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ABSTRACT 

Purpose: Chemical Exchange Saturation Transfer (CEST)-MRI provides new approaches for 

investigating tumor microenvironment, including tumor acidosis that plays a key-role in tumor 

progression and resistance to therapy. Following iopamidol injection, the detection of the contrast 

agent inside the tumor tissue allows measurements of tumor extracellular pH. However, accurate 

tumor pH quantifications are hampered by the low contrast efficiency of the CEST technique and by 

the low signal-to-noise ratio of the acquired CEST images, hence in a reduced detectability of the 

injected agent. This work aims to investigate a novel denoising method for improving both tumor pH 

quantification and accuracy of CEST-MRI pH imaging. 

Theory and Methods: An hybrid denoising approach was investigated for CEST-MRI pH imaging 

based on the combination of the non-local mean filter and the anisotropic diffusion tensor method. 

The denoising approach was tested in simulated and in vitro data and compared with previously 

reported methods for CEST imaging and with established denoising approaches. Finally, it was 

validated with in vivo data to improve the accuracy in tumor pH maps. 

Results: The proposed method outperforms current denoising methods in CEST contrast 

quantification and detection of the administered contrast agent at several increasing noise levels with 

simulated data. In addition, it achieved a better pH quantification in in vitro data and demonstrated a 

marked improvement in contrast detection and a substantial improvement in tumor pH accuracy in in 

vivo data. 

Conclusion: The proposed approach effectively reduces the noise in CEST images and increases the 

sensitivity detection in CEST-MRI pH imaging. 

 

Keywords: Anisotropic Diffusion, CEST, Denoising, MRI, pH imaging, iopamidol 
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1. INTRODUCTION   

Chemical exchange saturation transfer (CEST) imaging is a novel MRI-based contrast technique that 

allows to detect tumor metabolites such as glucose, glutamate and lactate (1-4) and to characterize 

several aspects of tumor microenvironment, including intracellular (5-9) and extracellular pH (10-15) 

or enzymatic activity (16,17). Among these applications, tumor pH imaging using iopamidol has 

attracted a wide interest in the medical field since it provided, for the first time, accurate and highly 

spatially resolved measurements of tumor acidosis and it can monitor treatment response to anticancer 

therapies (18,19). Moreover, owing to the FDA approval of iopamidol, clinical translatability has 

already been demonstrated in patients (20,21). 

Despite the wide potential applicability of CEST-MRI pH imaging, clinical exploitation is still limited 

by reduced contrast capability and long acquisition times. In fact, the low sensitivity of the CEST 

approach results in low contrast enhancements, commonly in the range 1-10%, hence affecting the 

detection of exogenously administered contrast agents (22-25). On the other hand, the sampling of 

several frequency offsets (the so-called Z-spectrum) to accurately assess the CEST contrast, 

combined with the long (few seconds) saturation scheme needed for efficient saturation labeling, 

yields overall acquisition times as long as several minutes (26), partly reduced by efficient acquisition 

schemes (27-30). Consequently, CEST-MRI images inherently suffer of low signal-to-noise ratio 

(SNR), in particular for images acquired close to the water signal (due to direct saturation effects) 

and improvement by signal averaging is usually hampered by excessive elongation of the acquisition 

times at the cost of reduced spatial resolution in in vivo applications (31). 

Several denoising methods have been proposed in the medical imaging field to improve the quality 

of the images by exploiting several properties of the acquired data, such as pattern redundancy or 

sparseness (32). Methods based on Partial Differential Equations (PDE) (33-38) are powerful 

smoothing tools preserving significant image features. The anisotropic nonlinear diffusion filter is 

based on PDE by applying a non-homogeneous process that reduces diffusivity using a diffusion 

function introduced by Perona and Malik (35) or by a diffusion tensor defined by Weickert (38). 

These approaches reduce noise in homogeneous areas while preserving natural discontinuities of the 

image. Neighborhood filters are another common method for preserving edges, under the assumption 

that all pixels belonging to the same object have a similar gray level value. Buades et al. (39) proposed 

a Non Local Mean (NLM) filter that restores voxel in the image according to a weighted average of 

the other similar voxels inside a search window in the image, allowing to obtain clean edges and sharp 

boundaries with efficient smoothing process. Moreover, Dabov et al. (40) proposed the Block 

Matching 3D (BM3D) filter, which looks for similar regions in the whole image and these regions 
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are filtered in a 3D transform domain with a selected threshold. Then, by aggregating all the estimated 

blocks using a weighted average the final denoised image is obtained. Other approaches that exploit 

unsupervised methods without requiring the tuning of any parameter, such as Random Markov Field 

and Bayesian approaches have also been investigated (41-43). In MRI, these filters have been applied 

in several techniques, for improving image quality, structural details, classification and accuracy in 

parameters estimation (44-49).  

To date, only few and simple denoising approaches have been applied to CEST-MRI images, 

including cubic smoothing splines that are well designed to preserve the shape of the Z-spectrum (50) 

and Gaussian filtering (51) following the administration of contrast agents. Recently, more advanced 

approaches, such as Principal Component Analysis (PCA) and NLM filters have been proposed but  

so far only applied to denoise endogenous CEST images with a considerable increase in image quality 

(52,53). 

