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Milk coagulation ability is crucial for the dairy sheep industry since the whole amount

of milk is processed into cheese. Non-coagulating milk (NCM) is defined as milk not

forming a curd within the testing time. In sheep milk, it has been reported in literature

that up to 20% of milk is NCM. Although the clotting properties of individual milk have

been widely studied, little attention has been given to NCM and genomic dissection of

this trait. Mid-infrared (MIR) spectra can be exploited both to predict cheese-making

aptitude and to discriminate between coagulating milk and NCM. The main goals of this

work were (i) to assess the predictivity of MIR spectra for NCM classification and (ii) to

conduct a genome-wide association study on coagulation ability. Milk samples from 949

Sarda ewes genotyped and phenotyped for milk coagulation properties (MCPs) served

as the training dataset. The validation dataset included 662 ewes. Three classical MCPs

were measured: rennet coagulation time (RCT), curd firmness (a30), and curd firming

time (k20). Moreover, MIR spectra were acquired and stored in the region between

925.92 and 5,011.54 cm−1. The probability of a sample to be NCM was modeled

by step-wise logistic regression on milk spectral information (LR-W), logistic regression

on principal component (LR-PC), and canonical discriminant analysis of spectral wave

number (DA-W). About 9% of the samples did not coagulate at 30min. The use of LR-

W gave a poorer classification of NCM. The use of LR-PC improved the percentage

of correct assignment (45 ± 9%). The DA-W method allows us to reach 75.1 ± 10.3

and 76.5 ± 18.4% of correct assignments of the inner and external validation datasets,

respectively. As far as GWA of NCM, 458 SNP associations and 45 candidate genes were

detected. The genes retrieved from public databases were mostly linked to mammary

gland metabolism, udder health status, and a milk compound also known to affect the

ability of milk to coagulate. In particular, the potential involvement of CAPNs deserves

further investigation.
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INTRODUCTION

Sheep milk production globally amounts to 10 Mt (1.3% of total
milk production), with 250M sheep farmed for dairy purposes
worldwide (FAO, 2011). Sheep farming plays a very important
role in the agro-economy of the Mediterranean area, countries
in Asia, and developing countries. For instance, in the European
Union (UE), four countries (France, Greece, Spain, and Italy)
accounted for about 15M dairy ewes and contribute to 12.9%
of the world’s sheep milk (Pulina et al., 2018). In Italy, the
autochthonous Sarda sheep is meanly reared for milk production
(2.8M heads and 330M kg/y). Nearly the whole amount of sheep
milk is sold to milk plants where it is processed into cheese
(Carta et al., 2009). Yearly, protected denomination of origin
cheeses are produced from sheep milk for the EU market or are
exported overseas (Pulina et al., 2018, 2021). The presence of
non-coagulating milk impairs achievable cheese yield and profit.

In laboratories, milk coagulation properties (MCPs) are often

assessed by individual measurements such as rennet coagulation

time (RCT) and curd firmness (A30). The former is the time
between the addition of rennet to milk and the beginning of

the clotting process, and the latter measures the consistency of
laboratory curd after 30min; both are assessed by means of lacto-
dynamometers (e.g., Formagraph or Optigraph instruments;
Bittante et al., 2012). Reduced RCT and high A30 are associated
with higher cheese yields (De Marchi et al., 2008). Conversely,
milk may show large RCT to the extent that curd formation is
neglected. As far as the latter aspect is concerned, its association
with fat and protein contents in the literature is controversial
(Nilsson et al., 2019; Vacca et al., 2019; Figueroa et al., 2020),
whereas genotypes of casein cluster, milk acidity, lactose, and
udder health are well-known factors impacting onMCP (Bittante
et al., 2012). Effects of ruminant species and breeds on milk
coagulation ability have also been studied (De Marchi et al.,
2008; Bittante et al., 2012). As far as sheep breeds are concerned,
physiological and environmental factors such as lactation stage,
lambing season, flock, and nutrition management explain a large
part of MCP variability (Pazzola et al., 2014; Manca et al.,
2016). Moreover, ewes’ milk composition has been reported to
be significantly different between non-coagulating milk (NCM)
and coagulatingmilk (CM) samples in previous studies (Figueroa
et al., 2020; Correddu and Macciotta, 2021).

Genetic selection for MCPs is possible because of a moderate
additive genetic variation that explains part of the individual
differences. For instance, in the Sarda Breed, heritability of
0.08–0.14 and 0.18–0.23 were estimated for a30 and RCT,
respectively (Bittante et al., 2017; Puledda et al., 2017). Pelayo
et al. (2021) found a value of similar magnitude (0.16 for
a30 and 0.22 for RCT) in Spanish Churra sheep. Although
using MCPs in breeding programs is feasible (Cecchinato et al.,
2009), it requires the availability of mid-infrared (IR)-predicted
MCPs at the population level. Mid-IR spectra are routinely
collected for quantifying milk composition (De Marchi et al.,
2014), and they have also been proposed as effective tools to
predict complex and costly traits in many livestock species
(Bell and Tzimiropoulos, 2018; Bresolin and Dorea, 2020).
However, calibration of prediction equations requires estimation

of coefficients through multivariate regression of observed traits
in mid-IR spectra: Partials least square (PLS) regression or more
advanced Bayesian regressions techniques are used (Cecchinato
et al., 2009; De Marchi et al., 2014; Ferragina et al., 2015).
Mid-IR-predicted MCPs are found reliable sources to be used
as selection objectives (Sanchez et al., 2018). However, before
obtaining these predictions, NCM samples are usually removed.
The prediction of NCM from mid-IR milk spectra or the
inclusion of NCM in genetic analysis has been considered
(Cecchinato and Carnier, 2011; Manuelian et al., 2020; Correddu
and Macciotta, 2021). A genetic negative correlation has been
estimated between NCM prevalence and protein contents in
dairy cattle (Gustavsson et al., 2014b). Although the influence
of milk protein genotypes is known (e.g., casein cluster genes;
Bittante et al., 2012), many other genetic variants are yet to be
discovered and could be associated with the higher prevalence
of NCM in ruminant milk. Despite the moderate heritability
of MCPs in dairy cattle and sheep (0.2–0.45; Bittante et al.,
2012; Gustavsson et al., 2014b; Puledda et al., 2017), the
genetic background of these complex traits is still far from
being elucidated. Powerful techniques are now available to
perform genome-wide association studies using single nucleotide
polymorphisms (SNPs) derived from commercial panels or next-
generation whole-genome sequencing. Recently, a genome-wide
association (GWA) study suggested a QTL on BTA18 for NCM
segregating in the Swedish Red Cattle population (Duchemin
et al., 2016), and other GWA studies have been performed on
MCPs in dairy cattle (Dadousis et al., 2016; Sanchez et al.,
2019). Very few reports are available for GWA studies on ovine
coagulation traits (Marina et al., 2020, 2021).

