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Abstract
Background In recent years, scientific research has increasingly focused on Endocrine Disrupting Chemicals (EDCs) and
demonstrated their relevant role in the functional impairment of endocrine glands. This induced regulatory authorities to ban
some of these compounds and to carefully investigate others in order to prevent EDCs-related conditions. As a result, we
witnessed a growing awareness and interest on this topic.
Aims This paper aims to summarize current evidence regarding the detrimental effects of EDCs on pivotal endocrine glands
like pituitary, thyroid and adrenal ones. Particularly, we directed our attention on the known and the hypothesized
mechanisms of endocrine dysfunction brought by EDCs. We also gave a glimpse on recent findings from pioneering studies
that could in the future shed a light on the pathophysiology of well-known, but poorly understood, endocrine diseases like
hormone-producing adenomas.
Conclusions Although intriguing, studies on endocrine dysfunctions brought by EDCs are challenging, in particular when
investigating long-term effects of EDCs on humans. However, undoubtedly, it represents a new intriguing field of science
research.
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Background

Endocrine disrupting chemicals (EDCs) are defined as
“exogenous chemicals or mixture of chemicals that interfere
with any aspect of hormone action” [1]. Their extensive
application in several fields (agricultural, industrial, resi-
dential and pharmaceutical), their ability to contaminate
human body through virtually every route (inhalation,
digestion and transdermal) [2, 3] and to accumulate even for
years in the adipose tissue [4, 5], easily explains the danger
that the chronic exposure, to even small doses, poses.

Given the complexity of the whole endocrine system and
the variety of the involved substances, infinite are the
possible levels interfered by EDCs: synthesis, secretion,
transport, metabolism, or elimination of endogenous hor-
mones [2, 6–11]. More recently, literature has focused on
their supposed direct action on hormonal receptors and/or
genomic expression [12]. Indeed, several mechanisms of
action appear to be involved in endocrine disruption. They
can act as total, partial, or inverted agonists or as antagonists
for endocrine nuclear receptors [6, 10, 11], and even per-
form epigenetic changes, such as DNA methylation and/or
acetylation and histone modifications [13, 14].

For comparable reasons, endocrine impairment induced
by EDCs can express in a wide range of consequences:
hormonal secretion, cell proliferation and cancer, growth,
metabolism, sexual development, circadian clocks, and even,
cognitive functions, neurodevelopment and behavior, mostly
following recent literature on pre/postnatal exposure [1].

Indeed, several studies carried out during pregnancy and
lactation, show that EDCs exert influence in both the exposed
individual and in their offspring. Not only, EDCs damage
during development, and not necessarily after conception,
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seems also able to transfer to future generations, through a
process known as transgenerational inheritance [15].

All this can be explicated by the deleterious effects of
EDCs on three of the main human endocrine axes: hypo-
thalamus-pituitary, adrenal, and thyroid glands.

Table 1 presents some information about the main various
substances you will find throughout this dissertation [16].

Pituitary gland

The pituitary gland is a potential target of EDCs, which can
result in an alteration of the pituitary hormone-releasing
patterns. The hypophysis seems to be vulnerable through
direct and hypothalamic-mediated processes exerted by
these compounds [1, 17]. However, EDCs mechanisms of
action are still not fully figured out: over the entire lifespan
of the individual, they could interfere with endogenous
hormonal function, affecting the homeostatic system, or
alter the genomic expression, e.g., through DNA methyla-
tion [1, 12].

A growing body of evidence is suggesting that EDCs can
have an influence on tumorigenesis. Researchers described
a link between EDCs and cancer burden, particularly with
testicular, breast and prostate cancer [1]. Pituitary gland
seems to be a potential target of these compounds, too. First
epidemiological studies reported a higher incidence of
pituitary adenomas due to previous exposure to dioxin [18]
and a higher incidence of growth hormone- (GH-)secreting
adenomas in a highly industrialized area nearby Messina,
Italy [19]. Moreover, in vitro studies succeeded in demon-
strating correlations between pollutants and stimulation of
pituitary cells: benzene and phthalates increased cell pro-
liferation via a deregulation of aryl hydrocarbon receptor
(AHR) and AHR-interacting protein (AIP) [20], a tumor
suppressor pathway that seems to be involved with other
xenobiotics, such as polycyclic aromatic hydrocarbons and
PCBs [21]. The involvement of AIP seems to play a key
role: in fact, previous studies had already linked AIP gene
mutations with familial isolated pituitary adenoma syn-
drome, familial somatotropinomas, and with apparently
sporadic acromegaly [22, 23]. Moreover, in clinical practice

