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1. Introduction

Introduced in the 1920s by Prüfer [15] and Baer [1], heaps can be understood as affinizations of groups, 
that is, as algebraic structures composed by a set H and a ternary operation [−, −, −] from which, upon 
specifying an element, a group structure on H can be obtained with this element as identity. In a similar 
vein, trusses can be understood as affine versions of rings in which the associative multiplication distributes 
over a ternary abelian heap operation rather than over a binary abelian group one. Most interesting, and 
motivationally important for their study, is the observation that trusses can also be understood as affine 
versions of (two-sided) braces, originally introduced by Rump [16] in the context of the set-theoretic Yang-
Baxter equation.

In their primitive form, (skew) trusses appeared in [5] in order to grasp the nature of the law binding 
two operations together into a skew brace. However, it has been realized soon that trusses and their more 
general analogues (such as pre-trusses, near-trusses and skew trusses) were carrying an intrinsic interest on 
their own and not only for the interactions with ring theory and braces. For a glimpse of the increasing 
attention they are attracting, we refer the reader to the recent publications [7,8,10]. In particular, it deserves 
to be mentioned how the greater flexibility offered by trusses with respect to rings allowed for the extension 
of the celebrated Baer-Kaplansky Theorem [11, Theorem 16.2.5] to all abelian groups, provided that the 
endomorphism rings are replaced by the endomorphism trusses (see [4]).

A systematic study of trusses and their modules, mainly from a ring-theoretical point of view, has been 
initiated in [6] and carried on in [7–9], and it appears to be leading to a successful framework in which both 
ring and brace theoretical modules can be treated on equal footing as different specifications of the same 
algebraic system. We believe that this unification, which allows one to transfer concepts from one to the 
other theory, largely rewards the additional effort required by handling the slightly less familiar notion of a 
truss.

Nevertheless, and despite a seeming similarity between trusses and rings, there are substantial differences 
in the behaviour of modules over trusses compared with modules over rings, which break the apparent 
closeness of the two theories. The origin of these differences can be traced back to the facts that (1) neither 
the algebraic structure of a truss nor – in a more pronounced way (and applicable even to the case of 
unital modules over trusses with identity) – of a module over a truss includes a nullary operation, and (2) 
the transition from a truss to a ring structure by fixing a neutral element is obviously not functorial (as it 
depends on an arbitrary choice of an element). Since no choice of a distinguished element needs – or is advised 
– to be made (and so preserved by homomorphisms), one reasonably expects the category of modules over a 
truss being richer than that of modules over a ring. For instance, empty objects can be considered too and 
hom-sets would not be abelian groups in general, leading immediately to the observation that the category 
of modules over a truss, although sharing many properties with a category of modules over a ring, cannot 
be abelian and cannot admit any natural forgetful functor to an abelian category. The divergence between 
modules over rings and modules over trusses becomes even more evident in the separation of finite products 
from finite coproducts (initially observed in [9]), which has profound consequences for the characterisations 
of projective objects.



T. Brzeziński et al. / Journal of Pure and Applied Algebra 226 (2022) 107091 3
Supported by the aforementioned considerations, the aim of this work is to continue a systematic study 
of modules over trusses, now with special attention devoted to their categorical properties. Our approach 
is based on analysing, comparing and contrasting different categorical properties, which are well-known for 
modules over rings, but completely new for modules over trusses. On the one hand, this sets the stage 
for a unified approach to ring and brace theoretical modules, as suggested (and hoped for) in the initial 
paragraphs. On the other hand, bringing to light and inspecting the monoidal structure of the categories of 
abelian heaps and of modules over trusses opens the way for a better understanding of categories enriched 
over abelian heaps rather than over abelian groups (or vector spaces), for instance, categories enriched over 
affine spaces.

We start this paper with preliminary Section 2 in which we review basic properties of heaps, trusses and 
modules over trusses, including the construction of direct sums and an initial study of relations between 
modules over a ring and modules over the associated truss firstly presented in [9]. The results in Section 2.5, 
where we study some categorical consequences of the unital extensions for trusses, and Section 2.7, where 
we connect epimorphisms of abelian heaps (or modules over a truss) with coequalizers (which we describe 
explicitly) and monomorphisms with equalizers, can be considered as possessing a moderate level of novelty. 
Next we focus on the following topics. We define the tensor product of modules over trusses by its universal 
property and we present an explicit construction that affirms the existence of the tensor product for all 
modules in Theorem 3.4, the first main result of the paper. Then we show in Proposition 3.6 that, just 
as in the case of modules over rings, tensoring with a bimodule over trusses defines a functor between the 
corresponding categories of modules. This functor enjoys properties familiar from ring theory: for example, 
it is the left adjoint functor to the hom-functor. Thus, the tensor product is an associative operation that 
defines a monoidal structure on the category of bimodules over any truss, in particular on the category 
of heaps. Consequently, the axioms of trusses and their modules can be formulated internally within the 
latter: a truss is a semigroup in the category of heaps, a unital truss is a monoid in this category, modules 
over trusses are modules over these internal structures. Finally, again in perfect accord with ring theory, 
the tensor product over trusses is a coequalizer of morphisms induced by actions.

Once the properties of the tensor product are established, we turn our attention to functors between 
categories of modules over trusses. In particular, the second main result of this paper, Theorem 4.3, is an 
analogue for modules over trusses of the celebrated Eilenberg-Watts Theorem: it states that cocontinuous 
heap functors between categories of (unital) modules are necessarily given by tensoring with a (unital) 
bimodule. In the third main result, Theorem 4.5, we derive a Morita-type characterisation of equivalences 
between categories of modules over trusses. Similarly to the case of rings, this characterisation is provided 
by strict Morita contexts consisting of two bimodules and dual basis and evaluation isomorphisms.

As desired (and somehow expected), the so far presented properties of modules over trusses quite faithfully 
mirror those of modules over rings. The paths start to diverge once a closer look is taken at those bimodules 
satisfying the hypotheses of Theorem 4.5 and, more generally, at preservation properties of the hom-functors 
from the category of modules over a truss T to the category of abelian heaps, that is, at the projectivity of 
T -modules. Being a right adjoint functor, HomT (P,−) is continuous, that is, it preserves limits and hence, 
in particular, monomorphisms. However, as in the classical framework, it is not necessarily cocontinuous nor 
even right exact, whence it does not preserve colimits or epimorphisms in general. Keeping Theorem 4.5 in 
mind, we say that a finitely generated T -module P for which HomT (P,−) is right exact is a tiny module or 
a small-projective module. Such a module is equivalently characterised by the existence of a finite dual basis 
or by the identification of HomT (P,−) with the tensor functor ∗P ⊗T −, where ∗P is the dual module; see 
Theorem 5.4. These modules reflect (small) projectivity over rings in the following sense. A finitely generated 
projective module over a ring is tiny over the associated truss; the absorber functor, that sends modules over 
the truss associated to a ring to modules over this ring, applied to a tiny module yields a finitely generated 
projective module; see Proposition 6.14. Alas, despite the new insights into ring and module theory offered 
by the novel paradigm, the extent to which genuine tiny modules over trusses exist (as opposed to modules 
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over rings seen as modules over trusses) is not clear at present. This leads one to consider T -modules P
satisfying the (to be shown, weaker) condition that HomT (P,−) preserves epimorphisms and which we call 
projective, in accordance with the classical theory.

Since the category of modules over a ring is an abelian category, the preservation of epimorphisms 
is sufficient for the exactness of the hom-functor. In contrast, as we already mentioned, the category of 
modules over a truss is enriched over the category of abelian heaps and not over the category of abelian 
groups, hence it is not (and should not be expected to be) an abelian or even pre-additive category in 
the usual sense. Therefore, one reasonably expects that the properties of being tiny or finitely generated 
and projective for modules over trusses do not coincide any longer (see Example 5.8). In spite of the fact 
that the category of modules over a truss is not abelian, some ways of defining an exact sequence are still 
possible and we explore one such possibility in Section 6.1. In contrast with the category of abelian groups 
or modules over a ring, the splitting of an exact sequence gains here two different meanings. The splitting 
of the monomorphism (that is, the existence of a retraction) allows one to identify the middle module as 
the product of the outer modules; see Proposition 6.2. On the other hand, the splitting of the epimorphism 
(that is, the existence of a section) identifies the middle module as the product of the third module with the 
first module but with an induced structure; see Proposition 6.5. In fact, the new module structure realizes 
the first heap as the quotient module of the second by the third. This is the first place where the fact 
that finite products of abelian heaps (or modules over trusses) differ from finite coproducts truly shows 
up. This further prevents one from deducing that the preservation of epimorphisms yields exactness of the 
hom-functor, as mentioned above, and also affects the possibility of characterising projective modules in 
several ways. Although we develop dual bases and show that a module with a dual basis is projective, it is 
not clear whether the projectivity guarantees the existence of a dual basis. In fact, we conclude the paper 
by showing that a non-empty module over a truss is projective if and only if it is a direct factor (not a 
direct summand!) of a free module, with the other factor possessing an absorber; see Theorem 6.18.

2. Heaps, trusses, modules

2.1. Heaps

A heap ([1], [15] or [18]) is a set H together with a ternary operation [− −−] : H ×H ×H −→ H which 
is associative and satisfies the Mal’cev identities, that is,

[[a, b, c], d, e] = [a, b, [c, d, e]] and [a, b, b] = a = [b, b, a] (2.1)

for all a, b, c, d, e ∈ H. A morphism of heaps is a function that preserves ternary operations. A singleton set 
with the (unique) ternary operation is the terminal object in the category of heaps; we denote it by �. The 
empty set with the empty ternary operation is the initial object in this category; we denote it by ∅.

A heap H is said to be abelian if for all a, b, c ∈ H,

[a, b, c] = [c, b, a]. (2.2)

The full subcategory of the category of heaps consisting of abelian heaps is denoted by Ah. Homomorphism 
sets of abelian heaps are themselves abelian heaps with the point-wise operation. Clearly, both � and ∅ are 
abelian heaps and they are the terminal and initial object, respectively, also in Ah.

There is a close relationship between heaps and groups. Given a (abelian) group G, there is an associated 
(abelian) heap H(G) with operation, for all g, h, k ∈ G,

[g, h, k] = gh−1k. (2.3)
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This assignment of the heap H(G) to the group G is a functor from the category of (abelian) groups to that 
of (abelian) heaps. Conversely, a choice of any element e in a non-empty heap H defines the group G(H; e), 
known as the e-retract of H, with neutral element e and composition law

a ·e b = [a, e, b], for all a, b ∈ H. (2.4)

The inverse of a ∈ G(H; e) is a−1 = [e, a, e]. For all e, f, ∈ H, the functions

τfe : G(H; e) −→ G(H; f), a �−→ [a, e, f ], (2.5)

are group isomorphisms. The process of converting heaps into groups and groups into heaps is asymmetric 
on two levels. First, since the conversion of a heap into a group involves a choice of an element, this is not 
functorial, while the opposite operation is given by a functor. The second key difference is best expressed 
by the following formulae

H
(
G
(
H; e

)
, ·e, e

)
= H,

(
G
(
H (G) ; f

)
, ·f , f

)
∼=

(
G
(
H (G) ; e

)
, ·e, e

)
(2.6)

for all heaps H and groups G. For the sake of clarity, notice that if e ∈ G is the neutral element of G, then 
G
(
H (G) ; e

)
= G as groups, and the isomorphism G

(
H (G) ; f

) ∼= G is explicitly given by

G G
(
H (G) ; f

)
g gf .

Equations (2.1) imply that, for all a, b, c, d, e ∈ H,

[[a, b, c], d, e] = [a, [d, c, b], e] = [a, b, [c, d, e]]. (2.7)

Consequently, in the case of an abelian heap, the reduction obtained by any placement of brackets in a 
sequence of elements of H of odd length yields the same result. In this case we write

[a1, . . . , a2n+1]n or simply [a1, . . . , a2n+1], a1, . . . , a2n+1 ∈ H, (2.8)

for the result of applying the (abelian) heap operation n-times in any possible way. Furthermore, in an 
abelian heap one can resort to the following transposition rule (see [6, Lemma 2.3]),

[[a1, a2, a3], [b1, b2, b3], [c1, c2, c3]] = [[a1, b1, c1], [a2, b2, c2], [a3, b3, c3]]. (2.9)

The following lemma formalizes the extension of the transposition rule to an arbitrary family of elements.

Lemma 2.1. In an abelian heap H, [
[ai,j ]2n+1

i=1

]2m+1

j=1
=

[
[ai,j ]2m+1

j=1

]2n+1

i=1
, (2.10)

for all n, m ≥ 0 and for all ai,j ∈ H, i = 1, . . . , 2n + 1, j = 1, . . . , 2m + 1.

Proof. One can show by induction that

[ai, bi, ci]2n+1
i=1 =

[
[ai]2n+1

i=1 , [bi]2n+1
i=1 , [ci]2n+1

i=1

]
, (2.11)

for all n ≥ 0, and then also that
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[
[ai,j ]2n+1

i=1

]2k+1

j=1
=

[
[ai,j ]2k+1

j=1

]2n+1

i=1
,

for all k ≥ 0, in a similar way. �
Directly from equations (2.1) one can also observe that adding or removing an element in two consecutive 

places, whether separated by a bracket or not, does not change the value of the (multiple) heap operation. 
Another important consequence of the definition of a heap is that if for a, b ∈ H there exists c ∈ H such 
that

[a, b, c] = c or [c, a, b] = c, (2.12)

then a = b. In fact, in view of the Mal’cev identities, (2.12) is an equivalent characterisation of equality of 
elements in a heap.

2.2. Sub-heaps and the sub-heap equivalence relation

A subset S of a heap H that is closed under the heap operation is called a sub-heap of H. Every non-empty 
sub-heap S of an abelian heap H defines a congruence relation ∼S on H:

a ∼S b ⇐⇒ ∃s ∈ S, [a, b, s] ∈ S ⇐⇒ ∀s ∈ S, [a, b, s] ∈ S. (2.13)

The equivalence classes of ∼S form an abelian heap with operation induced from that in H. Namely, 
[ā, ̄b, ̄c] = [a, b, c], where x̄ denotes the class of x in H/ ∼S for all x ∈ H. This is known as the quotient heap
and it is denoted by H/S. For any s ∈ S the class of s is equal to S.

If ϕ : H −→ K is a morphism of abelian heaps, then for all e ∈ Im(ϕ) the set

kere(ϕ) := {a ∈ K | ϕ(a) = e} (2.14)

is a sub-heap of K. Different choices of e yield isomorphic sub-heaps and the quotient heap H/ kere(ϕ) does 
not depend on the choice of e. Moreover, the sub-heap relation ∼kere(ϕ) is the same as the kernel relation
defined by: a Ker(ϕ) b if and only if ϕ(a) = ϕ(b) (see [6, Lemma 2.12(3)]). Thus we write ker(ϕ) for kere(ϕ)
and we refer to it as the kernel of ϕ.

The following fact, concerning kernels and heap homomorphisms, has been used more or less implicitly a 
number of times in the development of trusses and their modules. Therefore, we believe it would be useful 
to state and prove it explicitly at least once.

Lemma 2.2. Let ϕ : A −→ B be a morphism of abelian heaps and S ⊆ A be a sub-heap. Denote by 
π : A −→ A/S, a �−→ ā, the canonical projection. If the sub-heap relation ∼S is a sub-relation of the kernel 
relation Ker(ϕ), then there exists a unique morphism of abelian heaps ϕ̃ : A/S −→ B rendering the following 
diagram

A

ϕ

π
A/S

ϕ̃

B

commutative. In particular, if S ⊆ kere(ϕ) for a certain e ∈ B, then the conclusion follows.
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Proof. If A is the empty heap, then there is nothing to prove. Thus, assume that A is not the empty heap, 
which implies that B is non-empty as well.

Uniqueness of ϕ̃ follows from the surjectivity of π. Therefore, let us check that

ϕ̃ : A/S −→ B, ā �−→ ϕ(a),

is a well-defined heap homomorphism. If ā = b̄, then a ∼S b and so a Ker(ϕ) b as well, hence ϕ(a) = ϕ(b). 
Thus, ϕ̃ is independent of the choice of the representative.

