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Abstract

Motivated by the recent outbreak of coronavirus (COVID-19), we propose a

stochastic model of epidemic temporal growth and mitigation based on a time-

modulated Hawkes process. The model is sufficiently rich to incorporate specific

characteristics of the novel coronavirus, to capture the impact of undetected,

asymptomatic and super-diffusive individuals, and especially to take into ac-

count time-varying counter-measures and detection efforts. Yet, it is simple

enough to allow scalable and efficient computation of the temporal evolution

of the epidemic, and exploration of what-if scenarios. Compared to traditional

compartmental models, our approach allows a more faithful description of virus

specific features, such as distributions for the time spent in stages, which is

crucial when the time-scale of control (e.g., mobility restrictions) is comparable

to the lifetime of a single infection. We apply the model to the first and sec-

ond wave of COVID-19 in Italy, shedding light onto several effects related to

mobility restrictions introduced by the government, and to the effectiveness of

contact tracing and mass testing performed by the national health service.
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1. Introduction and related work

Models of epidemic propagation are especially useful when they provide key

insights while retaining simplicity and generality. For example, in mathematical

epidemiology the SIR model reveals in very simple terms the fundamental role of

the basic reproduction number (R0) which governs the macroscopic, long-term5

evolution of the outbreak in a homogeneous population. The vast majority of

models developed for the novel SARS-CoV-2 are extensions to the classic SIR,

along the standard approach of introducing additional compartments to describe

different phases of the infection, the presence of asymptomatic, symptomatic or

pauci-symptomatic individuals, the set of quarantined, hospitalized people, and10

so on. Such models lead to a system of coupled ODE’s with fixed or time-varying

coefficients to be estimated from traces. A very incomplete list of modeling

efforts pursued in this direction, early applied to COVID-19, includes the SEIR

models in [1, 2, 3, 4, 5], the SIRD models in [6, 7], the SEPIA model in [8], the

SIDHARTE model in [9].15

In this paper we adopt a different approach that allows a more accurate rep-

resentation of native characteristics of a specific virus, such as actual distribu-

tions of the duration of incubation, pre-symptomatic and symptomatic phases,

for various categories of infected. This level of detail is important when the

intensity of applied countermeasures varies significantly over time-scales com-20

parable to that of an individual infection, and we believe it is essential to address

fundamental questions such as: i) when and to what extent can we expect to see

the effect of specific mobility restrictions introduced by a national government

at a given point in time? ii) what is the impact of hard vs partial lockdowns

enforced for given numbers of days? when can restrictions be safely released25

to restart economic and social activities while still keeping the epidemic under

control?

Specifically, we propose and analyse a novel, modulated version of the marked

Hawkes process, a self-exciting stochastic point process with roots in geophysics
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and finance [10]. In a nutshell, in the standard marked Hawkes process each30

event i with mark mi, occurring at time ti, generates new events with stochastic

intensity ν(t − ti,mi), where ν(·,mi) is a generic kernel. The process unfolds

through successive generations of events, starting from so-called immigrants

(generation zero). In our model events represent individual infections, and a

modulating function µ(t), which scales the overall intensity of the process at35

real time t, allows us to take into account the impact of time-varying mobility

restrictions and social distance limitations. In addition, we model the transi-

tion of infected, undetected individuals to a quarantined state at inhomogeneous

rate ρ(t), to describe the time-varying effectiveness of contact tracing and mass

testing.40

We mention that branching processes of various kind, including Hawkes

processes, have been proposed in various biological contexts [11, 12, 13, 14],

[15, 16, 17, 18, 19, 20]. In particular [16, 17, 18] propose stationary and non-

stationary Hawkes models (i.e., Hawkes processes with time-varying kernels) to

model the outbreak of several epidemics, such as Ebola and COVID-19. In [19]45

authors proposed a first comparison of SIR, SEIR, and Hawkes (with Gamma

or Weibull kernels) to forecast the spread of COVID-19. In [20] a comparison

between SEIR and Hawkes (with a non-parametric estimate of the kernel) was

done for the Ebola outbreak in West Africa. The authors show that, in general,

Hawkes predictions are more accurate, leading to lower root mean square errors50

(RMSE). With respect to previous models based on Hawkes processes, the main

novelty of our approach is the use of a marked Hawkes process, where the mark

encodes different classes of infected and variable durations of stages, together

with the application of a continuous modulating function to the conditional

process intensity.55

In [21], a probabilistic extension of (deterministic) discrete-time SEIR mod-

els, based on multi-type branching processes, has been recently applied to

COVID-19 to capture the impact of detailed distributions of the time spent

in different phases, together with mobility restrictions and contact tracing. An-

other work that, similarly to ours, stresses the importance of handling pre-60
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cise delay distributions is [22], where authors develop a non-Markovian age-of-

infection model of the COVID-19 epidemic in Illinois, which can be regarded as

a deterministic mean-field approximation of an Hawkes process. In parallel to

us, authors of [23] have proposed a Hawkes process with spatio-temporal “co-

variates” for modeling COVID-19 in the US, together with an EM algorithm65

for parameter inference. The work in [23] is somehow orthogonal to us, since

they focus on spatial and demographic features, aiming at predicting the trend

of confirmed cases and deaths in each county. In contrast, we introduce marks

and stages to natively model the course of an infection for different categories of

individuals, with the fundamental distinction between real and detected cases.70

Moreover, we take into account the impact of time-varying detection efforts and

contact tracing. At last, we obtain analytical expressions for the first two mo-

ments of the number of individuals who have been infected within a given time.

We mention that, using a radically different approach, machine learning tech-

niques have recently been proposed to describe the intensity of general temporal75

point processes [24], and they have also been applied to estimate COVID-19 epi-

demiological curves [25].

We demonstrate the applicability of our model to the novel COVID-19 pan-

demic by considering real traces related to the first and second wave of coro-

navirus in Italy. Our fitting exercise, though largely preliminary and based80

on incomplete information, suggests that our approach has good potential and

can be effectively used both for planning counter-measures and to provide an

a-posteriori explanation of observed epidemiological curves.

The paper is organized as follows. In Sec. 2 we provide the mathematical

formulation of the proposed modulated Hawkes process to describe the temporal85

evolution of the epidemic. In Sec. 3 we motivate our approach by comparing it

to the standard SIR model. Some mathematical results related to the moment

generating function of our process are presented in Sec. 4. In Sec. 5 we describe

our COVID-19 model based on the proposed approach. We separately fit our

model to the first and second wave of COVID-19 in Italy in Sec. 6 and 7,90

respectively, offering hopefully interesting insights about what happened in this
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country (and similarly in other European countries) during the recent pandemic.

We conclude in Sec. 8.

