 days of maturation were treated with LPS in the presence or
absence of MSO. Then cells were tested for proinflammatory medi-
ators such as PGE2 and IL-6, GS expression and intracellular Gln
levels.

Day 10 cells treated with LPS were insensitive to the proinflam-
matory stimulus, as shown by the measured PGE2 (Fig. 3A) and IL-
6 levels (Fig. 3B) similar to untreated cells. However, in the pres-
ence of 1 mM or 5 mM MSO the sensitivity to LPS was rescued,
as cells produced much significantly higher levels of PGE2 and
IL-6 than LPS-treated and untreated cells (Fig. 3A and B). Consis-
tently, LPS-treated adipocytes displayed an increase of GS protein
that was further induced in the presence of MSO (Fig. 3C) com-
pared to untreated cells. A strong increase in intracellular Gln lev-
els was also observed upon LPS stimulation, which were promptly
lowered by co-treatment with MSO (Fig. 3D).

Day 7 adipocytes displayed a slight sensitivity to LPS, since
PGE2 (Fig. 4A) but not IL-6 (Fig. 4B) levels were significantly higher
in LPS-treated compared to untreated cells. MSO did not induce
any further significant increase of PGE2 compared to LPS-treated
cells (Fig. 4A). In line with the slight release of proinflammatory
cytokines, both GS expression (Fig. 4C) and Gln levels (Fig. 4D)
were not significantly different in LPS-treated compared to
untreated cells. In both cases MSO and LPS co-treatment did not
modify GS expression (Fig. 4C) nor Gln levels (Fig. 4D) compared
to day 7 LPS-treated cells.

Day 4 cells displayed very high GS basal levels (Fig. 2B), which is
probably due to the presence of dexamethasone in the differentia-
tion cocktail, known to induce GS expression [11]. Consistently,
basal levels of intracellular Gln were very high (Fig. 2C). LPS-acti-
vated day 4 cells displayed a very high level of sensitivity to LPS,
as shown by the strong increase of PGE2 (Fig. 5A) and IL-6
(Fig. 5B) in LPS-treated compared to untreated cells. MSO treat-
ment further increased the levels of PGE2 (Fig. 5A) of LPS-treated
day 4 cells. GS expression (Fig. 5C) was lower and Gln levels
(Fig. 5D) strongly decreased in LPS-treated compared to untreated
day 4 cells, and both were unaffected by MSO co-treatment
(Fig. 5C-D). These data suggest that sensitivity to proinflammatory
stimuli is inversely correlated to GS expression and intracellular
Gln levels during LPS activation.

No difference in any of the measured parameters was noticed in
differentiating adipocytes treated with 1 or 5 mM MSO alone com-
pared to untreated cells (data not shown).

3.3. Supraphysiological levels of external glutamine influence the
response of adipocytes to proinflammatory stimuli

To confirm that the release of PGE2 and IL-6 of LPS-activated
and MSO treated-day 10 cells (Fig. 3) is related to intracellular
Gln levels, we incubated LPS/MSO treated day 10 cells with very
high Gln levels with the purpose of increasing intracellular levels
to at least those measured in LPS-treated day 10 cells and reverting
the sensitivity of MSO-treated cells to LPS. As shown in Fig. 2C, the
intracellular Gln levels of untreated 10 day cells is 30 nmol/mg. LPS
activation almost doubles this amount (+90%) whereas MSO con-
comitant treatment lowers it to about 77% of that measured in
untreated day 10 cells (see Fig. 3D). Since 5 mM extracellular Gln
is known to double intracellular Gln levels [32], cells were incu-
bated with 10 mM Gln, leading to a more than twofold increase
in the intracellular Gln levels in LPS/MSO treated day 10 cells,
which should be sufficient to revert the sensitivity of MSO-treated
cells to LPS. A similar extracellular Gln concentration is also known
to reduce inflammation in many cell systems [33–37]. After a 48 h
incubation with LPS/MSO in a 10 mM Gln medium, Gln levels were
200% higher than those measured in similarly treated cells in a
medium containing 2 mM Gln, which is the concentration nor-
mally used for cell culture (Fig. 6A). The subsequent intracellular
Gln accumulation strongly impaired cellular ability to produce
PGE2 (Fig. 6B) and IL-6 (Fig. 6C) despite MSO treatment, which
was previously shown to sensitize mature adipocytes to LPS treat-
ment (Fig. 3A and B).