In this paper, we investigate a hybrid denoising approach for CEST-MRI pH imaging based on the 

combination of the NLM filter and the anisotropic diffusion tensor method (54). This novel denoising 

approach was tested in both simulated data corrupted with noise and in vitro data and compared with 

previously reported methods for CEST imaging or with established smoothing approaches and 2D 

image filters. In addition, the proposed method was validated with in vivo data by assessing its 

capability to improve both the CEST contrast quantification and the accuracy of tumor pH calculation. 

 

2. THEORY 

Non-Local Mean Coherence Enhancing Diffusion (NLmCED) Filter 

The anisotropic diffusion proposed by Perona and Malik (35) is an analogy between image processing 

and the diffusion of heat that homogenizes the temperature of materials, by applying a homogenous 

process to prevent diffusion to happen over edges. However, this method is very sensitive to signal 

variations in the directions of the structures, therefore Weickert (38) proposed the diffusion tensor D 

which summarizes the predominant directions of the gradient in a determined neighborhood of 

voxels, defined by:  
).( IDdivID ∇=             (1)  

The construction of this model is based on the choice of the eigenvectors of the structure tensor Jρ

(eq.2) defining the gradient local directions and the associated diffusion functions (eq.2) presenting 

the intensity of the actions, called coherence enhancing diffusion (CED) (55) that allows to preserve 

small structures and strengthens tubular structures in 3D images. 
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( )TIIKJ σσρρ ∇∇= .*           (2)      

Where the first term Iσ∇  is the gradient of the smoothed image at scale noise σ and Kρ   is a Gaussian 

kernel with standard deviation ρ. 

In addition, the NLM filter proposed by Buades (39) is another powerful filter that eliminates noise 

in the image while preserving the contours. It is based on the natural redundancy of the images. It 

exploits the repetitive nature of structures unlike conventional denoising algorithms that typically 

operate in a local neighborhood. The restored intensity Î(xi) of the voxel xi for NLM filter, is computed 

as a weighted average of the voxels intensities I(xj) in the search window Vi (56). 

∑
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=
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The combination NLmCED between NLM filter and the anisotropic diffusion tensor method has been 

presented in detail in a previous work and applied to both T1 and T2-weighted MR images (54). The 

weights w(xi,xj) have been modified from its original definition to the equation (eq. 4) where it 

guarantees the similarity of the intensity of patches and respects the different forms of structure in the 

image : 

( )( )22 2( , ) (1 ( )) exp ( , ) ( , )i j j I i j ID i jw x x Z x d x x d x x h= − +  (4)  

Where the first term ),(2
jiI xxd  and ),(2

jiID xxd  represent the original Gaussian weighted Euclidian 

distance between the intensity patches for in the noisy image I and the reconstructed image ID by the 

anisotropic diffusion tensor (eq. 1), respectively. 

The index )( jxZ  is a normalizing constant and h  is a smoothing parameter to control the decreasing 

of the exponential function, depending on the estimation of the noise level in the original image as 

described in the work of Coupe (57). To ensure the robustness of this hybrid algorithm for CEST 

imaging, we proposed to use the CED functions (55) that were previously applied for denoising only 

CT images, based on a hyperbolic tangent function and on an edge indicator edgeC  (58) defined by 

the following expression: 
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Where α is parameter α ∈(0,1) that keeps the tensor D (38) uniformly positive definite and C is the 

CED contrast parameter. K is a measure of coherence that acts as a diffusion barrier between 

homogenous area and the edges in the image, based on the eigenvalues μi (i =1...3) of the tensor and 

it is defined as follow:  
2

32
2

31
2

21 )()()( µµµµµµ −+−+−=K  (6)  

For K ≫ C, the diffusion is along the two directions v3 and v2 and if K tends to 0 the diffusion seems 

to be isotropic and doesn’t exceed α value. In all the reported results we set the parameters C = 1 and 

α = 0.001  and the scale noise σ estimated by using the adaptive MAD estimator for Rician noise (57). 

In addition, the number of iterations and the standard deviation ρ parameter have been optimized for 

the specific noise level in CEST-MRI images (Supporting Information Figure S1). 

The flowchart of the proposed algorithm NLmCED is summarized in Figure 1. 

 

3. METHODS 

3.1. Denoising methods 

To validate the efficiency of our proposed model, we compared it with established denoising 

approaches such as Gaussian, Smoothing Cubic Splines and BM3D. The Gaussian filter was applied 

to each frequency offset image with a kernel of 7x7 pixels as used in (59). The Smoothing Cubic 

Splines was applied to interpolate Z-spectra voxels by voxels, by using a regularization factor equal 

to 0.99 for avoiding excessive smoothing of the data (60). Moreover, in the comparison we included 

also the BM3D filter, since this is an established filter that has been applied successfully for denoising 

images in different areas. We propose to set the parameters of BM3D denoising method on the 

original method in order to find similar neighborhoods (40). In addition, this method depends highly 

on the parameter σBM3D that controls the filtering strength which corresponds to the standard deviation 

of the noise level in the data. To select the optimal value of σBM3D, we calculated the dependencies of 

PSNR values as a function of the noise levels (Supporting Information Figure S2). 

