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We use existing 3D Discrete Element simulations of simple shear flows of spheres
to evaluate the radial distribution function at contact that enables kinetic theory to
correctly predict the pressure and the shear stress, for different values of the collisional
coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane
flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing
particles in a regular array, at fixed average volume fraction and distance between
the walls. The results of the numerical simulations are used to derive boundary
conditions appropriated in the cases of large and small bumpiness. Those boundary
conditions are, then, employed to numerically integrate the differential equations of
Extended Kinetic Theory, where the breaking of the molecular chaos assumption
at volume fraction larger than 0.49 is taken into account in the expression of the
dissipation rate. We show that the Extended Kinetic Theory is in very good agreement
with the numerical simulations, even for coefficients of restitution as low as 0.50.
When the bumpiness is increased, we observe that some of the flowing particles are
stuck in the gaps between the wall spheres. As a consequence, the walls are more
dissipative than expected, and the flows resemble simple shear flows, i.e., flows of
rather constant volume fraction and granular temperature. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4879267]

I. INTRODUCTION

Granular materials are collections of discrete particles characterized by loss of energy whenever
the particles interact. Their mechanical behavior is very complex even in the case of simple flow
conditions (i.e., elementary geometries, stationary motions) or when the granular matter is particu-
larly treatable (i.e., dry, no complex shapes of the grains and no polydispersity, etc.). Due to their
microscopic, discrete nature and their macroscopic behavior, granular materials are treated in both
the frameworks of discontinuum (Discrete Element simulations) and continuum mechanics. Among
the latter, kinetic theories of granular gases represent the most fundamental approach.

Classic kinetic theories have been derived1–4 assuming that the energy of the system is dissi-
pated through binary, instantaneous collisions between smooth spheres, and have been proved to
succeed at low to moderate solid volume fractions. When the granular material becomes denser,
the assumption of chaotic, binary, instantaneous collisions fails;5–7 also, force chains can develop
within the medium.8, 9 Several modifications to the classic kinetic theories have been recently pro-
posed, in order to take into account the role of velocity correlation10, 11 and the development of force
chains.12–16

The steady plane shear flow of granular materials, in absence of gravity and pressure gradient,
serves as test case for the theories. Numerical simulations of simple shear flows (i.e., characterized
by homogeneous shearing obtained by imposing the Lees-Edwards17 periodic boundary conditions
in the shearing direction) of disks or spheres have been performed using Event-Driven molecular
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.175.61.176 On: Wed, 28 May 2014 16:06:19

http://dx.doi.org/10.1063/1.4879267
http://dx.doi.org/10.1063/1.4879267
http://dx.doi.org/10.1063/1.4879267
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4879267&domain=pdf&date_stamp=2014-05-28


053305-2 Vescovi et al. Phys. Fluids 26, 053305 (2014)

dynamics (ED) and the Soft-Sphere Discrete Element Method (SS-DEM).6, 9, 18, 19 Inhomogeneous
shearing can be obtained in numerical simulations20–23 and physical experiments24, 25 when the
granular material is sheared between two solid parallel planes, one at rest and the other moving at
constant velocity. In this paper, we numerically solve the Extended Kinetic Theory (EKT), in the
form proposed by Berzi,26 for wall-bounded, plane shear granular flows of identical, frictionless
spheres, and compare the field variables profiles with those obtained by performing 3D SS-DEM
simulations. The boundaries are made bumpy by gluing spheres, identical to the moving particles, at
the walls; the inter-particle collisions are characterized by the coefficient of restitution, e, the ratio
of the relative velocity between two impending particles after and before a collision. We first use
existing numerical results on simple shear flows to slightly modify the constitutive relations of EKT,
and then, we analyze both the influence of the coefficient of restitution and the bumpiness. Recently,
also Chialvo and Sundaresan19 have proposed corrections to the kinetic theory of Garzó and Dufty3

on the basis of 3D SS-DEM simulations of simple shear flows of frictionless and frictional spheres.
The main differences between our work and theirs are: (i) we focus on flows where the influence of
the boundaries cannot be neglected and propose corrections to the boundary conditions originally
developed for nearly elastic spheres glued at the walls27 for two extreme values of the bumpiness;
(ii) we propose a different radial distribution function obtained from a combination of the classic
Carnahan and Starling’s28 and Torquato’s29 expressions, which fits also the numerical data of Chialvo
and Sundaresan19; (iii) we use an expression for the correlation length recently obtained from the
analysis of ED simulations of simple shear flows26 which does not require additional parameters
besides the coefficient of restitution; (iv) unlike Chialvo and Sundaresan,19 we show that there is
no need for correcting the constitutive relation of the shear stress, provided that the coefficient of
restitution is lower than 0.95.