4. Discussion

The data above represent the first investigation on the role of GS
during adipocyte differentiation. GS expression is strongly depen-
dent on the status of adipocyte maturation. The significant poten-



Fig. 3. Response to LPS of adipocytes at day 10 of differentiation. 3T3-L1 cells were grown and differentiated, as indicated in Section 2, over 14 days. LPS challenge was carried
out for 48 h on day 10 differentiating cells pretreated or not with 1 and 5 mM MSO. (A and B) Culture media were assessed for PGE2 (A) and IL-6 (B) by ELISA. Data are
reported as mean ± S.E.M. of four independent experiments (⁄P < 0.05 versus LPS). (C) Cells were pelleted and tested for GS expression, reported in percentage considering
control as 100% and normalized to b-actin densitometric levels. Data are reported as mean ± S.E.M. of four independent experiments (⁄P < 0.05 versus control, #P < 0.05 versus
LPS). (D) Gln levels were assessed by LC–MS/MS analysis, normalized to total protein levels and expressed in percentage considering control as 100%. Data are reported as
mean ± S.E.M. of four independent experiments (⁄P < 0.05 versus control).
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tial of the adipocyte as an inflammatory cell puts GS regulation in
adipocytes at center stage for the pathophysiology of many
diseases.

Challenged adipocytes are able to secrete inflammatory cyto-
kines in a NF-jB-dependent fashion, contributing to the systemic
inflammation and metabolic dysregulation observed in obesity
[20]. Strong evidence correlates inflammation with the extent of
adipocyte maturation. Not yet mature adipocytes are potentially
able to acquire many macrophage-specific features [31]. LPS
induces NF-jB- and MAPK-dependent proinflammatory cytokine/
chemokine expression in preadipocytes but not in mature
adipocytes, leading to suppression of PPARc activity and insulin
responsiveness [30]. Several studies indicate that in vitro subcuta-
neous adipocyte differentiation is negatively associated with obes-
ity [38–40]. The status of subcutaneous adipocyte differentiation is
correlated to metabolic syndrome in obese women, suggesting
that, in the setting of obesity, an increased adipogenic capacity
could be protective for metabolic syndrome and that metabolic
syndrome could be considered a disorder of dysfunctional preadi-
pocytes [41]. However, the mechanism by which this occurs has
never been proposed so far. Our data are contributing to fill this
gap by identifying the mechanism responsible for the transition



Fig. 4. Response to LPS of adipocytes at day 7 of differentiation. 3T3-L1 preadipocytes were grown and differentiated, as indicated in Section 2, over 14 days. LPS challenge
was carried out on day 7 differentiating cells pretreated or not with 1 and 5 mM MSO for 48 h. (A and B) Cells were pelleted and the media was assessed for PGE2 (A) and IL-6
(B) by ELISA. Data are reported as mean ± S.E.M. of four independent experiments (⁄P < 0.05 versus control). (C) Cells were pelleted and tested for GS expression, reported in
percentage considering control as 100% and normalized to b-actin densitometric levels. Data are reported as mean ± S.E.M. of four independent experiments. (D) Gln levels
were assessed by LC–MS/MS analysis, normalized to total protein levels and expressed in percentage considering control as 100%. Data are reported as mean ± S.E.M. of four
independent experiments.
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from a proinflammatory non-completely mature to an inflamma-
tion-insensitive mature adipocytic state, through a undefined-
before function of GS. Since inhibition of GS activity sensitizes dif-
ferentiated adipocytes to proinflammatory stimuli, we infer that
GS expression increases intracellular Gln levels to the critical point
where glutamine is no longer an energy metabolite but probably a
‘signalling’ molecule capable of modulating expression of key
inflammatory mediators ultimately leading to suppression of
inflammation.

The concept of Gln exerting a regulatory role is not novel to the
scientific community, since Gln has been described as a transcrip-
tional modulator in many cases. For instance Gln mediates heat
shock transcription factor 1 (HSF1) [42], argininosuccinate syn-
thase [43] and PPARc [44] genes expression. Furthermore Gln
has been reported to increase turnover of the NF-jB p65 subunit
[45] and induce autophagy [46]. The role of Gln has been always
referred as proinflammatory, as the aminoacid has been widely
recognized as an important metabolic fuel for immune cells [47].
However there are many cases in which treatment with Gln is
associated to reduction of the proinflammatory response. In the
duodenal mucosa of humans Gln decreases the production of IL-
1, IL-6 and IL-8 and increases the production of IL-10 in a concen-
tration dependent fashion [33,35]. In human intestine epithelial
cells Gln reduces the production of proinflammatory cytokines