Furthermore, if there exists e ∈ B such that S ⊆ kere(ϕ), then ∼S is a sub-relation of Ker(ϕ), since 
Ker(ϕ) = ∼kere(ϕ). Explicitly, since [a, b, s] = s′ ∈ S,

e = ϕ(s′) = ϕ([a, b, s]) = [ϕ(a), ϕ(b), ϕ(s)] = [ϕ(a), ϕ(b), e],

which entails that ϕ(a) = ϕ(b). �
In the case of B = Im(ϕ) and S = Ker(ϕ), the induced map ϕ̃ is an isomorphism that establishes the 

standard first isomorphism theorem for heaps: Im(ϕ) ∼= A/Ker(ϕ).
For any non-empty subset X of a heap H, the sub-heap generated by X, denoted by 〈X〉, is equal to the 

intersection of all sub-heaps containing X. If X is a singleton set, then 〈X〉 = X. If H is an abelian heap 
then 〈X〉 can be described explicitly as

〈X〉 = {[x1, . . . , x2n+1] | n ∈ N, xi ∈ X}. (2.15)

2.3. Trusses and their modules

Recall from [5] or [6] that a truss is an abelian heap T together with an associative binary operation 
(denoted by juxtaposition and called multiplication) that distributes over the heap operation, that is, for 
all s, t, t′, t′′ ∈ T ,

s[t, t′, t′′] = [st, st′, st′′] and [t, t′, t′′]s = [ts, t′s, t′′s]. (2.16)

A truss is said to be unital (or to have identity) if there is a (necessarily unique) neutral element for 
its multiplication. The identity is denoted by 1. If T is a truss then T with opposite multiplication is a 
truss too, called the opposite truss and denoted by T ◦. A fundamental example of a (unital) truss is the 
endomorphism truss of an abelian heap, E(H) = Ah(H, H), which has the pointwise defined heap operation 
and multiplication given by the composition of morphisms. Equivalently, E(H) can be seen as a semi-direct 
product of any (isomorphic) e-retract G(H; e) of H (see (2.4)) with the endomorphism monoid of G(H; e)
(see [6, Proposition 3.44]).

A heap homomorphism between two trusses is a truss homomorphism if it respects multiplications. The 
category of trusses and their morphisms is denoted by Trs. In case of unital trusses we require in addition 
that morphisms preserve identities; the corresponding category is denoted by Trs1. In an obvious way, the 
terminal object � (that is, the singleton set with the unique ternary operation) of the category Ah is also 
the terminal object of the category Trs of trusses and the zero object (both initial and terminal) of the 
category Trs1 of unital ones.

Remark 2.3. Even if a unital truss may be informally described as a unital ring whose underlying group 
structure has no specified neutral element, the last observation of the previous paragraph should already 
convince the reader that truss theory is intrinsically different from ring theory. The category Ring of unital 
rings admits an initial object, the ring of integers Z, and a terminal one, the zero ring 0. It does not admit 
the zero object though (it is self-evident that Z �= 0).
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Let T be a truss. A left T -module is an abelian heap M together with an associative left action λM :
T ×M −→ M of T on M that distributes over the heap operation. The action is denoted on elements by 
t ·m = λM (t, m), with t ∈ T and m ∈ M . Explicitly, the axioms of an action state that, for all t, t′, t′′ ∈ T

and m, m′, m′′ ∈ M ,

t · (t′ ·m) = (tt′) ·m, (2.17a)

[t, t′, t′′] ·m = [t ·m, t′ ·m, t′′ ·m], (2.17b)

t · [m,m′,m′′] = [t ·m, t ·m′, t ·m′′]. (2.17c)

If T is a unital truss and the action satisfies 1 ·m = m, then we say that M is a unital or normalised module. 
Equivalently, a (unital) T -module can be described as an abelian heap M together with a homomorphism 
of (unital) trusses T −→ E(M).

A module homomorphism is a homomorphism of heaps between two modules that also respects the 
actions. As it is customary in ring theory we often refer to homomorphisms of T -modules as to T -linear 
maps or morphisms. The category of left T -modules is denoted by T -mod, that of left unital T -modules 
by T1-mod and the heaps of homomorphisms between modules M and N are denoted by HomT (M,N). A 
left module for the truss T ◦ opposite to T is called a right T -module. The category of right T -modules is 
denoted by mod-T , that of right unital T -modules by mod-T1 and abelian heaps of morphisms are denoted 
by HomT (M,N) (the side being clear from the context). The category of T -T ′-bimodules will be denoted 
by T -mod-T ′ and analogously the category of unital T -T ′-bimodules by T1-mod-T ′

1. The terminal heap �
and the initial heap ∅, with the unique possible actions, are the terminal and the initial object, respectively, 
in T -mod and mod-T . It is remarkable that, since � �= ∅, T -mod and mod-T do not have zero object.

The category of left (right or two-sided) T -modules is enriched over the category (Ah,×, �) of abelian 
heaps. In particular, HomT (M,M) ⊆ Ah(M, M) is a unital sub-truss of the unital endomorphism truss 
E(M). We denote it by ET (M). We say that a functor F : T -mod −→ T ′-mod is a heap functor if it induces 
a heap homomorphism between the hom-sets, that is, if for all M, N ∈ T -mod, the induced function

FM,N : HomT (M,N) −→ HomT ′ (F (M), F (N)), ϕ �−→ F (ϕ), (2.18)

is a homomorphism of abelian heaps. Since functors preserve compositions and identities, FM,M :
ET (M) −→ ET ′(F (M)) is a morphism of unital trusses for all M ∈ T -mod.

An element e of a left T -module M is called an absorber provided that

t · e = e, for all t ∈ T . (2.19)

If e is an absorber, then the action (left) distributes over the abelian group operation on M associated to e
as in (2.4). The set of all absorbers in M is denoted by Abs(M) = {m ∈ M | r ·m = m, ∀ r ∈ R}.

Given a left (respectively, right) T -module M and an element e ∈ M , the e-induced action of T on M is 
defined for all t ∈ T, m ∈ M , by

t ·e m := [t ·m, t · e, e], (respectively, m ·e t := [m · t, e · t, e]). (2.20)

M is a left (respectively, right) T -module with action (2.20) in which e is an absorber. We refer to M with 
this action as to an induced module and denote it by M (e). Different choices of e yield isomorphic induced 
modules and an iteration of an induced action gives an induced action (see [6, Lemma 4.29]).

A sub-heap N of a left T -module M is called a submodule if it is closed under the T -action. A sub-heap 
N is called an induced submodule if there exists e ∈ N such that N is a submodule of the induced module 
M (e). This implies (in fact is equivalent to) that N is a submodule of any M (n), n ∈ N . If N is a sub-heap 
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of a left T -module M , then M/N is a T -module such that the canonical epimorphism M −→ M/N is a 
T -module homomorphism if and only if N is an induced submodule of M (see [6, Proposition 4.32(2)]). A 
kernel of a module homomorphism as defined by (2.14) is an induced submodule of the domain. Furthermore, 
any T -module homomorphism ϕ : M −→ M ′ factorizes uniquely as a T -linear map through the canonical 
epimorphism M −→ M/N for any induced submodule N of M contained in kere(ϕ) as in Lemma 2.2. In 
particular, for all T -module morphisms with domain M , this yields an analogue of the first isomorphism 
theorem for T -modules: Im(ϕ) ∼= M/Ker(ϕ).

If N is a submodule of M , then it is automatically an induced submodule (with respect to any of its 
elements). In that case N is an absorber of the corresponding quotient T -module M/N and all quotient 
modules with absorbers can be identified as those arising as a quotient by submodules. The image of a 
module homomorphism is a submodule of the codomain.

Any abelian heap H is a module over the terminal truss � with the action given by any endomorphism 
of H. Obviously, it is a unital module over � in a unique way with the identity action. Thus abelian heaps 
can be identified with unital modules over �. A morphism of trusses ϕ : T −→ S induces a change of scalars 
functor S-mod −→ T -mod: an S-module M is a T -module with action t · m = ϕ(t) · m. In particular, 
any abelian heap H is a module over any truss T through the action of � on H and the unique morphism 
T −→ �.

2.4. Products and direct sums of modules

Given left T -modules M and N their product M×N has the left T -module structure defined component-
wise, that is,

[(m,n), (m′, n′), (m′′, n′′)] = ([m,m′,m′′], [n, n′, n′′]) , t · (m,n) = (t ·m, t · n),

for all t ∈ T , m, m′, m′′ ∈ M and n, n′, n′′ ∈ N .
The definition of the coproduct or direct sum of T -modules has been presented in [9, §3] and it is based 

on the coproduct of abelian heaps discussed exhaustively therein. We summarise this definition presently.
Let X be a set. The free abelian heap on X, denoted A(X), is constructed in two steps. First one 

constructs the free heap H(X) by considering all words of odd length from the alphabet X in which no two 
consecutive letters are the same. These are referred to as reduced words. The heap operation on words w1, 
w2, w3 is obtained by concatenation of w1w

◦
2w3, where w◦

2 means w2 written backwards, and removal of 
all pairs of identical neighbours. In this way a reduced word of odd length is obtained again and one can 
check that this procedure defines a heap operation and completes the construction of the free heap H(X). 
The second step involves the symmetrisation of the words in H(X). A symmetric word of odd length in the 
alphabet X is defined, for all x1, . . . xn+1, y1, . . . , yn ∈ X, as the set

w =:x1y1x2 . . . ynxn+1: = {xσ(1)yσ̂(1)xσ(2) . . . yσ̂(n)xσ(n+1) | σ ∈ Sn+1, σ̂ ∈ Sn},

where Sk denotes the symmetric group. The word w is said to be reduced if all the words included in w are 
reduced. One can easily check that all symmetric words are equivalence classes of a congruence relation on 
H(X) and thus they form a heap A(X) which is abelian, by the symmetrisation. Due to the definition of 
the heap structure on A(X), we will often denote a symmetric word w =:x1y1x2 . . . ynxn+1: by

[x1, y1, x2, . . . , yn, xn+1] .

The direct sum or coproduct of abelian heaps M and N , denoted by M �N , is the quotient of the free 
abelian heap A(M �N) on the disjoint union M �N by the sub-heap generated by
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[[m,m′,m′′], [m,m′,m′′]M , e], [[n, n′, n′′], [n, n′, n′′]N , e],

where m, m′, m′′ ∈ M , n, n′, n′′ ∈ N , [− −−], [− −−]M , [− −−]N are the ternary operations in A(M�N), M
and N , respectively, and e is any fixed element of A(M �N). In other words, to obtain M �N we consider 
all words in A(M � N) and apply ternary operations in M (respectively N) wherever there are three 
consecutive elements in M (respectively N) in any representative of symmetric words. It has been shown 
in [9, Proposition 3.6] that any representative can be reduced to one of the six forms m, n, mnn′, mm′n, 
m1n1m2 . . . nkmk+1, n1m1n2 . . .mknk+1, with m �= m′, mi ∈ M and n �= n′, ni ∈ N . These representations 
can be simplified even further, once two elements eM ∈ M and eN ∈ N are fixed, giving m, n, mneN , 
nmeM , mneMeN . . . eNeM , nmeNeM . . . eMeN . Colloquially, one refers to the alternating sequences of eM
and eN appearing is such representations as to tails. By using this latter representation, one can show an 
important isomorphism of heaps which relates direct sums of heaps with direct sums of their retracts:

M �N ∼= H (G (M ; eM ) ⊕ G (N ; eN ) ⊕ Z) , (2.21)

in which tails are sent to integers; see [9, Proposition 3.9]. An immediate consequence of this isomorphism 
is that the direct sum of two non-empty abelian heaps is always an infinite abelian heap.

If M and N are left T -modules then the direct sum of heaps M � N is a left T -module with action 
defined letter-wise on the (representative) reduced words. Its structure maps are the two T -linear morphisms 
ιM : M −→ M�N, m �−→ m, and ιN : N −→ M�N, n �−→ n. The module structure induced on the groups 
on the right-hand side of isomorphism (2.21) is rather intricate, unless both eM and eN are absorbers. In 
the latter case, it assumes the simple form t · (m, n, z) = (t ·m, t · n, z) for all t ∈ T , m ∈ M , n ∈ N and 
z ∈ Z.

For a (unital) truss T and for every element x of a set X, one can construct a (unital) left T -module Tx
generated by x. Namely,

Tx := {tx | t ∈ T}, [tx, t′x, t′′x] := [t, t′, t′′]x, t · (t′x) = (tt′)x.

The map T −→ Tx, t �−→ tx, is an obvious isomorphism of modules. As explained in [9, Section 4], for T a 
unital truss the direct sum module

T X := �
x∈X

Tx,

together with the function ιX : X −→ T X , x �−→ 1x, is a free object in the category of unital left T -
modules. Consequently, a unital left T -module M is said to be a free unital module generated by a set X if 
it is isomorphic to T X .

2.5. From trusses to unital trusses

Recall from [9, Proposition 3.12] that the direct sum of heaps allows us to perform an analogue for trusses 
of the Dorroh’s extension of a ring. Namely, for a truss T the direct sum of abelian heaps Tu := T � �, with 
multiplication uniquely determined by relations

∗ · ∗ = ∗, ∗ · t = t = t · ∗ and t · t′ = tt′ (2.22)

for all t, t′ ∈ T , is a unital truss, called the unital extension of T . It satisfies the following universal property.

Proposition 2.4. Let T be a truss. The heap homomorphism ιT : T −→ Tu, t �−→ t, is a morphism of trusses. 
Furthermore, if S is a unital truss, then for every morphism of trusses f : T −→ S there exists a unique 
morphism of unital trusses f̃ : Tu −→ S, such that f̃ ◦ ιT = f .
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Proof. Since ιT (t) = t for all t ∈ T , the right-hand side relation in (2.22) is exactly the multiplicativity 
of ιT . Assume that S is a unital truss and that f : T −→ S is a truss homomorphism. If we consider the 
heap map η : � −→ S, ∗ �−→ 1S , then there exists a unique morphism of abelian heaps f̃ : T � � −→ S

such that f̃ ◦ ιT = f and f̃ ◦ ι� = η. We claim that f̃ is a morphism of unital trusses. Unitality follows by 
definition, since f̃(∗) = η(∗) = 1S . To check multiplicativity pick two symmetric words :a1a2a3 . . . a2ka2k+1:
and :b1b2b3 . . . b2hb2h+1: in T � �, where the symbols ai, bj belong to T � � for all i, j. Since we have that

f̃
(

:a1a2a3 . . . a2ka2k+1: · :b1b2b3 . . . b2hb2h+1:
)

=

= f̃
(

:(a1 · b1)(a1 · b2) . . . (a1 · b2h+1)(a2 · b1) . . . (ai · bj) . . . (a2k+1 · b2h+1):
)

=
[
f̃(a1 · b1), f̃(a1 · b2), · · · , f̃(a1 · b2h+1), f̃(a2 · b1), · · · , f̃(ai · bj), · · · , f̃(a2k+1 · b2h+1)

]
,

it is enough to check that f̃ is multiplicative on a product a · b where a, b ∈ T � �. Now,

f̃(a · b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f̃(∗ · ∗) = f̃(∗) = 1S = 1S · 1S = f̃(∗) · f̃(∗) a, b ∈ �

f̃(t · ∗) = f̃(t) = f̃(t) · 1S = f̃(t) · f̃(∗) a ∈ T, b ∈ �

f̃(∗ · t) = f̃(t) = 1S · f̃(t) = f̃(∗) · f̃(t) a ∈ �, b ∈ T

f̃(t · t′) = f̃(tt′) = f(tt′) = f(t) · f(t′) = f̃(t) · f̃(t′) a, b ∈ T

,

that is, f̃(a · b) = f̃(a) · f̃(b) for all a, b ∈ T � � and the proof is complete. �
Theorem 2.5. Let T be a truss. Any T -module M is naturally a unital Tu-module. This induces a functor 
U : T -mod −→ (Tu)1-mod which is the inverse of the restriction of scalars functor ι∗T : (Tu)1-mod −→
T -mod along the truss homomorphism ιT : T → Tu. In particular, we have an isomorphism of categories 
(Tu)1-mod ∼= T -mod.