 

3.2. Simulations 

To evaluate the performance of the denoising methods quantitatively, synthetic CEST data (ground 

truth) were generated at different iopamidol concentrations (2.5, 5, 10, 20 and 30 mM) and pH values 

(6, 6.4, 6.7, 7 and 7.4) to simulate Z-spectra with different shapes and peak intensities at physiological 

conditions for a B0 field of 7 T. The z-spectra were generated by using the Bloch-McConnell 

equations modified for the exchange term with five pools (bulk water, two hydroxyl proton pools and 

the two amide proton pools indicated by A, B, C, D and E, respectively) by using the online available 
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Matlab-based code for CEST data simulation (61). We used a continuous-wave (CW) saturation 

scheme (3µT x 5s) with 201 frequency offsets sampled from -10 to 10 ppm with a step size of 0.1 

ppm. All the other parameters used for the simulation are reported in Supporting Information Table 

S1. 

To provide more realistic simulation data, three different simulated datasets have been generated with 

increased complexity, both in terms of number of proton pools (iopamidol, water and the semisolid 

component) and with different shapes. A full detailed description for each dataset can be found in the 

Supporting Information. Briefly, dataset #1 includes iopamidol + water with a chess box design and 

was exploited for parameter optimization; dataset #2 includes iopamidol + water with circular shapes 

for evaluation of denoising robustness at several noise realizations. Datasets #3 is a more realistic 

phantom including irregular shapes (as taken from in vivo tumor xenograft ROIs, Supporting 

Information Figure S3) incorporating varying ssMT amplitudes (0.02-0.10) as found in vivo (62) with 

unnormalized Z-spectra (Supporting Information Figure S4).  

The molecule iopamidol has been exploited for creating synthetic data since it has two proton 

pools at 4.2 and 5.5 ppm with different pH responsiveness. Therefore, Z-spectra obtained from this 

molecule show two visible downward peaks that, upon the addition of noise, limit the capability to 

discriminate the contribution from each pool, hence resulting in a more stringent test for the 

investigated denoising approaches. From the Z-spectra the corresponding CEST contrast parametric 

saturation transfer (ST) maps were calculated according to the asymmetry analysis (eq.7) and only a 

CEST contrast greater than 1% for both pools (to avoid CEST artefacts from instrumental noise) was 

considered to show the presence of the iopamidol molecule.   

( )W W WST SI SI SI− + −= −          (7)  

Where wSI+  and wSI−  are the measured signal intensity with RF saturation at w+  and w− , 

respectively. 
Secondly, the ratio between the two CEST contrasts is exploited for calculating the ratiometric value 

from which pH values can be calculated (11). Therefore, a third parameter (the calculated pH) can be 

exploited as an additional estimate to assess the robustness of the investigated denoising approaches, 

since the correct denoising of both the two ST parametric maps is mandatory for obtaining accurate 

pH values. 

To compare the spatial similarity between the ground truth images and the denoised ones, the Peak 

Signal to Noise Ratio PSNR (63) was used as an indicator of quality between the ground truth Iref 
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and the denoised data Î:  

( )2
10

ˆ10log max(( )) ( , )PSNR Iref MSE Iref I=   (8)  

A second metric, the structural similarity index SSIM (64,65) which combines the similarity 

comparisons of indexes between the ground truth and the denoised parametric images, was used as a 

qualitative measurement of noise removal. A sliding window with size (8x8) was used to estimate the 

SSIM index locally between x and y of the ground truth Iref and the denoised data Î, respectively:  
2 2 2 2

1 2 1 2( , ) ((2 )(2 )) (( )( ))x y xy x y x ySSIM x y c c c cµ µ σ µ µ σ σ= + + + + + +   (9)  

Where ux and uy are the mean; σx and σy are the standard noise variance; σxy is the covariance; c1 = 

(k1L)2 and c2 = (k2L)2 are variables to stabilize the division when the denominator is very small with 

k1 = 0.01, k2 = 0.03 and L = 255. The overall similarity index is given by the average value of all the 

local estimations.  

 

3.3. In vitro data 

In vitro data was acquired on a Bruker Avance 7T MRI scanner (Bruker BioSpin MRI GmbH, 

Ettlingen, Germany) using a iopamidol containing 50 mL falcon tube. A first phantom (#1) was 

prepared by dissolving iopamidol in a phosphate buffer solution (PBS) at several concentrations (2.5, 

5, 10, 20 mM; pH 6.7) and titrated at several pH values (6.3, 6.7, 7.0, 7.4; 30 mM) and filling eight 

smalls (300 µL) plastic Eppendorf (Supporting Information Figure S5a). A second phantom (#2) with 

decreasing iopamidol concentrations was prepared and detailed in the Supporting Information 

(Supporting Information Figure S5b). Z-spectra were acquired with a modified RARE sequence with 

the following acquisition parameters: 181 frequency offsets were sampled from -10 to 10 ppm with 

a step size of 0.1 ppm by applying a saturation pulse with a power of 3 µT and duration of 5 s. 