2. Mathematical formulation of modulated Hawkes process

We first briefly recall the classic Hawkes process restricted to the tempo-95

ral dimension (the spatio-temporal formulation is similar, but we focus in this

work on the purely temporal version). Events of the process (or points) oc-

cur at times T = {Ti}i≥1, which are R-valued random variables. A subset I

of these points, called immigrants, are produced by an inhomogeneous Poisson

process of given intensity σ(t). Each immigrant, independently of others, is100

the originator of a progeny (or cluster) of other points, dispersed in the future

through a self-similar branching structure: a first generation of points is pro-

duced with intensity ν(t− Tj), where Tj is the occurrence time of immigrant j,

and ν : R+ → R+ is a kernel function. Each point of the first generation, in turn,

generates new offsprings in a similar fashion, creating the second generation of105

points, and so on.

The above process can be easily extended to account for different types

of points with type-specific kernel functions. Types are denoted by marks

M = {Mi}i≥1, which are assumed to be i.i.d. random variables with val-

ues on an arbitrary measurable space (M,M), with a probability distribu-110

tion Q. Let N(t,m) be the counting process associated to the marked points

N = {(Ti,Mi)}i≥1. The (conditional) stochastic intensity λ(t) of the overall

process is then given by:

λ(t) = σ(t) +

∫ t

0

ν(t− s,m)N( ds, dm) = σ(t) +
∑

Tk∩(0,t)

ν(t− Tk,Mk)

where ν : R+ ×M → R+ is a type-dependent kernel function. In the following

we assume ν(t) := E[ν(t,M1)] to be summable,. i.e.

R0 =

∫ ∞
0

ν(t)dt <∞ (1)
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Note that R0 is the average number of offsprings generated by each point, which

is usually referred to as basic reproduction number in epidemiology. The process115

is called subcritical if R0 < 1, supercritical if R0 > 1.

Our main modification to the above classic marked Hawkes process N is

to modulate the instantaneous generation rate of offsprings N ′ = N \ I by a

positive, bounded function µ(t) : R+ → R+, representing the impact of mobility

restriction countermeasures1
120

By so doing, we obtain the modified stochastic intensity of the process:

λ(t) = σ(t) + µ(t)

[∫ t

0

ν(t− s,m)N( ds, dm)

]

= σ(t) + µ(t)

 ∑
Tk∈(0,t)

ν(t− Tk,Mk)

 (2)

Note that, when µ(t) = µ is constant, we re-obtain a classic Hawkes process with

modified kernel µ ν(). In general, the obtained process is no longer self-similar.

In particular, the average number of offsprings generated by a point becomes a

function of time:

R(t) =

∫ ∞
0

µ(t+ τ)ν(τ) dτ (3)

which provides the infamous real-time reproduction number usually referred to

on the media as ‘Rt index’.

We emphasize that the process can initially start in the supercritical regime,

and then it can become subcritical for effect of a decreasing function µ(), a

case of special interest in our application to waves of COVID-19. We mention125

that the great bulk of literature related to the Hawkes process and its applica-

tions to geophysics and finance focuses on the subcritical regime, whereas our

formulation applies also to the supercritical regime, which is more germane to

epidemics.

1In this paper, we will call for simplicity ‘mobility restrictions’ all forms of non-

pharmaceutical interventions affecting the virus transmission, such as stay-at-home orders,

closures of bars and restaurants, mask mandates, and other governmental policies.
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The conditional intensity (2) can be easily de-conditioned with respect to

N , obtaining the ‘average’ stochastic intensity λ(t) := E[λ(t)]:

λ(t) = σ(t) + µ(t)E

[∫
(0,t)×M

ν(t− s,m)N(ds,dm)

]

= σ(t) + µ(t)E

[∫
(0,t)×M

ν(t− s,m)λ(s) dsQ(dm)

]

= σ(t) + µ(t)E
[∫ t

0

ν(t− s)λ(s)ds

]
= σ(t) + µ(t)

∫ t

0

ν(t− s)λ(s)ds. (4)

where we recall that ν(t) = E[ν(t,M1)].130

We observe that (4) is a linear Volterra equation of the second kind, which

can be efficiently solved numerically.2 In the special case of constant modulating

function, (4) reduces to a convolution equation which can be analyzed and solved

by means of Laplace transform techniques (see Appendix A).

At last we introduce the total number of points up to time t, N(t) (regardless

of their associated marks), and its average:

N(t) =

∫ t

0

λ(τ) dτ (5)

3. Comparison with SIR model135

When the kernel function has an exponential shape, i.e., ν(t) = Ke−γt, it

is possible to establish a simple connection between the Hawkes process and

the classic SIR model [26]. Specifically, consider a stochastic SIR model with

an infinite population of susceptible individuals, where each infected generates

new infections at rate β, and recovers at rate γ (i.e., after an exponentially140

distributed amount of time of mean 1/γ). Then the average intensity of the

process generated by this stochastic SIR, averaging out the times at which nodes

recover, has exactly the (conditional) intensity of a Hawkes process starting

2For example, the standard trapezoidal rule allows obtaining a discretized version of λ(t)

by a matrix inversion.
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with the same number of initially infected nodes, no further immigrants, and

ν(t) = βe−γt [26]. This can be intuitively understood by considering that in145

SIR the average, effective rate with which an infected individual generates new

infections after time t since it became infected equals β times the probability

that the node has not yet recovered, which is e−γt.

We remark that in [26] authors push this equivalence a bit further, by show-

ing that a SIR model with finite population N0 is equivalent to a modulated150

Hawkes process similar to (2), where µ(t) = 1−N(t)/N0. In our model and its

application to COVID-19, we do not consider the impact of finite population

size, and assume an infinite population of susceptible individuals3. Therefore, we

do not need the ‘correction factor’ 1−N(t)/N0, and instead use the modulating

function µ(t) to model the (process-independent) effect of mobility restrictions.155

A similar effect due to mobility restrictions can be incorporated into the SIR

model, by applying factor µ(t) to the infection rate β.

Given the above connection between a (possibly modulated) Hawkes process

and the traditional SIR, one might ask what is the benefit of our approach with

respect to SIR-like models. In contrast to SIR, the Hawkes process allows us to160

choose an arbitrary kernel ν(t), not necessarily exponential. With this freedom,

can we observe dynamics significantly different from those that can be obtained

by a properly chosen exponential shape? We answer this question in the positive

with the help of an illustrative scenario.

Consider an epidemic starting at time zero with I0 = 1000 infected indi-165

viduals.4 We fix to g = 10 (days) the average generation time, which is the

mean temporal separation between a new infection belonging to generation i

and its parent in generation i− 1. Note that the above constraint implies that∫∞
0
t ν(t) dt = g.