Proof. Observe that to equip an abelian heap M with the structure of a T -module is the same as to define 
a truss homomorphism ρM : T −→ E(M). Since E(M) is unital with unit idM , ρ extends uniquely to a 
unital truss homomorphism �M : Tu −→ E(M) by Proposition 2.4, making of M a unital Tu-module. Let 
f : M → N be a morphism of T -modules. To check that it is Tu-linear as well, observe that f is Tu-linear 
if and only if the following diagram commutes

M
�̌M

f

Ah (Tu,M)

Ah(Tu,f)

N
�̌N

Ah (Tu, N) ,

where �̌M (m) : z �−→ �M (z)(m) and Ah (Tu, f) : g �−→ f ◦ g. Therefore, we are led to check that, for all 
m ∈ M ,

f ◦ �̌M (m) = �̌N (f(m)) (2.23)

as heap homomorphisms from Tu to N . However, since
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(f ◦ �̌M (m) ◦ ι�) (∗) = f (�̌M (m)(ι�(∗))) = f (�M (ι�(∗))(m)) = f(m)

= �N (ι�(∗))(f(m)) = (�̌N (f(m)) ◦ ι�) (∗) and

(f ◦ �̌M (m) ◦ ιT ) (ιT (t)) = f (�̌M (m)(ιT (t))) = f (�M (ιT (t))(m)) = f (ρM (t)(m))

= ρN (t) (f(m)) = �N (ιT (t))(f(m)) = (�̌N (f(m)) ◦ ιT ) (t),

for all t ∈ T , it follows by the universal property of the direct sum that (2.23) holds. Summing up, there is 
a fully faithful functor

U : T -mod −→ (Tu)1-mod,
{
M �−→ M

f �−→ f
.

Now, if (M, ρM ) is a T -module and we consider its unital extension (U(M), �M ), then the restriction of 
scalars functor ι∗T endows U(M) with the T -module structure given by the composition

T
ιT−→ Tu

�M−−→ E(M)

which coincides with ρM by definition of �M . The other way around, if (N, �N ) is a unital Tu-module and 
we construct the unital extension U(ι∗T (N)) of the T -module (ι∗T (N), ρN ) obtained by restriction of scalars 
along ιT , then this is given by the unique unital extension of ρN = �N ◦ ιT and the latter has to coincide 
with �N by uniqueness. �

As a matter of notation, we will often omit to specify the functors ι∗T and U , unless their presence would 
increase the clarity of the exposition.

2.6. Modules over a ring and modules over its truss

Recall from [9, §2.2 and §4] that if R is a (unital) ring then we can consider its associated (unital) truss 
T(R) = (H(R, +), ·). Moreover, any (unital) R-module M gives rise, in the same way, to a (unital) T(R)-
module T(M) = (H(M, +), ·), whose underlying abelian heap structure is induced by the abelian group one. 
This assignment gives rise to a functor

T : R-mod −→ T(R)-mod, (M,+, ·) �−→ (H(M,+), ·), f �−→ f,

which admits a left adjoint

(−)Abs : T(R)-mod −→ R-mod, (M, [-, -, -], ·) �−→ (G (M/Abs(M); Abs(M)) , ·) .

In view of [9, Lemma 4.6(5)], the counit εN : T(N)Abs −→ N, ̄n �−→ n, of this adjunction is always a natural 
isomorphism and hence T is fully faithful (see [13, Theorem IV.3.1]). The unit ηM : M −→ T(MAbs), m �−→
m̄, is simply the canonical projection onto the quotient M/Abs(M), for all M in T(R)-mod.

2.7. Epimorphisms, monomorphisms and coequalizers of T -modules

Let T be a truss. It will be useful in the forthcoming sections to know that epimorphisms (respectively, 
monomorphisms) of T -modules are always effective, that is, that they are coequalizers (respectively, equal-
izers) of their kernel pairs (respectively, cokernel pairs), and that they coincide with surjective (respectively, 
injective) T -linear maps.

To this aim, recall that if f : M −→ N is a morphism of T -modules, its kernel pair (respectively, cokernel 
pair) is the pullback (respectively, pushout) of the pair (f, f).
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Proposition 2.6. Every epimorphism of T -modules is surjective.

Proof. Assume that M and N are T -modules. If both M and N are empty T -modules, the empty map 
is an epimorphism (by uniqueness) and it is also surjective (trivially). If only N is the empty module, 
then we cannot have morphisms from a non-empty to the empty module. If only M is the empty module, 
then the empty map to N is not an epimorphism. Summing up, we may assume that both M and N are 
non-empty and that ϕ : M −→ N is an epimorphism of T -modules. Consider the T -submodule Im(ϕ) ⊆ N

and the canonical projection π : N −→ N/Im(ϕ). For p ∈ Im(ϕ), consider also the constant morphism 
τp̄ : N −→ N/Im(ϕ), n �−→ p̄ := π(p).

For every m ∈ M , ϕ(m) ∼Im(ϕ) p and hence π(ϕ(m)) = π(p) = p̄ = τp̄(ϕ(m)). Since ϕ is an epimorphism, 
π = τp̄ and hence every n ∈ N satisfies n ∼Im(ϕ) p (that is, for all ϕ(m) ∈ Im(ϕ), [n, p, ϕ(m)] ∈ Im(ϕ)). In 
particular, n = [n, p, p] ∈ Im(ϕ) for all n ∈ N and so ϕ is surjective. �
Proposition 2.7. Every epimorphism of T -modules is the coequalizer of its kernel pair.

Proof. Assume that π : M −→ P is an epimorphism of T -modules. The kernel relation together with its 
coordinate projections

Ker(π) = {(m1,m2) ∈ M ×M | π(m1) = π(m2)} ⊆ M ×M,

pi : Ker(π) −→ M, (m1,m2) �−→ mi, i = 1, 2,

yields the following fork of T -modules

Ker(π)
p1

p2
M

π
P.

Assume that f : M −→ N is any other T -module map such that f ◦ p1 = f ◦ p2 and consider f̄ : P −→ N

given by f̄(π(m)) := f(m). The map f̄ is well-defined because if π(m1) = π(m2), then (m1, m2) ∈ Ker(π)
and hence f(m1) = (f ◦ p1)(m1, m2) = (f ◦ p2)(m1, m2) = f(m2). It is a morphism of T -modules because 
π and f are T -linear maps. It is a unique morphism such that f̄ ◦ π = f because π is an epimorphism. 
Thus, (P, π) satisfies the universal property of the coequalizer of the pair (p1, p2). To conclude, observe that 
(Ker(π), p1, p2) is the kernel pair of f . �
Proposition 2.8. Every monomorphism of T -modules is injective.

Proof. Let f : M −→ N be a monomorphism of T -modules. As before, there is a fork diagram of T -modules

Ker(f)
p1

p2
M

f
N.

The fact that f is a monomorphism implies that p1 = p2 and hence (m, n) ∈ Ker(f) if and only if m = n, 
which in turn entails that f(m) = f(n) if and only if m = n. �
Lemma 2.9. Let M, N be T -modules, M�N their coproduct in T -mod and ιM : M −→ M �N , ιN : N −→
M �N the structure maps of the coproduct. Then ιM(m) �= ιN (n) for all m ∈ M , n ∈ N .

Proof. Endow the abelian heap H(Z2) with the trivial T -module structure: t ·x = x for all t ∈ T and x ∈ Z2. 
The assignments
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ϕM : M −→ H(Z2), m �−→ 0, and ϕN : N −→ H(Z2), n �−→ 1,

are well-defined T -linear morphisms and hence they induce, by the universal property of the coproduct, a 
unique T -linear map Φ : M �N −→ H(Z2) such that Φ ◦ ιM = ϕM and Φ ◦ ιN = ϕN . If we suppose that 
there exist m ∈ M and n ∈ N such that ιM (m) = ιN (n), then

0 = ϕM (m) = Φ(ιM (m)) = Φ(ιN (n)) = ϕN (n) = 1,

which is a contradiction. �
Proposition 2.10. Every monomorphism of T -modules is the equalizer of its cokernel pair.

Proof. Since the category of T -modules is cocomplete (by [2, Theorem 9.3.8], for example), it is enough to 
prove that every monomorphism is regular, that is, that it is the equalizer of some pair of arrows.

Assume that M and N are T -modules. If M is the empty T -module, then the empty map is a monomor-
phism (because there are no maps from a non-empty to the empty module) and it is also the equalizer of 
the pair

N
ιN

∗
N � �,

� ι�

by Lemma 2.9. If M is non-empty, then N cannot be the empty module, since we cannot have morphisms 
from a non-empty to the empty module. Summing up, we may assume that both M and N are non-empty 
and that f : M −→ N is a monomorphism of T -modules. Consider then e′ ∈ M , N ⊇ Im(f) � e = f(e′), 
the quotient T -module N/Im(f), the absorber e = Im(f) therein and the canonical projection π : N −→
N/Im(f). Then there is a fork diagram of T -modules

M
f

N
π

τe
N/Im(f), (2.24)

where τe denotes the T -linear morphism sending everything to e. Let us check that (M, f) is the equalizer 
of the pair (π, τe). If P is another T -module and g : P −→ N is a T -linear map such that π(g(p)) = e for 
all p ∈ P , then this implies that there exists f(m) ∈ Im(f) such that

[g(p), f(e′), f(m)] = [g(p), e, f(m)] ∈ Im(f).

In particular,

g(p) = [[g(p), f(e′), f(m)] , f(m), f(e′)] ∈ Im(f),

and hence there exists a (necessarily unique, in view of Proposition 2.8) element mp ∈ M such that g(p) =
f(mp). Since, in addition,

f(mt·p) = g(t · p) = t · g(p) = t · f(mp) = f(t ·mp),

for all p ∈ P and t ∈ T , the assignment h : P −→ M, p �−→ mp, is a T -linear morphism such that f ◦ h = g

and it is unique satisfying this property, because f is injective. Summing up, (M, f) is indeed the equalizer 
of (2.24), as claimed. �
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Finally, since equalizers of abelian heaps and T -modules are simply equalizers in Set endowed with the 
sub-heap or T -submodule structure, let us describe explicitly a construction of coequalizers in the categories 
of abelian heaps and T -modules.

Lemma 2.11. Given a diagram

A
ϕ

ψ

B (2.25)

in Ah and any e ∈ B, define

N(e) = {[ϕ(a), ψ(a), e] | a ∈ A}. (2.26)

Then

(1) The set N(e) is a sub-heap of B and, for different choices of e, the heaps N(e) are mutually isomorphic.
(2) Let N(e) := 〈N(e), e〉 be the sub-heap of B generated by N(e) and e. The quotient heap C(e) = B/N(e)

is the coequalizer of (2.25).
(3) If (2.25) is a diagram in T -mod, where T is a truss, then C(e) is its coequalizer in T -mod.

Proof. (1) That N(e) is a sub-heap of B follows by (2.9) and the fact that ϕ, ψ are morphisms of heaps. 
Let f ∈ B. The isomorphism between N(e) and N(f) is given by τfe of (2.5).

(2) Let us check that the canonical projection π : B −→ C(e) = B/N(e) coequalizes ϕ and ψ. Since 
e ∈ N(e) and [ϕ(a), ψ(a), e] ∈ N(e), ϕ(a) ∼N(e) ψ(a), and hence π(ϕ(a)) = π(ψ(a)). Therefore, there is the 
required fork

A
ϕ

ψ

B
π

C(e).

Now, let us assume that there exists another pair (h, H) such that h : B → H and h ◦ ϕ = h ◦ ψ. Observe 
that, for all a ∈ A,

h([ϕ(a), ψ(a), e]) = [h(ϕ(a)), h(ψ(a)), h(e)] = h(e),

where the second equality follows from h ◦ϕ = h ◦ψ and Mal’cev identity. Thus, h(x) = h(e) for all x ∈ N(e)
and so N(e) ⊆ kerh(e)(h). In view of Lemma 2.2, there is a unique heap homomorphism f : C(e) → H given 
by f(π(b)) = h(b) for all b ∈ B.

(3) To prove that C(e) is a coequalizer in the category of modules it is enough to prove that N(e) is an 
induced T -submodule. Since

t ·e [ϕ(a), ψ(a), e] = [t · [ϕ(a), ψ(a), e], t · e, e] = [[t · ϕ(a), t · ψ(a), t · e], t · e, e]
= [t · ϕ(a), t · ψ(a), [t · e, t · e, e]] = [t · ϕ(a), t · ψ(a), e]

= [ϕ(ta), ψ(ta), e] ∈ N(e)

and t ·ee = e, it follows that C(e) is a well-defined quotient module and the proof that C(e) is the coequalizer 
is analogous to (2). �
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3. Tensor product of modules over a truss

In this section we construct the tensor product between modules over a truss and study its categorical 
properties.

3.1. The definition and construction of the tensor product

The aim of this section is to define and show the existence of a tensor product of modules over a truss.

Definition 3.1. Let H, M, N be abelian heaps. A function ϕ : M ×N −→ H is said to be bilinear if, for all 
m, m′, m′′ ∈ M and n, n′, n′′ ∈ N ,

ϕ([m,m′,m′′], n) = [ϕ(m,n), ϕ(m′, n), ϕ(m′′, n)], (3.1a)

ϕ(m, [n, n′, n′′]) = [ϕ(m,n), ϕ(m,n′), ϕ(m,n′′)]. (3.1b)

In addition, if T is a truss, M is a right T -module and N is a left T -module, then ϕ is said to be T -balanced
if, for all m ∈ M , n ∈ N , t ∈ T ,

ϕ(m · t, n) = ϕ(m, t · n). (3.1c)

Remark 3.2. We note in passing that, due to the Mal’cev conditions, any heap homomorphism ϕ : M×N −→
H satisfies conditions (3.1a)–(3.1b) in Definition 3.1 (but, of course, a function satisfying (3.1a)–(3.1b) needs 
not be a homomorphism of heaps).

The definition of the tensor product of modules over a truss is given by the following universal property, 
reminiscent of that for the tensor product of modules over a ring.

Definition 3.3. Let M be a right T -module and N be a left T -module. Then a tensor product (of M and 
N over T ) is a pair (M ⊗T N, ϕ) consisting of an abelian heap M ⊗T N and a T -balanced bilinear map 
ϕ : M × N −→ M ⊗T N such that for any heap H and any T -balanced bilinear map f : M × N −→ H

there exists a unique heap morphism f̂ rendering commutative the following diagram

M ×N
ϕ

f

M ⊗T N

∃! f̂
H.

As for tensor products of modules over rings, if a tensor product of M and N over T exists, then it is 
unique up to a unique isomorphism. Thus, we will speak about the tensor product M ⊗T N , often omitting 
the structure map ϕ as well.

Since any abelian heap is a unital module over the terminal truss � in a unique way, one can consider 
tensor product of heaps. In this case the balancing condition (3.1c) is tautologically satisfied. The tensor 
product of heaps M and N viewed as unital �-modules is denoted by M ⊗N . Observe that, differently from 
what happens for modules over a ring, the fact that idM×N is bilinear entails that there exists a unique 
morphism of heaps σ : M ⊗N → M ×N such that σ ◦ ϕ = idM×N (see Remark 3.2).

Next we give an explicit construction of tensor products, thus establishing their existence.