The paper is organized as follows. In Sec. II, we introduce the EKT and the boundary conditions.
Section III is devoted to describe the simulation method. In Sec. IV, we derive the definition of a
new radial distribution function and compare the results of the SS-DEM simulations with those
obtained from the numerical integration of the equations of EKT. Finally, concluding remarks are
summarized in Sec. V.

II. GOVERNING EQUATIONS

We focus on the steady motion of a mixture of identical, frictionless spheres sheared between
two parallel planes, one at rest and the other moving at constant velocity V (Fig. 1).

We take x and y to be the flow and the shearing directions, respectively, and ignore variations
along the transversal direction z. In what follows, all the quantities are made dimensionless using
the particle diameter d and density ρp and the wall velocity V . Spheres having the same properties
of the moving particles are glued at the walls in a regular hexagonal array, where l is the distance
between the edges of two adjacent spheres. The bumpiness of the wall is measured by ψ , with sin ψ

= (1 + l)/2.27 We take y = 0 to be at the top of the particles glued at the resting wall, and y = H to
be at the bottom of the particles glued at the moving wall.

V
y l

x0

H

FIG. 1. Sketch of the constant-volume wall-bounded plane shear flow configuration. A granular material confined between
two horizontal solid planes is sheared by moving one plane at constant velocity V (x are y are respectively the flow and shear
directions). The two planes are made bumpy by gluing grains at their surface in a regular hexagonal array, where l is the
distance between the edges of two adjacent spheres.
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The hydrodynamic mean fields are the solid volume fraction ν, the velocity along the x direction
u, the pressure p and the shear stress s. For frictionless particles, momentum is exchanged only
through collisions,16 and a description based on kinetic theory1, 2, 4 is suitable. We adopt a constant
coefficient of restitution e. The continuous velocity field is first coarsed-grained at the scale of a
grain diameter. The mean square of the velocity fluctuations against this field, averaged at the same
scale, then defines a “granular temperature” T field, which measures the degree of agitation of the
system.

In the absence of external forces, and in steady conditions, the momentum balance trivially
asserts that the pressure and the shear stress are constant along y. The balance of the fluctuating
energy reads

su′ = Q′ + �, (1)

where Q is the fluctuating energy flux and � is the rate of dissipation associated to collisions. Here
and in what follows, a prime indicates the derivative with respect to the y direction. In order to close
the problem, we need constitutive relations for p, s, Q and �. Kinetic theory [e.g.,3 gives

p = f1T, (2)

s = f2T 1/2u′, (3)

� = f3

L
T 3/2, (4)

and

Q = − f4T 1/2T ′ − f5T 3/2ν ′, (5)

where f1, f2, f3, f4, and f5 are explicit functions of the volume fraction and the coefficient of restitution
and are listed in Table I. There, g0 is the radial distribution function, whose expression is given in
Sec. IV on the basis of numerical results. In Eq. (4), L is the correlation length, which accounts

TABLE I. List of auxiliary coefficients in the constitutive relations of kinetic
theory.

f1 = 4νGF

f2 = 8J

5π1/2
νG

f3 = 12

π1/2

(
1 − e2

)
νG

f4 = 4MνG

π1/2

f5 = 25π1/2 N

128ν

G = νg0

F = 1 + e

2
+ 1

4G

J = 1 + e

2
+ π

32

[5 + 2(1 + e)(3e − 1)G] [5 + 4(1 + e)G][
24 − 6 (1 − e)2 − 5(1 − e2)

]
G2

M = 1 + e

2
+ 9π

144 (1 + e) G2

[
5 + 3G (2e − 1) (1 + e)2] [5 + 6G (1 + e)]

16 − 7 (1 − e)

N = 96ν (1 − e)

25G (1 + e)

5 + 6G (1 + e)

16 + 3 (1 − e)
×{

20νH
[
5 + 3G (2e − 1) (1 + e)2]

48 − 21 (1 − e)
− e (1 + e) G (1 + νH )

}

H = 1

G

dG

dν
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for the decrease in the rate of collisional dissipation due to the correlated motion of particles that
occurs at large volume fraction.6, 7 Taking into account this effect, i.e., the breaking of the molecular
chaos assumption, is the peculiarity of EKT.10, 11, 26, 30–32 The expression for L has been suggested
by Jenkins11 on the basis of a simple heuristic argument,

L = max

(
1, L∗ u′

T 1/2

)
, (6)

where L∗ is a function of the volume fraction and the coefficient of restitution. When L is equal to
one, the molecular chaos assumption is valid and EKT reduces to classic kinetic theory. Berzi26 has
suggested an expression for L∗ on the basis of previous results of ED simulations of simple shear
flows:

L∗ =
(

f2

f3

)1/2 [
2 (1 − e)

15

(
g0 − g0,f

) + 1

]3/2

, (7)

where g0, f is the value of g0 at the freezing point, ν = 0.49, i.e., the lowest value of the volume
fraction for which a transition to an ordered state is first possible.29

