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A B S T R A C T   

Ecosystems in the Alps are considered hotspots of climate and land use change. In addition, alpine regions are 
usually characterized by complex morphologies, which make measurement (especially in the long term) of states 
and fluxes of water, energy and matter particularly challenging. Therefore, there is a limited availability of 
information and modelling tools to characterize actual ecosystem conditions, and to simulate future scenarios. 

Despite the fact that in high altitude areas meteorological forcing is extremely variable in space and time, 
much of the variability of actual evapotranspiration (AET) in the above-mentioned regions is largely related to 
land surface properties such as aspect, shadowing and slope. Therefore, a simple, radiation driven, calibration 
free, bucket hydrological model for predicting AET and estimating the soil–water balance is proposed here (i.e. 
CLIME-MG). Conventional meteorological data from a network of automatic weather stations together with a 10 
m digital terrain model (aggregated at 30 m), and a land cover map are used to inform the model. All the pa
rameters and values required are obtained or calculated from data provided in literature. 

CLIME-MG has proved to perform well for AET modelling of mountain grassland. The model is validated both 
temporally and spatially. Temporal validation of AET is performed using eddy-covariance datasets from two 
different high mountain sites: a sunny and steep abandoned pasture facing S-E at an altitude of 1730 m, and a 
meadow with a S-SE aspect located at an altitude of 2555 m. Spatial validation is performed by comparing 
CLIME-MG simulations with the Landsat-based METRIC model evapotranspiration output. Results show good 
daily temporal performance, especially in wetter periods with recurring rainfall events. Sensitivity of the cor
relation coefficient between measured and modeled AET values to some key parameters such as effective 
porosity, and the vegetation and stress coefficients was found to be quite low. Spatial validation of hourly results 
shows SPAEF values in the range 0.21–0.34 between the outputs of the two models (with a similar spatial 
structure ruled by the DTM). Boxplots of deviations between CLIME and METRIC with respect to morphological 
characteristics has highlighted some dependency on elevation and slope (but not on aspect and soil depth); this 
suggests an opportunity to refine the modelisation of the grassland AET processes. Finally, spatial results 
demonstrated the non-sensitivity of the proposed model to local elevation and to the distance from the meteo
rological stations.   

1. Introduction 

Starting from the late 19th century, Alps have been subjected to a 
warming rate which is about two times larger than the northern- 
hemispheric average (Auer et al., 2007) and it is mainly due to water 
vapour-enhanced greenhouse warming (Philipona, 2013). Despite the 
fact that seasonal and spatial patterns of temperature show remarkable 

variability, all models agree in highlighting this phenomenon making 
the warming trends very robust (Heinrich et al., 2013b). As annual 
average, a total increase of about 1.5 ◦C is expected in the first half of the 
21st century (~0.25 ◦C per decade). A further acceleration is foreseen in 
the second half of the century with an expected annual average warming 
at the end of the century of about 3.3 ◦C (~0.36 ◦C per decade if only the 
second half of the 21st century is considered) especially at high eleva
tions - Gobiet et al. (2014). These warming dynamics are influencing 
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(and will increasingly influence) the Alpine Region and, more generally, 
all mountainous areas (e.g. Palazzi et al., 2017; Rottler et al., 2019). 
Impacts are already evident. It is changing: i) the physical environment 
(e.g. increased thaw of permafrost regions, reduced snow-cover at mid- 
elevation, glacier retreats, increased frequency of drought and water 
scarcity – Haeberli and Beniston, 1998; Harris et al., 2003; Vanham, 
2012; Gobiet et al., 2014; Beniston and Stoffel, 2014); ii) the biodiver
sity and evolutionary dynamics of the Alpine biosphere (e.g. distribution 
and abundance of biotic communities, seasonal cycles and phenology 
modifications – Klanderud and Totland, 2005; Alexander et al., 2015; 
Rogora et al., 2018; Asse et al., 2018); and iii) its socio-economic im
plications (e.g. winter tourism and ski industry, hydropower generation, 
natural hazards, agriculture and irrigation, drinking water, ecosystem 
services – Gilaberte-Búrdalo et al., 2014; Steiger, 2010, Gaudard et al., 
2014; Maran et al., 2014; Einhorn et al., 2015; Fuhrer et al., 2014; Delpla 
et al., 2009; Schirpke et al., 2017). 

Within this context, evapotranspiration is a key variable linking 
ecosystem functions, carbon and climate feedbacks, agricultural man
agement, and water resources and its accurate determination is one of 
the main challenges identified for Earth System Science (Fisher et al., 
2017). It is a complex process depending on many factors, namely water 
availability, energy availability, wind speed, humidity gradient, phys
ical attributes of the vegetation (stress included), and soil characteris
tics. Topography plays a major role. Due to its importance in a wide 
range of disciplines and contexts, a suite of methods and techniques 
have been developed to measure or estimate evapotranspiration (e.g. 
Wang and Dickinson, 2012) using analytical and empirical approaches 
together with direct or indirect methods. 

Firstly we find the experimental surveys at the field scale which use 

various approaches, namely: hydrological approaches (e.g. weighing 
lysimeters – Evett et al., 2012, Previati et al., 2020; soil–water balance – 
Chen et al., 2008, Raffelli et al., 2017); micrometeorological approaches 
(e.g. eddy covariance – Wever et al., 2002, Gu et al., 2008, Ochoa- 
Sánchez et al., 2019; aerodynamic methods – Ortega-Farias et al., 1996; 
energy balance and Bowen ratio – Malek and Bingham, 1993); plant 
physiology rule-based approaches (e.g. sap flow method – Granier, 
1987; chambers systems – Reicosky et al., 1983); and optical approaches 
(e.g. scintillometry - Hemakumara et al., 2003). 