Theorem 3.4. Tensor product of T -modules exists.
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Proof. Let M be a right T -module and N be a left T -module. If M or N is empty, then M ⊗T N is empty. 
Otherwise, let us consider the free abelian heap A(M ×N). Choose an arbitrary element e = (e1, e2) of the 
free heap A(M ×N) and let ST (e) be the sub-heap of A(M ×N) generated by elements of the form:[(

[m,m′,m′′]M , n
)
,
[
(m,n), (m′, n), (m′′, n)

]
A, e

]
A
, (3.2a)[(

m, [n, n′, n′′]N
)
,
[
(m,n), (m,n′), (m,n′′)

]
A, e

]
A
, (3.2b)[

(m · t, n), (m, t · n), e
]
A, (3.2c)

for all m, m′, m′′ ∈ M , n, n′, n′′ ∈ N and t ∈ T . Note that the transposition rule (2.9) together with the 
idempotent property of a heap operation implies that every element of ST (e) has the form [a, b, e], where 
a, b ∈ A(M × N). Also note that e ∈ ST (e). For an abelian heap H, consider a T -balanced bilinear map 
f : M ×N −→ H. By treating f as a function and by using the universal property of the free heap, we can 
construct the following commutative diagram:

M ×N
ιM×N

f

A(M ×N)

∃! f̂

πST (e)
A(M ×N)/ST (e)

∃! ˆ̂
f

H,

(3.3)

where ιM×N is the canonical monomorphism and πST (e) is the canonical epimorphism. The left triangle is 
given by the free heap property. The existence of the map ˆ̂

f is guaranteed provided that f̂ respects the 
sub-heap relation ∼ST (e). By using the definition of f̂ and that f is a T -balanced bilinear map, we find

f̂

([(
m, [n, n′, n′′]N

)
,
[
(m,n), (m,n′), (m,n′′)

]
A, e

]
A

)
=

[
f
(
m, [n, n′, n′′]N

)
,
[
f(m,n), f(m,n′), f(m,n′′)

]
H
, f(e)

]
H

(3.1b)=
[
f
(
m, [n, n′, n′′]N

)
, f

(
m, [n, n′, n′′]N

)
, f(e)

]
H

= f(e) = f̂(e).

By symmetric arguments,

f̂

([(
[m,m′,m′′]M , n

)
,
[
(m,n), (m′, n), (m′′, n)

]
A, e

]
A

)
= f̂(e).

Finally,

f̂
(
[(m · t, n), (m, t · n), e]A

)
=

[
f(m · t, n), f(m, t · n), f(e)

]
H

=
[
f(m · t, n), f(m · t, n), f(e)

]
= f(e) = f̂(e).

This means that ST (e) ⊂ kerf̂(e)(f̂) and therefore, in view of Lemma 2.2, f̂ respects the sub-heap relation 

∼ST (e) as required. Consequently, the heap homomorphism ˆ̂
f exists.

Define:

ϕ :=
(
πST (e) ◦ ιM×N

)
: M ×N −→ A(M ×N)/ST (e), (m,n) �−→ (m,n).

Since e ∈ ST (e), by definition of ∼ST (e) and of [−, −, −] on A(M ×N)/ST (e),
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(
[m,m′,m′′]M , n

)
=

[
(m,n), (m′, n), (m′′, n)

]
A =

[
(m,n), (m′, n), (m′′, n)

]
,(

m, [n, n′, n′′]N
)

=
[
(m,n), (m,n′), (m,n′′)

]
A =

[
(m,n), (m,n′), (m,n′′)

]
,

and (m · t, n) = (m, t · n)

hold in A(M ×N)/ST (e), that is to say, ϕ is a T -balanced bilinear map. It remains to prove that the map 
ˆ̂
f constructed in diagram (3.3) is a unique homomorphism such that f = ˆ̂

f ◦ πST (e) ◦ ιM×N . Suppose that 
there exists another homomorphism of heaps h : A(M ×N)/ST (e) −→ H such that f = h ◦ πST (e) ◦ ιM×N . 
Then

h ◦ πST (e) ◦ ιM×N = ˆ̂
f ◦ πST (e) ◦ ιM×N ,

and, since both h ◦ πST (e) and ˆ̂
f ◦ πST (e) are homomorphisms of heaps, the universal property of the free 

(abelian) heap implies that

h ◦ πST (e) = ˆ̂
f ◦ πST (e).

Since πST (e) is an epimorphism, it follows that h = ˆ̂
f and the uniqueness is established. Therefore, the pair 

(A(M ×N)/ST (e), ϕ) is the tensor product of M and N . �
We note in passing that, up to isomorphism, the construction of the tensor product does not depend on 

the chosen element e. This independence can be seen as a consequence of the universal property of tensor 
products, or it can be observed directly by employing the swap automorphism (2.5).

Following the ring-theoretic conventions we define, for all m ∈ M and n ∈ N ,

m⊗ n := (m,n) =
(
πST (e) ◦ ιM×N

)
(m,n) ∈ M ⊗T N (3.4)

and we refer to each of m ⊗ n as to a simple tensor. As a rule, we do not decorate ⊗ with a subscript T , 
but occasionally it might be useful to indicate an element e chosen in the definition of ST (e), in which case 
we write m ⊗e n. With this terminology and notation at hand, M ⊗T N can be understood as an abelian 
heap freely generated by simple tensors subject to relations:

[m,m′,m′′] ⊗ n = [m⊗ n,m′ ⊗ n,m′′ ⊗ n], for all m,m′,m′′ ∈ M , n ∈ N, (3.5a)

m⊗ [n, n′, n′′] = [m⊗ n,m⊗ n′,m⊗ n′′], for all m ∈ M , n, n′, n′′ ∈ N, (3.5b)

m · t⊗ n = m⊗ t · n, for all m ∈ M , n ∈ N , t ∈ T . (3.5c)

We conclude the subsection with a technical result that will be of significant importance in §4.

Proposition 3.5. Let T be a truss and Tu be its unital extension as in §2.5. Then for every right T -module 
M , M ⊗T Tu

∼= M ∼= Hom T (Tu,M) as right T -modules, where Tu has the T -T -bimodule structure induced 
by the truss homomorphism ιT : T → Tu. Moreover, for M a right T -module and N a left T -module

m · z ⊗T n = m⊗T z · n,

for all m ∈ M , n ∈ N , z ∈ Tu.

Proof. Consider the assignment

α : M −→ M ⊗T Tu, m �−→ m⊗T ∗.
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This is a heap homomorphism in view of (3.5a) and it is T -linear because for all t ∈ T ,

α(m · t) = m · t⊗T ∗ (3.5c)= m⊗T ιT (t) · ∗ (2.22)= m⊗T ∗ · ιT (t) = (m⊗T ∗) · t.

The other way around, recall that the underlying abelian heap of U(M) is M itself, which now is considered 
as a unital Tu-module via the bilinear morphism � : M × Tu −→ M uniquely determined by{

(m, t) �−→ m · t, t ∈ T ,

(m, ∗) �−→ m.

The associativity of the T -action entails that � is also T -balanced, whence it factors through the tensor 
product over T giving

β : M ⊗T Tu −→ M.

A straightforward check shows that α and β are inverses of each other. Concerning the second isomorphism, 
consider the right T -linear morphism

Hom T (Tu,M) −→ M, f �−→ f(∗),

and the assignment M −→ Hom T (Tu, M), sending every m ∈ M to the right T -linear morphism uniquely 
determined by {

t �−→ m · t, t ∈ T,

∗ �−→ m.

Again, a straightforward check shows that they are inverses of each other. To prove the last assertion, recall 
that an element z in Tu is of the form [a1, . . . , as], where ai ∈ T ��, for all i = 1, . . . , s and s odd. Therefore,

m · z ⊗T n = m · [a1, . . . , as] ⊗T n = [m · a1 ⊗T n, . . . ,m · as ⊗T n]
(•)= [m⊗T a1 · n, . . . ,m⊗T as · n] = m⊗T z · n,

where (•) follows from the fact that either m · ai ⊗T n = m · t ⊗T n = m ⊗T t ·n (if ai ∈ T ) or m · ai ⊗T n =
m ⊗T n = m ⊗T ai · n (if ai = ∗ ∈ �). �
3.2. Functorial properties of tensor products

In parallel to the ring-theoretic tensor product, tensoring with a fixed bimodule defines a functor between 
categories of modules over trusses.

Proposition 3.6. Let T and R be trusses.

(1) If M is a right T -module and N is a T -R-bimodule, then M ⊗T N is a right R-module with the action

(M ⊗T N) ×R −→ M ⊗T N, (m⊗ n, r) �−→ m⊗ n · r.

If R admits a unit and N is unital, then M ⊗T N is unital as well. Symmetrically, if M is an R-T -
bimodule (unital over R) and N is a left T -module, then M ⊗T N is a (unital) left R-module.
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(2) Let N be a T -R-bimodule and let ϕ : M −→ M ′ be a homomorphism of right T -modules. Then the map 
ϕ ⊗N defined on simple tensors as

ϕ⊗N : M ⊗T N �−→ M ′ ⊗T N, m⊗ n �−→ ϕ(m) ⊗ n,

extends uniquely to a homomorphism of right R-modules. Symmetrically, if M is an R-T bimodule, 
then any left T -module homomorphism ϕ : N −→ N ′ gives rise to a left R-module homomorphism,

M ⊗ ϕ : M ⊗T N �−→ M ⊗T N ′, m⊗ n �−→ m⊗ ϕ(n).

(3) The constructions in items (1) and (2) yield functors − ⊗T N : mod-T −→ mod-R and M ⊗T − :
T -mod −→ R-mod. Furthermore, if R admits a unit and M, N are unital (over R), then they yield 
functors − ⊗T N : mod-T −→ mod-R1 and M ⊗T − : T -mod −→ R1-mod.

Proof. (1): Since N is a right R-module, for every r ∈ R we can consider the assignment

ρr : M ×N −→ M ⊗T N, (m,n) �−→ m⊗ n · r.

It satisfies

ρr(([m,m,′ ,m′′], n)) = [m,m,′ ,m′′] ⊗ n · r (3.5a)= [m⊗ n · r,m′ ⊗ n · r,m′′ ⊗ n · r]

= [ρr(m,n), ρr(m′, n), ρr(m′′, n)] ,

ρr(m, [n, n′, n′′]) = m⊗ [n, n′, n′′] · r = m⊗ [n · r, n′ · r, n′′ · r]
(3.5b)= [m⊗ n · r,m⊗ n′ · r,m⊗ n′′ · r]

= [ρr(m,n), ρr(m,n′), ρr(m,n′′)] ,

ρr((m · t, n)) = m · t⊗ n · r (3.5c)= m⊗ t · (n · r) = m⊗ (t · n) · r = ρr(m, t · n),

for all m, m′, m′′ ∈ M , n, n′, n′′ ∈ N , t ∈ T . That is to say, ρr is a T -balanced bilinear map and hence it 
factors uniquely through M ⊗T N via the heap morphism

�r : M ⊗T N −→ M ⊗T N, m⊗ n �−→ m⊗ n · r.

Now, consider the assignment

� : R −→ E(M ⊗T N), r �−→ �r.

For all m ∈ M , n ∈ N , r, r′, r′′ ∈ R,

�[r,r′,r′′](m⊗ n) = m⊗ n · [r, r′, r′′] (2.17b)= m⊗ [n · r, n · r′, n · r′′]
(3.5b)= [m⊗ n · r,m⊗ n · r′,m⊗ n · r′′]

= [�r(m⊗ n), �r′(m⊗ n), �r′′(m⊗ n)]

= [�r, �r′ , �r′′ ] (m⊗ n),

�rr′(m⊗ n) = m⊗ n · rr′ = m⊗ (n · r) · r′ = �r′(m⊗ (n · r))

= (� ′ ◦ � )(m⊗ n).
r r
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Therefore, � : R◦ −→ E(M ⊗T N) is a morphism of trusses and hence M ⊗T N is a right R-module. If R
admits identity 1 and N is a unital R-module, then �(1) = idM⊗N and hence � (and M ⊗T N) is also unital.

The other case is proven in a symmetric way.
(2): Similarly to the proof of statement (1), one considers the assignment

ϕ′ : M ×N −→ M ′ ⊗T N, (m,n) �−→ ϕ(m) ⊗ n.

Since ϕ is a morphism of right T -modules, ϕ′ is a T -balanced bilinear map, and hence it factors uniquely 
through

ϕ⊗N : M ⊗T N −→ M ′ ⊗T N, m⊗ n �−→ ϕ(m) ⊗ n.

Since ϕ ⊗N acts trivially on the elements in N , and the R-actions on M ⊗T N and M ′ ⊗T N are defined 
using the R-action on N only, the resulting map is a homomorphism of right R-modules. The other case is 
proven in a symmetric way.
(3): This follows immediately from assertions (1) and (2). �
Proposition 3.7. Let T , S be trusses and let M be a T -S-bimodule. Then − ⊗T M : mod-T −→ mod-S is 
the left adjoint functor to the functor HomT (M,−).

Proof. The proof of this proposition follows the same arguments as the proof of the corresponding statement 
for modules over rings. The only difference is that the distributivity of the tensor product over the heap 
ternary operation (rather than over a binary addition) should be employed whenever necessary (for example 
in showing that the unit and counit of the adjunction are morphisms of heaps). We only mention that the 
unit and the counit of the adjunction are explicitly given by

ηX : XT −→ HomS (MS , X ⊗T MS), x �−→ [m �−→ x⊗m],

εY : HomS (MS , YS) ⊗T MS �−→ YS ,
[
fi ⊗mi

]2n+1
i=1 �−→

[
fi(mi)

]2n+1
i=1 ,

for all right T -modules X and right S-modules Y . �
Corollary 3.8. Let R, S, T, U be trusses and let A be an R-S-bimodule, B be an S-T -bimodule and C be a 
T -U -bimodule. Then the map,

αA,B,C : (A⊗R B) ⊗T C −→ A⊗R (B ⊗T C),

(a⊗ b) ⊗ c �−→ a⊗ (b⊗ c),

is an isomorphism of R-U -bimodules.

Proof. The assertion follows from Proposition 3.7 by standard arguments. �
In view of the associativity of tensor products stemming from Corollary 3.8 we no longer need to write 

brackets in-between multiple tensor products.
The distributive laws for a truss T mean that the multiplication map μ : T × T −→ T , (s, t) �−→ st is 

bilinear. Hence, there is a unique heap homomorphism μ̂ : T ⊗ T −→ T . The associative law for μ is then 
reflected by the commutativity of the following diagram:
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T ⊗ T ⊗ T
μ̂⊗T

T⊗μ̂

T ⊗ T

μ̂

T ⊗ T
μ̂

T.

(3.6)

The existence of a map μ̂ satisfying (3.6) can be taken as the definition of the truss, provided that one 
carefully explains the meaning of ⊗ (for example, by resorting to relations (3.5a) and (3.5b)) without 
referring to trusses, in order to avoid the ignotum per ignotius trap.

Similarly, if T is a truss and M a left T -module with action λM , then conditions (2.17b) and (2.17c)
mean that λM : T ×M −→ M is a bilinear map, so it induces a unique map λ̂M : T ⊗M −→ M . Thus, 
exactly as in the case of modules over rings, a left module over a truss T can be equivalently defined as an 
abelian heap M together with a heap homomorphism λ̂M : T ⊗M −→ M such that the diagram

T ⊗ T ⊗M
μ̂⊗T

T⊗λ̂M

T ⊗M

λ̂M

T ⊗M
λ̂M

M

commutes, where μ̂ is the multiplication in T . In a similar way, a right T -module can be equivalently 
described as a heap M together with an associative right action �̂M : M⊗T −→ M . Taking these equivalent 
definitions of modules into account, one can interpret the tensor product as a coequalizer.

Proposition 3.9. Let T be a truss. For a right T -module M and left T -module N , the tensor product M⊗T N

is the coequalizer of the following diagram of abelian heaps

M ⊗ T ⊗N
�̂M⊗N

M⊗λ̂N

M ⊗N, (3.7)

where �̂M and λ̂N are the corresponding actions.