From the constitutive relations for the shear stress (3) and the pressure (2), we obtain the
differential equation governing the velocity,

u′ = s

p

f1

f2
T 1/2. (8)

By deriving Eq. (2) and using Eq. (5), the differential equation for the volume fraction results

ν ′ = Q

T 1/2

f 2
1

f4

[
p f1,ν

(
1 − f5 f1

f4 f1,ν

)]−1

, (9)

where f1, ν represents the derivative of f1 with respect to the volume fraction. Finally, using
Eqs. (1), (2), (4), and (8), the differential equation for the energy flux reads

Q′ = pT 1/2

[
f1

f2

(
s

p

)2

− f3

L f1

]
. (10)

We also introduce an additional differential equation for the partial mass hold-up, defined as m =∫ y
0 νdz,

m ′ = ν. (11)

Then, the value of the average volume fraction ν̄ along y can be implemented as a boundary condition
for m.

We numerically solve the set of the four differential equations Equations (8)–(11) using the
function “bvp4c” implemented in MATLAB, and fixing the gap H. We treat the pressure and the
shear stress as parameters, so that we need six boundary conditions to solve the problem. As already
mentioned, we implement the fixed average volume fraction as a boundary condition for the partial
mass hold-up, i.e., m H = ν̄H , while, at the resting wall, m0 = 0. Here and in what follows, the index
represents the coordinate y at which the quantity is evaluated. We allow the particles to slip at the
bumpy walls, so that, for symmetry, u0 = uw and uH = 1 − uw, where Richman27 obtained, in the
case of rigid, nearly elastic semi-spheres attached to a flat wall,

uw =
√

π

2
h

s

p
T 1/2

0 , (12)

with

h = 2

3

[
1 + 5F0 (1 + B) sin2 ψ

2
√

2J0

]
2 (1 − cos ψ)

sin2 ψ

+ 5F0√
2J0

, (13)
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where B = π [1 + 5/ (8G0)] /
(

12
√

2
)

, and J0, F0 and G0 are obtained from the corresponding

expressions of Table I with ν = ν0. The bumpy walls act either as a sink or a source of fluctu-
ating energy to the system. The two boundary conditions for the energy flux are Q0 = Qw and
Q H = −Qw, where Richman27 proposed

Qw = suw −
√

π

2
pT 1/2

0 (1 − e)
2 (1 − cos ψ)

sin2 ψ
. (14)

The results of the numerical integration will be compared with those obtained from SS-DEM
simulations described in Sec. III.

III. SS-DEM SIMULATIONS

We have carried out 3D SS-DEM simulations using our own code33 to make comparisons with
the results of EKT. Although this method is well known and can be found in many papers,34–41

we present it here to support our discussion on the comparison of numerical and theoretical results
(Fig. 2). In this method, each grain i is a soft sphere of diameter di, mass mi, moment of inertia
Ii, position ri , velocity vi , and angular velocity ωi . For a pair of particles {i, j}, we define the
relative distance vector ri j = ri − r j , their separation rij = |rij|, the relative velocity vij = vi −
vj, and the normal unit vector nij = (ri − rj)/rij. These two particles are in contact if their normal
overlap δn

i j = max(0, di/2 + d j/2 − ri j ) is strictly positive. In general, the force on particle i from
the interaction with particle j is the sum of a normal and tangential contribution : fi j = fn

i j + ft
i j .

However, the present work deals with frictionless particles for which the contact force is purely
normal. Therefore, the grains are submitted to neither tangential forces nor torques. For the normal
force, we use the standard spring-dashpot interaction model:42 fn

i j = knδ
n
i j ni j − γnvn

i j , where kn is the
spring constant, γ n the damping coefficient and vn

i j the normal relative velocity vn
i j = (vi j · ni j )ni j .

The damping is used to obtain an inelastic collision. For a purely normal collision, the collision

time tc is equal to π/
[
kn/mi j − γ 2

n /
(

4m2
i j

)]1/2
, with the reduced mass mij = mimi/(mi + mj). The

normal restitution coefficient is given by e = exp [ − tcγ n/(2mij)]. The total force on particle i is then
a combination of contact forces with other particles and the boundaries and an eventual resulting
external force Fext . The resulting force fi is given by

fi = Fext +
N∑

j=1, j �=i

fi j ,

where N is the total number of flowing spheres. Once the forces are calculated for all the parti-
cles, the Newton’s equations of motion, mi d2ri/dt2 = fi , for the translational degrees of freedom
are integrated. We use a velocity Verlet integration scheme with a time step 	t = tc/30. The
grains have all the same size and density. As already mentioned, the numerical results are given in

j

n
γ

δ
n

ij

j
r

i
r

n
k

(b)(a)

i

FIG. 2. Sketches of two particles at contact (a) and of the contact forces used (b).
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nondimensional units: distances, times, velocities, forces, elastic constants, and viscoelastic con-
stants are, respectively, measured in units of d, d/V , V , ρpd2V 2, ρpdV 2 and ρpd2V .