Further methods use meteorological variables and/or remote sensing 
based estimations. The first group are algorithms that use meteorolog
ical variables to estimate actual evapotranspiration starting from refer
ence/potential evapotranspiration. This includes temperature based 
models (e.g. Thornthwaite, 1948; Blaney & Criddle, 1950; and Har
greaves and Samani, 1982), solar-radiation based models (e.g. Makkink, 
1957; Priestley & Taylor, 1972), and “mixed” models which are based on 
energy/mass balance principles (e.g. Penman, 1948; modified Penman 
(Doorenbos and Pruitt, 1977); FAO Penman-Monteith (Allen et al., 
1998)). The second cluster are solutions that use remote sensed variables 
and they can be roughly organized in three branches: Methods 
demanding remotely sensed atmospheric and radiation variables (e.g. 
Venturini et al., 2008), Methods based on remotely sensed vegetation 
indexes such as NDVI (where surface losses depend mostly on the in
tensity of transpiration - e.g. Cleugh et al., 2007), and Methods based on 
remotely sensed surface temperatures such as thermal infrared domain 
(i.e. contextual pixel models: based on the simultaneous presence of hot/ 
dry and cold/wet pixels within the satellite image – e.g. S-SEBI (Roerink 
et al., 2000), TTME (Moran et al., 1994), SEBAL (Bastiaanssen et al., 
1998; Bastiaanssen et al., 2005), and METRIC (Allen et al., 2007; De la 

Nomenclature 

ai Regression parameters, - 
AET Actual evapotranspiration, mm h− 1 

AWS Automatic weather station, - 
α Albedo, - 
1/sin(d) Optical depth of the atmosphere, m 
β Slope of the surface, Rad 
bi Regression parameters, - 
ci Regression parameters, - 
cp Air specific heat, J mol− 1 K− 1 

d Relative Earth-Sun distance, m 
D Dew deposition, mm 
DTM Digital Terrain Model, - 
Δ Slope of the saturation vapour pressure curve, kPa K− 1 

ET Evapotranspiration, Kg m− 2 s− 1 

ea Actual vapour pressure, kPa 
es Saturation vapour pressure, kPa 
∊ Gray body emissivity, - 
G Ground heat flux, W m− 2 

Gsc Solar constant (1367 W m− 2), W m− 2 

γ Psychrometric constant, kPa K− 1 

H Sensible Heat flux, W m− 2 

Ha Absolute humidity, g m− 3 

K soil diffusion coefficient, m yr− 1 

Kc Vegetation coefficient, - 
Ks Vegetation stress coefficient, - 
λ Latent heat of vaporisation, MJ kg− 1 

LE Latent Heat flux, W m− 2 

LWin Incoming long wave radiation, W m− 2 

LWo Outgoing long wave radiation, W m− 2 

m Soil empirical constant,cm− 1 

n Number of soil layers, - 

P Precipitation, mm 
P0 Maximum bedrock-soil conversion rate, m yr− 1 

Perc Percolation, mm 
PET Potential evapotranspiration, mm h− 1 

qa Actual specific humidity, kg kg− 1 

qs Saturation specific humidity, kg kg− 1 

qsoil Net sediment transport vector, cm2 yr− 1 

Rn Net radiation, W m− 2 

ra Aerodynamic resistance, s m− 1 

rs Surface resistance, s m− 1 

ρair Air density, kg m− 3 

ρrock Rock density, kg m− 3 

ρs Effective soil porosity, - 
ρsoil Soil density, kg m− 3 

s Slope of the saturation specific humidity curve, K− 1 

σ Stefan-Boltzmann constant, W m− 2 K− 4 

SWb Beam radiation, W m− 2 

SWd Diffuse radiation, W m− 2 

SWin Incoming shortwave radiation, W m− 2 

SWo Outgoing short-wave radiation, W m− 2 

SWanom SWin anomaly, W m− 2 

Ta Air temperature, K 
Tday Daytime temperature, K 
TAW Total available water, Mm 
τ Transmittance of the atmosphere, - 
τsw Broadband atmospheric transmissivity, M 
θ Potential temperature, K 
θrel Solar incidence angle, Rad 
Wl Water available in a layer, Mm 
z Terrain elevation, M 
zl Layer depth, Mm 
zs soil depth, M 
RH Relative Humidity, -  
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Fuente-Sáiz et al., 2017); single pixel models: solving the surface energy 
budget for each pixel independently from the others – e.g. TSEB (Nor
man et al., 1995; Chirouze et al., 2013), SEBS (Su, 2002; Sharma et al., 
2016)). 

For a more comprehensive overview, several reviews are available 
(e.g. Rana and Katerji, 2000; Li et al., 2009; Wang and Dickinson, 2012). 

Alpine regions, being usually characterized by complex environ
mental and terrain conditions combined with limited accessibility that 
hampers realization of surveys and studies, suffer from a limited quan
tity and quality of information as well as the lack of appropriate 
modelling tools to characterize actual conditions, to make forecasts and 
envisage scenarios (especially true at local scale where topographic 
factors can lead to strong changes/gradients influencing the local 
energy-mass balance - Aguilar et al., 2010). 

Satellite observations, together with the above-mentioned remote 
sensing based approaches, can partially close this lack of information, 
but they are usually designed for routine applications over large regions, 
hence characterized by coarse resolutions in space and/or in time 
(depending on the orbital patterns of the sensor platform and sensor 
specifications - e.g. Landsat images have a temporal resolution of 16 
days and a spatial resolution of 30 m – USGS, 2019). Furthermore, 
satellite observations can be heavily affected by cloudy conditions and 
the information retrieved is usually subject to post-processing analysis 
and calibration procedures which are not often easy-to-apply or user- 
friendly. 

In this context, climate change studies in mountain areas require 
more and more AET models with higher spatial and temporal resolution 
(Gürtz et al., 2005) to account for the local terrain and ecosystem 
complexity. These must function without the possibility to rely on the 
abundance of data that are usually found at lower altitudes. This ac
tivity, unfortunately, is still challenging. Considerable efforts have been 
made both to develop algorithms and models for estimating land surface 
evaporation (e.g. Carter and Liang, 2018; Bottazzi et al., 2021), and to 
evaluate the influence of complex morphologies on specific meteoro
logical/environmental variables and/or to implement common model
ling applications (e.g. Solar radiation/shading: Duguay, 1995; Kumar 
et al. 1997; Oliphant et al. 2003; Aguilar et al., 2010). We are not aware 
of any existing parsimonious calibration free models able to estimate 
AET over complex terrains at high spatial and temporal resolution using 
only a digital terrain model, a land cover map, and standard meteoro
logical data. 

Distributed physically-based land surface models (LSMs) - such as, 
the Community Land Model (CLM), the Ecological Assimilation of Land 
and Climate Observation model (EALCO), the Variable Infiltration Ca
pacity model (VIC) - account explicitly for spatially variable properties 
of watersheds but require parameter values which are not commonly 
available for complex contexts, and cannot be realistically obtained. For 
instance, soil parameters can be estimated (or derived) from easily 
measured variables (i.e. pedotransfer) and used to inform hydrological 
models (e.g. Baveye and Labac, 2015; Van Looy et al., 2017). But at high 
altitudes even simple soil characteristics are difficult to obtain. Pedo
transfer functions may provide reasonable approximations but only as 
long as one remains within the particular set of soils for which specific 
functions have been developed (e.g., Wösten et al., 1990). A similar 
situation can be acknowledged also for further key properties, such as 
soil depth (i.e. thickness of unconsolidated material over un-weathered 
bedrock). These can be estimated, especially over large areas, by three 
different approaches: (i) physically based models; (ii) empirico- 
statistical methods using environmental parameter correlation, and 
(iii) interpolation from sample points (e.g. Sarkar et al., 2013, for a more 
comprehensive analysis). 