Table 1 Main EDCs and their
applications [16]

Applications of EDCs

Applications

Environmental pollutants

Dioxin Non-man made, unintentional byproducts of industrial
production and combustionPolycyclic aromatic hydrocarbons

Flame retardants

Polychlorinated biphenyls (PCBs) Added to textile, electronic, and construction materials
and foam products to make them difficult to burnPolybrominated diphenyl ethers (PBDEs)

Repellents

Perfluoroalkyls (PFAS: PFOA and PFOS) Used to protect products like carpet and fabric, as a
coating for paper and cardboard packaging, and in
some firefighting foams

Plastics

Bisphenol A Found in a wide variety of domestic applications,
including baby bottles and food packagingPhthalates

Methacrylonitrile

Pesticides and fungicides

Dichlorodiphenyltrichloroethane (DDT) Insecticide, mainly used against Anopheles mosquito
in the eradication of malaria

Chlordane Insect control of stored food and clothing; as well as
termite control, carpenter ants and wood beetle

Endosulphan Pesticide used widely on crops like cashew, cotton,
tea, paddy, fruits and others

Tributyltin chloride Fungicide agents in textiles and paper, wood pulp and
paper mill systems, breweries

Aerosol

Carbon tetrachloride Refrigerant fluid, propellants for aerosol cans,
pesticides, cleaning fluid and degreasing agent, in fire
extinguishers, and in spot removers. These uses are
banRed, and it is now only used in some industrial
applications
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AIP gene mutations are associated with an aggressive dis-
ease phenotype, which is less responsive to conventional
medical treatment, as somatostatin analogues [19].

In addition, another influence of EDCs on the
hypothalamic–pituitary–somatotropic axis can be hypothe-
sized: an increase in GH secretion was reported for octyl-
and nonyl-phenols, BPA [24], benzene, phthalates, and
PCBs [25]. Furthermore, estrogens exert a direct stimulation
of GH and prolactin (PRL) release [26, 27]; consequently, a
potential increase in GH levels could be hypothesized for
those EDCs with estrogenic activity, such as diethyl-
stilbestrol and DDT [1].

Lactotroph cells also resulted to be susceptible to EDCs:
the known estrogenic activity of BPA, and a similar activity
performed by two pesticides (endosulphan and chlordane)
seemed to induce PRL secretion both in vitro and in vivo
[28–30]. Even metal ions with analogous endocrinological
influence, the so-called “metalloestrogens” [31], such as
lead and chromium, resulted to be positively associated with
PRL release in humans [32–34]. However, this evidence
resulted not to be conclusive: further studies documented
that cadmium, mercury, molybdenum, and lead were
inversely associated with PRL levels [34–37].

The impact made by EDCs on the hypothalamic-
pituitary-thyroid axis is still unclear. In animals, reduced
serum TSH and not univocal fT3 and fT4 responses were
reported after exposition to pesticides and fungicides
[38–40]; tributyltin chloride, however, was associated
with increased TSH and diminished fT3 and fT4 serum
levels [41, 42]. Even in humans, there were interesting
findings: workers exposed to cadmium showed metal
urinary concentrations to be directly correlated with
serum TSH and inversely with fT3 and fT4 [43]. Fur-
thermore, some studies demonstrated a lasting effect from
mother to child: they reported a positive association
between maternal and children blood levels of TSH and
PFAS, PCBs, or dioxin [44–46], while BPA urinary
levels in pregnant women resulted to be inversely asso-
ciated with serum TSH, but not with fT3 and fT4 levels of
newborns [47, 48].

Direct hypothalamic-pituitary-adrenal axis involvement
with EDCs is still a matter of debate due to the lack of
evidence, especially in human species. A few animal studies
reported a direct suppression of this axis through a reduc-
tion in adrenocorticotrophic hormone (ACTH) and corti-
costerone levels after PCBs exposition [49], chiefly in
female rats [50], or indirectly through reduction of hypo-
thalamic corticosterone-releasing-factor mRNA [51]. BPA
increased ACTH and corticosterone levels in male, but not
in female rats [52].