All the simulations have been performed in a rectangular box of length Lx = 20, width Lz = 10
and height Ly = 20—so that H = Ly − 2 = 18—with N = 3132. The bumpiness has been generated
by gluing, in a regular hexagonal array, a total of 340 particles at the two walls in the case of ψ

= π /5, and 154 in the case ψ = π /3. Hence, taking into account the extra-space accessible to any
flow particle in between the wall-spheres, ν̄ = 0.45 when ψ = π /5 and ν̄ = 0.44 when ψ = π /3.
The particle stiffness of the linear spring model has been set equal to 2 × 105. The non-dimensional
ratio of the particle stiffness over the particle pressure is greater than 105 in all the simulations.
This ensures that the contact time during a collision is much less than the flight time in between
two successive collisions, so that the latter can be considered instantaneous.15, 43 The value of γ n

is adjusted to obtain the chosen normal restitution coefficient. Periodic boundary conditions are
employed in the x and z directions and the horizontal flat walls are located at y = −1 and y = H +
1, the latter moving at constant horizontal velocity V . Those walls are treated as spheres of infinite
size and density and the grains glued on their surface to create the bumpiness are treated like spheres
of diameter 1 and infinite density.

We focus on the steady state of sheared granular flows that we consider achieved when the
space-averaged granular temperature T̄ becomes approximately constant (fluctuations around the
time-averaged value less than 10%). The space-averaged granular temperature is computed as

T̄ = 1

3N

⎡
⎣ N∑

i=1

‖vi‖2 −
(

N∑
i=1

‖vi‖
)2

⎤
⎦ ,

where ‖ · ‖ denotes the Euclidean norm of a vector. Simulations have been performed by changing
the coefficient of restitution (e = 0.20, 0.50, 0.60, 0.70, 0.80, 0.92, 0.98) and the bumpiness (ψ =
π /5 and π /3).

We have checked that the steady state does not depend on the initial configuration, by preparing
two different initial states, consisting of N spheres uniformly distributed in the volume. In the first
case, the spheres are initially at rest; in the second case, we assign a linear distribution (from 0
to 1) of the x-velocity of the spheres. This second configuration corresponds to a higher value of
the initial energy, i.e., of the initial space-averaged granular temperature. In both cases, we have
achieved the same steady state, i.e., with the same value of space-averaged granular temperature and
the same distributions of the field variables. The time at which the steady state is reached increases
when the coefficient of restitution decreases (e.g., see Fig. 3 for the case ψ = π /5). For sufficiently
small coefficients of restitution (case e = 0.2 in Fig. 3), the mean granular temperature continues

10
1

10
2

10
3

10
4

10
5

t

10
−7

10
−5

10
−3

10
-1

T

e = 0.20
e = 0.50
e = 0.70
e = 0.92

slope = -2

e 

FIG. 3. Time evolution of the mean granular temperature for different values of the coefficient of restitution when ν̄ = 0.45
and ψ = π /5.
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0.0

0.2
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0.6

0.8

1.0

u'

(a)

(c)

(b)

(d)

y/
H

y/
H

y/
H

FIG. 4. Profiles of ν, u, T, and u′ obtained from SS-DEM simulation when H = 18, ν̄ = 0.45, ψ = π /5, and e = 0.80, when
the domain along the y-direction is divided into 20 (open circles) and 40 (crosses) slices to perform the averaging. The solid
lines are the results of EKT when Eqs. (6) and (18) are employed. The dashed line in (a) is the value of the volume fraction
at the freezing point, ν = 0.49.

to decrease, without reaching a steady state. The slope of the curve approaches the value −2 that
characterizes the Homogeneous Cooling State (HCS),4 where the rate of change of the granular
temperature in the balance of fluctuating energy is only due to the collisional dissipation and the
granular temperature obeys the Haff’s law,44 T ∝ (1 + t)−2. We will discuss in Sec. IV this finding.

Once the steady state is reached, measurements are averaged in time, over at least 2000 time
steps, and over the lengths of the domain along the x and z directions, using 20 horizontal slices.
Given that the averaging is sensitive to the amplitude of the spatial discretization,45 we chose a
number of slices that does not affect the results. Example of profiles of ν, u, T, and u′ are plotted
in Fig. 4 for ψ = π /5 and e = 0.80, when 20 or 40 horizontal slices are employed. Also shown are
the results of the numerical integration of the EKT described in Sec. IV. The velocity profile has a
characteristic S-shape, in agreement with recent physical experiments performed on disks.25 Also,
the profile of the shear rate very much resembles the experimental findings. The volume fraction
increases and the granular temperature decreases with distance from the walls. The core of the flow
is dense, i.e., the volume fraction is larger than 0.49, and there the molecular chaos assumption
breaks down. All those features are well captured by kinetic theory.