In addition, since global climate change has become a popular issue 
since the late 1980 s, most LSMs were conceived and developed for 
working at regional (up to global) scale, with large model grids (both in 
input and in output) resulting in a general smoothing of the local het
erogeneity typical of complex systems (e.g. Wang et al., 2015; Zhao & Li, 

2015). Due to that, most LSMs have tried to represent the spatial het
erogeneity over complex terrains by applying different processing 
techniques and/or sub-grid systems. CLM, for example, offers the pos
sibility to adopt a three-level sub-grid system to represent the vegetated 
surface according to a few specified plant functional types. VIC model 
allows to divide the grid cell in sub-grid elevation bands (with 500 m 
elevation interval). 

To better represent the process interactions between hydrology, 
ecology, and atmosphere - especially at higher spatial resolution (e.g. 
catchment scale) -, LSMs have begun to be coupled with hydrological 
models. These tools, useful for simulating surface/ subsurface processes, 
are mainly oriented towards integrating and solving the Richards’ 
equation. Among others, CATHY (e.g.Paniconi & Wood, 1993; Niu et al., 
2014), ParFlow (e.g. Kollet and Maxwell, 2006) and GeoTOP (Rigon 
et al., 2006) can be identified as the most known. All these models differ 
in several aspects such as the Richards’ equation solving approach, the 
spatial discretization, and the flow conceptualization (it is interesting to 
note that GeoTOP accounts for very complex topography). Complex 
models can provide a good fit with AET measured data (e.g. Fig. 10 of 
Rigon et al., 2006). However, they require many inputs which are not 
available in mountainous areas. For example, Mastrotheodoros et al. 
(2020) paper shows the results of a very detailed model to forecast the 
effect of climate change in the Alps. Their Tethys-Chloris model was 
conceived to deal with different kinds of vegetation, and coupling 
various mechanisms, including carbon balance. 

We think that simplified models can be complementary tools to be 
used in conjunction with such detailed models. Also, simple models can 
be valuable for real world applications (e.g. Brussolo et al. (2022), 
where a similar simple model (by the same authors of this paper) was 
used by a drinking water authority. It must be cited that Filippa et al. 
(2022) recently studied the productivity of grassland in the same Gran 
Paradiso area as used by CLIME-MG; however, they took an agronomic 
point of view, not a modelling one. 

In this challenging context, some interesting insight can be found in 
the following intuitions. Rogowski (1972), in his landmark article on soil 
spatial variability, identified criteria according to which soils in a 
watershed could be assumed uniform, i.e., its heterogeneity could be 
ignored. Also, Bouma (1989) stated that soils that are pedologically 
different are not necessarily different in their hydrological properties. 
More recently McDonnell et al. (2007) have pointed out the need to 
devise a way to embed heterogeneity, or the consequence of heteroge
neity, into models in a manner that does not require enormous amounts 
of generally unavailable data. One way to do this, according to these 
authors and in resonance with Jury’s (1982) perspective, is not to 
concentrate one’s efforts on a detailed characterization of the hetero
geneity of the system, but to focus on the “properties that emerge with 
increasing scales, and on their resulting hydrological effects” (Baveye 
and Labac, 2015). Some studies (e.g. Basu et al, 2010) found a quite 
spatially homogeneous soil water storage capacity at the watershed 
scale. 

The objective of this work was to present and validate a new cali
bration free soil water model (i.e. CLIME-MG) for computing the soil–
water balance and mapping the actual evapotranspiration (AET). 
CLIME-MG is a 1D water balance model (i.e. bucket model) account
ing for landscape differences in aspect, topography/morphology, soil 
depth, and meteorological forcing. It is specifically designed to work at 
very high spatial and temporal resolutions over grasslands in mountain/ 
complex-morphology domains, and it would act as a magnifying glass to 
bridge local point data and satellite data at larger scales. The necessary 
inputs are a digital terrain model (hereafter DTM), a land cover map and 
standard meteorological data retrieved from the regional network, here 
referred to as Automatic Weather Stations (AWS). The model is built 
without calibration parameters, and only literature parameters values 
are used. 

Bearing in mind that nowadays a number of standard automatic 
meteorological stations provide data at hourly temporal resolution, and 
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satellite data provide information at a smaller than hillslope scale (i.e. 
20/30 m) - but with only few images per growing season -, the here 
presented results are performed at 1-hour temporal and 30 m spatial 
resolutions in a 600 km2 wide area in the Alps, during two growing 
seasons in two different sites characterized by different conditions and 
very different average amounts of soil water. Modelled AET data during 
the two growing seasons are compared with eddy covariance measured 
AET data to check the temporal variability, and with Landsat AET data 
computed via METRIC model to check the spatial variability. 

2. Materials and methods 

2.1. CLIME-MG model structure 

The here presented model is composed of two main modules: the 
meteorological module and the soil–water-balance module. The mete
orological module uses meteorological data to compute the potential 
evapotranspiration (PET) with the Penman-Monteith formula following 
the Allen et al. (1998) approach: 

PET =
1
λ

Δ(Rn − G) + ρaircp
es − ea

ra

Δ + γ(1 + rs
ra
)

(1) 

Notations are reported in the list of symbols at the beginning of the 
paper. 

The soil–water balance module (SWB-module) computes the soil–
water balance to estimate the vegetation stress coefficient, Ks, and thus 
the fraction of water vapour transferred to the atmosphere (and, 
therefore, the ratio AET/PET). 

2.1.1. Meteorological module 
The CLIME-MG meteorological module spatially interpolates punc

tual meteorological data provided by meteorological stations. Hourly 
time-step standard weather data (namely temperature, humidity, global 
solar radiation, wind, precipitation, air pressure) were averaged starting 
from existing AWS located in the domain, while other variables were 
computed using known formulas obtained from literature, as better 
detailed in the following. The daily values of air temperature, relative 
humidity and global solar radiation measured at the AWS (Fig. 1) show 
that the spatial variability of these is limited, and that most of the 

variability is temporal. The time series measured at different AWS are 
generally in phase. Differences between air temperature series are due to 
elevation (e.g. higher values belong to the AWS located at lower 
elevation (i.e. Vieyes – Table 1)). Wind and precipitation are more 
variable in space, hence these variables were averaged in the horizontal 
direction (e.g. Voronoi approach was adopted for precipitation). When 
empirical formulas were adopted for estimating variables, parameters 
belonging to published look-up-tables were used (i.e. most of them are 
reported in the FAO volume 56, or specified in the following section of 
the paper). 