3.4. In vivo data  

Detailed descriptions of the human prostate carcinoma cell line PC-3 and of the animal model are 

provided in the Supporting Information. Animal manipulation and experimental procedures were 

carried out in accordance with the European Community guidelines (Directive 2010/63) and under 

the approval of the Italian Ministry of Health. 

Before the MRI setup, mice were intramuscularly anesthetized by injecting a mixture of 

tiletamine/zolazepam (Zoletil 100; Virbac, Milan, Italy) 20 mg/kg and xylazine (Rompun; Bayer, 

Milan, Italy) 5 mg/kg and a 27-gauge catheter was introduced into the tail vein for the injection of 4 

g I/kg b.w. iopamidol (kindly provided by Bracco Imaging SpA, Colleretto Giacosa, Italy). The breath 



9 
 

rate was monitored by an air pillow placed below the animal (SA Instruments, Stony Brook, NY, 

USA) for the whole MRI experiment. MR imaging was performed on a Bruker Avance 7 T MRI 

scanner (Bruker BioSpin MRI GmbH, Germany) equipped with a micro 2.5 MICWB 30 mm 

quadrature (1H) imaging probe. Anatomical T2w images were acquired with a Fast Spin Echo (FSE) 

sequence (TR: 4000 ms; TE: 4.4 ms; NEX: 2; FOV: 3 cm; MTX: 256x256) and the same geometry 

was used for the following CEST experiments. CEST images were acquired before and after 

iopamidol injection with a single shot FSE sequence (TR: 6000 ms; TE: 3.9: NEX: 1) with centric 

encoding preceded by a continuous-wave saturation pulse (power: 3 μT, duration: 5 s) on 1 central 

tumor slice (FOV: 3 cm; MTX: 96×96; in-plane resolution: 312.5 μm; slice thickness: 1.5 mm).  

3.5 Statistical analysis 

Statistical analysis was performed by using the GraphPad Prism 6 software (GraphPad Inc., San 

Diego, CA, USA). All the data are shown as mean and standard deviations. A one-way analysis of 

variance (ANOVA) followed by Dunnett’s multiple comparison post-hoc test was used to test for 

statistically significant differences among several denoising methods. Differences were considered 

significant at P<0.05. 

4. RESULTS  

4.1. Results with synthetic data 

To test whether the proposed denoising algorithm can provide more accurate quantifications of both 

CEST contrasts and pH values in comparison to other methods, several datasets with synthetic Z-

spectra were generated by simulating iopamidol at several concentrations, pH values in the 

physiological range and amplitudes of the semisolid component. The corresponding noisy Z-spectra 

were obtained by adding different levels of Rician noise (1-7%) as described in Section 2.3. 

For our algorithm, the choice of the number of iterations plays an important role in the noise reduction 

process. Supporting Information Figure S1 illustrates the quality assessment obtained by the PSNR 

metric for the ST parametric map at 4.2 ppm while varying the iterations number. We observed that 

when increasing the level of noise, a higher number of iterations is needed to achieve the highest 

PSNR. We therefore used these number of iterations according to the observed level of noise in the 

input images. 

Figure 2 demonstrates the denoising of a single representative Z-spectrum taken from dataset #1 using 

our proposed method compared to Gaussian filter, Smoothing Cubic Splines and BM3D filter along 

with the synthetic and the noisy Z-spectrum with 3% of Rician noise. Both the BM3D and the 

NLmCED methods provided denoised Z-spectra that are very close and almost overlapping to the 
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simulated data (Figure 2c-d).  

To compare the different denoising approaches, synthetic Z-spectra patches (10x10 pixels) with 

random Rician noise were generated (dataset #1) for each simulated condition (concentration and pH) 

resulting in 2500 Z-spectra for each noise level from which ground truth CEST contrast maps were 

calculated at 4.2 (Figure 3a) and 5.5 ppm. We then applied the denoising approaches to the corrupted 

data, resulting in a marked reduction of noisiness for the NLmCED approach in comparison to all the 

other methods (Figures 3b-3f). In addition, the NLmCED method provided less blurred images in 

respect to the Gaussian or to the BM3D approaches. 

To quantitatively compare the denoising algorithms, two different metrics for assessing both the 

improvement in SNR and the similarity between the ground truth and the denoised Z-spectra were 

calculated: the PSNR and the SSIM indexes for the CEST contrast calculated at both 4.2 ppm and at 

5.5 ppm and the SSIM index for the calculated pH maps. Figure 4 illustrates the evaluation of the 

four investigated denoising methods for the simulated data (dataset #1) contaminated with different 

levels of Rician noise. All the denoising approaches provided marked improvements in the parameter 

estimation at all the Rician noise levels in comparison to the noisy data, with a general trend: Gaussian 

filtering < Smoothing Cubic Spline < BM3D, NLmCED (Figure 4a-d). At the lowest levels of Rician 

noise (1% to 3%) almost similar results were observed for both BM3D and NLmCED methods that 

were both superior to the Gaussian and to the Smoothing Cubic Spline approaches. On the other hand, 

at the highest level of Rician noise (5% and 7%), the NLmCED filter provided the highest PSNR 

values. To further evaluate the denoising capabilities of the proposed method, we compared denoised 

parametric pH images that are obtained by rationing the two denoised contrast ST maps at 4.2 and 