3This assumption is largely acceptable at the beginning of an epidemic.
4Note that in our model the number of immigrants has a Poisson distribution with mean∫∞

0 σ(t) dt. However to reduce the variance we have preferred to start simulations with the

same deterministic number of infected. Further, note that analytical results for the mean

trajectory of infected nodes are not affected by this choice.
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We also normalize
∫∞

0
ν(t) dt = 1, since we can use µ(t) to scale the infection170

rate, in addition to considering time-varying effects due to mobility restriction.

Note that in SIR we can only satisfy the above constraints by choosing the

exponential kernel ν(t) = 1
g e
− t
g , t > 0. Instead, in our Hawkes model we have

much more freedom.

 1000

 10000

 100000

 1x10
6

 0  50  100  150  200  250  300  350

m
ea

n
 n

u
m

b
er

 o
f 

in
fe

ct
ed

time (days)

hyper 3-30
exp

delta

µ = 0.9

µ = 1.2

Figure 1: Evolution of mean number of infected for different kernel shapes, in the case of

constant µ = 1.2 (supercritical) or constant µ = 0.9 (subcritical), with I0 = 1000, g = 10.

First, we consider a scenario in which µ(t) is constant, equal to either 1.2

(supercritical case) or 0.9 (subcritical case). In Fig. 1 we show the temporal

evolution of the mean number of infected N(t), for three kernel shapes that

allows for an explicit solution of (4),(5) using Laplace transform (Appendix A).

The delta shape corresponds to the kernel function ν(t) = δ(t − g), where δ(·)

is Dirac’s delta function, for which

Ndelta(t) = I0
µbt/gc+1 − 1

µ− 1
(6)

The exp shape corresponds to the exponential kernel ν(t) = 1
g e
− t
g (SIR
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model), for which

N exp(t) = I0

[
1 +

µ

µ− 1

(
et(µ−1)/g − 1

)]
(7)

The hyper shape corresponds to the hyper-exponential kernel:175

ν(t) = p1α1e
−α1t + p2α2e

−α2t, where 0 ≤ p1 ≤ 1, p2 = 1−p1, p1/α1+p2/α2 = g,

which also permits obtaining an explicit, though lengthy expression of N(t) that

we omit here. Specifically, the ‘hyper’ curve on Fig. 1 corresponds to the case

1/α1 = 3, 1/α2 = 30.

We observe that, in the subcritical case (µ = 0.9), the mean number of180

infected saturates to the same value, irrespective of the kernel shape; this can

be explained by the fact that the final size of the epidemics is described by the

same branching process for all kernel shapes (i.e., a branching process in which

the offspring distribution is Poisson with mean 0.9). In the supercritical case

(µ = 1.2), instead, the mean number of infected grows exponentially as Θ(eηt)185

(as t grows large), where, interestingly, η > 1 depends on the particular shape

(notice the log y axes on Fig. 1). In particular, the hyper-exponential kernel can

produce arbitrarily large η (Appendix A). We conclude that, even when we fix

the average generation time g, different kernels can produce largely different (in

order sense) evolutions of N(t). Note that, by introducing compartments, SIR-190

like models can match higher-order moments of the generation time, but our

results suggest that N(t) depends on all moments of it, i.e., on the precise shape

of the kernel. Moreover, recall that some shapes are difficult to approximate

by a phase-type approximation (e.g., the rectangular shape, or more in general,

kernels with finite support).195

The strong impact of the specific kernel shape becomes even more evident

when we consider a time-varying µ(t), as in our modulated Hawkes process.

As an example, consider the COVID-inspired scenario in which the modulating

function µ(t) corresponds to the black curve in Fig. 2: during the first 30 days,

µ(t) decreases linearly from 3 to 0.3; it stays constant at 0.3 for the next 60200

days; and it goes back linearly to 3 during the next 30 days, after which it stays

constant at 3.
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Figure 2: Evolution of mean number of infected (left y axes) in the COVID-like scenario, for

different kernel shapes. Shaded areas denote 95%−level confidence intervals obtained by 100

simulation runs. The right y axes refers to modulating function µ(t) (black curve).

In Fig. 2 we show the mean number of infected estimated by simulation

(averaging 100 independent runs), for the three kernel shapes exp, delta, and

uniform, where uniform corresponds to the kernel ν(t) = 1
2g , t ∈ (0, 2g), while205

the shapes exp, delta have been already introduced above. Shaded areas around

each curve denote 95%−level confidence intervals.

We observe huge discrepancies among the trajectories of N(t) obtained under

the three kernels. In particular, after the first ‘wave’ of 30 days, the exp kernel

produces about four times more infections than those produced by the delta210

kernel. This can be explained by the fact that µ(t) varies significantly on a time

window (30 days) comparable to the average generation time (10 days).

It is also interesting to compare what happens on the second wave starting

at day 90, after all 3 curves have settled down to an almost constant value:

now discrepancies are even more dramatic: although we observe a very fast215

resurgence of the epidemic in all cases, this happens with significant delays from
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one curve to another. This is due to the fact that the number of individuals who

are still infectious after the subcritical period (when µ < 1) is largely different,

especially considering that both the uniform and delta kernels have finite support

(20 and 10 days, respectively) much smaller than the duration of the subcritical220

period, whereas the exp shape has infinite support: this implies that under the

uniform and delta kernels the virus survives the subcritical period only through

chains of infections belonging to successive generations, whereas under the exp

shape in principle the epidemic can restart just thanks to the original immigrants

at time 0, who are still weakly infectious when we re-enter the supercritical225

regime (around day 100). Actually, in our experiment, under the delta kernel

the epidemic died out in 68 out of 100 simulation runs, which explains the large

confidence intervals obtained in this case at end of the observation window.

Under the uniform kernel, the epidemic died only in 3 out of 100 runs, while it

always survived under the exp kernel.230

We conclude that, even while fixing the mean generation time, the precise

shape of the kernel function can play an important role in predicting the process

dynamics and the impact of countermeasures, especially when the time-scale of

control is comparable to the time-scale of an individual contagion. One might

obtain a good fitting with measured data also by using an exponential shape,235

and a properly chosen modulating function µ(t), but this is undesirable, since

the required µ(t) would no longer reflect the actual evolution of mobility and

interpersonal contact restrictions. In the case of COVID-19, several researchers

have actually attempted to incorporate into analytical models detailed informa-

tion about people mobility, using for example data provided by cellular network240

operators or smartphone apps [27, 28].

In Appendix B we elaborate more on this point by examining also the

SEIR model, which, with respect to the classic SIR, provides an additional

compartment to better describe the dynamics of an individual infection.