Rising evidence outlines how EDCs can have implica-
tions for the neurohypophysis, which acts like a storage site
of hypothalamic released hormone vasopressin (AVP) and

oxytocin. In particular, in mammalians BPA peri-natal
exposure was associated with upregulation of oxytocin
release, both in males [53] and females [54] while no dif-
ferent number of oxytocin neurons was found after prenatal
exposition to PCBs [55]. AVP function was reported to be
influenced by BPA [54, 56] and PBDE exposure increased
the number of AVP releasing neurons [57].

Wide is the literature about the influence of EDCs on
hypothalamic-pituitary-gonadal axis. An intriguing subtopic
is represented by puberty disruption. Puberty is a critical
time orchestrated by a pulsatile release of hypothalamic
gonadotropin-releasing hormone (GnRH) leading to an
episodic systemic secretion of luteinizing hormone (LH)
and follicle stimulating hormone (FSH) from the anterior
pituitary gland [58]. This system is mainly regulated by
hypothalamic kisspeptin neurons, which are usually inhib-
ited during childhood [59]. These neurons and pituitary
cells are sensitive to endocrine influences during fetal,
neonatal, and juvenile development [60]. In literature, there
are reports of early menarche in daughters of women
exposed to pesticides and phytoestrogens [61, 62] and in
girls consuming soy or exposed to PBDE [62–64] during
infancy [65]. Finally, several animal models of EDCs
exposure have confirmed their role on pubertal timing, even
if the mechanisms of action are still not completely eluci-
dated [66]. In mammalian, BPA seems to exert a stimula-
tory effect on kisspeptin-GnRH system [67–69] while other
claim that BPA [70–72], PCBs [73], sewage sludge [74] can
have an inhibitory effect. Moreover, mixed effects (BPA
[75], PCBs [76], phthalates [77]) or no effect on kisspeptin-
GnRH system are also reported [73].

Finally, it is intriguing to consider the perturbation
exerted by EDCs on circadian rhythms, which synchronize
cell functions with the external light-dark cycle. Circadian
clocks are highly conserved, endogenous time-keeping
mechanisms that generate self-sustained oscillations with
an approximately 24-h period [78]. The main characters of
this regulation system are the clock genes; in the anterior
hypothalamus, they encode for transcription factor like
BMAL-CLOCK1 [79] that drives rhythmic expression of
many clock-controlled genes, even in humans [80].
Alterations of this daily pattern seem to have potential
detrimental effects on human health, including infertility,
cancer [80–82], and also disruption of pituitary hormone
release patterns [81, 83–86]. In fact, exposure to cadmium
can disrupt rhythmic 24-h release of PRL [87], BPA and
dioxin can alter the expression of BMAL gene [88, 89] and
even tributyltin seems to have a harmful effect on this
system [90]. Moreover, gestational exposure to PCBs dis-
rupted the normal BMAL expression pattern [91–93].

The systematic study of the whole series of alterations to
the pituitary gland made by EDCs results to be challenging,
due to the high complexity of this gland. As we have seen,
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the various hypothalamic-pituitary axes can be involved in
varying degrees. In conclusion, it is still a matter of debate
the comprehension of the entity of EDCs burden on the
etiopathogenesis of pituitary diseases.

Thyroid gland

An extraordinary variety of substances can interfere with
the normal functioning of the thyroid gland. Given the
complexity of the hypothalamus-pituitary-thyroid axis, the
great amount of involved mechanisms is not surprising.

Historically involved processes include the inhibition of
the sodium/iodine symporter (NIS) and of the thyroid-
peroxidase enzyme (TPO), widely described for some ions
that pollute water basins (nitrates, perchlorates) and cigar-
ette smoke (thiocyanate) [94]. These are, among other
substances, known as goitrogens in light of their ability to
increase the volume of the gland, through the proliferative
stimulus of lower thyroid hormones (THs).

Recent studies showed how often pre/postnatal exposure
to EDCs is consistently associated to children neurodeve-
lopment impairment, and although conclusive evidence
about specific differences for age and genders still lacks,
some studies seem to point out a higher susceptibility in
young boys and an effect lasting up to 7 years of age or
even until adulthood [95, 96]. It is hard to pinpoint the
precise mechanisms between endocrine disruption and
neurodevelopmental outcome because most of these epi-
demiological studies lacked in complete endocrine profiles.
It is well-known that THs are central in normal cerebral
development. Even transient and mild hypothyroidism in
pregnancy is also associated with cognitive/neurobehavioral
in the offspring (e.g., 3.9 IQ score loss in association with
maternal fT4 < 2.5 mUI/L) [97]. Consequently, it is abso-
lutely established the causal burden of goitrogens. Yet, such
an impairment does not always coincide with a strong
negative correlation with serum levels of THs [95, 98–101].
This observation shifted the focus of research on a down-
stream action. Particularly, it is now recognized that some
chemicals, mainly flame retardants (PCBs, PBDEs), plasti-
cizers (phthalates, BPA) and certain pesticides, can directly
interfere with thyroid hormone receptors (THRs) and their
transcriptional activity at several levels, which also made
them suspect of increasing the risk of thyroid cancer [102].