2.1.1.1. Radiation. To compute the net radiation on the domain, the 
four solar radiation components were here reconstructed taking into 
consideration the shading effect. In particular, the hourly SWin was 
mapped over the whole domain starting from data collected by a 
representative local station corrected for shading and sloping effects in 
order to obtain a SWin on a horizontal surface. To this end, and to 
compute the hours of shading, a model using the DTM topographic in
formation was implemented using TopoToolbox (Schwanghart and 
Scherler, 2014) together with a set of Matlab functions for topographic 
analysis. 

Beam (SWb) and diffuse (SWd) radiation, were separately estimated 
according to: 

SWin = SWb + SWd (2) 

The beam radiation incident on a sloping surface, SWb, is a function 
of the zenith angle and illumination angle (Iqbal, 1983; Twidell and 
Weir 1986; Aguilar et al., 2010). 

SWb was calculated as suggested by Chung and Yun (2004). 

SWb = SWinτ1/sin(d) (3)  

where d is the atmospheric thickness as a function of the sun position (i. 
e. elevation). A Rayleigh sky condition and an isotropic sky radiation 
were also assumed (so SWd was only affected by the sky view factor: 
SVF = cos2(β/2), following Chung and Yun (2004)). A value of τ = 0.8 
was used. The actual diffuse radiation collected by a surface with slope 
SWd was hence calculated using the equation: 

SWd,β = SWdSVF (4) 

Fig. 1. Daily values of air temperature (Ta), relative humidity (RH) and solar radiation (SWin) for the 2015 and 2018 growing seasons.  
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Outgoing radiation was computed as SWo = αSWin. For grasslands, 
typical values of albedo vary between 0.15 and 0.23 (Brutsaert, 2005). 
In the model the albedo was set to α = 0.17. 

LWin and LWo were computed with the Stefan-Boltzmann law. For 
LWin, the emissivity was parametrized as (Brutsaert, 2005): 

∊ = a
(

ea

Ta

)b

= 0.99 (5)  

where the coefficients introduced by Brutsaert (2005) were used, 
namely a = 1.24, and b = 1

7. 
For LWo, the surface temperature was estimated with a linear rela

tionship with Ta, as reported by Gallo et al. (2011) and Jin and Mullens 
(2014): 

LW0 = ∊σ(Ts)
4 (6) 

The soil surface temperature is given by Ts = co + c1Ta. A discrim
ination between night and day was used. Averaged values for daytime 
during clear and cloudy conditions were taken from Gallo et al. (2011): 
c0 = − 2.075◦C and c1 = 1.075. At night, the situation was supposed to 
be different. Following the findings of Jin and Mullens (2014), we 
assumed this difference as a constant during the night-time hours. 
Therefore, Ts = Ta − 1.5. This approximation relies on the absence of 
strong fluctuations of the two temperatures during night-time. 

2.1.1.2. Air temperature. Two different approaches were followed for 
mapping daytime and night-time temperatures. During the day, in 
complex terrains, air temperature is primarily affected by solar radiation 
and elevation. Available solar radiation, in turn, is governed by shading 
due to the surrounding mountains (Chung and Yun, 2004). Therefore, 
topography plays an important role in the spatial distribution of the air 
temperature. To estimate daytime temperature (Tday) a multi-linear 
regression was adopted: 

Tday(z, SWanom) = a0 + a1z+ a2SWanom (7) 

where SWanom is the difference of SWin of a given location with 
respect to the spatial average across the considered domain, with a2 ≥ 0. 

For night-time, after sunset, temperature inversion occurs in a stable 
atmosphere. Thus, it was simpler to reconstruct the potential tempera
ture (θ), with a vertical profile in free atmosphere approximated by the 
formula (from Stull, 1988): 

θ(z) = b0 − b1e− z/b2 (8) 

To this purpose, Whiteman et al. (2004) and Massaro et al. (2015) 
observed that the pseudo-vertical profile of the near-surface air tem
perature along valley slopes is representative of the vertical profile of 
temperature in free atmosphere. Therefore, it was possible to solve a 
statistical regression with Eq. (8), computing the best fit parameters 
using the DTM height as an input. 

2.1.1.3. Air humidity. According to the Clausius-Clapeyron law, the 
water vapour content in air increases exponentially with temperature; 
since Ta decreases approximately linearly with altitude and Ha decreases 
with height with an exponential behaviour. Based on that, a linear 
regression was used to map Ha over the domain starting from the 
observed variables: 

logHa = c0 + c1z (9) 

Once the absolute humidity was reconstructed for the domain, it was 
possible to compute the saturation and actual vapour pressures (Foken 
and Nappo, 2008). 

2.1.1.4. Dew deposition and ground heat flux. In mountainous areas, 
nocturnal dew deposition can make a remarkable contribution to the 
water budget (Jacobs et al., 2006). Either evapotranspiration or dew 
formation can be estimated with the following equation (Garratt, 1992; 
Jacobs et al.,2006): 

LE = λET =
s

s + γ
(Rn − G)+

γ
s + γ

ρairλ(qs − qa)

ra
(10) 

The proposed model also includes a routine for the hourly (Δt = 1h)
dew estimation, according to the following relationships: 

D = LE Δt if LE ≤ 0 (11)  

D = 0 if LE > 0 

The ground heat flux can be estimated as a fraction of net radiation 
Rn (Moran et al., 1994). Assuming an homogeneous 30-cm height 
vegetation cover on the entire domain, G can be estimated with a good 
approximation (as also verified by the measured data) as. 

G = 0.05Rn (12)  

2.1.1.5. Wind, precipitation and atmospheric pressure. Given that wind 
and rainfall fields are characterized by significant spatial and temporal 
intermittence, especially in mountain areas (Rebora et al., 2006), in the 
CLIME-MG model a constant value of wind speed for the entire domain 
was used (i.e. by averaging the measured hourly data of AWS). This 
approach was adopted given that it is impossible to realistically estimate 
the temporal and spatial variability of the wind using datasets from just 
a few AWS. For precipitation, each point, identified by a Voronoi par
titioning of the domain, was assigned the rainfall amount measured at 
the nearest station. 

Pressure was computed according to the hydrostatic equilibrium 
law. The air density was assumed constant throughout the domain, also 
because pressure values do not play a major role in evapotranspiration 
estimates. 

2.1.2. Soil-water balance (SWB) module 
As climatology is heavily affected by topography in mountain areas 

(Fridley, 2009), a high-resolution DTM is the main input for the model. 