Few studies have dealt with the prediction of individual
sheep NCM, and no genomic analysis for the same binary
trait has been performed yet. This research aims to bridge this
gap of knowledge. Here, the use of mid-IR data is proposed
to discriminate between CM and NCM samples. Regression,
classification techniques, and validation procedures were tested
on two large samples of Sarda ewes with both phenotypes for
coagulation and genotypes. In summary, the main goals of this
study are (i) to predict NCM samples using mid-IR spectra by
modeling the probability of an individual observation of being
classified as NCM and (ii) to conduct a GWA under the single-
step GBLUP (ssGBLUP) animal models searching for genomic
regions associated with the NCM phenotype.

MATERIALS AND METHODS

Phenotypic and Genotypic Data
Coagulation Data
The three classical MCPs were determined with a Formagraph
instrument (Foss Electric A/S, Hillerød, Denmark) for a large
sample of Sarda ewes. Two datasets were used for this study.
The first included 1,018 ewes from 47 flocks located in Sardinia
(Italy), and it was used for the training-validation procedure (data
I). The dataset (data I) was derived from a project involving
the Sarda sheep breed: details of the laboratory analysis are
provided in Manca et al. (2016). A second unpublished dataset
(data II) with the same variables served as the validation dataset.
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TABLE 1 | Data summary for coagulating and non-coagulating milk samples in

the two analyzed datasets.

Data I Data II

Milk Samples Animals % Animals Records %

Coagulating (CM) 866 91.3 653 2,467 91.2

Non-Coagulating (NCM) 83 8.7 170 237 8.8

Used 949 100 662 2,704 100

Deleted from datasets‡ 69 - 6

Total 1,018 662 2,710

‡A total of 69 and 6 animals were removed because of missing coagulation information

and/or spectra, respectively.

Data II included MCPs from 662 ewes from the same flocks
but sampled 1 year later for a total of 2,710 records. Based
on RCT variables, individual milk samples were classified into
milk that coagulated within 30min (CM) and milk that did not
(NCM). The animal and flock variables (e.g., parity, days in milk,
lactation length, etc.), milk composition (e.g., fat, protein, lactose,
urea, SCC, chloride, pH, etc.), and clotting properties (RCT, a30,
K20, and laboratory cheese yield) have been previously described
(Manca et al., 2016; Puledda et al., 2017). A brief summary of
MCP and flock variables for data I and data II is provided in
Supplementary Table 1.

Fourier-Transform IR Spectra
The individual milk samples of both datasets were analyzed using
Spectrometer MilkoScanTM (Foss Electric, Hillerød, Denmark),
and Fourier Transform-IR (FTIR) spectra in the region between
925.92 and 5,011.54 cm−1 were stored (1,060 data points)
for each animal. After data editing, 949 and 2,704 records
were available for analysis (Table 1). Following the description
of milk spectra given by Bittante and Cecchinato (2013),
five different wave regions were used to tag milk spectra
(Supplementary Table 2).

Genotypic Data
The animals of data I were genotyped with Infinium
Ovine SNP50 v1 BeadChip (Illumina Inc., San Diego, CA,
United States). The genotypes at 54 k SNP loci were available for
769 out of the 1,018 animals. Quality control on SNP was carried
out according to the following protocol: SNP with call rate>0.95
on individual and>0.975 on SNP were retained. Moreover, SNPs
with minor allele frequency (MAF) lower than 0.01, deviated
significantly from the Hardy Weinberg Equilibrium (P < 0.01),
or did not map on any assembled OAR chromosomes (version
OAR 4.0) were discarded. After quality control, all genotyped
ewes had 44,619 SNPs on 27 chromosomes. A pedigree with
633,317 animals was also available. Further details are available
in Cesarani et al. (2019a).

Statistical Analysis
Descriptive statistics of spectral data for the two classes of
coagulation were computed: spectral-wide average within the
coagulation class and mean absorbance differences between the

NCM and CM samples. Datamanagement and visualization were
carried out using the R software (R Core Team, 2021, Vienna
Austria). To predict coagulation ability, a binary trait was created
according to the RCT values (y = 0 for NCM and y = 1 for
CM). Different statistical techniques were applied for modeling
the probability of a sample being NCM. The procedures used
involved stepwise variable selection, multiple logistic regression,
multivariate statistical analysis and the validation procedures
implemented in SAS (v.9.14, SAS Institute Inc., Cary NC, United
States) and described in next subparagraphs and in the paragraph
Assessment of FTIR Predictions and Validation Procedures.

Stepwise Multiple Logistic Regression on IR Spectra

(LR-W) or Principal Components of IR Spectra

(LR-PC)
The probability of observing NCM, pi (yi = 0), was modeled by
multiple logistic regression of the logit(pi)on the whole spectra
(PROC LOGISTIC of SAS):

logit
(

pi
)

= β0 +

n
∑

i=1

Xiβi + ei (1)

where n is the wave number (1,060 data points), and β0 and βi

are, respectively, the intercept and the regression coefficients of
the i-th wave number effect (Xi) in the log odds scale. A stepwise
procedure of variable selection was carried out to pick relevant
wave numbers in order to overcome the multi-collinearity issue.
Two thresholds for a variable to enter and to stay in the final
model were used (more stringent at α = 0.01 and less stringent at
α = 0.05). A total of two settings were analyzed, namely, LR-W01
and LR-W05.

The model [1] was applied by replacing in Xi the i-th wave
numbers by the principal component (PCi) extracted from the
whole spectra and explaining 95% of the variance. The stepwise
procedure of variable selection was carried out also for PC logistic
regression defining in this way two more settings: LR-PC01
and LR-PC05. Selection of wave numbers was also carried out
excluding, prior to computing PC, the noisy part of the spectra
associated with water absorbance (Figure 2). Hence, two more
scenarios were evaluated after removing: a) wave number in the
range 5,000–3,048 cm−1 (i.e., SWIR and SWIR-MWIR regions,
see Supplementary Table 2) and b) wave number 1,701–1,582
(MWIR-2); namely LR-PCW1 and LR-PCW1,2, respectively.