Studies suggested an association of prenatal and infantile
exposure to PCBs with inferior IQs in children [103], but
less consistent is the evidence about correlation with T4 and
TSH levels [104]. Interestingly, PCBs seem to be among the
few substances capable of directly interfere with THRs,
which added to the transport-globulin mechanism, could
explain the direct cortical antigrowth action [105, 106]. The
same, with minor difference, can be said of PBDEs, the

employment of which raised with the abandonment of
PCBs, in the 80 s [102, 107–109].

Research has shown that phthalates carry out their anti-
thyroid action via a by-product of a gram-negative bacteria
processing, which behave as a TPO inhibitor. They were
also classified as “possibly carcinogenic to human” (Class
2B) by IARC [102, 110].

Recent studies found that BPA has a negative correlation
with T4 levels in several large population-based studies
[111–114]. Its action can be associated to its binding with
thyroxin binding globulin (TBG) and Transthyretin (TTR)
[115], to the interference with THRs [116] and, moreover,
to an increased the expression of Dio1 gene and Ugt1ab,
and consequently to an augmented catabolism of TH
[117, 118]. BPA is known to stimulate the proto-oncogenic
estrogen receptor (mER) and to activate nuclear factor kB
(NF-kB), a transcription factor involved in development of
thyroid cancer. Yet, studies investigating the association
with thyroid cancer are limited [119, 120].

Full comprehension of this process is still far from reach
and there are multiple factors being suggested: expression
of THRs (Phthalates and BPA [121, 122]), interaction of the
complex Retinoid X receptor (RXR) and THR with T3-
response elements (TREs) (PCB [123]), recruitment/release
of corepressors (BPA [9]), T3 binding to receptor (PBDEs,
phthalates [124, 125]) and recruitment of coactivators
(PCBs [126]).

The extent of how far environment and chemicals can
interfere with thyroid gland functioning will always be a
puzzle, because of the infinite possible mechanisms and the
challenge of reaching superior quality evidence. Thyroid
should be an example, though, of how such topics can have
a great clinical and practical rebound. It is, consequently, of
primary importance to obtain full disclosure on this subject
and to design increasingly rigorous studies. Researchers’
efforts should today focus on new and barely explored fields
of study, like other mechanisms than the decrease in THs
blood levels and especially on the direct effect on molecular
pathways and the interference with DNA transcription.

Adrenal gland

The human adrenal gland is a complex endocrine organ that
produces both steroid hormones (glucocorticoids, miner-
alocorticoids and androgens) and amino acid-derived hor-
mones (epinephrine and norepinephrine). Adrenal
functional impairment can lead to both insufficiency and
overproduction of hormones eliciting Addison’s disease
(primary hypo-adrenalism), Cushing’s syndrome (hyper-
cortisolism), Conn’s disease (primary hyperaldosteronism)
as well as adrenal androgen excess, which can have a role in
premature adrenarche and adrenogenital syndromes in
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children and in hirsutism and infertility in women. For what
refers to adrenal medulla, a catecholamine-secreting lesion
(pheochromocytoma) may give rise to severe signs and
symptoms because of the augmented sympathetic activity.

Sometimes hormones overproduction can underlie
hormone-producing adenomas or carcinomas and might
result from exposure to drugs or exogenous EDCs [127].

In fact, recearchers demonstrated that the adrenal gland is
the most frequently observed site of endocrine lesions as it
is particularly sensitive to toxic assault [128]. There is a
wide number of chemicals with recorded in vitro and
in vivo adrenal effects covering most of their classes: pes-
ticides, plasticizers, dioxins, PCBs and polycyclic aromatic
hydrocarbons [128–133].

For what refers to pathophysiology, these EDCs influ-
ence steroid biosynthesis and metabolism either as inhibi-
tors or rarely as activators of key enzymes, or on the level of
the respective enzyme expression.