Table 1 
Automatic Weather Stations (AWS) variables.   

n Elevation [m] Ta[◦C] RH[%] Uz[m/s] P[mm] SWin 

Vieyes 1 1139 yes no no yes no 
Lillaz 2 1613 yes no no yes no 
Cogne 3 1785 yes yes yes yes yes 
Gran Crot 4 2279 yes no yes yes no 
Valnontey 5 1682 yes no no yes no 
Cretaz 6 1470 yes no no no no 
Clavalité 7 1531 yes yes yes yes no 
Lavodilec 8 2250 yes no no yes no 
Gressan 9 2280 yes yes yes yes yes 
Eaux Rousses 10 1651 yes no no yes no 
Orvieille 11 2170 yes no no yes no 
Pont 12 1951 yes yes yes yes yes  
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In addition, given that evapotranspiration is mainly a vertical 1D process 
along the shallower soil’s horizons, a simple bucket soil model is here 
presented for the water-balance evaluation. 

2.1.2.1. Soil depth. Soil depth information is often missing. In this work 
it is estimated with a process-based approach built on the local high- 
resolution topography (provided by the DTM) and some empirical pa
rameters (Dietrich et al., 1995). This model assumes a net sediment 
transport vector, qsoil, downslope of soil converted from bedrock by 
biogenic and climate processes at a rate proportional to the gradient (i.e. 
qsoil = − K∇z). The mass conservation equation can be written as the 
balance between the local rate of bedrock-soil production, f(zs), and the 
divergence of the transport vector: 

K∇2z =
δzs

δt
−

ρrock

ρsoil
f (zs) (13) 

In the model, f(zs) is assumed to decrease exponentially. This hy
pothesis was suggested in previous studies (Dietrich et al., 1995; 
Heimsath et al., 1999): 

f (zs) = P0e− m/zs (14) 

Values of the empirical parameters for the implementation of the 
soil-depth model in Eq. (13) were chosen from literature and theoretical 
considerations. For our purposes, as described in Dietrich et al. (1995), 
the mean value of K = 50cm2/yr was adopted, and ρr/ρs was set to 1.7. 
Pixels with exposed bedrock (zs = 0, following the land-cover map) 
were included in order to estimate P0. A lower limit for P0 was also 
estimated; while m was determined by fitting f(zs) between f(0) = P0 

and f(100) = 0.01P0. 
According to the aforementioned explanations, values of P0 =

0.009cmyr− 1, and m = 0.045cm− 1 were computed. Measured soil depths 
in Gimillan (by means of electrical resistivity tomography - Raffelli et al., 
2017) and in Valnontey (by simple vertical insertion of steel rods) - 
Aosta, Italy -, when compared with modelled values gave a robust 
agreement. The same method by Dietrich was used with the same scopes 
by Bertoldi et al. (2006), using the model GEOtop. 

2.1.2.2. Soil-water balance. An original soil model was designed for 
describing soil moisture evolution over time. Following Ritchie (1998), 
the soil vertical profile zs of each pixel was partitioned in several 
communicating layers with incremental thickness, starting from 50 mm 
the shallowest, followed by, respectively, two 100 mm, one 300 mm, 
and three deeper layers 500 mm thick (Fig. 2). 

According with observations, all the inputs (i.e. water) entered into 
the system from the soil surface with higher variability in the superficial 
layers, and smoother behaviour at depth. The external positive inputs 
considered were precipitation and dew. The AET was the negative term 
of the balance and affected the first non-empty layer from the surface. 
Each layer was approximated as a bucket for which the Total Available 
Water (TAW) was considered the maximum amount of storable water, 
computed as: 

TAW = ρszl (15) 

where ρs was set to 0.2, and the values 0.3 and 0.4 were used in the 
sensitivity analysis. 

Percolation (Perc) occurred when the maximum storable capacity 
was achieved and, therefore, the exceeding water moved outside the 
layer. Water percolation from the deepest layer, being not relevant for 
the AET computation, was assumed lost by the system. The water- 
balance was computed in each layer (l) as a sum of positive and nega
tive fluxes (Allen et al., 1998) considering the water availability, 
0 ≤ Wl ≤ TAW: 

Wl(t) = Wl(t − 1)+P(t) +D(t) − AET(t) − Perc(t)l = 1 (16)  

Wl(t) = Wl(t − 1)+Perc(t, l − 1) − Perc(t, l) − AET(t)l = 2⋯.n 

As shown by Tromp-Van Meerveld and McDonnell (2006), at the end 
of the snow-melt season (i.e., April or May in the Alps), the soil water 
content is not affected by topography and it is approximately constant 
along the vertical soil profile with initial values corresponding to Wl(t =

0) = 0.7TAW. 
The model computes AET by using Eq. (17) (Allen et al., 1998): 

AET = KsKcPET (17) 

Lookup tables with estimated vegetation coefficient already exist 
especially for crops and pastures (Allen et al., 1998). For the purposes of 
this work, alpine grasslands were here considered as extensive pastures 
with value of Kc = 0.7. 

Ks was estimated for each soil layer according to Allen et al. (1998). 
For the sake of completeness, however, several other linear and non- 
linear models (e.g concave and convex) are available in literature (e.g. 
Raes et al., 2009) for any specific need. The root zone depletion (i.e. 
depletion fraction) for extensive pastures was also adopted. The model 
computes the stress coefficient for each pixel with a weighted average of 
the Ks coefficient associated with each layer: 

Ks =
∑n

i

Ksi

wi
n where wi =

zli∑
zl

(18) 

In the model, the area defined as grasslands was derived using the 
land cover map and was assumed to have homogeneous and full-covered 
grass. The presence of bare soil in the investigated mountain grassland 
surfaces being negligible, evaporation from bare soil was not included in 
the AET computation. 

Fig. 2. Soil model scheme. Each layer is represented as a bucket of increasing 
thickness with depth. Precipitation enters from the surface and moves down
ward when each preceding layer is full. AET works inversely emitting water first 
from the surface then deeper layers as the shallower ones become empty. 
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2.2. Study site and datasets 

The studied area (Fig. 3) is situated in North-western Italy in the 
Aosta Valley (AO) Region (45. 462 N − 45.670 N; 7.145 E − 7.518 E) 
and it covers about 600 km2. Grasslands here are located in a range 
between 1500 m and 3300 m a.s.l. The highest alpine peak of the area is 
the Gran Paradiso mountain: 4061 m a.s.l., and the spatial domain 
presents a very complex morphology. 