The prediction of the probability of being classified as NCM
for a generic i-th milk sample was obtained by applying,

p
(

yi = 0
)

=

exp
(

β0 +
∑p

i=1 Xiβi

)

1+ exp
(

β0 +
∑p

i=1 Xiβi

) (2)

where the terms of Equation 2 were previously defined and
p(p<<n) is the wave numbers or PCs selected by the stepwise
procedure. If for a sample the predicted probability resulted>0.5,
then that sample is classified as NCM, otherwise, it is predicted
as CM.
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Canonical Discriminant Analysis (DA) on Stepwise

Selected Wave Numbers
A multivariate canonical discriminant analysis (DA) was
conducted on the milk coagulation datasets. First, the stepwise
variable selection was carried out. Two settings based on the p-
values for each absorbance to enter/stay in the final model were
implemented with the slentry and slstey options of the STEPDISC
procedure of SAS (DA-W01 and DA-W05 for p < 0.01 and p <

0.05, respectively). Next, the CANDISC procedure was run on the
selected variables for each setting. Finally, the DISCRIMINANT
procedure of the SAS software was used to predict coagulation
outcomes for new data. This algorithmic sequence has been
previously demonstrated to be suitable for classification problems
in high multidimensional genomic data (Dimauro et al., 2013).
A description of theoretical bases is provided below, whereas
the details of the algorithmic sequence are reported in Manca
et al. (2021). Briefly, the correlation structure amongmilk spectra
absorbance of data I was used to derive new variables, namely,
canonical discriminant function (CAN), which can maximize
the separation between the predefined groups. If W is the m ×

n matrix of the n wave numbers measured in m milk samples
belonging to k groups (two in our case: NCM and CM) the CAN
functions may be obtained for a generic sample:

CANi = ci1w1 + ci2w2 + . . .+ cinwn (3)

where w1 . . .wn are the centered absorbances for n data points
(as deviation from the column means) and cin are the elements
of the c vector containing the raw canonical coefficients for
the i-th CAN (i.e., the weights of each wave absorbance in
the discriminant function). The vector c is obtained with a
procedure that involves the eigendecomposition of the linear
transformations of between- and within-group absorbance (co)
variance matrices. The degree of separation among centroids
was evaluated by Malhanobis distances and Hotelling’s T2.
Wilks’s lambda was used as an equivalent F-measure in
the multivariate analysis of variance (MANOVA). Once the
discriminant functions have been set up, the c coefficients were
used to predict the coagulation status that was masked for
a proportion of individuals (10%, in data I) for the inner
validation or in an external dataset as described in the following
paragraph (data II).

Assessment of FTIR Predictions and
Validation Procedures
The number of animals and the details of the validation
procedures adopted and datasets are described in Table 1 and
Figure 1. Two procedures of validation were carried out: inner
validation (A) and external validation (B). The predictive ability
of the models tested in subparagraphs Stepwise Multiple Logistic
Regression on IR Spectra (LR-W) or Principal Components of
IR Spectra (LR-PC) and Canonical Discriminant Analysis (DA)
on Step-Wise Selected Wave Number was evaluated through %
of the correct assignments of predicted NCM and CM samples.
Using the nomenclature of the confusion matrix, it was evaluated
the percentage of the true positive (corresponding to NCM) and
true negative samples (CM); precision and accuracy were also

evaluated (Fawcett, 2006). Given the large disproportion between
the NCM and CM samples, all the procedures involving random
sampling were stratifiedwithin the CM andNCMgroups in order
to ensure an equal proportion of NCM in the validation datasets.
Three scenarios with different sub-settings of data I (A1, A2, and
A3) and one scenario for data II (B) were evaluated (Figure 1):

A1) the training and validation sets had repectively 90% and
10% of randomly chosen data;

A2) training and validation sets had the same proportion as in
A1 but the validation samples derived from 3 flocks that were
excluded from the training data;

A3) the procedure A1 was repeated 100 times, and the
proportion of correct assignments was averaged across
replicates for CM and NCM predictions;

B) in this last case, the whole data I and data II serve as training
and validation datasets, respectively.

Genome-Wide Association Study
To perform the genome-wide association study, a mixed linear
animal model was fitted to a coagulation status (y) under the
ssGBLUP approach (Legarra et al., 2009) according to:

y= Xb+ Vf+ Zu+ e (4)

The terms X, V, and Z are the incidence matrices relating
phenotypic records to fixed (b) and uncorrelated random effects
(f and u) where:

• b is the vector of fixed effects including the month of
lambing (four levels), days in milk (five classes), and parity
(eight levels);

• f is the vector of the random effect of the combination flock-
test day of sampling (69 levels)∼N(0, Iσ 2

ftd
);

• u is the vector of the genomic breeding values (GEBV)
∼N

(

0,Hσ 2
u

)

• e is the random term∼N
(

0, Iσ 2
e

)

;.

The variance components were estimated for the flock-test day
(σ 2

ftd
), additive genetic (σ 2

u ), and residual (σ 2
e ) random variates

under a BLUP animal model and pedigree-based relationship
matrix (A). Whereas, the GWA was performed using the inverse
of theHmatrix (Aguilar et al., 2010):

H−1
= A−1

+

[

0 0

0 G−1−A−1
22

]

(5)

whereG−1 is the inverse of the genomic relationship matrix (769
× 769 animals), A−1 is the inverse of the pedigree relationship
matrix (tracking back three generations and 5,031 animals),
and A−1

22 is the inverse A for genotyped animals. The genomic
relationship matrix was created according to Vanraden (2008),
and to avoid singularity, G−1 was blended with 5% of A−1

22
(Vanraden, 2008). According to Wang et al. (2012), the GEBV
were back-solved into SNP effects, and the additive genetic
variance explained by each SNP was estimated, as also described
by Cesarani et al. (2021). Mixed model solutions for GEBV and
SNP were obtained using the BLUPF90 software and the post
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FIGURE 1 | Scheme of four scenarios (A1, A2, A3, and B) for building the training dataset (TD) and the validation dataset (VD) for data I and data II.

GSF90 software, respectively (Misztal et al., 2014). We decided
to retain as suggestive of SNP-trait association signals exceeding

the 99.9th percentile of ordered additive variance. There is
neither a theoretical threshold for SNP-additive variance nor a
guideline for the window size of adjacent SNPs (Aguilar et al.,
2019). The proportion of additive variance, even if scarcely used,
is well-suited to describe SNP-trait association (Aguilar et al.,
2019), and to avoid any confusion with a well-known GWAS
terminology, we used the term “suggestive,” which was preferred
to “significant,” to declare the association.

QTLdb (https://www.animalgenome.org/cgi-bin/QTLdb/
index) and genome browser (https://genome.ucsc.edu/) were
used, respectively, for QTL and gene search. Genes in the
neighbor of suggestive SNP (250 kb upstream and downstream
from Peak SNPs) were retrieved. Then, Cytoscapever 3.9,
integrated with the GeneMania tool, was used for gene
network analysis (Warde-Farley et al., 2010) using humans
as reference species also for downstream analysis. Gene
Ontology (GO) weighting was set up as a biological process
base. Functional enrichment analysis was carried out to
determine GO categories that were displayed up to a Q-value
cutoff of 0.1 based on the GeneMania network. Q-values were
estimated using the Benjamini-Hochberg procedure from an
FDR-corrected hypergeometric test for enrichment. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (http://
www.genome.jp/kegg/pathway.html) was taken as a reference
for pathway analysis. Most promising genes were discussed
and compared with the finding on milk-trait association in
the literature.