5.5 ppm, respectively, hence introducing a more stringent test. As shown in Figure 4e, the NLmCED 

denoising method provided the highest similarity to the ground-truth pH map at all the investigated 

noise levels in comparison to the other denoising methods. Figures 3g-3l shows corresponding 

calculated pH maps after denoising at 3% Rician noise with a clear improvement in the calculated pH 

values for the proposed NLmCED filter. Moreover, besides providing the highest PSNR and 

similarity in both the CEST contrast and pH maps, the NLmCED filter resulted in an increased 

number of pixels in which it was possible to calculate the pH values (92%), surpassing all the other 

methods and therefore providing more accurate and reliable pH quantification (Figure 4f). 

An additional synthetic dataset was generated to assess the performance of the NLmCED method by 

using circular shapes (dataset #2). Overall a better performance of the proposed NLmCED denoising 

approach in comparison to all the other methods was observed (Supporting Information Figures S6-

S7). 

Additionally, the robustness of the proposed method was assessed by creating 20 realizations for 1% 
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and 3% of Rician noise for dataset #2. We observed that all the calculated metrics (CEST-based and 

similarity ones) were stable, with analogous values independently from the noise realization number 

(Supporting Information Figures S8-S9).  

A more realistic phantom with unnormalized raw Z-spectra corrupted with the same noise levels and 

comprising areas with irregularly shaped edges and randomly distributed values of iopamidol 

concentrations, pH and ranges of ssMT amplitudes (dataset #3) was also exploited for assessing the 

performance of the NLmCED method in a in vivo-like model (Supporting Information Figure S4). 

CEST contrast maps (ΔST at 4.2 ppm, Figures 5a-5f) and calculated pH maps (Figures 5g-5l) clearly 

show a marked restoration of the ground truth images after denoising of the added 1% of Rician noise. 

For most of the calculated metrics (PSNR and SSIM) the NLmCED method was superior in 

recovering the original images (Figure 6) with a marked improvement in the fraction of pixels in 

which Iopamidol was detectable (Figure 6f).     

 

4.2. Experimental results with in vitro data 

The proposed method was then tested with in vitro data that were obtained by dissolving iopamidol 

at different pH values (keeping constant the concentration) or at several concentration values (titrated 

at the same pH), resulting in eight different conditions (phantom #1). The vials at different 

concentrations were used to assess the detection sensitivity of the denoising methods, whereas those 

at different pH values to evaluate the accuracy in pH estimation. First, we estimated the level of noise 

in this data in order to set the optimum number of iterations for the NLmCED filter. So according to 

the above presented observations and to the measured value of 1.1% of noise level, we set the number 

of iterations of our proposed method to 3 iterations.  

The calculated CEST contrast maps at the two frequencies (4.2 and 5.5 ppm) and the corresponding 

ratiometric values for in vitro data and denoised ones are shown in Figure 7. CEST contrast maps 

calculated after denoising by the proposed method (NLmCED) are less noisy and more homogeneous 

without reduction in the measured ST contrast with respect to the maps obtained by all the other 

methods. 

A quantitative comparison was performed by calculating the average values and the standard 

deviations (as an index of noise removal) of the CEST contrast (ST values at 4.2 and 5.5 ppm) and of 

the ratiometric values for all the vials or conditions. For the contrast ST at 4.2 ppm (Figure 8a and 

8c), all the investigated denoised methods provided similar average CEST contrast values to the 

original data, but the NLmCED filter showed marked homogenous value for all the concentrations 

and pH conditions where the whiskers boxplots extend to the most extreme data values. Both BM3D 

and Gaussian filtering provided similar average values but higher standard deviations in comparison 
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to the other methods, whereas the smoothing cubic spline method produced the smallest standard 

deviation values but at the expenses of reduced CEST contrast quantification. Similar results were 

obtained for the CEST ST values at 5.5 ppm (Figure 8b and 8d). Corresponding ratiometric values 

calculated from the ST at 4.2 and 5.5 ppm values showed a similar trend for the denoising approaches 

(Figure 8e and 8f). Average ratiometric values were similar among all the denoised data, but only the 

NLmCED and the Smoothing Cubic Splines methods provided the smallest standard deviations. 

We investigated the capability of the denoising methods to increase the iopamidol detectability in a 

phantom with iopamidol diluted at several concentrations (phantom #2). We observed similar CEST 

contrast values between the several denoising approaches, with a detection threshold for iopamidol 

of ca. 1-2 mM (Supporting Information Figure S10). Despite the NLmCED did not provide a clear 

advantage in terms of detectability of the agent, this approach delivered the more homogeneous 

contrast inside each vial, as observed by the smallest range of the boxplots. CEST contrast images 

for the two pools (4.2 ppm and 5.5 ppm) for the raw and denoised data are shown in the Supporting 

Information Figure S11. 