12



4. Moment generating function245

Our modulated Hawkes process is stochastic in nature, hence it is impor-

tant to characterize how realizations of the process are concentrated around

the mean trajectory derived in Sec. 2. This characterization is instrumental,

for example, in designing simulation campaigns with proper number of runs.

Moreover, note that it is entirely possible that the epidemic gets extinct at its250

early stages, or in between two successive waves, as we have seen in the sce-

nario in Fig. 2. Actually, an epidemic could die out even when starting in

the supercritical regime (consider the case of a single immigrant at time t, who

does not generate any offspring with probability e−R(t)), something that is not

captured by deterministic mean-field approaches. Therefore, it is interesting to255

understand the variability of the process at any time.

Under mild assumptions an expression for the moment generating function

of the number of points in [0, t) can be given, and an iterative procedure can be

applied to compute the moment of any order n in terms of moments of smaller

order, though with increasing combinatorial complexity.260

In this section we limit ourselves to reporting the main results on this mo-

ments’ characterization, without their mathematical proofs, to keep the paper

focused on the application to COVID-19 and its control measures.

Hereon, we shall assume

K1 := sup
(t,m)∈(0,∞)×M

ν(t,m) ∈ (0,∞), K2 := sup
t∈(0,∞)

µ(t) ∈ (0,∞). (8)

Also, we fix a horizon τ ∈ (0,∞), and, for t ∈ (0, τ), we denote with St,τ the

number of points, up to time τ , in the cluster generated by an immigrant at265

t (including the immigrant). We denote with | · | the modulus of a complex

number.

We are interested in N(τ), i.e., the total number of points generated up to

time τ , irrespective of their mark.

Theorem 4.1 (Moment generating function of N(τ)). Assume (1) and (8).
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Then there exists θc > 0 such that, for any z ∈ Θc,

Θc := {z ∈ C : Rez < θc},

we have

E[ezN(τ)] = exp

(∫ τ

0

(G(t, z)− 1)σ(t)dt

)
(9)

and

sup
z∈Θc

|E[ezN(τ)]| <∞. (10)

Here

G(t, z) := E[ezSt,τ ], (11)

is the solution of the following functional equation.

G(t, z) = ezE
[
e
∫ τ
0

(G(v,z)−1)µ(v)ν(v−t,M1) dv
]
, (t, z) ∈ (0, τ)×Θc. (12)

From the moment generating function we can obtain an expression for the270

first and second moment of N(τ) (the first moment can also be obtained directly

from the average stochastic intensity, as we have done in Sec. 2.).

Theorem 4.2 (The first two moments of N(τ)). Assume (1) and (8). Then

E[N(τ)] = N(τ) =

∫ τ

0

λ(t) dt =

∫ τ

0

E1(t)σ(t) dt (13)

and

E[N(τ)2] =

∫ τ

0

E2(t)σ(t) dt+

(∫ τ

0

E1(t)σ(t) dt

)2

, (14)

with

E2(t) = G′′(t, 0) = E[S2
t,τ ] = 1 +

∫ τ

t

E2(v)µ(v)ν(v − t) dv+

+ 2

∫ τ

t

E1(v)µ(v)ν(v − t) dv +

(∫ τ

t

E1(v)µ(v)ν(v − t)dv
)2

(15)

E1(t) = G′(t, 0) = E[St,τ ] = 1 +

∫ τ

t

λ(t)(v) dv (16)

and

λ(t)(v) = µ(v)ν(v − t) + µ(v)

∫ v

t

ν(v − u)λ(t)(u) du. (17)
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Note that (15) and (17) are second-type inhomogeneous Volterra equations.

In the particular case in which µ() is constant, solutions for (15) and (17) can275

be found by applying a standard Laplace transform methodology.

5. COVID-19 Model

Now we describe how we applied the modulated Hawkes process introduced

before to model the propagation dynamics of COVID-19. The proposed model

could actually be used to represent the dynamics of other similar viruses as well.280

First, we take advantage of the fact that we do not need to consider a unique

kernel function for all infected. Indeed, the presence of marks allows us to in-

troduce different classes of infectious individuals with specific kernel functions.

Specifically, we have considered three classes of infectious: symptomatic, asymp-

tomatic and superspreader, denoted by symbols {s, a, h}. We assume that, when285

a person gets infected, it is assigned a random class C ∈ {s, a, h} with prob-

abilities ps, pa, ph, respectively, ps + pa + ph = 1, 0 ≤ ps ≤ 1, 0 ≤ pa ≤ 1,

0 ≤ pu ≤ 1.

As the name suggests, symptomatic people are those who will develop evi-

dent symptoms of infection, and we assume that because of that they will be290

effectively quarantined at home or hospitalized at the onset of symptoms. On

the contrary, the asymptomatic mark is given to individuals who will not de-

velop strong enough symptoms to be quarantined. Therefore, they will be able

to infect other people for the entire duration of the disease, though at low in-

fection rate (unless they get scrutinized by mass testing, as explained later). At295

last, superspreaders are individuals who exert a high infection rate but do not

get quarantined due to several possible reasons (unless they get scrutinized by

mass testing). This class also includes people with mild symptoms, who become

highly contagious because of their mobility pattern (e.g., participation to ‘su-

perspreading events’). Though the above classification of infectious individuals300

is a simplified one, a properly chosen mix of the three considered classes can

represent a wide range of different scenarios.
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Irrespective of their class, we will assume that all infectious people go through

the following sequence of stages: first, there is a random incubation time, de-

noted by r.v. I, with given cdf FI(). During this time we assume the all infected305

exert a low infection rate λlow. Then, there is a crucial pre-symptomatic period,

during which infected in classes {s, h} already exert a high infection rate λhigh,

while infected in class a still exert low infection rate λlow. For simplicity, we

have assumed the presymptomatic phase to have constant duration w.

The following evolution of the infection rate of an individual depends on310

the class: since we assume that symptomatic people get effectively quarantined,

they no longer infect other individuals after the onset of symptoms. We model

this fact introducing a quarantined class of people (denoted by q), and deter-

ministically moving all infected in class s to class q after time I + w.

People in classes {a, h} continue to be infectious during a disease period of315

random duration D, with given cdf FD(). The difference between these two

classes is that infectious in class a (h) exert, during the disease period, infection

rate λlow (λhigh), respectively. At last, we assume that people in classes {a, h}

enter a residual period of random duration E, with cdf FE(), during which all

of them exert infection rate λlow. We introduced this additional phase because320

some people who recovered from COVID-19 where found to be still contagious

several days (even weeks) after the end of the disease period. Note that durations

I,D,E are assumed to be independent, and that the complete mark associated

to an infected is the 4-tuple M = (C, I,D,E).