IV. RESULTS AND COMPARISONS

We first use the numerical results obtained on simple shear flows of frictionless spheres by Mi-
tarai and Nakanishi6 and Chialvo and Sundaresan19 to derive the expression of the radial distribution
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function g0. Mitarai and Nakanishi6 performed ED simulations of inelastic hard spheres, whereas
Chialvo and Sundaresan19 used a SS-DEM code with a linear spring-dashpot model. In both works,
the Lees-Edwards17 boundary conditions were implemented in the shearing direction, in order to
allow for the system to remain homogeneous during the shearing. From the constitutive relation for
the pressure (2) and the expressions of Table I,

g0 = 1

2ν(1 + e)

( p

νT
− 1

)
, (15)

so that the radial distribution function can be obtained from the numerical values of pressure, volume
fraction, and granular temperature. For small volume fractions, g0 obeys the Carnahan and Starling’s
expression,28

g0,cs = 2 − ν

2 (1 − ν)3 , (16)

whereas Torquato’s29 proposed, on the basis of numerical results on elastic particles,

g0,t =

⎧⎪⎨
⎪⎩

g0,cs if ν < 0.49,

(2 − 0.49)

2 (1 − 0.49)3

(
νrcp − 0.49

)
(
νrcp − ν

) otherwise,
(17)

with νrcp = 0.636 the value of volume fraction at random close packing. Figure 5 shows the radial
distribution function obtained from the numerical simulations of Mitarai and Nakanishi6 and Chialvo
and Sundaresan19 on simple shear flows and the present SS-DEM simulations of bounded shear flows.
Equation (17) fits well the numerical results in the case of nearly elastic particles (Fig. 5(a)), while
underestimates the data for dense flows of particles when e ≤ 0.95 (Fig. 5(b)). In the latter case, we
propose to use the following expression:

g0 = f g0,cs + (1 − f )
2

νrcp − ν
, (18)

where f is a function of the volume fraction which makes g0 equal to the Carnahan and Starling’s
expression when the volume fraction is less than a limit value, νm,

f =

⎧⎪⎨
⎪⎩

1 if ν < νm,

ν2 − 2νmν + νrcp
(
2νm − νrcp

)
2νrcpνm − ν2

m − ν2
rcp

otherwise.
(19)
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FIG. 5. Numerical (symbols) radial distribution function (after Mitarai and Nakanishi6, Chialvo and Sundaresan19, and
present SS-DEM simulations) as a function of the volume fraction for: (a) e = 0.98 and 0.99 and (b) 0.5 ≤ e ≤ 0.95. Also
shown are Eq. (18) (solid line) and the expressions of Carnahan and Starling (dotted-dashed line) and Torquato (dotted line).
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FIG. 6. (a) Numerical (symbols, after Mitarai and Nakanishi6 and Chialvo and Sundaresan19) and theoretical (lines, Eq. (20))
correlation length as a function of the volume fraction, for different values of the coefficient of restitution: e = 0.70 (circles
and solid line); e = 0.80 (squares and dashed line); e = 0.90 (stars and dotted line); e = 0.95 (diamonds and dotted-dashed
line). (b) Same as in Fig. 6(a) for the case e = 0.7. The dashed line represents the theory of Chialvo and Sundaresan.19

We take νm = 0.4; the quadratic expression for f when ν ≥ νm ensures that the first derivative of g0

is continuous, facilitating the numerical integration of the equations.
In simple shear flows, the divergence of the flux of fluctuating energy in Eq. (1) can be neglected,

and the correlation length reduces to:

L = f3T 3/2

su′ . (20)

In Fig. 6, we plot the quantity f3T3/2/(su′) as a function of the volume fraction, where s and T are
those measured by Chialvo and Sundaresan19 in their SS-DEM simulations, while f3 is evaluated
from the expression of Table I, using Eq. (18) and the measured values of the volume fraction. There,
the lines represent the theoretical expression of the correlation length, which, in simple shear flows,
using Eqs. (3), (6), and (20), is

L = max

(
1,

f 1/3
2

f 1/3
3

L∗2/3

)
. (21)

The agreement between the numerical data and the theoretical expression of L is remarkable. In
Fig. 6(b), we also plot, for comparison, the correlation length obtained from the modification of the
kinetic theory suggested by Chialvo and Sundaresan19 when e = 0.7.