 

4.3. Experimental results with in vivo data 

Further validation of the denoising methods was performed with in vivo data, following iopamidol 

injection in an orthotopic prostate tumor murine model. Since the CEST contrast for in vivo 

experiments is measured as the difference (ΔST) between pre and post-injection ST CEST contrast 

images of iopamidol for both the two pools, the denoising methods were applied to both pre- and 

post-injection Z-spectra. According to the level of noise measured in vivo (2.5 %) we set the number 

of iterations to 6 for the NLmCED method. All the methods provided similar average CEST contrast 

calculated inside the tumor region but with reduced standard deviations when compared to the 

original data (Figure 9a-9c). Of note, the NLmCED filter provided consistent higher fraction of pixels 

for both the two pools when compared to the other denoising approaches (Figure 9d-e). Because of 

the enhanced detectability, the NLmCED filter also provided the highest fraction of pixels for 

mapping pH (Figure 9f), thus improving both the accuracy for tumor pH measurements and the 

assessment of tumor pH heterogeneity since the availability of a higher number of pixels, among 

which it is possible to calculate the pH. Figure 10 shows CEST contrast maps of a representative 

tumor bearing mouse for the two pools of iopamidol and the calculated tumor pH maps superimposed 

to the T2-weighted morphological image by applying the investigated denoising methods. Visually, 

we can observe that the NLmCED provides more homogenous parametric maps and with more 

colored pixels in comparison with the other denoising methods.  

When evaluated in a group of mice (n = 4), we obtained a marked and statistically significant increase 
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in the fraction of pixels in which Iopamidol was detectable and a statistically significant increase in 

the number of pixels in which it was possible to measure tumor pH (Figure 9g-i). Overall, the 

proposed denoising method increased the in vivo iopamidol detectability and improved tumor pH 

measurements. 

Finally, we tested the runtime of each denoising algorithm method on a desktop computer equipped 

with a 3.10 GHz Intel® Core i5-2400 CPU with 8 GB of RAM using Matlab R2015b. The comparison 

of the computation time was performed for in vivo data, consisting of two sets of CEST images 

(before and after iopamidol injection, matrix: 96 x 96 x 39) and is presented in Supporting Information 

Figure S12. The Gaussian filter was shown to be the fastest method (2 seconds), followed by the 

BM3D filter (10 seconds), the proposed NLmCED filter (22 seconds) and by the Smoothing Cubic 

Spline method (117 seconds). 

 

5. DISCUSSION 

In this study, we presented a novel denoising method that combines Non-local mean and Anisotropic 

Diffusion Tensor filter for CEST-MRI pH imaging. We have shown that this NLmCED filter 

improves both contrast quantification and accuracy of pH measurements. To the best of our 

knowledge, this is the first time that a denoising approach that takes benefits from redundancy 

information in the image has been applied to contrast-enhanced CEST-MRI images following 

exogenous contrast media administration. 

CEST imaging is naturally affected by low SNR because of the inherent CEST mechanism of the 

transfer of saturates spins that decreases the measured bulk water signal, specifically at frequencies 

close to the water pool due to compelling direct water saturation effects. Furthermore, common 

approaches to improve SNR, such as signal averaging, are hampered due to concurrent long saturation 

times (to increase the labelling, up to several seconds), number of images acquired at several offsets 

or Z-spectrum sampling (to provide specific selectivity toward the injected contrast agent) and 

required spatial resolution. 

In our previous work, we proposed a combination between the Non-Local Means (NLM) filter and 

the anisotropic diffusion tensor and we succeed to improve the quality of the image and to preserve 

more details and edges in MRI images (54). The NLM filter is a powerful method based on the 

redundancy of information in the image while the anisotropic diffusion tensor is a suitable enhancing 

process that allows efficiently to reduce noise and preserve edges in an image. In this paper, we 

extended the application of our method to CEST-MRI images with optimized Coherence Enhancing 
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Diffusion parameters to improve both the contrast quantification and the pH accuracy in tumor pH 

imaging following iopamidol injection.  

First, we evaluated the performance of the proposed NLmCED method by comparison with 

Smoothing Cubic Spline, Gaussian and BM3D filters in several simulated datasets contaminated with 

different levels of Rician noise. Overall, the results reported herein show that all the denoising 

methods succeed to remove the added noise, but our proposed method outperformed all the others. 

Despite the performance of the proposed approach decreases when increasing the noise levels, it 

provided the highest quantitative measurements in term of SSIM and PSNR when compared to all 

the other methods. The consistent results obtained with our method in the several simulated datasets 

that resemble realistic situations, including the semisolid component and heterogeneous regions with 

different properties (both in terms of iopamidol concentrations and pH values), support its 

exploitation in in vivo applications. 