An illustration of the three class-dependent kernels ν(t, s), ν(t, a), ν(t, h),325

conditioned on the durations (I,D,E), is reported in Fig. 3.

Remark 5.1. We emphasize that our model of COVID-19 is targeted at pre-

dicting the process of new infections, rather than the current number of people

hosting the virus in various conditions. In particular, we do not explicitly de-

scribe the dynamics of symptomatic but quarantined people and their exit process330

(i.e., recovery or, in the worst case, death), since such dynamics have no effect

on the spreading process (under the assumption of perfect quarantine). How-
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Figure 3: Kernel functions for classes s, a, h (from top to bottom), for given durations I,D,E

of stages.

ever, if desired, one could describe through appropriate probabilities and time

distributions how quarantined people split between those isolated at home and

those who get hospitalized, the fraction going to intensive care, and those who335

unfortunately die.

Remark 5.2. The use of ‘classes’ and ‘stages’ in our model is similar to the

classical approach of introducing compartments in models stemming from the

basic SIR of Kermack and McKendrick. The fundamental difference is that in

our marked Hawkes model we can consider arbitrary distributions for the time340

spent in stages, and account for the non-homogeneous intensity of offsprings

generated by an infected during a stage. Moreover, note that an Hawkes process

has a rich (non Markovian) stochastic structure, whereas compartmental models

are usually analyzed by ordinary differential equations.
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Parameter symbol COVID-19 fitted value

incubation period I tri([2,12], mean 6)

pre-symptoms period w 2

disease period D unif([2,12])

residual period E exp(10)

low infection rate λlow 0.05

high infection rate λhigh 1

symptomatic probability ps 0.06

asymptomatic probability pa 0.91

super-spreader probability ph 0.03

Table 1: Virus-specific parameters.

The parameters introduced so far, summarized in Table 1, are related to345

specific characteristics of the virus. We now model properties of the specific

environment where the virus spreads, taking into account the impact of coun-

termeasures. First, we need to specify the immigration process σ(t). To keep

the model as simple as possible, we have assumed that the system starts at

a given time with I0 new infections, i.e., immigrants arrive as a single burst350

concentrated at one specific instant.

The impact of countermeasures is taken into account in the model in two

different ways. First, modulating function µ(t) can be used to model the in-

stantaneous reduction of the infection rate at time t due to the current mobility

restrictions, and, more in general, changes in the environment which affect the355

ability of the virus to propagate in the susceptible population (such as seasonal

effects). Typically, µ(t) is a decreasing function in the initial part of the epi-

demics, in response to new regulations introduced by the government, while it

goes up again when mobility restrictions are progressively released.

Second, we assume that any infected not already found to be positive is360

tested (e.g., by means of massive swab campaigns) at individual, instantaneous

rate ρ(t), which reflects both the amount of resources employed by the health
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service to discover the infected population, and the effectiveness of tracking.

Recall that, when an infected is found positive, we assume it transits to the

quarantined state q and stops infecting other people.365

new infection

after I+w

after I+w+D+E

after I+w+D+E

s

a q

h u

ps

pa ρ(t)

ρ(t)

ρ(t)ph

Figure 4: State transitions of an infected individual.

Fig. 4 shows the resulting transitions that can occur for the different classes.

Note that class q collects all cases known to the health authorities at a given

time t, and thus coincides with the set of detected cases. Infected in classes

s, a, h are still unknown to the health service (but they are detectable). When

they stop to be positive, people in classes a, h transit to a class u (undetected),370

which collects all infected who remain unknown to the health service.

Environment-related parameters are summarized in Table 2.

Remark 5.3. We emphasize that the model described so far does not explicitly

model spatial effects and sub-populations. As such, it is more suitable to de-

scribe a homogeneous scenario, where its environmental parameters (including375

modulating functions µ(t) and detection rate ρ(t)) can be reasonably assumed

to apply to all individuals of the population irrespective of their spatial location.

The natural candidate of such scenario is a single nation or just a sub-region

of it. By so doing, we can assume that common national regulations are ap-
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Parameter symbol fitted value for first wave in Italy

initial day −∆t -20

initial number of infected I0 370

modulating function µ(t) Ta = −3, µa = 3.71

Tb = 30, µb = 0.31, (see Fig. 5)

detection rate ρ(t) ρ(t) = 0.000115 t, (see Fig. 5)

Table 2: Environment-specific parameters.

plied, as well as common health-care practices. However, our approach based on380

Hawkes processes could be extended to incorporate spatial effects, by considering

spatio-temporal kernel functions ν(x, t), where x is a spatial vector originated

at the point at which a new infection occurs. Another possibility would be to

consider a multivariate temporal Hawkes process, where each component rep-

resents a homogeneous region, and the different regional processes can interact385

with each other.

5.1. Computation of the real-time reproduction number R(t)

From our model, it is possible to compute in a native way the average number

of infections caused by an individual who gets infected at time t, i.e., the real-

time reproduction number R(t). To compute R(t), we condition on the duration

x of the incubation time, on the duration y of the disease time, on the duration

z of the residual time, and on the class assigned to the node getting infected at

time t (note that they are all independent of each other):

R(t) =

∫
x

∫
y

∫
z

(
λlow

∫ x

0

µ(t+τ)u(t, τ) dτ+paλlow

∫ x+w+y+z

x

µ(t+τ)u(t, τ) dτ+

(ps + ph)λhigh

∫ x+w

x

µ(t+ τ)u(t, τ) dτ + phλhigh

∫ x+w+y

x+w

µ(t+ τ)u(t, τ) dτ+

phλlow

∫ x+w+y+z

x+w+y

µ(t+ τ)u(t, τ) dτ

)
dFE(z) dFD(y) dFI(x) (18)
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where

u(t, τ) = e−
∫ t+τ
t

ρ(s) ds

is the probability that a node which gets infected at time t is still undetected

at time t+ τ .

6. Model fitting for the first wave of COVID-19 in Italy390

We fit the model to real data related to the spread of COVID-19 in Italy,

publicly available on GitHub [29]. Italy was the country where the epidemics

first spread outside of China into Europe, causing about 34600 deaths at the

end of June 2020 during the first wave.

Our main goal was to match the evolution of the number of detected cases,395

represented in the model by individuals in class q. The actual count is provided

by the Italian government on a daily basis since February 24th 2020. We take

this date as our reference day zero. However, it is largely believed that the

epidemics started well before the end of February. Indeed, it became soon clear

that detected cases were just the top of a much bigger iceberg, as the prevalence400

of asymptomatic infection was initially largely unknown, which significantly

complicated the first modeling efforts to forecast the epidemic evolution. During

June-July 2020, a blood-test campaign (aimed at detecting IgG antibodies)

was conducted on a representative population of 64660 people to understand

the actual diffusion of the first wave of COVID-19 in Italy [30]. As a main405

result, it has been estimated that 1 482 000 people have been infected. This

figure provides a fundamental hint to properly fit our model, and indeed while

exploring the parameter space we decided to impose that the total number of

predicted cases at the end of June (day 120) is roughly 1 500 000.