Proof. Consider the structural morphisms φ : M ×N −→ M ⊗N and ϕ : M ×N −→ M ⊗T N , part of the 
tensor product data. By definition, ϕ is a bilinear map and so it factors uniquely through the morphism of 
abelian heaps

ϕ̃ : M ⊗N −→ M ⊗T N,

such that ϕ̃ ◦ φ = ϕ. In addition, ϕ̃ satisfies

ϕ̃ ((�̂M ⊗N) (m⊗ t⊗ n)) = ϕ̃ (m · t⊗ n) = ϕ̃ (φ (m · t, n)) = ϕ(m · t, n)

= ϕ(m, t · n) = ϕ̃
((

M ⊗ λ̂N

)
(m⊗ t⊗ n)

)
,

for all m ∈ M , n ∈ N , t ∈ T , because ϕ is T -balanced. Since every morphism involved is a morphism 
of abelian heaps, we conclude that ϕ̃ coequalizes the pair (3.7). Now, let (Q, q : M ⊗ N → Q) be a pair 
coequalizing (3.7) as well. The composition q ◦ φ is bilinear because

(q ◦ φ) ([m,m′,m′′] , n) = q ([m,m′,m′′] ⊗ n) (3.5a)= q ([m⊗ n,m′ ⊗ n,m′′ ⊗ n])

= [q (m⊗ n) , q (m′ ⊗ n) , q (m′′ ⊗ n)]

= [(q ◦ φ) (m,n) , (q ◦ φ) (m′, n) , (q ◦ φ) (m′′, n)] ,
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for all m, m′, m′′ ∈ M , n ∈ N , and analogously on the other side. Furthermore, it is also T -balanced because 
q coequalizes (3.7), and hence

(q ◦ φ)(m · t, n) = q(m · t⊗ n) = q ((�̂M ⊗N) (m⊗ t⊗ n))

= q
((

M ⊗ λ̂N

)
(m⊗ t⊗ n)

)
= (q ◦ φ)(m, t · n),

for all m ∈ M , n ∈ N , t ∈ T . Thus, there exists a unique morphism of abelian heaps q̃ : M ⊗T N → Q such 
that q̃ ◦ ϕ = q ◦ φ. In particular, q̃ ◦ ϕ̃ ◦ φ = q ◦ φ (by definition of ϕ̃) and since both q and q̃ ◦ ϕ̃ are heap 
homomorphisms, the uniqueness part of the universal property of the tensor product entails that q̃ ◦ ϕ̃ = q. 
Summing up, the pair (M ⊗T N, ϕ̃) is the coequalizer of (3.7) in Ah. �

Corollary 3.8 and the above discussion can be formalized as the following result.

Proposition 3.10.

(1) The category Ah with the tensor product of heaps as the operation and the singleton heap � as the unit 
object is a closed monoidal category. Unitors are projections, with inverses given by tensoring by ∗,

A⊗ � −→ A, a⊗ ∗ �−→ a, �⊗A −→ A, ∗ ⊗ a �−→ a.

(2) For any truss T , the category T -mod-T with the tensor product of T -modules and the truss Tu as unit 
object is a closed monoidal category. Unitors are the actions with inverses given by insertion of identity 
as in Proposition 3.5

M ⊗T Tu −→ M, m⊗ z �−→ m · z, Tu ⊗T M −→ M, z ⊗m �−→ z ·m,

M −→ M ⊗T Tu, m �−→ m⊗ ∗, M −→ Tu ⊗T M, m �−→ ∗ ⊗m.

In particular, for any unital truss T the category T1-mod-T1 with the tensor product of T -modules and 
the truss T as a unit object is a closed monoidal category.

(3) A truss is a semigroup in the category Ah and a unital truss is a monoid in Ah. Conversely, any 
monoid in Ah is a unital truss and any semigroup in Ah is a truss.

Proof. Proofs of (1) and (2) are analogous to the case of rings. Statement (3) follows by the discussion 
preceding the previous proposition, supplemented by the observation that if T is a unital truss, then the 
unit of the corresponding monoid in Ah is given by the map η : � −→ T , ∗ �−→ 1, picking the identity. �
Remark 3.11. In light of [2, Proposition 9.1.6 and Theorem 9.3.8] the category Ah of abelian heaps is a 
complete and cocomplete category. In light of Proposition 3.10(1), (Ah, ⊗, �) is a monoidal category. It can 
be easily checked that the switch map σ : H ⊗H ′ −→ H ′ ⊗H, h ⊗ h′ �−→ h′ ⊗ h, is well-defined and makes 
of Ah a symmetric monoidal category. Finally, either because Ah = �1-mod and ⊗ = ⊗� or because

Ah (H ⊗H ′, H ′′) Ah (H,Ah (H ′, H ′′)) ,

f [h �−→ [h′ �−→ f(h⊗ h′)]] ,

[h⊗ h′ �−→ g(h)(h′)] g,

is a well-defined bijection, Ah is a complete and cocomplete closed symmetric monoidal category, whence 
a cosmos in the sense of J. Bénabou (as reported in [17, Introduction]).
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Let T be a truss. It follows from what we observed in §2.3 and from the fact that the composition 
HomT (N,P ) × HomT (M,N) → HomT (M,P ) is bilinear that T -mod is an (Ah,⊗, �)-enriched category.

Remark 3.12. Since a truss is a semigroup object in a symmetric monoidal category with braiding given by 
the switch map, we can define the tensor product of trusses in the standard way. That is, if S and T are 
trusses with multiplications μ̂S and μ̂T , respectively, then S ⊗ T is a truss with the multiplication:

μ̂S⊗T : S ⊗ T ⊗ S ⊗ T
S⊗σT,S⊗T

S ⊗ S ⊗ T ⊗ T
μ̂S⊗μ̂S

S ⊗ T.

If S and T are unital then also S ⊗ T is a unital truss. Thus, similarly to the case of modules over rings, 
any S-T -bimodule M can be understood as a left S ⊗ T ◦-module, where T ◦ is the truss opposite to T .

We know from [2, Proposition 9.1.6 and Theorem 9.3.8] that the category of modules over a truss is 
complete and cocomplete. We conclude this subsection with an independent argument that allows us to 
draw the same conclusion and, at the same time, shows us a way to explicitly compute them, provided we 
know what they look like in Ah. As a by-product we provide an abstract description of free modules over 
a non-unital truss.

Let T be a truss and Tu be its unital extension as in §2.5. By [13, Chapter VII, Section 4], the functor 
Tu ⊗− : Ah −→ (Tu)1-mod is left adjoint to the forgetful functor U ′ : (Tu)1-mod −→ Ah (and hence it is 
called the free unital Tu-module functor). Since the functor U : T -mod −→ (Tu)1-mod of Theorem 2.5 is 
the inverse of the restriction of scalars ι∗T : (Tu)1-mod −→ T -mod and since clearly U ′ ◦ U coincides with 
the forgetful functor U : T -mod −→ Ah, the composition ι∗T ◦ (Tu ⊗−) is left adjoint to U . Once observed 
that ι∗T ◦ (Tu ⊗ −) is naturally isomorphic to tensoring by the left T -module ι∗T (Tu), we conclude that the 
functor ι∗T (Tu) ⊗− : Ah −→ T -mod is left adjoint to the forgetful functor U and hence it is called the free 
T -module functor.

As a consequence of the existence of the adjunction (ι∗T (Tu) ⊗ −) � U , we can consider the monad 
T := U(ι∗T (Tu) ⊗ −) = U(ι∗T (Tu)) ⊗ − : Ah −→ Ah. In view of the fact that Tu is a monoid in Ah, the 
Eilenberg-Moore category of algebras for the monad U ′(Tu ⊗ −) on Ah is exactly the category of unital 
Tu-modules. Since U ′(Tu ⊗ −) = U ′Uι∗T (Tu ⊗ −) = T , the Eilenberg-Moore category EMT is exactly the 
category of modules over T .

Proposition 3.13. For a truss T , the forgetful functor U : T -mod −→ Ah creates and preserves all limits 
and all colimits that exist in Ah. That is to say, if a functor D : C → T -mod is such that U ◦ D has a 
(co)limit H in Ah, then D has a (co)limit Ĥ in T -mod and U(Ĥ) = H. In particular, T -mod is complete 
and cocomplete.

Proof. Since U(ι∗T (Tu) ⊗ −) coincides with U(ι∗T (Tu)) ⊗ − : Ah −→ Ah and since it is left adjoint to 
Ah(U(ι∗T (Tu)), −), it preserves all colimits. Therefore, the statement follows from [3, Propositions 4.3.1 and 
4.3.2] and (co)completeness of Ah. �

Proposition 3.13 amounts to say that (co)limits of T -modules can be obtained (up to isomorphism) by 
endowing the corresponding (co)limits of abelian heaps with a suitable T -action, as it happens with the 
product, for instance.

Proposition 3.14. Let X be a non-empty set and T be a unital truss. Denote by A(X) the free abelian heap 
over X and by T X the free unital T -module over X. Then T X ∼= T ⊗ A(X) as T -modules. In particular, 
the following diagram of functors commutes
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T1-mod
U ′

F ′ Ah .

F ′′

T⊗−

Set

T
A

Proof. Fix e ∈ X. In view of [9, Remark 3.5 and Proposition 3.9] we know that

A(X) ∼= H

⎛⎝ ⊕
x∈X\{e}

Z

⎞⎠ ∼= �
x∈X

A({x}),

and the isomorphism A(X) ∼= �
x∈X

A({x}) is independent from the choice of e ∈ X. Now, since T ⊗ − is 
cocontinuous (because it is the left adjoint functor of the forgetful functor), we have the following chain of 
isomorphisms of left T -modules

T ⊗A(X) ∼= T ⊗
(

�
x∈X

A({x})
)

∼= �
x∈X

(T ⊗A({x})) .

Consider A({x}). As a set, A({x}) = {x} with the ternary operation [x, x, x] = x. This makes it clear that 
� −→ A({x}), ∗ �−→ x, is an isomorphism of (abelian) heaps. Therefore, T ⊗A(X) ∼= �

x∈X
Tx ∼= T X . �

Let us make explicit the foregoing isomorphism in an extremely easy example.

Example 3.15. Let X = {a, b} be a set with two elements. The free abelian heap A(X) on X can be realized 
as the set

{a, b, aba, bab, ababa, babab, abababa, bababab, . . .}

with bracket given by concatenation and (symmetric) pruning. Then, for instance,

t⊗ ababa ←→ (ta)(tb)(ta)(tb)(ta) = ([t, 1, t, 1, t]a)([t, 1, t]b)(1a)(1b)(1a).

Corollary 3.16 (of Proposition 3.14). Let T be a truss and Tu its unital extension. Denote by F : T -mod −→
Set the forgetful functor. In the following diagram of adjunctions, the subdiagram involving only the right 
adjoints is commutative

(Tu)1-mod

ι∗T U ′

T -mod

U

F

U

Ah .

Tu⊗−

Tu⊗−

F ′′

Set

ATu⊗A(−)

In particular, the free T -module over a set X is Tu ⊗A(X).
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Concretely, when T is a not necessarily unital truss we can describe the free T -module over a set X as 
the direct sum of abelian heaps

T X := �
x∈X

Tux,

with the T -action given component-wise, that is,

t · [z1x1, . . . , z2k+1x2k+1] = [(ιT (t)z1)x1, . . . , (ιT (t)z2k+1)x2k+1] ,

for all x1, . . . , x2k+1 ∈ X, z1, . . . , z2k+1 ∈ Tu and t ∈ T . The canonical map ιX : X −→ T X (that is, the 
unit of the adjunction Tu ⊗A(−) � F) sends every x ∈ X to ∗x ∈ Tux. The other way around, the counit 
ε of the adjunction Tu ⊗A(−) � F realizes every T -module M as a quotient of a free one:

T F(M) ∼= Tu ⊗A (F(M)) εM−−→ M

(since F is faithful, every component of ε is an epimorphism in view of [13, Theorem IV.3.1]).

4. Adjoint functors between categories of modules over trusses: Morita theory and the Eilenberg-Watts 
theorem

Given two trusses S, T and a T -S-bimodule M we already know that the functor M ⊗S − : S-mod −→
T -mod is left adjoint to the functor HomT (M,−) : T -mod −→ S-mod. Our aim in the present section is 
to show that, if T and S are (unital) trusses, then any heap functor L : S-mod −→ T -mod which admits a 
right adjoint is of the form P ⊗S − for a suitable (unital) T -S-bimodule P . We will conclude the section by 
proving a heap analogue of the celebrated Eilenberg-Watts Theorem, giving an intrinsic characterization of 
left adjoint functors. Recall that a functor F : S-mod −→ T -mod is a heap functor provided that, for all 
M, N ∈ S-mod, the functions FM,N defined by equation (2.18) are morphisms of heaps. Recall also that 
the unital extension Tu of a truss T is a T -T -bimodule via the truss homomorphism ιT : T −→ Tu.

Lemma 4.1. Let S, T be trusses and let F : S-mod −→ T -mod be a heap functor between their categories of 
modules. Then P := F (ι∗S(Su)) is a T -S-bimodule. Furthermore, if S is unital and F : S1-mod −→ T -mod
is a heap functor, then P ′ := F (S) is a T -S-bimodule which is unital as right S-module.

Proof. To simplify notation we write Su instead of ι∗S(Su). For every s ∈ S, consider the left S-module 
morphism

ρs : Su −→ Su, z �−→ z · ιS(s).

Clearly, ρss′ = ρs′ ◦ ρs and, by the right distributive law of the action of S on Su, ρ[s,s′,s′′] = [ρs, ρs′ , ρs′′ ] in 
HomS (Su, Su) for all s, s′, s′′ ∈ S. Therefore the map

ρ : S◦ −→ ES(Su), s �−→ ρs,

is a homomorphism of trusses. Since F is a heap functor, the composite

S◦ ρ
ES(Su)

FSu,Su

ET (F (Su)) = ET (P ),

where FSu,Su
is defined by (2.18), is a morphism of trusses. As a consequence, P inherits the structure of a 

T -S-bimodule. If S is unital, we may perform the same construction using S instead of Su and P ′ = F (S)
becomes unital as a right S-module. �
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Proposition 4.2. Let S, T be trusses. A heap functor L : S-mod −→ T -mod admits a right adjoint if and 
only if it is naturally equivalent to P ⊗S − for a suitable T -S-bimodule P . Namely, P := L(ι∗S(Su)). If, 
in addition, S is unital then a heap functor L : S1-mod −→ T -mod admits a right adjoint if and only if 
it is naturally equivalent to P ′ ⊗S − for a suitable T -S-bimodule P ′, unital as a right S-module. Namely, 
P ′ := L(S).

Proof. We already know from Lemma 4.1 that P := L(ι∗S(Su)) is a T -S-bimodule. Let us denote by R :
T -mod −→ S-mod the right adjoint to L and let us consider the adjunction isomorphism

ΦSu,N : HomT (P,N) = HomT (L(ι∗S(Su)), N) ∼= HomS (ι∗S(Su), R(N)),

for all N in T -mod. Then, for all s ∈ S and f ∈ HomT (P,N),

ΦSu,N (s · f) = ΦSu,N (f ◦ L(ρs)) = (ΦSu,N ◦ HomT (L(ρs), N)) (f)

= (HomS (ρs, R(N)) ◦ ΦSu,N ) (f)

= ΦSu,N (f) ◦ ρs = s · ΦSu,N (f),

that is ΦSu,N is a left S-linear isomorphism natural in N ∈ T -mod. Since ι∗S is the inverse of U , we have 
further

HomS (ι∗S(Su), R(N)) ∼= ι∗S (HomSu
(Su,U(R(N))))

as left S-modules. Now, in view of the fact that both Su and U(R(N)) are unital, the assignment

HomSu
(Su,U(R(N))) −→ U(R(N)), f �−→ f (1Su

) ,

is an isomorphism of heaps, natural in N , which is also left Su-linear. Therefore,

ι∗S (HomSu
(Su,U(R(N)))) ∼= ι∗S(U(R(N))) ∼= R(N)

and we conclude that R ∼= HomT (P,−) as functors from T -mod to S-mod. Being the left adjoint functor 
to HomT (P,−), L ∼= P ⊗S − as desired, by the uniqueness of adjoints up to isomorphism. Finally, in case 
S is unital one may mimic the same procedure starting with P ′ = L(S) instead. �

With Proposition 4.2 we showed that any functor between module categories over trusses which admits 
a right adjoint is naturally obtained by taking tensor products with suitable bimodules. Now we prove 
an analogue of the Eilenberg-Watts theorem for modules over trusses which, in turn, allows us to give an 
intrinsic characterisation of when a functor is given by tensoring by a bimodule (and hence it is a left 
adjoint) in terms of properties of the functor itself.