We further applied the NLmCED method to quantify the contrast originating from iopamidol in in 

vitro data with different concentrations and pH values. The results of all the denoising approaches 

were promising in terms of noise reduction. Visually, the NLmCED filter provided high homogenous 

areas in the vials prepared with different conditions, showing comparable contrast but markedly 

reduced standard deviations. In vivo, the NLmCED algorithm provided the highest fraction of pixels 

inside the tumor where it was possible to detect the injected contrast agent, hence improving the 

detection sensitivity for the CEST images. 

Several post processing fitting and interpolation methods have been applied to improve the SNR or 

the CEST quantification in the CEST-MRI field. For example, Stancanello et al. (60) used a 

smoothing spline interpolation in order to attenuate the noise in the z-spectrum. Zhou et al. (66) used 

a symmetric 12th-order polynomial to fit endogenous z-spectra. Lorentzian line shapes have been 

used by Zaiss et al. to analyze z-spectrum as a combined fitting of several components (62). 

Moreover, Downsampling Expedited Adaptive Least-squares (IDEAL) fitting was proposed based 

on initial values from multi-pool Lorentzian fitting to improve the reliability of in vivo CEST-MRI 

quantification (67). However, all those fitting procedures are sensitive to both the initial values and 

to the chosen boundaries which may lead to inaccurate fitting results if not properly selected (68). In 

addition, fitting procedure are also computational demanding since they require long calculation 

times. Recently, a Principal Component Analysis (PCA) approach has been applied for the denoising 

of CEST-MRI images (52,69). The advantage of this PCA-based post processing procedure is to 

exploit the capability of PCA to reduce the dimensionality of the acquired data, retaining only the 

principal components that describe the higher data variability and discarding those more related to 
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the noise. However, such approach does not take into account the spatial information and the spatial 

correlations inside the acquired images. Recently, a new approach using multilinear singular value 

decomposition (MLSVD) that exploits spatiotemporal correlations has been proposed for denoising 

CEST-MRI images (70). The MLSVD method succeeded to recover CEST contrast from in vivo data, 

although a robust validation with corrupted ground-truth data was not performed. In contrast, our 

proposed approach combines both an efficient noise reduction algorithm and the redundancy of 

spatial information inside the image to improve the CEST contrast quantification. Finally, we think 

that the proposed approach could potentially also be widely exploited for the denoising of other 

CEST-MRI applications both for pH imaging as well as for GlucoCEST or APT imaging (71-73) 

after optimizing and evaluating the proposed denoising method for each CEST modality. Moreover, 

we want to emphasize that prior to any application, either at a human whole-body scanner or in 

conjunction with parallel imaging, further investigations concerning the influence of B0 and B1 

inhomogeneities and non-Rician noise distribution are required to verify the applicability of the 

approach. 

 

6. CONCLUSIONS 

In summary, this study demonstrates for the first time that the proposed NLmCED denoising method 

effectively reduces the noise in the acquired CEST-MRI images and increases both the sensitivity 

detection following iopamidol injection and the accuracy of pH measurements for tumor acidosis 

imaging. 
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FIGURE LEGENDS  

Figure 1. Block diagram of the proposed denoising NLmCED algorithm. 

Figure 2. Representative simulated Z-spectrum for the simulated dataset #1 (iopamidol at 30 mM 

and pH = 7.4, solid line) and noisy data after applying 3% Rician noise (dots) and corresponding 

denoised Z-spectrum by applying the four investigated denoised approaches: Smoothing Cubic Spline 

(a), Gaussian filter (b), BM3D filter (c) and NLmCED (d). 

Figure 3. CEST contrast ST at 4.2 ppm and pH maps for the simulated dataset #1: (a, g) Original 

data, (b, h) Noisy data with 3% of Rician noise, (c, i) Smoothing Cubic Spline, (d, j) Gaussian Filter, 

(e, k) BM3D Filter and (f, l) NLmCED method.  

Figure 4. Quantitative evaluation of the denoising methods for the simulated dataset #1 at several 

noise levels in terms of PNSR for the ST 4.2 ppm map (a), the ST 5.5 ppm map (b) and for the SSIM 

metric for the ST 4.2 ppm map (c), the ST 5.5 ppm map (d) and for the pH map (e). Bargraph showing 

the fraction of pixels in which is possible to calculate pH values (f) after denoising 3% of Rician 

noise.  

Figure 5. CEST contrast ST at 4.2 ppm and pH maps for the simulated dataset #3: (a, g) Original 

data, (b, h) Noisy data with 1% of Rician noise, (c, i) Smoothing Cubic Spline, (d, j) Gaussian Filter, 

(e, k) BM3D Filter and (f, l) NLmCED method.  

Figure 6. Quantitative evaluation of the denoising methods for the simulated dataset #3 at several 

noise levels in terms of PNSR for the ∆ST 4.2 ppm map (a), the ∆ST 5.5 ppm map (b) and for the 

SSIM metric for the ∆ST 4.2 ppm map (c), the ∆ST 5.5ppm map (d) and the pH map (e). Bargraphs 

showing the fraction of pixels in which is possible to calculate pH values (f) after denoising 1% of 

Rician noise. 

Figure 7. Calculated ST images at 4.2 ppm (a), at 5.5 ppm (b) and ratiometric images (c) from in 

vitro data (phantom #1). From left to right: original data and denoised parametric maps obtained by 

applying the smoothing cubic spline, the Gaussian filter, the BM3D filter and the proposed NLmCED 

method. 