RESULTS

Coagulating, Non-Coagulating Milk and
Spectral Data Interpretation
The percentage of NCM was nearly the same in data I and data
II; about 9% of the individual milk samples failed to coagulate
within 30min after rennet addition (Table 1). The average profile
of the milk spectra for CM and NCM is presented in Figure 2.
A qualitative analysis of these differences highlighted the larger
ones between 1,600 and 1,700 cm−1 (MWIR-2, max value at
1,643 cm−1) and between 3,070 and 3,450 cm−1 (SWIR-MWIR,
max value at 3,246, 3,308, 3,358, and 3,416 cm−1). Moreover, in
the region 1,000–1,200 cm−1, larger difference values at 1,034,
1,111, and 1,157 cm−1 were observed (Figure 2). Negative peak
differences between NCM and CM were also observed at 1,480–
1,608 cm−1 (maximum value at 1,546 cm−1) and at 1,743 cm−1.
Constantly higher values for the CM than for the NMC samples
(even if of lower magnitude) were observed from 1,778 to 2,800
cm−1, where milk spectra do not exhibit any peak. Finally, large
negative values of difference between CM and NCM can be
observed at 2,857 and 2,926 cm−1 (Figure 2).

Predictivity of FTIR Spectra for
Coagulation Ability on Data I
Two different prediction methods (LR and DA) and three
validation scenarios were assessed for data I (A1, A2, and A3). In
the training datasets, A1 and A2 yielded 47–90% and 98.7–99.9%
of correctly assigned NCM and CM samples, respectively, across
the prediction methods (Supplementary Table 3). Regardless of
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FIGURE 2 | Average absorbance for coagulating milk (CM, solid line) and non-coagulating milk (NCM, dashed line) and average difference CM-NCM (green-red

gradient line).

the validation scenarios considered, the predictive ability of
logistic regression or canonical discriminant analysis was always
assessed on 60 individuals: 12 NCM and 48CM. The use of LR
on raw spectral data (LR-W05 and LR-W01) gave poorer results
for NCM (from 25 to 66.7% of true NCM correctly assigned;
Figure 3 and Supplementary Table 4). The principal component
analysis on milk spectra resulted in a total of 864 PCs. The first
200 PCs were used for explaining a large proportion of spectral
variability (Supplementary Figure 1). The combination of LR
and PC analysis (LR-PC05 and LR-PC01 settings) increased the
classification power for detecting NCM samples (50–83.3% of
correct assignments; Figure 3). The use of canonical DA (DA-
W05 and DA-W01 settings) outperformed the logistic regression
in both the A1 (67% of NCM correct assignment) and A2
scenarios (83%) with the exception of LR-PC01, which showed
similar performance.

The scenario A2 (3 flocks out for validation) always produced

higher correct assignments of NCM. Large differences between
A1 and A2 were observed (up to 41% in LW-W05) across the

different statistical methods. These gaps were much smaller for
the CM assignments. For these reasons, the most promising
techniques, namely LR-PC05 and DA-W05, were the target in the
A3 scenario where a cross-validation-like approach was adopted
(Table 2). In the 100 simulated datasets, LR-PC05 reached 57 ±

3.8 and 45 ± 9.9% of correct NCM prediction in the training
and validation datasets, respectively. The exclusion of the wave
numbers associated with water absorbance (LR-PC05W1, LR-
PC05W1,2) worsened these performances. DA-W05 allowed to
correctly predict 79.6± 2.6 and 75.1± 10.3% of NCM individual
samples in training and validation, respectively, outperforming
LR-PC05. Moreover, the use of DA narrowed the number of false
negatives (i.e., milk samples erroneously assigned to be NCM)
in the validation sets (5.6% vs. ∼9–10% of LR-PC05; Table 2).

FIGURE 3 | Correct assignment (on y-axis) of non-coagulating milk (NCM, %)

and coagulating milk (CM, %) under the validation scenarios A1 (random) and

A2 (random-3 flock out). On x-axis statistical methods: logistic regression of

coagulation status on the step-wise selected (p-values 0.05 or 0.01), wave

number (LR-W05, LR-W01), principal components (LR-PC05, LR-PC01), or

canonical discriminant analysis (DA-W05, DAW01) of selected wave numbers.

The average number of selected predictors for the classification
of NCM varied across methods and assessed scenarios (Table 3).
However, a huge reduction in the number of predictors was
produced by both the stepwise procedures (LR and DA).

Predictivity of FTIR Spectra for
Coagulation Ability on Data II
The inner validation procedure pointed out DA-W05 as the
best-suited method for the classification of NCM. The stepwise
discriminant procedure using data I selected 12 variables with
the greatest discriminant power. The canonical DA derived
one canonical variable (Can1) explaining 77% of the between-
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TABLE 2 | Average % of correct assignment in data I (scenario A3) for

non-coagulating milk (NCM, true positive) and coagulating milk (CM, true negative)

samples.

Scenario Train (n = 889) Validation (n = 60)

True

positive,

NCM%

True

negative,

CM%

True

positive,

NCM%

True

negative,

CM%

LR-PC05
†

W1 25.9 (4.6) 99.1 (0.2) 14.4 (6.7) 90.4 (9.7)

LR-PC05‡W1,2 51.1 (3.9) 98.9 (0.2) 46.8 (9.5) 90.3 (9.4)

LR-PC05 57.0 (3.8) 99.2 (0.2) 45.6 (9.9) 91.4 (7.7)

DA-W05 79.6 (2.4) 95.2 (0.6) 75.1(10.3) 94.4 (3.6)

The standard deviations over 100 resamplings are reported in the bracket.
†
Wave numbers in the range 5,000–3,048 cm−1 (SWIR and SWIR-MWIR) were removed

(see Figure 2 and Supplementary Table 1).
‡Wave numbers in the range 5,000–3,048 (SWIR and SWIR-MWIR) and 1,701–1,582

(MWIR-2) were removed.

TABLE 3 | The number of wave numbers or principal components selected for

coagulation-status prediction for the 4 evaluated scenarios.