Being sufficient to describe the aspect and the shading, a 10 m res
olution DTM was aggregated at 30 m. To this end, the existing DTM has 
been resampled from 10 to 30 m using a nearest neighbour interpola
tion. This resolution was selected also to superimpose the Landsat sat
ellite images, needed for the spatial validation. The land cover map 
“Carta della Natura” (Angelini et al., 2009), provided by ARPA VdA, 
with a spatial resolution of 30 m, was also used to select grassland areas 
in the domain. 

Meteorological data were retrieved from 12 AWS located in the 
considered domain and managed by the Aosta Valley “Regional Func
tional Center” and the Aosta Valley “Regional Environmental Protection 
Agency” (ARPA VdA). Data were provided with 30 min time-step, then 
aggregated at 1 h. The available meteorological variables of each station 
are shown in Table 1. 

The studied period lasted from June 1st to August 31st for the years 
2014 and 2015. 

2.3. Temporal and spatial validation of AET 

2.3.1. Temporal validation of AET using eddy covariance 
For the temporal validation of AET, data from two research mea

surement stations located in high mountain areas were used. One station 
was placed in Gimillan (Cogne, Aosta Valley, Italy) at 1730 m a.s.l. on a 
26◦ slope facing S-SE (at the coordinates 45◦36′ N and 7◦21′ E). The 
other station was installed near the Nivolet Pass (Valsavarenche, Aosta 
Valley, Italy) on an almost flat small plateau of a steep ridge (about 32◦) 
with a S-SE aspect at an altitude of 2555 m a.s.l. (Latitude: 45◦52′ N; 
7◦17′ E). Collected data allowed the AET estimation by using the eddy 

covariance technique. Night-time ET data and lower than zero ET values 
were assumed to be zero. Initialization periods and unrobust gap filled 
periods were excluded. 

Both the two sites were equipped with a sonic anemometer (CSAT3, 
Campbell Scientific) and an open-path infrared gas analyser (LI-7500A, 
LI-COR), with which both sensible and latent heat fluxes were measured 
adopting the eddy-covariance technique - using the EddyPro SW 
(developed by LI-COR). Radiation and soil moisture were measured 
using, respectively, a four components radiometer (NR01, Hukseflux) 
and water content reflectometers (CS616, Campbell Scientific). 

The first site has shrubs and grass, while the second is mainly a 
grassland. 

2.3.2. Spatial validation of AET using METRIC 
METRIC (Mapping EvapoTranspiration at high Resolution with 

Internalized Calibration) is a well-known model proposed by Allen et al. 
(2007). It maps AET by means of satellite-based data and image pro
cessing and it is based on the radiative energy balance closure 
assumption (considering the storage term negligible). Through the 
model it is possible to obtain an instantaneous AET value when the 
satellite passes over the domain. 

The following inputs were used for the METRIC model:  

• available Landsat 8 images in the visible and infrared spectral 
regions;  

• a digital elevation model;  
• a weather station measuring vapour pressure and wind speed. 

The retrieved Landsat 8 satellite images have a pixel size of 30 m. The 
satellite passes every 16 days, but image quality and availability depend 
on weather conditions, thus for the time period studied, only 3 acqui
sitions were available: 27 August 2014, 13 July 2015, and 30 August 
2015. The fly-over time was almost constant at about 10:15 UTC. Sat
ellite images were used to calculate the Top of Atmosphere (TOA) 
reflectance. The conversion from digital numbers to TOA reflectance 
was computed according to USGS (2019). The other inputs used in 

Fig. 3. Automatic Weather Stations (AWS, 1–12) and eddy covariance stations (13,14) location within the DTM domain.  
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METRIC were: the digital elevation model of Aosta valley (same DTM 
used for the CLIME-MG model), and the vapour pressure / wind speed 
data measured in Cogne meteorological station. A synoptic chart of the 
environmental conditions which occurred at the three satellite passes is 
represented in Table 2. Data identify ideal meteorological conditions 
with good weather situations and two different soil moisture levels 
(including a very dry date). 

To compute the daily cumulative AET value from instantaneous 
METRIC data, the equation (55) in Allen et al. (2007) was adopted. 

Some advantages and limits of METRIC can be summarized as 
follows. 

i) METRIC was originally developed for flat and gently sloping large 
areas. This fact leads to some changes for the computation of variables 
affected by orography, such as the incident solar radiation. In particular, 
the incoming solar radiation computation adopted in METRIC (i.e. Eq. 
(19)), gives the total amount of solar radiation (i.e. direct and diffuse), 
without considering shading effects: 

SWin =
Gsccos(θrel)τsw

d2 (19) 

ii) A relevant source of uncertainty of METRIC outputs is the sensible 
heat component because of the internal calibration procedure. The 
sensible heat is computed as follows: 

H = ρaircpΔT/ra (20) 

In this equation the term ΔT is computed with an internal calibration 

and it is necessary to choose a “hot” and a “cold” pixel, for which the 
sensible heat fluxes are known (or easily computable). 

For this work, the “cold” pixel was set over an alpine lake located 
within the domain, hence AET is equal to PET which was computed 
using the Priestley-Taylor equation (using the METRIC provided vari
ables). The “hot” pixel was set where H was supposed to be maximized, 
such as a pixel with shallow soil depth, facing S-E, with scarce vegetation 
and high temperature (namely the steep pasture of Gimillan site used for 
the eddy covariance monitoring where H was measured). 

3. Results and discussion 

3.1. Model temporal validation 

The soil–water balance (SWB) module is validated on a daily basis by 
comparing model outputs (i.e. AET and soil water content values) with 
observed data measured at the two Eddy Covariance stations located in 
two grassland sites (i.e. Gimillan and Nivolet). 

In Fig. 4, the daily time series of measured and modelled AET are 
displayed together with the rainfall events (depicted in grey colour). A 
comparison is presented between the performance of the soil model 
alone (therefore using the local meteorology but without the meteoro
logical spatial interpolation, abbreviated with “wmi” in the legend), and 
the performance of the complete meteorological and soil model (without 
using the AWS within a radius of 10 km from each eddy covariance 
measurement site). The performance of the SWB-module appears quite 

Table 2 
Meteorological and soil moisture data recorded at the Eddy Covariance monitoring station in Gimillan during the three selected days (i.e. satellite passages in good 
weather conditions).  