For the durations I,w,D,E of the different stages of an infection, we have410

tried to follow estimates in the medical literature. In particular, the duration of

the incubation period is believed to range between 2 and 12 days, with a sort of

bell shape around about 5 days [31, 32, 33], which we have approximated, for

simplicity, by a (asymmetric) triangular distribution with support [2, 12] and
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mean 6. Moreover, we have fixed the duration of the pre-symptomatic phase415

to 2 days. For the duration of the disease period we have taken a uniform

distribution on [2, 12], while the residual time is modeled by an exponential

distribution with mean 10 days [34].

The other virus-related parameters have been set as reported in the third

column of Table 1. Note that, since we further apply the external modulating420

function µ(t), we could arbitrarily normalize to 1 the value of λhigh, while we

set λlow = 0.05.

For what concerns environment-related parameters (see Table 2), a first

problem was to choose a proper initial day −∆t (recall that day zero is the

first day of the trace) at which to start the process with I0 initially infected425

individuals. While different pairs (∆t, I0) are essentially equivalent, we decided

not to start the process with too few cases and too much in advance with respect

to day 0, to limit the variance of a single simulation run. We ended up setting

∆t = 20, while I0 = 370 was selected as explained later.

ρ(t)

Ta 0 Tb

µ

µb

a

−∆Τ
t

(t)µ

Figure 5: Chosen profiles and parameters of functions µ(t) and ρ(t) for the first wave of

COVID-19 in Italy.

Mobility restrictions in Italy were progressively enforced by national laws430

starting a few days before day 0, first limited to red zones in Lombardy, and

soon extended to the entire country through a series of increasingly restrictive

regulations, introduced over the next 30 days. Instead of trying the capture the
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step-wise nature of such restrictions, we assume µ(t) to take the simpler profile

depicted in Figure 5, i.e., a high initial value µa before time Ta, a low final435

value µb after time Tb, and a linear segment connecting point (Ta, µa) to point

(Tb, µb). We decided to set Ta = −3 and Tb = 30 to reflect the time window in

which mobility restriction were introduced.

In Fig. 5 we also show our choice for the profile of detection rate ρ(t), i.e., a

linear increase starting from day 0, with coefficient α, ρ(t) = max{0, αt}. This440

profile is justified by the fact that the first wave caught Italy totally unprepared

(ρ = 0 before day zero), while massive swabs were only gradually deployed over

time after day zero.

The critical parameters I0, µa, µb, α were fitted by a minimum mean square

error (MMSE) estimation technique based on the curve of detected cases in the445

time window [0 − 120] days, after all other parameters were manually selected

as detailed above.
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Figure 6: Evolution of the number of detected cases according to model and real data. Cu-

mulative number (left y axes) and its daily variation (right y axes).

Fig. 6 shows the final outcome of our fitting, comparing the evolution of

the number of detected cases according to model and real data. We show both
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number (left y axes) and its daily variation (right y axes).

the cumulative number (left y axes) and its daily increment (right y axes).450

Analytical predictions for the mean trajectory of detected cases were obtained

by averaging 100 simulation runs. The shaded region around analytical curves

(barely visible) shows 95%-level confidence intervals computed for each of the

120 days.

We emphasize that a similar good match could be possibly obtained by other455

sets of parameters. Our purpose here was not to compute the best possible fit

in the entire parameter space (which would be nearly impossible), but to show

that the model is rich enough to capture the behavior observed on the real trace

after a reasonable choice of most of its parameters, driven by their physical

meaning.460

Fig. 7 shows instead the evolution of the real number of cases (both the

cumulative number and its daily variation) according to the model only, in the

absence of data. Note however that we have constrained ourselves to obtain a

total number of about 1 500 000 cases on day 120, as suggested by the serological

test [30].465
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Interestingly, by looking at the values of µa and µb computed by our MMSE,

it appears that the national lockdown was able to reduce the spreading ability

of the virus within the Italian population by a factor of about 12 (from 3.71 to

0.31). We will see later on in Fig. 12 that our fitting of µ(t) for the first wave

is consistent with mobility trends estimated from the usage of the Apple maps470

application [28].
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based on the trace of detected case, according to the Wallinga-Teunis method (with 95%

confidence interval denoted as shared region).

In Fig. 8 we show the real-time reproduction number computed by (18). We

also applied the classic method of Wallinga-Teunis [35], implemented as in the

R0 package [36], to estimate R(t) from the trace of detected cases. To apply

their method, we used a generation time obtained from a Gamma distribution475

with mean 6.6 (shape 1.87, scale 0.28), which has been proposed for the first

wave of COVID-19 in Italy [37]. Interestingly, though both estimates of R(t)

exhibit qualitatively the same behavior, the model-based value of R(t), which

considers also undetected cases, tends to be smaller.
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6.1. What-if scenarios480

Having fitted the model to the available trace, we proceed to exploit the

model to examine interesting what-if scenarios. First, we investigate what would

have happened (according to the fitted model) if lockdown restrictions were

shifted in time by an amount of days δ. This means that we keep all parame-

ters the same, except that we translate horizontally in time the profile of µ(t)485

depicted in Fig. 5. In Figure 9 we show the total number of cases that would

have occurred for values of δ ∈ {−7,−3, 0, 3, 7}.
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Figure 9: What-if scenario: total number of cases if restrictions were shifted in time by δ days.

We observe that a shift of just 3 days corresponds to a factor of roughly 2

in the number of cases. This translates, dramatically, into an equivalent impact

on the number of deaths, if we assume that the mortality rate would have490

stayed the same5 (i.e., 34600/1500000 ∼ 2.3%). In other words, a postponement

(anticipation) of lockdown restrictions by just 3 days would have caused twice

5This is somehow optimistic, since mortality also depends on the saturation level of inten-

sive therapy facilities.
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(half) the number of deaths, which is a rather impressive result.
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number of cases, varying α.