Figure 8. Quantitative results for in vitro data (phantom #1) calculated from original data and after 

applying the denoising methods: (a) ST at 4.2 ppm at different pH values, (b) ST at 5.5 ppm at 

different pH values, (c) ST at 4.2 ppm at several concentrations, (d) ST at 5.5 ppm at several 
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concentrations, (e) ratiometric values for different pH values and (f) ratiometric values for several 

concentrations. Data are presented as box-plot showing mean and standard deviations. 

Figure 9. Quantitative results for in vivo data. Bargraphs showing average values for a representative 

mouse: ΔST CEST contrast (measured as ST post iopamidol injection minus ST pre-injection) at 4.2 

ppm (a) and 5.5 ppm (b), tumor pH values (c), fraction pixels at 4.2 ppm (d) and at 5.5 ppm (e) 

corresponding to the detection of iopamidol within the tumor region and fraction pixels in which it 

was possible to calculate the pH values (f). Average values for a group of mice (n = 4): fraction pixels 

at 4.2 ppm (g), at 5.5 ppm (h) and for pH values (i). Data are presented as mean and standard 

deviations. 

Figure 10. CEST contrast ΔST maps at 4.2 (a) and 5.5 (b) ppm and tumor pH maps (c) superimposed 

to the anatomical image for the original data and the proposed denoising algorithms: Smoothing cubic 

spline, Gaussian filtering, BM3D and NLmCED (from left to right) for a representative tumor-bearing 

mouse and corresponding zoom-in for the tumor region. 

 

SUPPORTING INFORMATION  

Additional supporting information may be found online in the Supporting Information section. 

Table S1 Simulation parameters.      

Figure S1 Optimization of the NLmCED number of iterations as a function PSNR according to the 
added Rician noise levels to dataset #1. 

Figure S2 Optimization of the σ parameter for the BM3D filter as a function PSNR according to the 
added Rician noise levels. 

Figure S3. Illustration of the shapes and composition (Iopamidol concentration and pH) of the 
realistic phantom exploited for dataset #3. 

Figure S4. Simulated dataset #3 showing the investigated ranges of iopamidol concentration, pH and 
ssMT amplitudes randomly distributed in the four ROIs (as shown in Figure S3) and representative 
normalized Z-spectra taken from the four regions. 

Figure S5. Illustration of the in vitro phantoms composition. (a) phantom #1 with Iopamidol at 30 
mM concentration titrated several pH values and at pH = 6.7 with several iopamidol concentrations. 
(b) phantom #2 with Iopamidol at several concentrations all titrated at pH = 6.7.  

Figure S6. Quantitative evaluation of the denoising methods for the simulated dataset #2 at several 
noise levels in terms of PNSR for the ST 4.2 ppm map (a), the ST 5.5 ppm map (b) and for the SSIM 
metric for the ST 4.2 ppm map (c), for the ST 5.5 ppm map (d) and for the pH map (e). Bargraphs 
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showing the fraction of pixels in which is possible to calculate pH values (f) after denoising 3% of 
Rician noise. 

Figure S7. CEST contrast ST maps at 4.2 (a) and 5.5 (b) ppm and calculated pH maps (c) for the 
original data and the proposed denoising algorithms: Smoothing cubic spline, Gaussian filtering, 
BM3D and NLmCED (from left to right) for the simulated dataset #2. 

Figure S8. Quantitative evaluation of the denoising methods at several realizations (n = 20) of noise 
levels in terms of PNSR for the ST 4.2 ppm map at 1% (a), 3% (b), the ST 5.5 ppm map at 1% (c), 
3% (d) and for the SSIM metric for the ST 4.2 ppm map at 1% (e), 3% (f), for the ST 5.5 ppm map 
at 1% (g), 3% (h) for the simulated dataset #2 with volume size (256 x 256) and 201 offsets. 

Figure S9. Average of quantitative evaluation of the denoising methods at several realization (n = 
20) of noise levels for the simulated dataset #2: Average PNSR for the ST 4.2 ppm map (a), Average 
PNSR for the ST 5.5 ppm map (b), Average SSIM for the ST 4.2 ppm map (c), Average SSIM for 
the ST 5.5 ppm map (d), Average SSIM for pH (e). 

Figure S10. Calculated ST values 4.2 and 5.5 ppm for Iopamidol diluted at several concentrations 
from phantom #2 after applying the investigated denoising methods: (a) ST 4.2 ppm, (b) ST 5.5 ppm. 
 
Figure S11. Calculated ST CEST contrast images at 4.2 (a) and 5.5 (b) ppm from phantom #2. 
From left to right: original data and denoised parametric maps obtained by applying smoothing 
cubic spline, Gaussian filter, BM3D filter and the proposed NLmCED method. 
 
Figure S12. Average computation time of the different denoising methods for in vivo data (two Z-
spectra data corresponding to before and after Iopamidol injection, matrix size: 96x96x39). 

 
 
 

 

 

 