Methods Scenarioa

A1 A2 A3 B

LR-W01 5 6 - -

LR-W05 7 13 - -

LR-PC01 17 14 16.6 ± 2.54 -

LR-PC05 25 37 22.5 ± 1.76 -

DA-W01 9 9 10.5 ± 2.04 10

DA-W05 14 12 16.3 ± 3.17 12

aScenarios: A1 = [random] 90% training, 10% validation; A2 = [random: 3 flock out] 90%

training, 10% validation; A3 = [100 random replicates] 90% training, 10% validation; B =

[whole data I].

and within-group milk spectra absorbance (co)variance. The
MANOVA showed highly significant F values (Wilks’ lambda p
< 0.001). The average values of Can1 were 2.48 and −0.27 for
NCM and CM, respectively. The Malanohobis distance between
the centroid of NCM and CM exhibited a value of 9.69 (p-value
< 0.001). The Can1 scores clearly indicate a centroid separation
for the two groups of coagulation (Figure 4). The raw coefficients
derived from whole data I (Table 4) were used as weights in
the discriminant function when data II spectral data were used
as validation dataset. The results of the validation procedure
(scenario B) are presented in Table 5. The validation was carried
out by splitting data II into eight subsets (one for each DIM class
of 30 d) with a nearly equal proportion of NCM across DIM. On
average, 76.5 ± 18.5% of the samples were correctly assigned to
the NCM class of coagulation (from 47 to 95%) with increasing
prediction accuracy for higher DIM classes. In the scenario B
compared to A3, an equivalent classification power was recorded
for NCM, whereas a slight reduction in correctly assigned CM
(91.7 vs. 94.4%) was observed.

FIGURE 4 | Box plots of canonical discriminant (Can1) scores for

non-coagulating milk (NCM) and coagulating Milk (CM) in data I.

TABLE 4 | Selected wave numbers by stepwise discriminant analysis (DA) in

data I.

Univariate statistics Canonical DAa

Spectral

region

Wavenumber

(cm−1)

R2 p-valueb raw cc c.corr.

MWIR-LWIR 1,080 0.17 *** −686.3 0.63

MWIR-LWIR 1,084 0.17 *** 809.9 0.62

MWIR-LWIR 1,134 0.16 *** −208.9 0.61

MWIR-LWIR 1,238 0.001 Ns 491.6 0.01

MWIR-LWIR 1,261 0.01 ** −903.4 0.15

MWIR-LWIR 1,307 0.02 *** 391.5 0.24

MWIR-LWIR 1,334 0.03 *** −1,123.4 0.28

MWIR-LWIR 1,354 0.03 *** 1,443.7 0.26

MWIR-LWIR 1,427 0.02 *** −420.9 0.19

MWIR-LWIR 1,473 0.003
†

134.6 −0.08

MWIR-LWIR 1,577 0.03 *** 97.2 −0.26

MWIR-2 1,643 0.01 *** −0.8 0.16

Eigenvalues

/canonical

corr.

- - - 0.77 0.66

araw cc = raw canonical coefficients used in the discriminant function; c.corr = canonical

correlation between original variables and CAN functions.

b*** p < 0.001, **0.001 < p < 0.01, *p < 0.05,
†

< 0.1, ns > 0.1.

GWA of Non-Coagulating Milk
The Manhattan plot of additive variance associated with each
SNP is presented in Figure 5. The GWA study on non-
coagulation traits highlighted a total of 458 SNPs overcoming
the 99.9th percentile of ordered additive SNP variances
(Supplementary Table 5), and only 2 SNPs overcome the
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TABLE 5 | Percentage (%) of correct assignments for NCM (true positive) and CM

(true negative) samples by DA on data I as training data and data II as validation

data (scenario B).

Number of samples DA-W05

Dataset NCM CM True

positive,

NCM%

True

negative,

CM%

Data I

Train 83 866 81.0 93.7

Data II

Dim1 19 156 47.4 91.0

Dim2 40 457 50.0 91.5

Dim3 37 464 75.7 92.5

Dim4 38 435 86.8 94.3

Dim5 30 376 86.7 94.4

Dim6 34 312 94.6 88.8

Dim7 30 195 93.3 85.6

Dim8 9 72 77.8 91.7

Tot 237 2467 - -

Average 29.6 ± 10.6 314.5 ±

157.4

76.5 ± 18.4 91.2 ± 2.9

Bonferroni-corrected p-values: OAR3_170661659.1 (p = 4.48e-
6) and s50822.1 (p = 9.69e-07) (Supplementary Figure 2). The
458 SNPs defined 40 genomic regions in 18/30 chromosomes.
The signals of association trait-genotypes for failure-to-coagulate
phenotypes were found in chromosomes 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 14, 20, 21, 22, 23, 26, and X (Table 6).
The five strongest signals were observed on OAR2 (s46218.1,
.38% of additive variance), OAR14 (OAR14_48226980.1; .35%),
OAR21 (s23338.1; .33%), OARX (s05480.1; .33%), and OAR2
(OAR2_122611468.1; .33%). In the genomic regions identified
by tag markers, 260 genes were retrieved from a public
database (Supplementary Table 6, https://genome.ucsc.edu/). In
17 genomic regions out of the 40 detected (SNP in italics
in Table 6) were found 45 genes (Supplementary Table 7)
involved in cellular function associated to dairy traits in
ruminant species (e.g., milk ability, milk production and
composition, udder health, and heat stress resistance) such
as CHKA, CAPNS1, TCIRG1, PPIL3, ALKBH6, SPCS3, and
LRRC41,CMPK1,SLC35A2. The analysis of gene networks based
on the biological process function of the 45 detected genes
showed over 77% of physical gene product interactions, 8% of
gene co-expressions, and additional networks with lower relevant
impact such as co-localization and shared protein domains;
whereas, three genes (PPIL3, ZBTB7C, and NKAIN1) did not
match with any of the network (Figure 6).

DISCUSSIONS

Coagulating, Non-Coagulating Milk and
Spectral Data Interpretation
The presence of NCM has been reported in the literature for
individual milk of the main ruminant species (Cecchinato et al.,

2011; Gustavsson et al., 2014a; Manuelian et al., 2017; Figueroa
et al., 2020). As far as sheepmilk is concerned, 0.4–8.9% and 3.8%
of NCM were detected in the Sarda and Alpine sheep breeds,
respectively (Bittante et al., 2014; Pazzola et al., 2014; Manca
et al., 2016), whereas a larger prevalence of NCM (17.7–19.4%)
was observed in the Manchega sheep (Caballero-Villalobos et al.,
2018; Garzon et al., 2021).