As previously stated, the adrenal gland is particularly
vulnerable to toxicants and there are several causes. First,
there are multiple targets for toxicological assault such as
receptors, transcription factors and enzymes [134]. For
instance, hydroxysteroids dehydrogenases are targets for
BPA that may affect their activity as well as their expression
[135]. Another target are sulfotransferases that are inhibited
by phthalates, chlorinated phenols and also by some phy-
toestrogens [136, 137].

Second, during steroid hydroxylation reactions, reactive
oxygen species (ROS) are generated causing oxidative
stress. It has been shown that imbalance in redox balance is
implicated in impaired adrenal steroidogenesis and, more
specifically, in several potentially lethal adrenal disorders
including X-linked adrenoleukodystrophy, triple A syn-
drome and most recently familial glucocorticoid deficiency
[138]. This imbalance can be brought up again by BPA
causing the inhibition of the anti-oxidant enzymes super-
oxide dismutase, catalase, glutathione reductase, and glu-
tathione peroxidase [139].

Third, the adrenal cortex has specific mechanisms for the
selective uptake of lipoproteins, which are subsequently
stored in the large pools of esterified lipid. Studies revealed
that adrenal cells can take up and concentrate a wide
number of toxic agents, including DDT metabolites,
methacrylonitrile, and PCB metabolites. Particularly, it
seems that these chemicals could remain inactive within the
adrenal tissue until a period of particularly high demand for
adrenal steroids, when they may be mobilized and cause
damage [140–142].

Another important aspect is the potential of the adrenal
gland for lipid peroxidation, due to the high content of
unsaturated fatty acids in its membrane. This process is
implicated in the toxic effects of carbon tetrachloride on this
tissue [143].

In addition, researchers reported that unlike other verte-
brates such as fish and birds, the human adrenal gland is
highly vascularized, and this rich blood supply facilitates
the delivery of toxins and metabolic substrates as well as the
efficient removal of steroid products [144].

Moreover, this endocrine organ has a high content of
enzymes of the CYP family that have the potential for
bioactivation of toxins that can cause a relevant damage to
the gland [145]. In particular, CYPs are well known as
biocatalysts for the transformation of diverse pollutants,
including pesticides and polycyclic aromatic hydrocarbons
[146–148].

For the sake of completeness, it is necessary to highlight
that current evidence of the influence of EDCs in the
adrenal gland is mainly driven by studies focusing on the
adrenal cortex. In fact, there are only a few studies on
adrenal medulla reporting its impaired development in rats
after pre-natal and post-natal exposure to DDT [149, 150].

Although the number of studies focusing on the effects
of EDCs on animals is quite consistent, the evidence in
humans is lacking. One reason for that is the low avail-
ability of human adrenal cells for researchers [145].

This is a crucial issue as studies demonstrated that there
are several differences between the adrenal grands of ani-
mals and humans (anatomical, physiological, etc…).
Moreover, even a partial impairment of proper adrenal
function may have severe consequences on human health, a
very challenging aspect to investigate in animals.

These subclinical and latent dysfunctions can be the
result of the bioaccumulation of chemicals that might gen-
erate clinical effects only after several years of constant
low-dose exposure [151]. In this light, recently researchers
hypothesized that hormone-secreting adrenal adenomas
could have a greater content of EDCs. A pioneering study
by Fommei et al, despite being small-sized, reported a
significantly higher concentration for α-, β-, and γ- Hexa-
chlorocyclohexane (HCH) Hexachlorobenzene (HCB) and
for PCBs in aldosterone-producing adenomas than in the
normal cortex [152]. This aspect should be the focus of
long-term ad hoc studies. Moreover, it is desirable a wider
availability of human adrenal cells.

Conclusions

The striking results of scientific studies on EDCs and their
detrimental effects on the endocrine system opened a new
and intriguing field of research. In particular, investigators
reported EDCs-related dysfunction of pituitary, thyroid and
adrenal glands with supporting evidence. In recent years,
researchers focused on the effects of bio-accumulation of
chemicals and the possible role of this process on the for-
mation of non-functioning or hormone-producing
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adenomas. However, we still require support for this
hypothesis, so we encourage to conduct long-term ad hoc
studies with a higher sample size. In addition, it is necessary
to make human endocrine cells available for pre-clinical
studies. Undoubtedly, we are just at the beginning of a long
journey that will definitely give us new insights over the
years. This research could prevent EDCs-related endocrine
dysfunctions, providing robust evidence to the regulatory
authorities to allow them to promote the use of safer com-
pounds and to phase-out hazardous chemicals.
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