In simple shear flows, an algebraic relation between the shear rate and the granular temperature
exists,

T

u′2 = f2

f3
L . (22)

Substituting Eq. (22) in Eq. (2) and Eq. (3) leads to the following expressions for the pressure,

p = f1
f2

f3
Lu′2, (23)

the shear stress

s =
(

f 3
2

f3
L

)1/2

u′2, (24)

and the stress ratio

s

p
=

(
f2 f3

f 2
1 L

)1/2

. (25)
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FIG. 7. (a) Numerical (symbols, after Mitarai and Nakanishi6 and Chialvo and Sundaresan19) and theoretical (lines,
Eq. (22)) ratio of granular temperature to the square of the shear rate as a function of the volume fraction, for different
values of the coefficient of restitution. (b) Same as in Fig. 7(a) for the case e = 0.7. The dotted line represents the present
theory when L = 1, while the dashed line the theory of Chialvo and Sundaresan.19

The quantities T/u′2, p/u′2, and s/p, obtained from the numerical simulations of Mitarai and
Nakanishi6 and Chialvo and Sundaresan19, are shown in Figs. 7(a), 8(a), and 9(a), respectively, for
different values of the coefficient of restitution. The lines represent Eqs. (22), (23), and (25) with
the radial distribution function given by Eq. (18) and the correlation length given by Eq. (21). In
Figs. 7(b), 8(b), and 9(b), we also plot, for the case e = 0.7, the predictions of the present theory if
the breaking of the molecular chaos is not accounted for (i.e., L = 1) and the predictions from the
theory of Chialvo and Sundaresan.19

Except for large coefficients of restitution (e > 0.95), the granular temperature, the pressure
and the stress ratio are well predicted by kinetic theory in the entire range of volume fraction, if the
expressions (18) for g0 and (21) for L are adopted. Replacing Eq. (18) with Eq. (17) would allow a
good fitting also for the case of nearly elastic particles (e > 0.95).

Finally, Figs. 10(a) and 10(b) depict, respectively, the quantity p/T and s/(T1/2u′) as functions of
the volume fraction, where p, T, s, and u′ are those measured by Mitarai and Nakanishi6 and Chialvo
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FIG. 8. (a) Numerical (symbols, after Mitarai and Nakanishi6 and Chialvo and Sundaresan19) and theoretical (lines,
Eq. (23)) ratio of pressure to the square of the shear rate as a function of the volume fraction, for different values of
the coefficient of restitution. (b) Same as in Fig. 8(a) for the case e = 0.7. The dotted line represents the present theory when
L = 1, while the dashed line the theory of Chialvo and Sundaresan.19
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FIG. 9. (a) Numerical (symbols, after Mitarai and Nakanishi6 and Chialvo and Sundaresan19) and theoretical (lines, Eq. (25))
ratio of shear stress to the pressure as a function of the volume fraction, for different values of the coefficient of restitution.
(b) Same as in Fig. 9(a) for the case e = 0.7. The dotted line represents the present theory when L = 1, while the dashed line
the theory of Chialvo and Sundaresan.19

and Sundaresan,19 when e = 0.70, together with the theoretical expressions of f1 and f2 of Table I,
with g0 given by Eq. (18). Also the data obtained from the present SS-DEM simulations on bounded
shear granular flows (with e = 0.70 and ψ = π /5) are shown. All the numerical data collapse,
independently of the simulation method and the flow configuration, and are in very good agreement
with the theoretical curves. Similar agreement is obtained for other values of the coefficient of
restitution. In particular, Fig. 10(b) indicates that there is no need to modify the constitutive relation
of the shear stress of kinetic theory, at least if the particles are sufficiently inelastic.26 We now
compare the results of the numerical integration of Eqs. (8)–(11), with the SS-DEM simulations
in terms of profiles of volume fraction, velocity, and granular temperature, distinguishing between
small and large bumpiness.

A. Small bumpiness

Figures 11(a), 12(a), and 13(a) show that, at small bumpiness (ψ = π /5), and using the
boundary conditions of Richman,27 EKT only qualitatively reproduces the SS-DEM results, when
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FIG. 10. Numerical (after Mitarai and Nakanishi6, crosses; Chialvo and Sundaresan19, circles; present SS-DEM simulations,
squares) quantities p/T (a) and s/(T1/2u′) (b) as functions of the volume fraction for e = 0.70, compared with the theoretical
expression of f1 and f2 of Table I (lines).
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FIG. 11. Profile of volume fraction obtained from the present SS-DEM simulations (symbols) for ψ = π /5, ν̄ = 0.45 and
various coefficients of restitution. The data are compared with the numerical integration of Eqs. (8)–(11) for e = 0.50 (dashed
line), e = 0.70 (solid line), and e = 0.92 (dotted-dashed line) when: (a) the boundary condition on the slip velocity is
Eq. (12); (b) the boundary condition on the slip velocity is Eq. (26).
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FIG. 12. Same as in Fig. 11, but for the profile of velocity.
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FIG. 13. Same as in Fig. 11, but for the profile of granular temperature.
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FIG. 14. (a) Slip velocity as a function of the coefficient of restitution obtained from the present SS-DEM simulation when ψ

= π /5. (b) Correction for the theoretical expression of the coefficient h given in Eq. (13) obtained from the present SS-DEM
simulations. The solid line represents Eq. (26).