Most of the spectral regions with major CM-NCM differences
have been related to milk compounds potentially affecting the
coagulation process. Two spectral regions (from 1,600 to 1,700
cm−1 and from 3,070 to 3,450 cm−1) are characterized by high
noise levels due to the absorption of water, and they are usually
removed from the spectra when they are used for prediction
purposes. The other CM-NCM differences were found in regions
associated with the absorbance of chemical bonds of functional
groups, which can be attributed to major milk compounds. One
is the region from 1,000 to 1,200 cm−1 (Figure 2): absorptions
at these wave numbers, in particular from 1,028 to 1,068 cm−1,
were useful to predict lactose content in milk (Kaylegian et al.,
2009). Indeed, signals at these wave numbers are often associated
with absorption of the C–O bond of alcohols, ethers, and esters;
specifically, signals near 1,160 cm−1 can be mainly attributable
to the C–O bond of carbohydrate and ether groups (Coates,
2000). Another is the region from 1,480 to 1,608 cm−1. Wave
numbers ranging from 1,480 to 1,613 cm−1 are used for the
prediction of milk protein content (Etzion et al., 2004; Kaylegian
et al., 2009), with signals between 1,500 and 1,700 cm−1 being
usually associated with N–H bending of 1◦ and 2◦ amines and
amides. Indeed, consistently, the difference observed at 1,546
cm−1, mirroring the peak observed at the same wave number
in the milk spectra, could be related to the amidic (II◦) N–
H bond of proteins. The large negative difference observed at
1,743 cm−1 (Figure 2) can be associated with milk fat content.
Indeed, the spectral region spanning from 1,650 to 1,800 cm−1

is characterized by stretching vibration of the carbonyl group
C=O (in milk, C=O bond of the ester bond of triglycerides).
Absorbances from 1,725 to 1,786 cm−1 or from 1,736 to 1,764
cm−1 (named Fat A) are used by MIR filter-based instruments
to quantify milk fat content (Lynch et al., 2006; Kaylegian et al.,
2009). Moreover, signals recorded in these spectral regions were
associated with the absorption of calcium salts (Miliani et al.,
2012; Monico et al., 2013), which play a relevant role in the milk
calculation process (Stocco et al., 2021). The differences between
CM and NCM observed at 2,857 and 2,926 cm−1 (negative
values) can be associated with differences in fat concentration of
the two groups of milk. Indeed, the intervals 2,778–2,870 cm−1

and 2,825–2,877 cm−1 (named Fat B) are used by MIR filter-
based instruments to quantify milk fat content (Lynch et al., 2006;
Kaylegian et al., 2009), with the two peaks at 2,853 and 2,922
cm−1 being related to asymmetric and symmetric stretching of
methylenic C–H bonds, respectively.

Interestingly, the abovementioned spectral regions (except
the two regions of water absorption, MWIR-2, and SWIR-
MWIR) enclose the wave numbers selected by the stepwise DA
(Table 4). These wave numbers were within the area MWIR-
LWIR, which is known as the milk fingerprint because of the
relevant information that it can provide on the chemical structure
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FIGURE 5 | Single nucleotide polymorphism (SNP) variances in trait-genotype association in the 27 OAR chromosomes. Green dots are SNPs that exceeded the

threshold of 99.9th percentile of ordered SNP additive variances.

of the considered matter (Karoui et al., 2010). Some wave
numbers correspond to those showing the largest differences
CM-NCM, and were associated with the milk content of lactose
and proteins (1,080–1,084, and 1,577, Supplementary Figure 3),
confirming the importance of these milk components in the
definition of milk coagulability (Joudu et al., 2008; Vacca et al.,
2019). Others correspond to wave numbers showing no large
differences CM-NCM, and have been associated with absorptions
of different bonds, mainly, C–H, aromatic C=C, C–O, and N–O
bonds (Karoui et al., 2010; Bittante and Cecchinato, 2013).

Predictivity of FTIR Spectra for
Coagulation Ability
In our study, the utility of milk spectra as a proxy for detecting
non-coagulating milk was greatly affected by the statistical
methods and validation procedures adopted. Regardless of the
statistical methods, large variability of results emerged between
validation scenarios. The sampling effect for the two different
validation scenarios (A1 and A2) was not negligible; hence,
their application should be carefully evaluated. The use of the
resampling approach (A3) to cross-validate the percentage of
correctly imputed NCM was effective in deriving prediction
probability for the NCM and CM samples in these studies as
well as for validating the prediction equation for MCP (Cellesi
et al., 2019). The use of spectral data I to train the equation
to predict the coagulation records in data II (scenario B)
confirmed the NCM (CM) assignments of scenario A3. This
indicated that, although on average 25% of the samples were
misclassified among the true NCM (and 10% among the true
CM), there is room for improvements (from 47 to 94% according
to DIM classes, Table 5). The application of different statistical
techniques, such as PLS-DA, did not outperform the methods
tested here, at least on sheep bulk milk (Manuelian et al., 2019).
This could be explained by the fact that coagulation groups
may not be linearly separable by means of spectral data. If this
should be the case, an advancedmachine learning approach could
possibly address this issue (Chen et al., 2007).

Looking at deepening the statistical models, the use of logistic
regression on selected spectral absorbances (LR-W settings)
produced very poor predictions. This result was quite expected
because of the multidimensional features of spectral data (De
Marchi et al., 2014) and the complex relationship among milk

compounds, environment, and MCP (Bittante et al., 2012). The
stepwise variable selection adopted here was not able to correctly
forecast the NCM samples, whereas the ability of the same
technique to correctly identify CM was extremely good (>99
and >97% in training and validation datasets, respectively, see
Supplementary Tables 3, 4). Specificity values much larger than
the sensitivity ones (i.e., in our case the greater ability to assign
CM rather NCM samples to the correct class) were also observed,
addressing the same prediction problem on bulk milk of sheep
(Manuelian et al., 2019) and individual buffalo milk (Manuelian
et al., 2017). This bias can be due to the combination of the low
prevalence of NC samples and the complexity of the trait to be
forecasted by mid-IR spectra information.

The combination of logistic regression and PC analysis of
spectral data (LR-PC settings) increased the classification power
for NCMwhen compared to LR-W settings (up to 83% of correct
assignments). In the literature, the use of PC of metabolomics
profiles is demonstrated as a useful tool to discriminate between
well and poor coagulating samples of cow milk even if the
mass spectrometry output did not allow to detect specific
metabolites associated with the coagulation process (Harzia et al.,
2012). Regression techniques, such as PLS, are routinely used to
predict milk components but, applied to RCT, showed moderate
prediction performances in cow milk (r2 in validation of 57%;
Ferragina et al., 2017) and sheep milk (r2 = 59%; Cellesi
et al., 2019). More advanced non-linear-Bayesian regression
methods reached higher precision for predicting RCT (r2 =

82%; Ferragina et al., 2015). In our research, the trait analyzed
was based on RCT values but on a binary scale. Even though
direct comparison of binary outcome vs. RCT is to be carefully
evaluated, the range of prediction performances is compatible
in terms of magnitude. Unexpectedly, the exclusion of wave
numbers 5,000–3,048 cm−1 and 1,701–1,582 cm−1 worsened the
percentage of correct assignments of NCM. This was probably

due to the difference in absorbance observed between the two
groups of milk exactly in the regions that we kept but should have

been removed (Figure 2).
The application of DA-W outperformed the LR-PC method

as far as the number of correct NCM samples is concerned.
In the literature, the use of DA to forecast NCM individual

samples of Manchega sheep produced true positives of similar
magnitude to ours: higher assignations (71.7%) were obtained

Frontiers in Animal Science | www.frontiersin.org 9 May 2022 | Volume 3 | Article 889797

https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/animal-science#articles


Gaspa et al. Analysis of Non-Coagulating Milk

TABLE 6 | Detail of the genome-wide association (GWA) study for NCM and retrieved genes.