Theorem 4.3 (Eilenberg-Watts Theorem for trusses). Let T and S be trusses. If F : T -mod −→ S-mod is 
a cocontinuous heap functor, then

F (−) ∼= P ⊗T −,

for an (S, T )-bimodule P . Namely, P := F (ι∗T (Tu)). If, in addition, T is unital and F : T1-mod −→ S-mod
is a cocontinuous heap functor, then

F (−) ∼= P ′ ⊗T −,

for an (S, T )-bimodule P ′, unital as right T -module. Namely, P ′ := F (T ).
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Proof. We prove only the first claim and, for the sake of simplicity, we write Tu instead of ι∗T (Tu). Let X
be a T -module. One can consider a coequalizer diagram

Ker(π)
p1

p2
T X π

X , (4.1)

as in the proof of Proposition 2.7, where T X is the free T -module over the set underlying X, π is the 
canonical epimorphism, Ker(π) = {(x, y) ∈ T X × T X | π(x) = π(y)} with the component-wise T -module 
structure, and p1, p2 are the (restrictions of the) two canonical projections. One can extend diagram (4.1)
to

T Ker(π)
p′
1

p′
2

T X π
X , (4.2)

where π′ : T Ker(π) −→ Ker(π), p′1 = p1◦π′ and p′2 = p2◦π′. Since π′ is an epimorphism, (4.2) is a coequalizer 
diagram as well. By Lemma 4.1, P := F (Tu) inherits the structure of an (S, T )-bimodule from the fact that 
F is a heap functor. Since F is a cocontinuous functor and in view of Proposition 3.5, there is the following 
chain of natural isomorphisms:

F
(
T X

)
= F

(
�

x∈X
Tu

)
∼= �

x∈X
F (Tu) ∼= �

x∈X
(P ⊗T Tu) ∼= P ⊗T �

x∈X
Tu = P ⊗T T X .

Moreover we can fill in a diagram

F (T ker(π))

∼=

F (p′
1)

F (p′
2)

F (T X)

∼=

F (π)
F (X)

ψ

P ⊗T T ker(π)
P⊗T p′

1

P⊗T p′
2

P ⊗T T X
P⊗Tπ

P ⊗T X,

where both horizontal diagrams are coequalizers obtained from (4.2), because F and P ⊗T − preserve 
colimits, and ψ is the isomorphism induced by their universal property. It can be checked, by resorting to 
the uniqueness of the morphisms induced at the level of the coequalizers, that ψ is in fact natural in X. �
Corollary 4.4. Let T, S be trusses. A functor F : T -mod −→ S-mod is a left adjoint if and only if it is a 
cocontinuous heap functor. If, in addition, T is unital then F : T1-mod −→ S-mod is a left adjoint functor 
if and only if it is a cocontinuous heap functor.

Proof. The statements follow from Proposition 4.2, Theorem 4.3 and the fact that P ⊗T − is cocontinuous, 
heap and a left adjoint functor. �

Assume that S and T are unital trusses. A key question related to the Morita theory for trusses is what 
can be said when T1-mod ∼= S1-mod. Notice that this covers the non-unital case as well, since in that case 
T -mod ∼= S-mod if and only if (Tu)1-mod ∼= (Su)1-mod.

Theorem 4.5. Let T, S be unital trusses. The following statements are equivalent:

(1) T1-mod ∼= S1-mod.
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(2) There exist unital bimodules SPT and TQS together with an S-bilinear isomorphism ev : P ⊗T Q −→ S

and a T -bilinear isomorphism db : T −→ Q ⊗S P such that

(Q⊗S ev) ◦ (db ⊗T Q) = idQ and (ev ⊗S P ) ◦ (P ⊗T db) = idP . (4.3)

(3) There exist unital bimodules SPT and TQS together with an S-bilinear isomorphism db′ : S −→ P ⊗T Q

and a T -bilinear isomorphism ev′ : Q ⊗S P −→ T such that

(P ⊗T ev′) ◦ (db′ ⊗S P ) = idP and (ev′ ⊗T Q) ◦ (Q⊗S db′) = idQ.

Proof. Since the proofs of (1) ⇐⇒ (2) and of (1) ⇐⇒ (3) are similar, we will present explicitly only the 
first one and leave the second one to the reader.

To show that (1) implies (2), assume that L : T1-mod −→ S1-mod and R : S1-mod −→ T1-mod are 
inverse equivalences (or quasi-inverse functors). Equivalently, we may assume that L is left adjoint to R and 
that the counit ε : L ◦R −→ id and the unit η : id −→ R ◦L of this adjunction are natural isomorphisms. In 
light of Proposition 4.2, there exists a unital (S, T )-bimodule P such that L ∼= P ⊗T −. At the same time, 
we may look at R as left adjoint to L with counit η−1 : R ◦L −→ id and unit ε−1 : id −→ L ◦R, and hence 
there exists a unital T -S-bimodule Q such that R ∼= Q ⊗S −. Consider the following isomorphisms

db :=
(

T
ηT

R(P ⊗T T )
∼=

Q⊗S P ⊗T T
∼=

Q⊗S P

)
,

ev :=
(

P ⊗T Q
∼=

P ⊗T Q⊗S S
∼=

P ⊗T R(S)
εS

S

)
.

First, we are going to show that η and ε can be written in terms of ev and db. Then, we will see how the 
triangular identities for unit and counit reflect on ev and db. For every left T -module M and for every 
m ∈ M , consider the left T -module homomorphism ρm : T −→ M , t �−→ t ·m. By naturality of η,

ηM (m) = (ηM ◦ ρm) (1T ) = (Q⊗S P ⊗T ρm) (ηT (1T )) = db(1T ) ⊗T m.

Similarly, for every left S-module N and for every n ∈ N we consider the left S-module homomorphism 
ρn : S −→ N , s �−→ s · n and, by naturality of ε,

εN (p⊗T q ⊗S n) = (εN ◦ (P ⊗T Q⊗S ρn)) (p⊗T q ⊗S 1S)

= ρn (εS (p⊗T q ⊗S 1S)) = ev(p⊗T q) · n.
(4.4)

Let us write explicitly db(1T ) = [qi ⊗S pi]i and ev(p ⊗T q) = q(p). By the triangular identities, for every 
S-module N and for all q ∈ Q, n ∈ N ,

q ⊗S n = ((Q⊗S εN ) ◦ ηQ⊗SN ) (q ⊗S n) = (Q⊗S εN )([qi ⊗S pi]i ⊗T q ⊗S n)

= [qi · q(pi)]i ⊗S n.

In a similar way, for every T -module M and for all p ∈ P and m ∈ M ,

p⊗T m = (εP⊗TM ◦ (P ⊗T ηM )) (p⊗T m) = εP⊗TM (p⊗T [qi ⊗S pi]i ⊗S m)

= [qi(p) · pi]i ⊗T m.

In particular, for N = S, n = 1S , M = T , m = 1T , we find that
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[qi · q(pi)]i = q and [qi(p) · pi]i = p, (4.5)

for all p ∈ P and q ∈ Q. Concerning bilinearity, on the one hand, for every t ∈ T ,

[qi ⊗S pi]i · t = [qi ⊗S pi · t]i = [qi ⊗S [qj(pi · t) · pj ]j ]i = [qi · qj(pi · t) ⊗S pj ]i,j

= [[qi · qj(pi · t)]i ⊗S pj ]j
(∗)= [t · qj ⊗S pj ]j = t · [qj ⊗S pj ]j ,

where (∗) follows from the fact that ev is a T -balanced map. Whence db is a T -bimodule homomorphism. 
On the other hand,

ev(p⊗T q · s) = εS(p⊗T q ⊗S ρs(1S)) (4.4)= ev(p⊗T q)s,

and hence ev is an S-bimodule homomorphism. In view of this, (4.5) can now be rewritten as (4.3).
Conversely, to prove that (2) implies (1) consider the functors P ⊗T − : T -mod −→ S-mod and 

Q ⊗S − : S-mod −→ T -mod. If we define unit and counit by

ηM := db ⊗T M : M −→ Q⊗S P ⊗T M,

εN := ev ⊗S N : P ⊗T Q⊗S N −→ N,

for every T -module M and every S-module N , then the zigzag identities (4.3) entail that P ⊗T − is left 
adjoint to Q ⊗S − and the fact that η and ε are natural isomorphisms implies in addition that these two 
functors define an equivalence of categories. �
Remark 4.6. By checking closely the proof of Theorem 4.5, one may notice that R ∼= HomS (P,−) as the 
right adjoint functor of L ∼= P ⊗T − and R ∼= Q ⊗S − since it is a left adjoint functor itself. Therefore,

∗P := HomS (SP, S) ∼= R(S) ∼= Q⊗S S ∼= Q

as T -S-bimodules. Analogously, P ∼= Q∗ := HomS (QS , S) as (S, T )-bimodules. Moreover, we point out that 
any argument provided for left modules would hold symmetrically for right modules.

A distinguished functor F : S-mod −→ T -mod which plays an important role in the study of the Frobe-
nius property for trusses is the restriction of scalars functor F = f∗ associated with a truss homomorphism 
f : T −→ S. This is the faithful functor sending every left S-module M to the left T -module fM := f∗(M)
having the same underlying heap structure but action given by t ·m = f(t) ·m for all t ∈ T, m ∈ M , and 
sending every S-linear morphism to itself, but now seen as a T -linear map. We already saw examples of re-
striction of scalars functors in Theorem 2.5 and Proposition 3.14 (the forgetful functor U ′ : T1-mod −→ Ah
can be seen as the restriction of scalars along the unital truss homomorphism η : � −→ T ).

Proposition 4.7. The restriction of scalars functor F : S-mod −→ T -mod associated with a truss homo-
morphism f : T −→ S satisfies

HomS

(
(Su)f ,−

)
∼= F ∼= f (Su) ⊗S −.

In particular, there is an adjoint triple of functors:

(Su) ⊗T − � F � HomT (f (Su),−).
f
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Proof. For every left S-module M , consider the assignments

HomS

(
(Su)f ,M

)
fM

φ φ(∗)[
∗ �−→ m

s �−→ s ·m

]
m

fM f (Su) ⊗S M

m ∗ ⊗S m

[zi ·mi]2k+1
i=1 [zi ⊗S mi]2k+1

i=1

as in the proof of Proposition 3.5. They are T -linear isomorphisms, natural in M . �
5. Small-projective modules and the dual basis property

Let T be a truss. The conditions in Theorem 4.5 and the subsequent observations in Remark 4.6 call for 
a closer analysis of T -modules admitting a dual basis db and evaluation ev morphisms.

Definition 5.1. A module P over a truss T is said to satisfy the dual basis property (DBP for short) if there 
exist an odd integer s = 2k + 1, an element (e1, . . . , es) ∈ P s and an element (φ1, . . . , φs) ∈ HomT (P, T )s

such that, for all p ∈ P ,

p = [φ1(p) · e1, . . . , φs(p) · es] . (5.1)

We call the pair {(e1, . . . , es), (φ1, . . . , φs)} a dual basis for P .

Example 5.2. The following examples are immediate from the definition.

(1) The empty T -module ∅ never satisfies the DBP.
(2) If T is unital, then P = T itself satisfies the DBP with e1 = 1T and φ1 = idT .
(3) The singleton T -module � satisfies the DBP if and only if T admits a left absorber. Indeed, if T admits 

a left absorber o then � satisfies the DBP with e1 = ∗ and φ1 : � −→ T, ∗ �−→ o. Conversely, if � satisfies 
the DBP then φ1(∗) ∈ T is a left absorber.

(4) If T is a unital truss with identity 1T and S is a truss with a left absorber a, then T satisfies the DBP 
as an S×T -module with e1 = 1T and φ1 : T −→ S×T, t �−→ (a, t). For example, if we take S = E(T )◦
with a : T −→ T, t �−→ 1T , then T satisfies the DBP as an (E(T )◦ × T )-module.

As usual, let Tu be the unital extension of T . Set ∗P := HomT (P, Tu). It is a right T -module with 
(f · t)(p) := f(p)t for all f ∈ ∗P , t ∈ T and p ∈ P .

Remark 5.3.

(a) If P satisfies the DBP, then ∗P satisfies the DBP. For every i = 1, . . . , s, consider the right T -linear 
morphism

evi : ∗P −→ Tu, α �−→ α (ei) .

Then, for all α ∈ ∗P ,

α(p) = α ([φk(p) · ek]sk=1) = [φk(p)α (ek)]sk=1 = [φk · evk (α)]sk=1 (p),

for all p ∈ P , whence α = [φk · evk (α)]s .
k=1



32 T. Brzeziński et al. / Journal of Pure and Applied Algebra 226 (2022) 107091
(b) If P satisfies the DBP, then, for every T -module M and for every f : P −→ M ,

f = [φkf (ek)]sk=1

in HomT (P,M), where φkf (ek) : P −→ M, p �−→ φk(p)f (ek).

Theorem 5.4. Let T be a truss and P a left T -module. The following properties are equivalent:

(1) The functor HomT (P,−) : T -mod −→ Ah is right exact (that is, it preserves finite colimits) and P is 
finitely generated.

(2) The module P satisfies the DBP.
(3) There exist a T -bilinear morphism ev : P ⊗ ∗P −→ Tu and a morphism of abelian heaps db : � −→

∗P ⊗T P (that is, a �-bilinear morphism) such that

(ev ⊗T P ) ◦ (P ⊗ db) = idP and (∗P ⊗T ev) ◦ (db ⊗ ∗P ) = id∗P ,

up to the canonical isomorphisms P ⊗ � ∼= P ∼= Tu ⊗T P , ∗P ⊗T Tu
∼= ∗P ∼= � ⊗ ∗P .

(4) The functor HomT (P,−) is naturally isomorphic to the functor ∗P ⊗T −.
(5) The functor HomT (P,−) is cocontinuous (that is, it preserves small colimits).

Proof. (1) ⇒ (2). Assume that the functor HomT (P,−) preserves finite colimits. Since P is finitely gen-
erated, there exist a positive integer r and a T -module epimorphism π : T {1,...,r} −→ P . For the sake of 
clarity and brevity, we denote by Ti the copy of Tu in position i and by 1i ∈ Ti its unit, for i = 1, . . . , r. By 
Proposition 2.7, π is a coequalizer and, by hypothesis,

HomT (P, π) : HomT

(
P, T {1,...,r}

)
−→ HomT (P, P )

is a coequalizer of the corresponding morphisms, whence an epimorphism in particular. Choose a pre-image 
in HomT

(
P, T {1,...,r}) of idP and call it σ; it satisfies π ◦ σ = idP .

Moreover, T {1,...,r} =
r
�
i=1

Ti is the finite colimit with structure maps

ηi : Tu −→ T {1,...,r}, z �−→ z1i ∈ Ti,

for all i = 1, . . . , r. By hypothesis again, the induced morphism

r
�
i=1

HomT (P, ηi) :
r
�
i=1

HomT (P, Tu)i −→ HomT

(
P, T {1,...,r}

)
is an isomorphism, where HomT (P, Tu)i denotes the copy of HomT (P, Tu) in position i. Therefore, there 
exist elements φ1, . . . , φs ∈ HomT (P, Tu) (possibly r �= s) such that

[φ1, . . . , φs] ∈
r
�
i=1

HomT (P, Tu)i

satisfies

r
�
i=1

HomT (P, ηi) ([φ1, . . . , φs]) = σ.

Concretely, this amounts to say that, for every p ∈ P ,
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p = π(σ(p)) = π ([ηi1 ◦ φ1, . . . , ηis ◦ φs] (p))

= [(πηi1φ1) (p), . . . , (πηisφs) (p)] = [φ1(p) · π(1i1), . . . , φs(p) · π(1is)] ,

where the ik are such that φk ∈ HomT (P, Tu)ik , k = 1, . . . , s. Set ek := π(1ik) ∈ P for k = 1, . . . , s. The 
foregoing relation says that, for every p ∈ P ,

p = [φ1(p) · e1, . . . , φs(p) · es] .

We conclude that if P is finitely generated and if HomT (P,−) preserves finite colimits, then P satisfies the 
DBP.

(2) ⇒ (3). Consider the assignment

e : P × ∗P −→ Tu, (p, α) �−→ α(p).