In Figure 10 we investigate instead the impact of detection rate ρ(t), by

changing its slope α (recall Fig. 5). We report both the number of real cases495

and the number of detected cases predicted by the model, when all other fitted

parameters are kept the same. We consider what would have occurred with

α = 0 (which means that infectious people are never tested), and by doubling

the intensity of the detection rate (a tracking system twice more efficient). As

expected, with α = 0 only symptomatic cases (ps = 6%) are eventually detected.500

This time the effect on the final number of cases (or deaths) is not as dramatic as

in the previous what-if scenario. This suggests that the impact of mass testing

in Italy during the first wave was marginal, and doubling the efforts would not

have produced significant changes in the final outcome.
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7. Model fitting for the second wave of COVID-19 in Italy505

The second wave of COVID-19 hit Italy in late summer 2020, as in many

other European countries, mainly as en effect of relaxed mobility in July/August

and possibly other seasonal effects. It is interesting to compare the second wave

with the first wave, by looking at the daily increments of detected cases and

deaths, see Fig. 11.510
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Figure 11: Daily increment of the number of deaths (black curve, right y-axes), daily increment

of the number of detected (red curve, left y axes), and estimated daily increment of real cases

projected back from the curve of deaths (green curve, left y-axes).

We observe that the number of daily deaths is similar between the two waves.

The daily increment of detected cases, instead, is very different (around 5000

at the peak of the first wave, around 35000 at the peak of the second wave, a

7-fold increase). This can be explained by the much larger capacity of the health

service to perform swabs and track down the infected, built on the experience515

gained from the first wave. It also suggests that, differently from the first wave,

the impact of ρ(t) (the individual rate at which an infectious is detected) is

expected to be much more important during the second wave than in the first

wave, requiring a careful treatment of it in the model.

We have indeed tried to fit our model to the second wave in Italy, keeping all520

parameters related to the virus (previously fitted for the first wave) unchanged

(Table 1), and adapting only environment-specific parameters (Table 2). A

major difficulty that we had to face was the unknown (at the time of writing)
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actual diffusion of the virus in the population during the second wave. Recall

that, for the first wave, we exploited a blood-test campaign to get a reference525

for the total number of real cases at the end of the first wave. For the second

wave we employed instead a different approach based on a projection back in

the past of the increment of deaths. A similar idea has been adopted in [38] to

estimate the time-varying reproduction number in different European country

at the onset of the first wave.530

Specifically, we got from [39] the indication of the median (11 days) and IQR

(6-18 days) of the amount of time from symptoms onset to death during Oct-

Dec 2020, that we fitted by a Gamma distribution (shape 1.65, scale 8.45). By

convolving such Gamma distribution with the distribution of incubation time,

and the pre-symptoms period, we obtained a distribution of the total time from535

infection to death, that we used to estimate the time in the past at which

each dead person was initially infected. By amplifying the number of infections

leading to death by the inverse of the mortality rate we eventually obtained an

estimate of the daily increment of real cases, as reported in Fig. 11 (green curve,

left y-axes).540

We chose August 1st (day 160 on Fig. 11) as starting date of the new

infection process producing the second wave in Italy. This time, instead of

manually searching for suitable profiles of µ(t) and ρ(t) generating the expected

curves of real and detected cases, we adopted a novel “reverse-engineering”

approach: we took the daily increments of real and detected cases as input to545

the model, and computed the functions µ(t) and ρ(t) that would exactly produce

in the model the given numbers of real and detected cases, on each day6.

In Fig. 12 we show the obtained ‘reversed’ µ(t) (blue curve), starting from

day 0 (August 1st) of the time reference adopted for the second wave. We also

report the average mobility measured in Italy by the Apple maps application550

6Discretized values of functions µ(t) and ρ(t) are uniquely determined in the model, once

we constrain ourselves to produce a given number of real and detected cases at each time

instant.
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Figure 12: Modulating functions µ(t) for the first wave (black, fitted) and second wave (blue,

reversed), and average mobility according to Apple maps application.

[28], where we have given equal weight (1/3) to driving, transit and walking

mobility. We observe that the ‘reversed’ µ(t) qualitatively follows the same

behavior of mobility measured on the maps application, with a gradual increase

during the month of August followed by a gradual decrease as people (and the

government) started to react to the incipient second wave.555

For completeness, we have also reported on Fig. 12 the fitted µ(t) for the

first wave (black curve). We observe that, during the first wave, the quick in-

troduction of hard lockdown caused an abrupt decay of both measured mobility

and fitted µ(t), characterized by a bigger reduction in a shorter time. The

second wave, instead, was characterized by a smoother transition, due to the560

different choice of applying just partial lockdowns and progressive restrictions

more diluted over time7.

7The fact that, during the second wave, mobility values similar to those of the first wave
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In Fig. 13 we show instead the ‘reversed’ function ρ(t), focusing on the

second wave. We also report on the same plot the daily increments of real

and detected cases, which allow us to better understand the obtained profile of565

ρ(t), highlighting an interesting phenomenon occurred around day 30. Indeed,

we observe that, during the first month, the epidemic was closely tracked by

the national health system, but at some point, around day 30, the curve of

detected cases stops increasing, and stays roughly constant during the entire

second month, lagging more and more behind the otherwise exploding curve of570

real cases (time window 30-60). As consequence, function ρ(t), which describes

the effectiveness of individual tracking, falls down to a minimum reached at

around day 60. This behavior can be interpreted as an effect of the saturation of

the capacity to perform swabs, resulting in a progressive collapse of the tracking

system, as actually experienced by many people during those days.575

Our analysis shows that, in contrast to what might be believed by just

looking at the curve of detected cases, September (days 30-60) was, perhaps, the

most critical period for the outbreak of the second wave of COVID-19 in Italy.

During this period, the detection capacity of the national health system was

saturated, and could not keep the pace with the rapid growth of real cases, giving580

instead the illusion of maintaining the epidemic under control. Our reverse-

engineering approach can thus shed some light on what actually happened at the

onset of the second wave, and quantitatively assess the collapse of the tracking

system.

8. Conclusions585

We have proposed a time-modulated version of the Hawkes process to de-

scribe the temporal evolution of an epidemic within an infinite population of

susceptible individuals. Our approach allows us to take into account precise

distributions for the time spent in different stages of the infection, which is

do not translate into equally similar values of µ(t) can be attributed to increased awareness

of people during the second wave.
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Figure 13: Reverse detection rate ρ(t) for the second wave (left y-axes), and daily increase of

real and detected cases (right y-axes).

of paramount importance when the intensity of countermeasures (mobility re-590

strictions, testing and tracing) varies significantly on time-scales comparable to

that of an individual infection. We have applied the model to the spread of

COVID-19 in Italy, either by a direct fit of its parameter (first wave), or by

a novel reverse fit (second wave) which allows us, in retrospect, to understand

from data the time-varying effectiveness of applied countermeasures. Future595

work will extend the model to overcome some of its current limitations, like the

impact of spatial effects and other sources of heterogeneity in the population,

such as age groups. We think the proposed approach is promising and could be

usefully applied to explain the epidemic progress and forecast/assess the impact

of control/mitigation measures.600
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Appendix A. Explicit solution of λ(t) for constant µ(t) = µ

When µ(·) ≡ µ is constant, denoting with ∗ the convolution product, we can

rewrite equation (4) as

λ(t) = σ(t) + µ · (ν ∗ λ)(t), t > 0,

which can be easily solved in the transformed domain. For a non-negative

function f : R+ → R+, we denote by

f̂(s) :=

∫
R+

e−stf(t) dt, s ∈ C

the Laplace transform of f . Then we have:

λ̂(s) =
σ̂(s)

1− µν̂(s)
for Re(s) > Re(zmax),

with zmax equal to the zero of 1− µν̂(s) with largest real part.