OARa Regb Min Max kb-span # SNPs Peak SNPc Mbp Vard Genes

1 1 19.01 22.59 3,576 29 OAR1_20007545.1 20.03 0.276 AKR1A1, CMPK1,

TMEM69, UROD, LRRC41,

PIK3R3, TESK2

1 2 28.07 28.66 587 15 s03528.1 28.08 0.252 //

1 3 154.70 155.40 704 19 OAR1_167058883.1 154.94 0.332 //

1 4 253.93 253.93 0 1 s38723.1 253.93 0.177 //

2 5 81.11 81.83 716 18 OAR2_86819880.1 81.71 0.384 //

2 6 107.07 107.21 133 5 OAR2_115128418.1 107.15 0.193 MFAP3L

2 7 113.42 114.70 1,274 16 OAR2_122611468.1 114.65 0.288 ARHGEF4, OCA2

2 8 175.75 176.36 609 10 OAR2_186404856.1 175.98 0.253 //

2 9 201.82 202.26 431 10 s35200.1 201.86 0.251 BZW1, PPIL3

2 10 234.72 235.51 790 20 s46218.1 235.10 0.379 FABP3, NKAIN, ZCCHC17

3 11 23.43 23.92 483 11 OAR3_25573472.1 23.69 0.199 //

3 12 36.27 36.63 352 7 OAR3_39167394.1 36.38 0.257 //

3 13 67.35 67.47 125 3 OAR3_71458752.1 67.47 0.179 //

3 14 94.92 95.16 240 4 s61740.1 95.16 0.194 CCT7

3 15 108.25 108.59 331 10 OAR3_115443384.1 108.28 0.277 //

3 16 112.53 112.61 86 3 OAR3_120142895.1 112.53 0.178 //

3 17 166.50 166.50 0 1 OAR3_179153713.1 166.50 0.178 //

3 18 195.80 198.52 2,728 26 OAR3_211332869.1 196.05 0.232 SLC15A5

4 19 14.35 15.14 792 15 OAR4_14557628.1 14.35 0.255 ASNS

4 20 82.90 83.44 545 15 OAR4_88554906.1 83.28 0.243 //

5 21 41.59 42.57 980 15 s44617.1 42.16 0.270 CSNK1G2

5 22 79.30 79.82 517 11 OAR5_87409839_X.1 79.47 0.271 RPS23

6 23 4.95 6.09 1,146 13 OAR6_8209351.1 6.09 0.265 //

7 24 60.03 60.29 262 2 OAR7_66229320.1 60.29 0.185 //

8 25 44.22 44.70 481 10 OAR8_47792278.1 44.28 0.212 //

9 26 24.79 25.16 374 8 OAR9_26175988_X.1 25.11 0.243 //

10 27 41.47 42.10 631 9 OAR10_42329325.1 41.51 0.222 //

10 28 57.93 59.05 1,119 13 OAR10_59313647.1 58.07 0.234 //

11 29 46.99 47.30 306 4 OAR11_50094068.1 47.05 0.195 ACE

14 30 35.07 35.58 516 8 s14680.1 35.29 0.242 ZBTB7C, CDH1

14 31 38.08 38.73 655 11 OAR14_40198913.1 38.53 0.205 //

14 32 45.38 46.07 691 19 OAR14_48226980.1 45.81 0.356 APLP1, CAPNS1, ZNF529,

ALKBH6, SYNE4

20 33 45.96 46.30 347 7 OAR20_50378146.1 46.22 0.206 SLC35B3

21 34 44.31 45.22 908 11 s23338.1 44.96 0.333 CHKA, TCIRG1, CABP2,

AIP, CLCF1, NUDT8

22 35 22.33 22.62 290 4 OAR22_26729825.1 22.62 0.198 BORCS7, TRIM8, WBP1L,

ARL3

23 36 27.86 28.58 721 7 OAR23_29145379.1 27.89 0.210 //

23 37 47.65 49.07 1,415 19 s71481.1 48.16 0.301 //

26 38 6.15 6.75 599 11 s41368.1 6.45 0.218 SPCS3, ASB5

X 39 21.78 23.16 1,388 14 OARX_30385723.1 23.08 0.236 //

X 40 51.09 52.98 1,891 23 s05480.1 52.39 0.292 TFE3, SLC35A2, AKAP4

aOAR Ovis Aries Chromosomes.
bGenomic region.
cSNP in italics are those close to genes associated with milk composition, udder health, and SCC in ruminants (Supplementary Table 7); SNPs in boldface are found nearby QTL

regions affecting milk, protein, fat, or SCC in dairy sheep reported by Usai et al. (2019) and Gutiérrez-Gil et al. (2014).
d% of additive genetic variance explained by each SNP.

using classical milk composition traits (milk solids, pH, and
SCS) and lower ones when based on colorimetry data (65.5%;
Figueroa et al., 2020). Moreover, the application of PLS-DA on

milk spectra for predicting three classes of coagulation bulk
milk (early, mid, and late) reached a specificity of 30 and
20% for early and late coagulating milk, respectively, whereas
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FIGURE 6 | (A) Network analysis of genes with significant associations with milk coagulation properties of sheep milk; (B) detail of direct (dark red) and indirect (dark

gray) CAPNS1 networks.

a very good performance was obtained for the mid coagulating
sample (91.5%; Manuelian et al., 2019). The differences observed
between theirs and our results could be ascribed to the use of
bulk milk instead of individual samples, different training to
validation ratios, exclusion of some wave numbers, and statistical
methods used.

The use of DA clearly indicates a centroid separation for the
two groups of coagulation. However, a “gray” zone of overlapping
coefficients could be observed (Figure 4). The most discriminant
wave numbers were those mentioned in Section Coagulating,
Non-Coagulating Milk, and Spectral Data Interpretation. The
discriminant power of milk spectra for coagulation time was
assessed on individual buffalo milk samples through canonical
DA, reaching the conclusion that sole FTIR spectra do not
provide accurate prediction, especially for late coagulating milk
(Manuelian et al., 2019). Despite the percentage of correctly
imputed NCM being higher than that in the cited study, the
usefulness of our prediction is still limited. Moreover, across
DIM, variation of correct NCMassignments has been observed in
this study. The effect of the lactation stage on MCP was assessed
in the literature on dairy cattle (Tyriseva et al., 2004; Macciotta
et al., 2012) and sheep (Manca et al., 2016; Garzon et al., 2021)
even if with different signs. The effect of DIM on milk FTIR
spectra is detectable for some previously discussed wave numbers
(Supplementary Figure 4).