Then

e ([p, p′, p′′] , α) = α ([p, p′, p′′]) = [α (p) , α (p′) , α (p′′)] = [e (p, α) , e (p′, α) , e (p′′, α)]

and

e (p, [α, α′, α′′]) = [α, α′, α′′] (p) = [α (p) , α′ (p) , α′′ (p)] = [e (p, α) , e (p, α′) , e (p, α′′)] ,

whence there exists a unique heap homomorphism ev : P ⊗ ∗P −→ Tu such that ev(p ⊗ α) = α(p), for all 
p ∈ P, α ∈ ∗P . Moreover,

ev(t · p⊗ α) = α(t · p) = tα(p)

and

ev(p⊗ α · t) = (α · t)(p) = α(p)t,

for all p ∈ P, α ∈ ∗P , t ∈ T , whence ev is T -bilinear. Consider also the assignment

db : � −→ ∗P ⊗T P, ∗ �−→ [φk ⊗T ek]sk=1 .

A direct check shows that

((ev ⊗T P ) ◦ (P ⊗ db)) (p) = (ev ⊗T P ) ([p⊗ φk ⊗T ek]sk=1) = [φk(p) · ek]sk=1 = p,

((∗P ⊗T ev) ◦ (db ⊗ ∗P )) (α) = (∗P ⊗T ev) ([φk ⊗T ek ⊗ α]sk=1) = [φk · α (ek)]sk=1 = α,

for all p ∈ P , α ∈ ∗P .
(3) ⇒ (4). For every T -module M , consider

τ̃ : ∗P ×M −→ HomT (P,M), (α,m) �−→ [p �−→ ev(p⊗ α) ·m] .

For all p ∈ P , α, α′, α′′ ∈ ∗P , m, m′, m′′ ∈ M , t ∈ T ,
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τ̃ ([α, α′, α′′] ,m) (p) = [α, α′, α′′] (p) ·m = [α(p), α′(p), α′′(p)] ·m
= [α(p) ·m,α′(p) ·m,α′′(p) ·m]

= [τ̃(α,m)(p), τ̃(α′,m)(p), τ̃(α′′,m)(p)]

= [τ̃(α,m), τ̃(α′,m), τ̃(α′′,m)] (p),

τ̃ (α, [m,m′,m′′]) (p) = α(p) · [m,m′,m′′] = [α(p) ·m,α(p) ·m′, α(p) ·m′′]

= [τ̃(α,m)(p), τ̃(α,m′)(p), τ̃(α,m′′)(p)]

= [τ̃(α,m), τ̃(α,m′), τ̃(α,m′′)] (p),

τ̃(α · t,m)(p) = (α · t)(p) ·m = α(p)t ·m = τ̃(α, t ·m)(p).

Therefore, there exists a unique heap homomorphism τM : ∗P⊗T M −→ HomT (P,M) such that τ(α⊗T m) :
p �−→ α(p) ·m. The other way around, write explicitly db(∗) = [φk ⊗T ek]sk=1 and consider the assignment

σM : HomT (P,M) −→ ∗P ⊗T M, f �−→ (∗P ⊗T f) (db(∗)) = [φk ⊗T f (ek)]sk=1 .

A direct computation shows that

σMτM (α⊗T m) = [φk ⊗T α (ek) ·m]sk=1 = [φk · α (ek)]sk=1 ⊗T m = α⊗T m,

for all m ∈ M , α ∈ ∗P , and

τMσM (f)(p) = [φk(p) · f (ek)]sk=1 = f,

whence they are inverses of each other. Furthermore, if g : M −→ N is any T -linear map, then

τN (∗P ⊗T g) (α⊗T m)(p) = α(p)g(m) = (HomT (P, g) ◦ τM )(α⊗T m)(p),

for all p ∈ P , m ∈ M , α ∈ ∗P , so that τ is also natural in M .
(4) ⇒ (5). Obvious, since tensoring by a right T -module is a left adjoint functor.
(5) ⇒ (1). Clearly, HomT (P,−) is a right exact functor. Thus, we are left to show that P has to be finitely 

generated. Since P is a set, we can consider the epimorphism π : T P −→ P uniquely determined by the 
assignments Tp → P, z �−→ z · p, for all p ∈ P . Since epimorphisms are coequalizers, π∗ : HomT

(
P, T P

)
−→

HomT (P, P ), ψ �−→ π◦ψ, is still a coequalizer (whence an epimorphism), and since T P is a small coproduct,

HomT

(
P, T P

) ∼= �
p∈P

HomT (P, Tu)p.

As in the proof of (1) ⇒ (2), one can consider a pre-image of idP via π∗ and call it σ. There exist elements 
φ1, . . . , φs ∈ HomT (P, Tu) such that

[φ1, . . . , φs] ∈ �
p∈P

HomT (P, Tu)p

satisfies

�
p∈P

HomT (P, ηp) ([φ1, . . . , φs]) = σ.

Concretely, this amounts to say that, for every q ∈ P ,

q = π(σ(q)) = π ([ηp1 ◦ φ1, . . . , ηps
◦ φs] (q))

= [(πη φ ) (q), . . . , (πη φ ) (q)] = [φ (q) · π(1 ), . . . , φ (q) · π(1 )] .
p1 1 ps s 1 p1 s ps
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Set ek := π(1pk
) ∈ P for k = 1, . . . , s. Since the foregoing relation says that for every p ∈ P , p =

[φ1(p) · e1, . . . , φs(p) · es], we conclude that the ek form a finite family of generators of P . �
By taking inspiration from [12, §5.5] and in light of Theorem 5.4, we give the following definition (see 

also [14, §3]).

Definition 5.5. A T -module P satisfying the equivalent conditions of Theorem 5.4 is called tiny (or small-
projective).

Remark 5.6.

(a) In the proof of the implication (1) ⇒ (2) in Theorem 5.4, there is no need for s to be exactly r.
(b) The dual basis map db does not depend on the choice of the dual basis. In fact, if {(e1, . . . , es) , (φ1, . . . ,

φs)} and {(f1, . . . , fr) , (ψ1, . . . , ψr)} are two dual bases, then

[φk ⊗T ek]sk=1 = [φk ⊗T [ψh (ek) · fh]rh=1]
s

k=1
(2.10)= [[φk · ψh (ek) ⊗T fh]sk=1]

r

h=1

= [[φk · ψh (ek)]sk=1 ⊗T fh]r
h=1 = [ψh ⊗T fh]rh=1 .

(c) The implication from (5) to (4) in Theorem 5.4 follows also from the Eilenberg-Watts theorem, since 
HomT (P,−) is a heap functor.

(d) In the implication from (4) to (3) in Theorem 5.4, the dual basis map db corresponds to the image of 
the identity morphism idP via the isomorphism HomT (P, P ) ∼= ∗P ⊗T P .

(e) In the present section, we always worked with a left T -module P , implicitly viewed as a (T, �)-bimodule. 
Observe that there is nothing particular in considering the distinguished truss � instead of any other 
truss. Therefore, the description and the properties of a small-projective T -module developed so far can 
be adapted, with no additional effort, to speak about a (T, S)-bimodule which is small-projective over 
T on the left.

Example 5.7. If P is a finitely generated and projective module over a ring R, then T(P ) is a tiny T(R)-
module.

Example 5.8 (Free modules are not tiny). Let T be a unital truss and consider the free T -module T � T . 
Assume, by contradiction, that T �T admits a dual basis {(e1, . . . , es) , (φ1, . . . , φs)}. Denote by a = 1T the 
unit of the left-hand side copy of T and by b = 1T the one of the right-hand side copy. Taking advantage 
of the heap isomorphism (2.21) (see [9, Proposition 3.9]), we may construct the heap homomorphism that 
“measures tails”

� : T � T ∼= H (G(T, a) ⊕ G(T, b) ⊕ Z) −→ H(Z).

Notice that, being composition of heap homomorphisms, � is not influenced by the reduction of a symmetric 
word w to one of the “canonical forms” t, s, tsb, sta, tsab · · · ba, stba · · · ab. Therefore, the “length of tails” 
is well-defined and, in particular, it is not influenced by the action of T (see [9, Formula (3.6)] for a more 
rigorous formulation). Summing up, for all z ∈ T � T

� ([φ1(z) · e1, . . . , φs(z) · es]) = [� (φ1(z) · e1) , . . . , � (φs(z) · es)] = [� (e1) , . . . , � (es)] .

However, if we set m := [� (e1) , . . . , � (es)] (which does not depend on z) and we consider z := bab · · · ab
with |m| + 1 instances of b, then �(z) = |m| + 1, which is a contradiction.
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Example 5.9. Let T be a unital truss admitting a left absorber a ∈ T and consider P := T × T × T . Set

e1 := (1T , a, a), e2 := (a, 1T , a), e3 = (a, a, 1T ) and

φ1 : T × T × T −→ T, (x, y, z) �−→ x,

φ2 : T × T × T −→ T, (x, y, z) �−→ [a, y, a],

φ3 : T × T × T −→ T, (x, y, z) �−→ z.

Then these form a dual basis for P as a left T -module.
Assume furthermore that a is a two-sided absorber. Denote by S the set of all 3 × 3 matrices with 

coefficients in T . They inherit an abelian heap structure from the identification S = T 9 (that is, the bracket 
is taken component-wise). Moreover, S admits a truss structure with the row-by-column multiplication

(
t1,1 t1,2 t1,3
t2,1 t2,2 t2,3
t3,1 t3,2 t3,3

)
·
(
s1,1 s1,2 s1,3
s2,1 s2,2 s2,3
s3,1 s3,2 s3,3

)
=

(
ri,j

)
where ri,j =

[
ti,1s1,j , ti,2s2,j , ti,3s3,j

]
.

As for matrices over rings, P becomes a right S-module with row-by-column action

(x y z )
(
t1,1 t1,2 t1,3
t2,1 t2,2 t2,3
t3,1 t3,2 t3,3

)
=

([
xt1,1, yt2,1, zt3,1

] [
xt1,2, yt2,2, zt3,2

] [
xt1,3, yt2,3, zt3,3

])
,

which makes of it a T -S-bimodule and

Q =
{(

x
y
z

) ∣∣∣∣∣ x, y, z ∈ T

}

becomes an S-T -bimodule analogously. Define the following morphisms

ev : Q⊗T P −→ S,

(
x
y
z

)
⊗T (x′ y′ z′ ) �−→

(
x
y
z

)
· (x′ y′ z′ ) =

(
xx′ xy′ xz′

yx′ yy′ yz′

zx′ zy′ zz′

)
,

db : T −→ P ⊗S Q, 1T �−→ (1T a a) ⊗S

(1T
a
a

)
.

They are invertible with inverses explicitly given by

ev−1 :
(
ti,j

)
�−→

[(
t1,1
t1,2
t1,3

)
⊗T (1T a a) ,

(
t2,1
t2,2
t2,3

)
⊗T (a [a, 1T , a] a) ,

(
t3,1
t3,2
t3,3

)
⊗T (a a 1T )

]
,

and db−1 : (x y z ) ⊗S

(
x′

y′

z′

)
�−→ (x y z ) ·

(
x′

y′

z′

)
=

[
xx′, yy′, zz′

]
.

Therefore, T -mod is equivalent to S-mod by Theorem 4.5.
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6. Projective modules over a truss

6.1. Short exact sequences of modules over a truss

Let T be a truss (not necessarily unital) and let � denote the singleton T -module. Recall from Section 2.3
that if (M, ·) is a non-empty T -module and e ∈ M , then we denote by M (e) = (M, ·e) the T -module with 
the induced action

t ·e m = [t ·m, t · e, e].

We say that a sequence of non-empty T -modules M
f

N
g

P is exact provided there exists 
e ∈ Im(g) such that Im(f) = kere(g) as sets. Notice that, in this case, Im(f) ∼= kere′(g) as induced 
submodules for any other e′ ∈ Im(g).

Lemma 6.1. Let M, N, P be T -modules and f : M −→ N and g : N −→ P be T -linear maps. There exist 
exact sequences

M
f

N
g

P , � M (e) f
N (f(e)) and N

g
P � (6.1)

if and only if

(a) f is injective and
(b) N/Im(f) ∼= P as T -modules,

where the module structure on N/Im(f) is the one for which the canonical projection π : N −→ N/Im(f)
is T -linear.

Proof. Assume the sequences are exact. Then f is injective, by the exactness of the second sequence, and

P = Im(g) ∼= N/Ker(g) ∼= N/Im(f),

where the equality is a restatement of the third sequence, the second isomorphism follows by the exactness 
of the first sequence, and the first one is simply the first isomorphism theorem for T -modules.

Conversely, assume that there is an isomorphism h : N/Im(f) −→ P of T -modules, and denote by 
π : N −→ N/Im(f) the quotient map. In light of [6, Proposition 4.32] the sub-heap Im(f) of N , as a 
kernel of π, admits an additional induced submodule structure. Denote it by Im(f)(e) ⊆ N (e) for a certain 
e ∈ Im(f). This entails that Im(f) is a submodule of N with respect to two (in principle, different) T -
modules structures: Im(f) ⊆ N with respect to the T -action for which f is T -linear and Im(f)(e) ⊆ N (e)

with respect to the induced action coming from the identification Im(f) = kerπ(e)(π). Since f is injective, 
we may transport the induced module structure on M . Denote it by M (e′) for e′ ∈ M such that f(e′) = e. 
Consider the sequences

� M (e′) f
N (e) , M

f
N

h◦π
P , N

h◦π
P � .

They are exact. �
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By abuse of terminology, we will say that

� M
f

N
g

P �

is a short exact sequence of T -modules to mean that there exists e ∈ M such that all three sequences (6.1)
are exact.

Proposition 6.2. Let φ : M −→ N and ψ : N −→ P be morphisms of T -modules. Assume that ψ is surjective, 
that φ admits a retraction γ (in particular, it is injective) and that

M
φ

N
ψ

P (6.2)

is exact. Then N ∼= M × P as T -modules. We will call such a sequence a split exact sequence.

Proof. Since (6.2) is exact, there exists e ∈ P such that kere(ψ) = Im(φ). Consider e′ ∈ N such that 
ψ(e′) = e and consider γ(e′) ∈ M . Since e′ ∈ kere(ψ) = Im(φ), φ(γ(e′)) = e′. Denote by G(P ; e), G(M ; γ(e′))
and G(N ; e′) the retracts of the heaps P , M and N respectively. In light of [6, Lemma 2.1], φ induces an 
additive map

φ̂ : G(M ; γ(e′)) −→ G(N ; e′), m �−→ [φ(m), φγ(e′), e′] = [φ(m), e′, e′] = φ(m),

and, analogously, ψ̂ = ψ and γ̂ = γ, which entail that

0 G(M ; γ(e′))
φ

G(N ; e′)
ψ

γ

G(P ; e) 0

is a split short exact sequence of Z-modules. Thus,

G(N ; e′) ∼= G(M ; γ(e′)) ⊕ G(P ; e) ∼= G(M ; γ(e′)) × G(P ; e).

From G(N ; e′) ∼= G(M ; γ(e′)) × G(P ; e) and [9, page 8], it follows that

N = H(G(N ; e′)) ∼= H (G(M ; γ(e′)) × G(P ; e))
∼= H (G(M ; γ(e′))) × H (G(P ; e)) = M × P.

Summing up, at the heap level there is a (unique) isomorphism N ∼= M × P induced by the universal 
property of the product and explicitly given by

Φ : N −→ M × P, n �−→ (γ(n), ψ(n)).

By T -linearity of γ and ψ, Φ is T -linear as well. �
For the sake of completeness, we point out that the inverse of Φ is explicitly given by

Φ−1 : M × P −→ N, (m, p) �−→ [np, φγ(np), φ(m)]

where np ∈ N is any element such that ψ(np) = p.
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Corollary 6.3. Let T be a truss and n ∈ N. Then for any k ≤ n there exists a T -module with absorber M
such that T k ×M ∼= Tn.