In addition, formally, as long as µ < 1 and σ is bounded, we can write

λ(t) = σ(t) + σ(t) ∗
∞∑
i=1

µiν∗i(t)

where ν∗i(t) is the i-th fold convolution of v(t).

An analytical expression of λ(t) can be obtained when σ(s) and ν(s) are both

rational. Table A.3 reports the dominant8 term of λ(t) (and also of N(t)) for

the case in which σ(t) = β exp(−βt), and ν(t) takes different shapes satisfying:∫ ∞
0

ν(t) dt = 1 ;

∫ ∞
0

t ν(t) dt =
1

α

Besides the simple deterministic (delta) and exponential (exp) shapes, we

consider the Erlang-2 (erl-2) and two variants of hyper-exponential, whose gen-605

eral form is ν(t) = p1α1e
−α1t + p2α2e

−α2t. To reduce the degrees of freedom

of the general hyper-exponential, we have assumed a particular relationship

between p1/p2 and α1/α2, which allows us to introduce a single parameter z.

8We recall that a non negative function f(t) is said to be Θ(1), iff there exist two constants

0 < c ≤ C <∞ such that c ≤ f(t) ≤ C, for sufficiently large t.
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shape ν(t) λ(t)

delta δ(t− 1
α ) Θ(1) eα log(µ)t

erl-2 (2α)2te−2αt Θ(1) e2α(
√
µ−1)t

exp αe−αt Θ(1) eα(µ−1)t

hyper1
2z2e

− 2z
z+1

αt
+2e

− 2
z+1

αt

(z+1)2 Θ(1) e
αt

[
(µ−1)(1+z2)−2z+

√
(µ2(1+z2)2+(z2−1)2(1−2µ)

(1+z)2

]

hyper2
z3αe−zαt+αe−

α
z
t

z(z+1) Θ(1) eαt
(µ−1)(1+z2)−µz+

√
µ2z2+(z−1)2[µ2(z2+1)−2µ(z2+z+1)+(z+1)2]

2z

Table A.3: Dominant term of λ(t) for different kernel shapes having the same average gener-

ation time g = 1/α.

Specifically, we have set either p1/p2 = α1/α2 = z (denoted by hyper1) or

p1/p2 =
√
α1/α2 = z (denoted by hyper2). Note that in both cases the vari-610

ance of the corresponding hyper-exponential distribution increases with z ≥ 1,

becoming arbitrarily large as z →∞.

For all kernel shapes, and µ > 1, the growth rate of λ(t) is exponential, i.e.,

λ(t) = Θ(eηt), and the same holds for N(t) =
∫ t

0
λ(τ) dτ . The rate η of the

exponential growth, however, depends on the specific shape.615

In particular, for the two considered cases of hyper-exponential shape, η is

an increasing function of z: while in the hyper1 case η saturates to 2(µ − 1)α,

as z →∞, in the hyper2 case η is even unbounded, as z →∞.

We also notice that the rate of the exponential kernel is larger than the rate

of the Erlang-2 kernel, which is in turn larger than the rate of the deterministic620

kernel.

These results confirm that, even under a constant modulating function µ(t),

the epidemic growth rate depends on the specific shape of the kernel function

ν(t).

Appendix B. Comparison with SEIR model625

Consider a virtual disease with the following characteristics: first there is an

incubation period with constant duration of 5 days, during which an exposed in-

dividual is not infectious. Then there is a disease period with constant duration
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of 10 days, during which the infected exerts a constant infection rate.

An Hawkes process can describe exactly the considered disease using the630

kernel ν(t) = 1
10 , t ∈ (5, 15). Note that, similarly to what we did in Sec. 3, we

normalize the kernel in such a way that
∫∞

0
ν(t) dt = 1, since we can can use

µ(t) to obtain a desired reproduction number R(t). Moreover, note that here

the average generation time g =
∫∞

0
t ν(t) dt is equal to 10 days.

If we use a SIR model, the only possibility to match the given generation635

time is to consider an Infectious compartment with exponential sojourn time of

mean 10 days.

Within the family of compartmental models, a natural candidate to obtain

a better description of the considered disease is the SEIR model, where the

Exposed stage would take into account the initial (not infectious) incubation640

period of 5 days. Therefore, let’s consider a SEIR model with an Exposed stage

of mean duration 5 days, followed by an Infectious stage of mean duration 5

days, in order to match the target mean generation time. Another possible

natural choice would be to take an Infectious stage of mean duration 10 days,

matching the duration of the actual disease period, but notice that this would645

not produce the desired mean generation time.

Similarly to what we did in Sec. 3, we compare all models above in a

scenario with I0 = 1000 initial infections on day zero. Figure B.14 reports the

mean number of people who get infected, according to SIR, Hawkes, and the two

variants of SEIR, in the case of constant µ = 2. The log y axes suggests that the650

parameter of the exponential growth differs significantly among the considered

models. The SEIR models, indeed, perform better than SIR, though the one

matching the correct mean generation time still overestimates the number of

infected. Note that the Hawkes process does not produce any new infection

during the first 5 days, as expected. The fact that the SEIR model in which655

the Infectious stage is exponential with mean 10 underestimates the number of

infected suggests that, by a careful tuning of the sojourn time in the Infectious

stage, a SEIR model could obtain the exact exponential growth rate predicted

by Hawkes, though by so doing we would no longer reflect native properties of
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the disease.660

Figure B.15 shows what happens under the time-varying µ(t) already con-

sidered in Sec. 3, where the reproduction number decreases from 3 to 0.3 during

the first 30 days (black curve). Again, we observe huge discrepancies among the

different models, repeating the trends observed in Fig. B.14 under constant

µ. Note that a SEIR model could perfectly match the actual curve predicted665

by the Hawkes process, since this time we could also play on the modulating

function µ(t) to reproduce the behavior observed during the first days of the

epidemic. However, such tuning of the SEIR model and/or of µ(t), although

it would perfectly match the epidemic curve, would fail to represent true char-

acteristics of the disease and the actual intensity of applied countermeasures,670

possibly producing misleading indications.
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