Fig. 5. Response to LPS of adipocytes at day 4 of differentiation. 3T3-L1 preadipocytes were grown and differentiated, as indicated in Section 2, over 14 days. LPS challenge
was carried out for 48 h on day 4 differentiating cells pretreated or not with 1 and 5 mM MSO. (A and B) Culture media were assessed for PGE2 (A) and IL-6 (B) by ELISA. Data
are reported as mean ± S.E.M. of four independent experiments (⁄P < 0.05 versus control, #P < 0.05 versus LPS). (C) Cells were pelleted and tested for GS expression, reported in
percentage considering control as 100% and normalized to b-actin densitometric levels. Data are reported as mean ± S.E.M. of four independent experiments (⁄P < 0.05 versus
control). (D) Gln levels were assessed by LC–MS/MS analysis, normalized to total protein levels and expressed in percentage considering control as 100%. Data are reported as
mean ± S.E.M. of four independent experiments (⁄P < 0.05 versus control).
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and at 10 mM concentration decreases ubiquitinated IjBa while
increasing free IjBa expression [36]. Strongly supraphysiological
(up to 10 mM), but not physiological (2 mM) Gln concentrations
lead to lower cytokine production and anti-inflammatory effect
in murine peritoneal cell cultures, and this effect is exacerbated
by malnutrition [37]. The ability of Gln to degrade p65 in Caco2
cells is maximal at 10 mM and absent at 2 mM Gln [45]. The
increase in PPAR-c DNA binding activity in IE-6 cells by Gln is
dose-dependent, with 10 mM displaying the maximal effect [44].
In line with these evidences we show that the proinflammatory
effect of GS inhibition is completely abolished by incubating cells
with very high levels (10 mM) of Gln, which evidently disrupt
Gln homeostasis, abnormally increasing the intracellular Gln con-
centration and thus mimicking the mechanism by which intracel-
lular Gln levels raise upon GS activation.

However, the exact role of intracellular Gln as regulator of
inflammation has never been completely understood because its
metabolic role together with the tight control of its intracellular
availability have covered up its regulatory role inside the cell, espe-
cially in cell culture. Indeed intracellular Gln levels are tightly reg-
ulated by the concerted activity of the cellular glutamine
transporters and glutaminase, the mitochondrial glutamine



Fig. 6. PGE2 and IL-6 release in LPS/MSO- treated day 10 adipocytes in the presence of supraphysiological Gln concentrations. Day 10 differentiated-adipocytes, as indicated
in Section 2, were treated with LPS and 1 mM MSO in a medium containing 2 mM or 10 mM Gln for 48 h. (A) Intracellular Gln levels were assessed by LC–MS/MS analysis,
normalized to total protein levels and expressed in percentage considering 2 mM Gln values as 100%. Data are reported as mean ± S.E.M. of four independent experiments
(⁄P < 0.05 versus 2 mM). (B) PGE2 was assessed in the media from both cell samples by ELISA. Data are reported as mean ± S.E.M. of four independent experiments (⁄P < 0.01
versus 2 mM Gln). (C) IL-6 was assessed in the media from both cell samples by ELISA. Data are reported as mean ± S.E.M. of four independent experiments (⁄P < 0.05 versus
2 mM Gln).
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degrading enzyme active during glutamine utilization as a fuel.
Glutamine synthetase and glutaminase appear to be inversely cor-
related. Glucocorticoids upregulate GS expression [11] while
depressing glutaminase activity [48]. The oncogenic transcription
factor c-MYC (MYC) stimulates glutamine catabolism to fuel
growth and proliferation of cancer cells by upregulating glutamin-
ase (GLS) and the glutamine transporter SLC1A5 [49], and is antag-
onized by the FOXO3a transcription factor, mediator of growth
arrest and apoptosis that conversely upregulates GS [46]. The pro-
inflammatory p65 NF-jB subunit activates Gln metabolism
through upregulation of glutaminase [50] but is degraded by high
Gln levels [45].

Our results demonstrate that adipocytes possess a cellular
mechanism capable of controlling the response to a proinflamma-
tory stimulus by raising intracellular Gln. Since GS is also
expressed into macrophages [51,52], it is conceivable that the
same process may also take place in this cell type to modulate
inflammatory response. With this respect, the biological signifi-
cance of the well known free radical-mediated GS inactivation
[14,16,53,54] should be re-considered in the scenario of macro-
phage activation, in which free radical production is prominent.
In particular, GS inactivation due to free radical production could
represent a mechanism that potentiates macrophagic activation.
Our laboratory is now evaluating this possibility. If this mechanism
by which Gln modulates inflammatory response in adipocytes
holds true also for macrophages and immune cells in general, then
we should re-think about the meaning of Gln metabolism with
respect to acute and chronic inflammatory states, metabolic syn-
drome and cancer. In particular, data on Gln supplementation dur-
ing disease states should be reinterpreted in light of the
intracellular availability of the supplemented amino acid. GS is
then a promising therapeutic target for treating diseases in which
inflammation plays a role.
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