Proof. Observe that φ : T k → Tn, given by (t1, . . . , tk) �−→ (t1, . . . , tk, tk, . . . , tk), is a T -module homomor-
phism and clearly the sequence

T k
φ

Tn
πIm(φ)

πk

Tn/Im(φ),

where πk is the projection on the first k coordinates, is a split exact sequence. Therefore, by Proposition 6.2, 
Tn ∼= T k × (Tn/Im(φ)) and Tn/Im(φ) is the required module with an absorber. �
Example 6.4. Let T = 2Z + 1 and let us consider (2Z + 1)3 ∼= (2Z + 1) ×M for some (2Z + 1)-module M
as in Corollary 6.3. In this case, φ is the map given by 2k + 1 �−→ (2k + 1, 2k + 1, 2k + 1) for all k ∈ Z. It 
is easy to check that H(M) ∼= H((2Z + 1) × (2Z + 1)) and that the heap isomorphism is a (2Z + 1)-module 
homomorphism for the (2Z + 1)-action given on (2Z + 1) × (2Z + 1) by

(2k + 1) · (2l + 1, 2h + 1) = (2(2k + 1)l + 1, 2(2k + 1)h + 1),

for all k, l, h ∈ Z. The desired absorber is (1, 1).

Proposition 6.5. Let φ : M −→ N and ψ : N −→ P be morphisms of T -modules. Assume that φ is injective, 
that ψ admits a section σ (in particular, it is surjective) and that

M
φ

N
ψ

P (6.3)

is exact. Then there exists e′ ∈ M yielding an isomorphism of T -modules N ∼= M (e′) × P , where M (e′)

denotes the e′-induced left T -module structure on M .

Proof. The argument for this proof follows closely that in the proof of Proposition 6.2. Since (6.3) is exact, 
there exists e ∈ P such that kere(ψ) = Im(φ). Consider σ(e) ∈ N and let e′ ∈ M be the unique element 
such that

φ(e′) = σ(e). (6.4)

In light of [6, Lemma 2.1], σ induces an additive map

σ̂ : G(P ; e) −→ G(N ;σ(e)), p �−→ [σ(p), σ(e), σ(e)] = σ(p),

and analogously for φ and ψ. These yield the following split short exact sequence of Z-modules

0 G(M ; e′)
φ

G(N ;σ(e))
ψ

G(P ; e)

σ

0.

Thus,

G(N ;σ(e)) ∼= G(M ; e′) ⊕ G(P ; e) ∼= G(M ; e′) × G(P ; e).

From G(N ; σ(e)) ∼= G(M ; e′) × G(P ; e) and [9, page 8], it follows that
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N = H(G(N ;σ(e))) ∼= H (G(M ; e′)) × H (G(P ; e)) = M × P.

Explicitly, this isomorphism is given by the rule

Θ(m, p) = [φ(m), σ(e), σ(p)] .

Now, consider M as a T -module with the induced structure t ·e′ m = [t ·m, t · e′, e′]. Then

Θ(t ·e′ m, t · p) = Θ([t ·m, t · e′, e′], t · p) = [φ(t ·m), φ(t · e′), φ(e′), σ(e), σ(t · p)]
(6.4)= [t · φ(m), t · φ(e′), t · σ(p)] = t · Θ(m, p)

and hence it provides an isomorphism N ∼= M (e′) × P as claimed. �
Remark 6.6. Let us compute explicitly the projection N −→ M arising from Proposition 6.2. At the level 
of Z-modules,

G(N ;σ(e)) −→ G(M ; e′), n �−→ φ−1 (n− σψ(n)) .

By recalling that the module structure is the one induced by the heap structure, we conclude that

n− σψ(n) =
[
n, σ(e), σψ(n)−1] = [n, σ(e), [σ(e), σψ(n), σ(e)]] = [n, σψ(n), σ(e)] .

Therefore, the projection N −→ M is given by n �−→ mn, where mn ∈ M is the unique element such that 
φ(mn) = [n, σψ(n), σ(e)]. Notice that this is not necessarily T -linear if e or σ(e) are not absorbers.

At this point a curious reader may wonder why we introduced the terminology “split exact sequence” 
to refer to (6.2) and we did not use a more specific one instead, in order to distinguish (6.2) from (6.3)
(such as e.g. “left” and “right” split exact sequences). The reason is that if ψ : N −→ P admits a section 
σ : P −→ N , then σ itself admits ψ as a retraction. By applying Proposition 6.2 to the split exact sequence

P
σ

N
π

ψ

N/P,

where N/P is the quotient T -module with respect to the submodule σ(P ) ⊆ N and π is the canonical 
projection, we conclude that N ∼= P ×N/P as T -modules. Now, a straightforward check shows that π ◦ φ
is an isomorphism of abelian heaps.

6.2. Projectivity

Let T be a truss (not necessarily unital). Recall that epimorphisms in T -mod are surjective T -linear 
maps by Proposition 2.6.

Definition 6.7. Let P be a T -module. We say that P is projective if the functor HomT (P,−) : T -mod −→ Ah
preserves epimorphisms. That is to say, if for every surjective T -linear map π : M −→ N and every T -linear 
map f : P −→ N there exists a (not necessarily unique) T -linear map f̃ : P −→ M such that π ◦ f̃ = f . 
Diagrammatically,
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M
π

N

P.
f̃

f

Proposition 6.8. A T -module P satisfying the DBP property is projective. In particular, every tiny T -module 
is finitely generated and projective.

Proof. In view of Proposition 2.7, every epimorphism is a coequalizer. In particular, it is a colimit. By 
Theorem 5.4(5), HomT (P,−) : T -mod −→ Ah is cocontinuous, and so it preserves small colimits and, in 
particular, epimorphisms. The last claim is a consequence of Theorem 5.4(1). �
Remark 6.9. Proposition 6.8 should convince the reader that the terminology “small-projective” from Defi-
nition 5.5 would also be very well-suited for tiny objects in T -mod.

Lemma 6.10. Every projective T -module P admits a T -linear morphism f : P −→ T .

Proof. The required morphism is a filler of the following diagram

T �

P.
f

�

Proposition 6.11. Every free T -module is projective.

Proof. Let X be any set, π : M −→ N be a surjective T -linear map and f : T X −→ N a T -linear map. 
Consider also the inclusion ιX : X −→ T X , x �−→ ∗x. For every x ∈ X set nx := f(ιX(x)) ∈ N . Since π
is surjective, by the axiom of choice, for every x ∈ X, we may choose an mx ∈ M such that π(mx) = nx. 
This defines a function f̄ : X −→ M, x �−→ mx. By the universal property of the free T -module, the latter 
extends uniquely to a T -linear map f̂ : T X −→ M which satisfies π(f̂(∗x)) = π(mx) = nx = f(∗x). Since 
this implies that f ◦ ιX and π ◦ f̂ ◦ ιX coincide, the uniqueness ensured by the universal property of the free 
T -modules entails that f = π ◦ f̂ as desired. �
Corollary 6.12. Let T be a truss without absorbers. Then any T -module with absorber cannot be projective. 
In particular, free T -modules over a truss without absorbers cannot have absorbers.

Proof. Since T -linear maps preserve absorbers, a projective T -module P cannot have absorbers in view of 
Lemma 6.10. In particular, Proposition 6.11 entails that free modules over a truss without absorbers cannot 
have absorbers. �
Remark 6.13. A truss T has no absorbers if and only if there exists a non-empty T -module without absorbers. 
In fact, if T admits an absorber e then for every non-empty T -module M and m ∈ M , e ·m is an absorber in 
M . Conversely, T itself is a T -module without absorbers. More precisely, a truss T admits an absorber if and 
only if there exists a projective T -module admitting an absorber. Therefore, the hypothesis of Corollary 6.12
is not particularly restrictive.

Proposition 6.14. Let R be a ring and T(R) be the associated truss as in §2.6.

(1) If P is projective over T(R) then PAbs is projective over R.
(2) If P is finitely generated over T(R) then PAbs is finitely generated over R.
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In particular,

(3) If P is a tiny T(R)-module then PAbs is a finitely generated and projective R-module.
(4) P is a finitely generated and projective R-module if and only if T(P ) is a tiny T(R)-module.

Proof. To prove (1), let π : M −→ N be a surjective morphism of R-modules and assume that f : PAbs −→
N is an R-linear map. Since the action of the functor T on morphisms does not change the underlying 
mapping (see §2.6) and since epimorphisms in T(R)-mod and R-mod are exactly surjective maps (see 
Proposition 2.6), the functor T preserves epimorphisms, and hence we can consider the diagram of T(R)-
modules

T(M)
T(π)

T(N)

P
ηP

T(PAbs),

T(f)

where ηP : P −→ T(PAbs) is the unit of the adjunction (−)Abs � T. Since P is projective over T(R), there 
exists a filler f ′ rendering the following diagram commutative:

T(M)
T(π)

T(N)

P

f ′

ηP
T(PAbs).

T(f)

By applying the functor (−)Abs to the latter diagram, we find the commutative diagram

M
π

N

T(M)Abs

εM ∼=
T(π)Abs

T(N)Abs

εN∼=

PAbs

f

PAbs

f ′
Abs

(ηP )Abs
T(PAbs)Abs

T(f)Abs
εPAbs

and since εPAbs ◦ (ηP )Abs = idP , we constructed a morphism of R-modules f̂ := εM ◦ f ′
Abs : PAbs −→ M

such that π ◦ f̂ = f .
To prove (2), pick an epimorphism π :

n
�T(R) −→ P . Since (−)Abs is a left adjoint functor (see §2.6) 

and every epimorphism in T(R)-mod is a coequalizer (see Proposition 2.7), (−)Abs preserves epimorphisms 
and coproducts, and hence

Rn ∼=
n⊕

T(R)Abs ∼=
(

n

�T(R)
)

Abs

πAbs−−−→ PAbs

is an epimorphism of R-modules, showing that PAbs is finitely generated.
Concerning the last claims, assume that P is tiny over T(R). Then it is finitely generated and projective 

by Proposition 6.8, and hence PAbs is finitely generated and projective over R, proving (3). Furthermore, in 
view of Example 5.7 we know that if P is finitely generated and projective over R, then T(P ) is tiny over 
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T(R). Conversely, we have just seen that if T(P ) is tiny over T(R), then T(P )Abs ∼= P is finitely generated 
and projective over R, thus showing (4). �
Lemma 6.15. The empty T -module is projective.

Proof. For every T -module M , there exists a unique morphism ∅ −→ M which is the empty morphism. 
Therefore, the following diagram is commutative and gives a lifting of the empty morphism along the 
epimorphism π:

M
π

N

∅

∅

∅ �

Proposition 6.16. Let M be a non-empty projective T -module. Then M is a direct factor of a free T -module. 
More precisely, there exist a set X and a T -module with absorber P such that M × P ∼= T X as T -modules.

Proof. Since every T -module is a quotient of a free one (as is shown at the end of §3.2), there exists a set 
X and a surjective T -linear morphism γ : T X −→ M . By projectivity of M , γ admits a T -linear section 
φ : M −→ T X . Thus, φ is injective and we may identify M with the T -submodule φ(M) ⊆ T X . Consider 
now

P := T X/∼φ(M) ∼= T X/M,

which is a T -module with absorber. Denote by ψ : T X −→ P the quotient map. As M is non-empty, the 
sequence

M
φ

T X
ψ

γ

P

is split exact with ψ surjective and so, by Proposition 6.2, T X ∼= M × P as T -modules. �
The converse of Proposition 6.16 holds as well.

Proposition 6.17. Let M be a T -module. If there exists a T -module P with absorber and a set X such that 
T X ∼= M × P , then M is projective.

Proof. Let e ∈ P be an absorber. Then the assignment φ : M −→ M × P , m �−→ (m, e), is a well-
defined injective T -linear morphism, providing a section for the canonical projection γ : M × P −→ M , 
(m, p) �−→ m. As a consequence, for every surjective morphism g : N −→ Q of T -modules and every T -linear 
map f : M −→ Q, we can consider the diagram of T -linear maps

N
g

Q

M × P
γ

M.

f

φ

By projectivity of T X , there exists f̃ : T X −→ N such that the diagram
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N
g

Q

T X
∼=
τ

f̃

M × P
γ

M

f

φ

commutes, that is, g ◦ f̃ = f ◦ γ ◦ τ . If we set f̂ := f̃ ◦ τ−1 ◦ φ, then

g ◦ f̂ = g ◦ f̃ ◦ τ−1 ◦ φ = f ◦ γ ◦ φ = f,

whence f : M −→ Q can be lifted to a T -linear map f̂ : M −→ N along g, that is, g ◦ f̂ = f , proving that 
M is projective. �
Theorem 6.18. A T -module M is projective if and only if there exists a T -module with absorber P such that 
M × P is a free T -module.

Proof. It follows from Propositions 6.16 and 6.17. �
Proposition 6.19. Let P be a tiny T -module with dual basis {(e1, . . . , es), (φ1, . . . , φs)}. Then there exists a 
T -module Q with an absorber, such that P ×Q ∼= T s.

Proof. By the universal property of the direct product, there exists a unique morphism of T -modules 
φ : P −→ T s such that πk ◦ φ = φk, where πk : T s −→ T is the projection on the k-th factor. The other 
way around, consider the assignment

π : T s −→ P, (t1, . . . , ts) �−→ [t1 · e1, . . . , ts · es] .

Since

π
([

(t1, . . . , ts),(t′1, . . . , t′s), (t′′1 , . . . , t′′s )
])

= π
((

[t1, t′1, t′′1 ], . . . , [ts, t′s, t′′s ]
))

=
[
[t1, t′1, t′′1 ] · e1, . . . , [ts, t′s, t′′s ] · es

]
=

[
[t1 · e1, t

′
1 · e1, t

′′
1 · e1], . . . , [ts · es, t′s · es, t′′s · es]

]
(2.10)=

[
[t1 · e1, . . . , ts · es], [t′1 · e1, . . . , t

′
s · es], [t′′1 · e1, . . . , t

′′
s · es]

]
=

[
π(t1, . . . , ts), π(t′1, . . . , t′s), π(t′′1 , . . . , t′′s )

]
,

for all (t1, . . . , ts), (t′1, . . . , t′s), (t′′1 , . . . , t′′s ) ∈ T s and

π (t · (t1, . . . , ts)) = π ((tt1, . . . , tts)) = [tt1 · e1, . . . , tts · es]
= t · [t1 · e1, . . . , ts · es] = t · π ((t1, . . . , ts)) ,

for all t ∈ T , π is a morphism of left T -modules satisfying π ◦φ = idP (because P satisfies the DBP). Thus, 
φ is injective and we may identify P with the submodule φ(P ) ⊆ T s. As in the proof of Proposition 6.16, 
consider Q := T s/ ∼φ(P )∼= T s/P , which is a T -module with absorber, and the quotient map ψ : T s −→ Q. 
By (1) of Example 5.2, P is non-empty, and so the sequence

P
φ

T s
ψ

π

Q
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is split exact with ψ surjective. By Proposition 6.2, T s ∼= P ×Q as T -modules. �
Differently from what we have seen for projective modules, it seems that the converse of Proposition 6.19

requires stronger hypotheses.

Proposition 6.20. Let T be a unital truss with left absorber a ∈ T . If there exist an odd positive integer 
s = 2k + 1 and T -modules P, Q such that T s ∼= P × Q as left T -modules, then both P and Q are tiny 
T -modules.

Proof. If T admits a left absorber a and γ : T s −→ P × Q is an isomorphism as left T -modules, then 
(a, a, . . . , a) ∈ T s is a left absorber and so aP := πP (γ((a, a, . . . , a))) ∈ P and aQ := πQ (γ((a, a, . . . , a))) ∈
Q are absorbers as well.

Now, set 1i := (a, . . . , a, 1T , a, . . . , a) where 1T appears in the i-th position. Consider the pro-
jection π :=

(
T s γ−→ P ×Q

πP−→ P
)
, the elements ek := π(1k) ∈ P and the compositions φk :=(

P −→ P ×Q
γ−1

−→ T s πk−→ T

)
, p �−→ πkγ(p, aQ), for all k = 1, . . . , s. For all p ∈ P , one finds that

[φ1(p) · e1, . . . , φs(p) · es] = π
(
[φ1(p) · 11, . . . , φs(p) · 1s]

)
= π

(
(φ1(p), . . . , φs(p))

)
= p,

and so P satisfies the DBP. The proof for Q is analogous. �
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