GWA of Non-Coagulating Milk
The GWA study on the binary trait of NCM highlighted a
large number of SNPs potentially involved in the failure of the

coagulation process. No GWA reports for NCM were found in
the literature for dairy sheep for comparison purposes. Recently,
Duchemin et al. (2016) conducted a GWAS on NCM in Swedish
Red cattle by genomics mixed model analysis. These authors

found 14 strong signals on bovine chromosome 18, and after
imputation at the sequence level, they suggested six candidate

genes associated with NCM. However, none of these variants

were detected in this study.
Among the 40 genomic regions (Table 6 and

Supplementary Table 5), none overlapped those detected
by GWAS on MCPs and milk traits in the Assaf and Churra
sheep breeds (Marina et al., 2021). Possible reasons for the
different results can be due to different trait definitions, within-
breed linkage disequilibrium, and differences in allele frequency
among breeds (Cesarani et al., 2019b; Marina et al., 2021).
Indeed, the same authors were not able to find associated
SNPs common between the two Spanish breeds, but possible
pleiotropic effects were hypothesized as a plausible explanation
(Marina et al., 2021). Regarding possible pleiotropic effects,
it is interesting to signal that several SNPs found in this
research are compatible with the confidence interval of QTL
regions previously associated to milk composition traits in the
Sarda breed (Usai et al., 2019). In detail, markers in boldface
in Table 6, s38723.1 (OAR1), OAR3-25573472.1, s61740.1,
OAR3-211332869.1 (OAR3), OAR11-50094068.1 (OAR11), and
OAR22_26729825.1 (OAR22) fall in the confidence interval
of the significant association for protein contents; s14680.1,
OAR14-40198913.1, and OAR14-48226980.1 (OAR14) were
related to fat content and OAR10-59313647.1 (OAR10) to
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milk, fat, and protein yield and contents (Usai et al., 2019).
Furthermore, three markers (s35200.1, s46218.1, and s61740.1)
fall in the confidence regions of the three outlier signals in a
genome-wide differentiation study based on Ovine HapMap
Projets datasets. These genomic regions included QTLs affecting
milk lactose and somatic cell count also in the cattle genome
(Gutiérrez-Gil et al., 2014).

The gene discovery on GWAS results allowed to prioritize a
set of genes previously associated with milk- or cheese-related
traits in dairy ruminants, such as those affecting somatic cell
count (CHKA, TCIRG1, PPIL3 and SYNE4), mastitis (ALKBH6,
SPCS3, and LRRC41), either overexpressed in the mammary
gland in different lactation stage (CMPK1) or in different milk
ability groups (ZCCHC17) and involved in lactose synthesis
(SLC35A2; Bonnefont et al., 2011; Dhorne-Pollet et al., 2012;
Capoferri et al., 2021; Ghahramani et al., 2021; Michailidou
et al., 2021; Sadovnikova et al., 2021). Many other retrieved
genes, e.g., CAPNS1, FABP3, and BORCS7, have been previously
associated with milk fat and/or composition in sheep milk (Calvo
et al., 2004; Palombo et al., 2018; Di Gerlando et al., 2019)
(Supplementary Table 7).

The functional enrichment analysis identified 10 categories,
among which only calcium-dependent cysteine-type
endopeptidase activity (GO:0004198) denoted a biological
meaning for this study. Limiting the network analysis to
this category, we found CAPNS1 (significant association on
OAR 14) and two strictly related genes (CAPN1 and CAPN2)
of the same calpain small subunit family (Figure 6A). In
particular, three genes (CAPNS1, CAPN1, and CAPN2) encode
calcium-dependent cysteine proteinases, which are widely
distributed in mammalian cells and are implicated in various
biological processes, including cell migration, cell cycle control,
and apoptosis (Franco and Huttenlocher, 2005). More than 100
proteins have been shown to be CAPN targets in vitro. Regardless
of the wide spectrum of substrates, CAPN-mediated protein
cleavage is rather specific and occurs at a limited number of sites
(Franco and Huttenlocher, 2005). Therefore, under physiological
conditions, CAPNs most probably regulate proteins’ biological
functions rather than protein degradation per se (Tompa et al.,
2004). For instance, in the udder, calpains mediate post-lactation
size reduction when a decrease in milk macronutrient synthesis,
loss of secretory epithelial cells, and collapse of alveolar structures
happen and extensive tissue remodeling (Arnandis et al., 2012).
However, cysteine proteinases are also involved in milk clotting.
In fact, although no studies have been reported so far on the
direct physiological role of mammalian cysteine proteinases in
milk coagulation, those of plant origin (for instance papain,
bromelain, ficin, calotropins, etc.) have been widely used in dairy
processing instead of the conventional chymosin (Uniacke-Lowe
and Fox, 2017). Therefore, the potential involvement of CAPNs
could not be excluded when milk pH, calcium concentration,
and titratable acid allow for their coagulation action. In addition,
recently, the CNV region involving CAPNS1 has been associated
with dairy traits in Valle del Belice sheep (Di Gerlando et al.,
2019), thus consolidating our findings.

Further analysis of the first indirect network (Figure 6B)
highlighted 12 other genes with significant associations (ASNS,

CDH1, AIP, CABP2, LRRC41, ACE, TCIRG1, SPCS3, CCT7,
APLP1, RPS23, and SLC35A2). TCIRG1 and APLP1 resulted to
be particularly relevant. The first was already found in significant
KEGG pathways for protein yield in Polish Holstein dairy cattle
(Suchocki et al., 2016), and indicated in the lysosome pathway
of a differential gene expressed between resistant and susceptible
sheep to mastitis (Bonnefont et al., 2011). The latter belongs
to the same CNV region of CAPNS in Valle del Belice sheep,
and it has been associated with fat yield (Di Gerlando et al.,
2019).

CONCLUSION

In conclusion, this study confirms the non-negligible prevalence
of NCM in Sarda sheep milk. The spectral profile comparison
(NCM vs. CM) allows the detection of major differences related
to the absorbance of milk compounds potentially involved
in the coagulation process. Interestingly, the abovementioned
spectral regions enclose the wave numbers selected by the
stepwise DA corresponding to the milk contents of lactose
and proteins. In this study, the predictivity of milk spectra
for detecting NCM was partially satisfactory and greatly
affected by the statistical methods and validation procedures.
The application of the canonical DA analysis outperformed
the logistic regression methods. In the best-case scenario,
on average, 25% of wrong NCM assignments were still
recorded. Finally, the GWAS on the binary response variable
(coagulation vs. non-coagulation) highlighted 458 SNPs and
45 genes potentially associated with this trait. The genes
retrieved from public databases were mostly linked to mammary
gland metabolism, udder health status, and milk compound
known also to affect the ability of milk to coagulate. In
particular, the potential involvement of CAPNs could not
be excluded.
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