Date Air Temperature [◦C] Rn Avg 
(Whole day) 
[W/m2] 

Rn Avg 
(Daytime only) 
[W/m2] 

RH Avg 
[%] 

Vol. soil moisture 
[-] 

Min Max Avg 

27/08/2014  6.5  20.1  12.4  179.8  389.1  53.7  0.11 
13/07/2015  11.4  25.5  18.1  187.1  344.3  39.5  0.04 
30/08/2015  9.9  22.9  15.7  188.2  409.0  64.6  0.12  

Fig. 4. Daily AET time series comparison between data measured by eddy covariance stations at Gimillan and Nivolet (black lines) and values modelled with CLIME- 
MG model with different soil porosity values (coloured lines); the term “wmi” identifies a model simulation without meteorological interpolation. Daily precipitation 
data are also shown in grey. 
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good in both cases and the correlation is quantified in Fig. 5. The 
agreement with eddy covariance data was found especially in wetter 
periods with recurring rainfall events. On the other hand, during the 
long dry period at the end of July 2015, measured and modelled data 
remain quite separated, with an evident underestimation of the 
modelled data. This behaviour can be partially due to the encroachment 
of shrubs into this abandoned pasture with deeper uptake capacities of 
water (e.g. Gisolo et al., 2022; van den Bergh et al., 2018). Similar 
behaviour was also highlighted by Wegehenkel and Beyrich (2014) in a 
grass-covered field site located in north-eastern Germany, and by 
Ochoa-Sánchez et al. (2019) in high Andean grasslands where the 
adopted hydrological model (i.e. PDM model - Moore and Clarke, 1981) 
demonstrated good performance of AET quantification but with evident 
underestimations in water scarce conditions. Contrarily, Rigon et al. 
(2006), using the GEOtop model, pointed-out in the Little Washita 
watershed (Oklahoma), an overestimation of AET in summer conditions 
(with respect to the measured values) since the presence of bare soil in 
mixed vegetation pixels (e.g. agricultural processes) can significantly 
alter the average fractional vegetation cover. 

A model sensitivity test was conducted to verify the output vari
ability versus some aspects considered to play a major role in the 
modelling process. In particular, the adoption (or not) of the meteoro
logical interpolation, as well as three parameters affecting the 
soil–vegetation atmosphere relationship (namely the effective soil 
porosity – ρ; the vegetation coefficient – Kc; and the vegetation stress 
coefficient – Ks) were investigated. For this purpose, several model runs 
were performed at both the Gimillan and Nivolet experimental sites 
based on the following settings: 1) fixing of soil-vegetation parameters 
(ρ = 0.2; Kc=0.7; Ks estimated with a linear model) but variation of the 
meteorological interpolation (presence - absence); 2) fixing of the 
meteorological interpolation but variation, one by one, of the soil- 
vegetation parameters (ρ values = 0.2, 0.3 and 0.4; Kc values = 0.60, 
0.70 and 0.80; and Ks estimated with three models, namely linear, 
convex and concave). The sensitivity analysis was performed by 
computing the coefficient of correlation between modelled and observed 
evapotranspiration data. 

Based on the results (Fig. 5), runs without meteorological interpo
lation were characterized by higher performances, especially at the 
Nivolet site, where vegetation is pure grassland (without presence of 
shrubs like at Gimillan). On the contrary, runs with meteorological 

interpolation show better results for the Gimillan site. This can be due to 
the elevation of the Nivolet site, which is much higher than all the AWS 
used for the interpolation (and the orographic correction may introduce 
further degrees of uncertainty). 

Results of Fig. 5 also highlight that the changing of the three soil- 
vegetation parameters has limited effect at both sites. As a general 
consideration, Clime-MG showed better performance/reliability in non- 
limiting conditions of water availability (as demonstrated by results 
obtained in the growing season without long dry periods). Vice versa, it 
is interesting to point-out the Gimillan run with ρ = 0.2, Kc = 0.70, and 
Ks = linear, showing a low coefficient of correlation (R = 0.62). This 
specific weak performance (also compared with the same run at the 
Nivolet site carried-out with the same set of parameters) might be 
explained by the dry period that occurred in July 2015, characterized by 
high air temperature and low relative humidity (Fig. 1), and, hence, by a 
water scarcity (as illustrated also in Fig. 6). 

In Fig. 6, the daily soil moisture at the Gimillan monitoring site is 
presented, comparing the CLIME-MG model outputs and the measured 
AET data for the same growing season 2015. The average measured 
values between 20 and 40 cm of soil depths are reported in comparison 
with the average modelled value between surface and 50 cm. The 
modelling results are shown both for the soil model alone and for the 
complete meteorological and soil model. This means that in the first case 
the meteorological inputs are taken at a single point, close to the eddy 
covariance site, without the meteorological interpolation part of the 
model (acronym “wmi”), while in the second case the meteorological 
part of the model (without using the AWS in a radius of 10 km from each 
eddy covariance measurement site). Also, there is a comparison between 
porosity equal to 0.2 and to 0.3. The effect of the drought between 1st 
and 15th July is evident in all graphs, consistent with the AET modelling 
results. 

3.2. Spatial validation of the model 

3.2.1. Analysis and insights across the whole domain 
In this section, CLIME-MG outputs are compared to METRIC ones 

(obtained from satellite images analysis) to evaluate the performances of 
the CLIME-MG model over the whole geographical domain. In Fig. 7, the 
results for the 30 August 2015 satellite acquisition at the hourly time 
scale (acquisition time: about 10 AM CET), are shown. The difference in 

Fig. 5. Sensitivity of the coefficient of correlation between measured and modelled evapotranspiration in response to: (Run 0) absence of meteorological inter
polation (“wmi”, without meteorological interpolation); (Runs 1, 2 and 3) variation of crop coefficient Kc; (Runs 4 and 5) variation of effective porosity ρ; (Runs 6 
and 7) variation of vegetation stress coefficient Ks, respectively for the Gimillan 2015 and Nivolet 2018 cases. 
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values, both with respect to the average values computed with METRIC 
across the whole domain, is depicted. 

In both CLIME-MG and METRIC, those differences have a similar 
spatial structure controlled by the DTM (leading also to a general 
agreement of the two models in both the maximum and minimum AET 
localised zones). In these complex morphologies, CLIME-MG seems to 
depict more restrained dynamics than METRIC which, instead, shows a 
general tendency to settle on more extreme values. CLIME-MG usually 
highlights lower AET values than METRIC. Despite the noticeable local 
specific variability, these characteristics were observed on all the three 
available dates. These plots are to be analysed jointly with the plot in 
Fig. 8, where the differences between CLIME and METRIC are plotted 
against morphological characteristics, namely elevation, aspect, soil 
depth and slope. Elevation and slope show a trend in all the three 
available dates for both hourly and daily data, whilst aspect doesn’t 
seem to highlight any trend. Soil depth shows a trend except for the 13th 

of July date, which corresponds to the drought already discussed in the 
temporal analysis. These trends suggest possible future improvements of 

CLIME to capture more tightly the spatial variability of AET. 
Statistical measures are reported in Table 3, using the SPAEF index 

(Koch et al., 2018) and NRMSE. Despite values seem to be lower with 
respect to traditional calibrated models, they can be considered satis
factory for a calibration free model, especially in wet conditions. In the 
driest date the value is much lower but this situation regards only few 
days during the two growing seasons studied. As a general observation, 
the hourly mean AET data showed higher values for METRIC than 
CLIME-MG. 