ν̄ = 0.45 as in the simulations. Those boundary conditions were developed for nearly elastic particles.
Actually, the slip velocity and the volume fraction are underestimated, and the granular temperature
is strongly overestimated when the coefficient of restitution is far from unity. In general, the SS-DEM
simulations show that the volume fraction increases with the distance from the wall (Fig. 11(a)),
and the walls are always “hotter” than the interior (Fig. 13(a)), i.e., the boundaries are energetic (the
fluctuating energy flux is directed towards the interior of the flow); for very inelastic particles, a
dense core surrounded by two more dilute layers appear (Fig. 11(a)). Also, the slip velocity increases
as the coefficient of restitution decreases: for e = 0.50, the granular material roughly moves as a plug
(Fig. 12(a)). Figure 14(a) depicts the value of the slip velocity uw as a function of the coefficient
of restitution. For e = 0.5, the slip velocity approaches the value 0.5, for which there is a condition
of perfect slip at the walls: in that case, the particles do not touch the walls, so that no exchange
of energy with the boundaries is possible. This is the reason why, for e lower than 0.5, the energy
initially put into the system is entirely dissipated in collisions and the evolution of the mean granular

temperature obeys the Haff’s law (Fig. 3). Figure 14(b) shows the ratio of the quantity uw p/
(

T 1/2
0 s

)
obtained from the SS-DEM simulations to the coefficient h obtained from Eq. (13) using ψ = π /5
and the numerical values of the volume fraction at the walls. The boundary condition on the slip
velocity of Richman27 must be corrected in order to reproduce the measurements. On the basis of
best fitting, we propose to use

uw

T 1/2
0 s/p

= h exp(7.3 − 8.6e), (26)

which represents the solid line in Fig. 14(b). If we employ Eq. (26) instead of Eq. (12) as a boundary
condition, when numerically integrating the equations of EKT, the agreement with the numerical
simulations is remarkable even in the case of very inelastic particles (Figs. 11(b), 12(b), and 13(b)).
We expect the numerical coefficients in Eq. (26) to depend on the bumpiness and, perhaps, the particle
stiffness. We postpone to future works a systematic investigation on the role of those quantities in
determining the correction to the slip velocity.

B. Large bumpiness

The SS-DEM simulations indicate (Figs. 15–17) that, at large bumpiness (ψ = π /3), the volume
fraction and the granular temperature are rather uniform, and the velocity profile is linearly distributed
with zero slip velocity (Fig. 16), as for simple shear flows. Predictions of EKT in the case ψ = π /3
when the boundary conditions Eqs. (12) and (14) are employed strongly disagree with the SS-DEM
results (Figs. 15(a), 16(a), and 17(a)). Visual observation of the particle motion suggests that for large
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FIG. 15. Profile of volume fraction obtained from the present SS-DEM simulations (symbols) for ψ = π /3 and various
coefficients of restitution. The data are compared with the numerical integration of Eqs. (8)–(11) for e = 0.50 (dashed line),
e = 0.70 (solid line), and e = 0.92 (dotted-dashed line) when: (a) the boundary conditions are Eqs. (12) and (14); (b) the
boundary conditions are uw = Qw = 0. In both cases, the mean volume fraction is that measured in the simulations.
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FIG. 16. Same as in Fig. 15, but for the profile of velocity.
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FIG. 18. (a) Profile of volume fraction obtained from the present SS-DEM simulations with ordered (ψ = π /3, circles) and
disordered (diamonds) bumpy walls, when e = 0.7 and N = 3132. (b) Thickness of the trapped particle layer as a function of
the coefficient of restitution when ψ = π /3.

enough bumpiness, some of the flowing particles get stuck in the gaps between the particles glued
at the walls; those trapped particles contribute then to create a “disordered” bumpy wall, similar to
that employed in the numerical simulations of Silbert et al.,34 which is far less energetic than the
“ordered” bumpy wall of Richman.27 In the cases e = 0.70 and 0.92, the walls are even slightly
colder than the interior (Fig. 17(a)), i.e., the boundaries are dissipative (the fluctuating energy flux is
directed towards the walls). If we use the mean volume fraction obtained by averaging the SS-DEM
profiles and uw = Qw = 0 instead of Eqs. (12) and (14), i.e., we assume that the boundaries are
neutral (they do not furnish nor subtract fluctuating energy), as boundary conditions, the numerical
integration of EKT, which coincides with the analytical solution of simple shear flows, provides a
fairly good agreement with the SS-DEM simulations (Figs. 15(b), 16(b), and 17(b)). To check our
intuition about the particles being trapped at the walls, we have also performed SS-DEM simulations,
with e = 0.7, when random conformations of particles are glued at the walls (the details for the
generation of this kind of boundaries are given in Silbert et al.34). The distribution of the volume
fraction (and of the other quantities, not shown here for sake of brevity) is very similar to the case
ψ = π /3 (Fig. 18(a)). The mean volume fraction is different in the two cases, because the space
accessible to the flowing particles, whose number is constant and equal to 3132, is different. Also,
the fact that the mean volume fraction measured in the SS-DEM simulations ν̄DEM is, in general,
less than the theoretical value 0.44, that would characterize the ψ = π /3 case when N = 3132, is an
indication of particle trapping. Indeed, a rough estimate of the thickness 	 of this trapped particle
layer is