3.2.2. Comparison among selected areas 
To investigate a possible degradation of CLIME-MG modeling results 

as the distance from the sources of data input increases (i.e. proximity / 
remoteness of AWS (i.e. where meteorological input data were 
measured)), ten small square area subsamples (1.8 km × 1.8 km) were 
identified within the whole domain (Fig. 9). The selected squares were 
grouped in: i) areas within which an AWS was located, ii) areas where 
AWS were located in proximity, and iii) areas far from AWS. Modeling 
output on each subsample was used to compute statistical indexes to 
verify if and how results were affected by distance to the AWS. 

In Fig. 10, the spatial correlation coefficient R and the normalized 
root mean square error (NRMSE) are shown. Values were computed 
using hourly evapotranspiration output of CLIME-MG and METRIC over 
the areas identified by the tiles in Fig. 9. The statistical measures show 
that outputs were not significantly affected by the proximity / remote
ness of the AWS. 

Since the weather stations are not uniformly distributed by elevation, 
as shown in Table 1, CLIME-MG consistency was also tested at altitudes 
where no measurement stations were available. The maximum elevation 
of the AWS network was below 2300 m, while the studied grasslands 
were located up to 3300 m. Fig. 11 shows statistical measures of this 
analysis. Even in this test, the absence of AWS at high elevations does 
not affect the CLIME-MG outputs. However, in the temporal analysis at 
the higher altitude Nivolet site, the correlation coefficients are lower 
than at Gimillan site. 

4. Conclusions 

Alpine regions, being usually characterized by complex terrains, 
limited accessibility, and a challenging measurement environment 

Fig. 6. Comparison of daily soil moisture measured at Gimillan in the year 
2015 with the modelled values. The black line represents the average of data 
from 20 cm and 40 cm depths measured daily; the coloured lines represent the 
average modelled soil moisture between the surface and 50 cm depth, obtained 
from CLIME-MG (using different soil porosity values); the term “wmi” identifies 
a model simulation without meteorological interpolation. 

Fig. 7. Spatial variability of differences [mm/h] in hourly AET between – pixel by pixel - METRIC (left) and CLIME-MG (right) with respect to the overall domain AET 
average value –on Aug 30, 2015, at 10:15 am. 
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suffer from a limited quantity and quality of information as well as 
limited availability of modelling tools for characterizing actual condi
tions, and providing forecasts and simulations of future scenarios 
(especially at local scale). Starting from the observation that much of the 
spatial and temporal variability of AET in high altitude areas can be 
explained by aspect, shading, and slope in conjunction with land cover 
and meteorological solar radiation forcing (which are, respectively, 
spatially and temporally highly variable in mountains), the objective of 
this work was to present and validate a new calibration free soil water 
model (i.e. CLIME-MG) for computing the soil–water balance and 
mapping the actual evapotranspiration (AET) starting from easy-to-find 
inputs (i.e. digital terrain model (DTM), land cover map, and standard 
meteorological data retrieved from conventional weather stations). All 
the parameters of the model are fixed and taken from literature, without 
any calibration. 

The proposed model consists of two main modules: the “meteoro
logical module” which uses meteorological data to compute the poten
tial evapotranspiration with the Penman-Monteith formula, and the 
“soil–water balance module” which computes the soil–water balance 
with an original model to estimate the vegetation stress coefficient, and 
thus AET and soil moisture. 

The model was validated using temporal and spatially distributed 
data. Temporal validation was performed with two time series of AET 
measured at eddy covariance stations located at Gimillan and Nivolet 
Pass (respectively at 1730 m and 2555 m a.s.l.; Aosta Valley, Italy). 
Spatial validation was performed by comparison with the Landsat-based 
METRIC model AET output. 

Results show good temporal performance with daily data especially 
in wetter periods with recurring rainfall events. The performance of the 
model both with local meteorological data (to test the soil model only) 
and with the complete meteorological interpolation (without using the 
AWS within a radius of 10 km from each eddy covariance station) was 

Fig. 8. Boxplots of the hourly differences between CLIME-MG and METRIC models’ outputs versus elevation, aspect, soil depth and slope (during the three available 
dates: Aug.27, 2014; Jul.13, 2015; Aug.30, 2015). 

Table 3 
Comparison between METRIC and CLIME-MG models (hourly AET). SPAEF 
index (SPAtial EFficiency index, Koch et al., 2018); SPAEF index components (i.e 
coefficient of correlation; coefficients of variation ratio (CVMETRIC/CVCLIME); 
histogram match), and normalized root mean square error (NRMSE) for all the 
available satellite passages.   

SPAEF Correlation 
coefficient 

CV 
ratio 

Histogram 
match 

NRMSE 

27 August 
2014 

0.33 0.90 0.43 0.41 0.18 

13 July 
2015 

0.21 0.49 0.60 0.55 0.44 

30 August 
2015 

0.34 0.75 0.88 0.41 0.30  

Fig. 9. Locations of the tiles where the effect of proximity to an AWS was 
analyzed. Red = areas within which an AWS is located; orange = areas were 
AWS are within 3 km; blue = areas far from AWS. 
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also investigated with good results. In addition, the correlation coeffi
cient sensitivity to three key parameters of the soil model, namely the 
effective porosity, the cultural coefficient Kc and the stress coefficient Ks, 
was shown to be quite low. 

The spatial validation confirms the high correlation between the 
outputs of the two models, CLIME-MG and METRIC, (with a similar 
spatial structure controlled by the DTM). Boxplots of deviations between 
CLIME and METRIC with respect to morphological characteristics has 
highlighted some dependency on elevation, slope and soil depth (but not 
on aspect); this confirms the great influence of topography on the 
grassland AET processes and suggests the possibility of future 
improvement of this simple model. Finally, spatial results demonstrated 
the non-sensitivity of the proposed model to local elevation and to the 

distance from a meteorological station. 
Concluding, CLIME-MG model proved to perform well for moun

tainous grassland AET modelling. Further applied studies will be 
essential to both confirm the robustness of the proposed approach and to 
adapt (including necessary adjustments of the literature parameters) the 
here proposed tool to different land covers types, here not investigated. 
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