	 = N

2Lx Lz

(
1 − ν̄DEM

0.44

)
. (27)

Figure 18(b) shows that 	 goes to zero as e approaches one. Also, the thickness 	 saturates to a
constant value for coefficients of restitution lower than 0.7. Once again, we postpone to future works
the generalization of these findings to other values of the bumpiness and the particle stiffness.

Finally, Fig. 19 shows the influence of the coefficient of restitution on the stress ratio, s/p.
Contrary to results reported for 2D plane shear flows of frictional grains submitted to imposed
pressure,9 the coefficient of restitution strongly affects the stress ratio. In the range 0.50 ≤ e ≤
0.98, the stress ratio obtained from the present SS-DEM simulations is a decreasing function of the
coefficient of restitution for large bumpiness (ψ = π /3); while s/p has a maximum around e = 0.80
for small bumpiness (ψ = π /5). The predictions of EKT when Eqs. (14) and (26) are employed as
boundary conditions for ψ = π /5, and uw = Qw = 0 for ψ = π /3 are, once again, in a fairly good
agreement with the simulations. The drop in the stress ratio for small bumpiness and coefficients
of restitution less than 0.8 is due to the already mentioned increasing of the slip velocity, with
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FIG. 19. Stress ratio s/p as a function of the coefficient of restitution obtained from the SS-DEM simulations when
ψ = π /5 (filled circles) and ψ = π /3 (open circles), and from the numerical integration of Eqs. (8)–(11) with the proposed
modifications of the boundary conditions (ψ = π /5, filled squares; and ψ = π /3, open squares).

the corresponding approaching to the Homogeneous Cooling State, in which the shear stress, and
consequently the stress ratio, vanishes.

V. CONCLUSIONS

In this paper, the Extended Kinetic Theory is numerically solved for the shear flows of identical,
frictionless particles bounded between two parallel, bumpy planes, at constant volume (plane shear
flow). The bumpiness is due to spheres identical to those of the flow, glued at the walls in a regularly
spaced, hexagonal array. The numerical solutions are compared with 3D SS-DEM simulations, and
the roles of the coefficient of restitution and the bumpiness of the boundaries are investigated. We
propose an expression for the radial distribution function to be used when e ≤ 0.95 which coincides
with the Carnahan and Starling’s28 at small volume fraction, and diverges as the volume fraction
approaches the shear rigidity as the Torquato’s,29 but, unlike the latter, its derivative is continuous
in the entire range of volume fraction. We have shown that the proposed expression fits well the
results of ED and SS-DEM simulations of simple shear flows. Also, we adopt a recently suggested
expression for the correlation length in the dissipation rate of fluctuating energy, which depends only
on the coefficient of restitution. At small bumpiness, the SS-DEM simulations show that the volume
fraction increases with the distance from the wall, for every value of the coefficient of restitution,
and the wall is always “hotter” than the interior. The slip velocity at the boundaries decreases with
the elasticity of the particles, and, for coefficients of restitution less than 0.5, the slip is perfect:
the boundaries do not touch the flowing particles, so that the system evolves accordingly to the
Homogeneous Cooling State (it is not possible to obtain a steady shear flow). Also, the measured
stress ratio is a non-monotonic function of the coefficient of restitution, and reaches a maximum
for e = 0.80. The results of the numerical integration of EKT agree well with the simulations,
if a correction to the expression of the slip velocity depending on the coefficient of restitution is
introduced in the boundary conditions derived for nearly elastic particles by Richman.27 At large
bumpiness, the SS-DEM simulations show nearly uniform profiles of volume fraction and granular
temperature, and linear distributions of the velocity field, as for simple shear flows. This is due to
the fact that, when the gaps between the spheres glued at the walls are large enough, some of the
flowing particles get stuck, making the bumpy wall more “disordered,” and, then, more dissipative
than expected. Even in the case of large bumpiness, EKT is able to reproduce the simulation results,
if both the slip velocity and the fluctuating energy flux at the walls are taken to be zero.

Summarizing, we have shown that Extended Kinetic Theory has the capability of quantitatively
reproducing the flow of frictionless spheres in the entire range of volume fraction for which the
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collisions can be considered nearly instantaneous and random (i.e., the entire fluid-like regime
of granular flows). Tests of proposed extensions to EKT to deal with friction, non-instantaneous
collisions and enduring contacts will be the subject of future works.
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