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a b s t r a c t 

We present a shape processing framework for visual exploration of cellular nuclear envelopes extracted 

from microscopic images arising in histology and neuroscience. The framework is based on a novel shape 

descriptor of closed contours in 2D and 3D. In 2D, it relies on a geodesically uniform resampling of dis- 

crete curves to compute unsigned curvatures at vertices and edges based on discrete differential geome- 

try. Our descriptor is, by design, invariant under translation, rotation, and parameterization. We achieve 

the latter invariance under parameterization shifts by using elliptic Fourier analysis on the resulting cur- 

vature vectors. Uniform scale-invariance is optional and is a result of scaling curvature features to z- 

scores. We further augment the proposed descriptor with feature coefficients obtained through sparse 

coding of the extracted cellular structures using K-sparse autoencoders. For the analysis of 3D shapes, 

we compute mean curvatures based on the Laplace-Beltrami operator on triangular meshes, followed by 

computing a spherical parameterization through mean curvature flow. Finally, we compute the Spheri- 

cal Harmonics decomposition to obtain invariant energy coefficients. Our invariant descriptors provide an 

embedding into a fixed-dimensional feature space that can be used for various applications, e.g., as input 

features for deep and shallow learning techniques or as input for dimension reduction schemes to pro- 

vide a visual reference for clustering shape collections. We demonstrate the capabilities of our framework 

in the context of visual analysis and unsupervised classification of 2D histology images and 3D nuclear 

envelopes extracted from serial section electron microscopy stacks. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The last decades have witnessed the rapid improvement and 

roliferation of high-throughput digital acquisition technology. As a 

esult, high-quality digital representations of real-world scenes and 

bjects have become commonplace in many application domains. 

n biology and medicine in particular, the rise of whole-slide scan- 

ers and the digitization of traditional, confocal, and electron mi- 

roscopy has led to both fully digital analysis and the creation of 

arge image databases [1] . Early uses of this technology mostly 

ncluded tele-pathology, solicitation of second opinions, and ed- 
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cation in research and clinical practice, as well as visual ultra- 

tructural analysis in neuroscience. In most cases, digital workflows 

ere designed to closely mimic the traditional investigation pro- 

ess. Only recent years saw a shift towards exploiting the large 

mount of information in the acquired images and collections by 

eans of novel data-driven analysis methods [2] . In this context, a 

ide array of basic tools are employed, ranging from handcrafted 

eature descriptors over fully data-driven approaches to combina- 

ions of matching of various approaches [3] . Machine learning, and, 

specially, deep learning approaches have become popular in the 

ontext of digital pathology and biology. Their significant success 

tems from their ability to provide automatic tools for tasks such 

s segmentation and labeling of cellular entities from large indi- 

idual microscope images [4,5] or for supporting connectomics in- 

estigations by reconstructing the neural connections in large por- 

ions of brain tissue samples [6,7] . One drawback of the current 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. InShaDe pipeline: from cell contours extracted from digital histology images (on top) or 3D shapes reconstructed from Serial Section Electron Microscopy stacks 

(on bottom), our pipeline computes invariant energy-based Fourier descriptors on top of discrete curvature embeddings. These synthetic descriptors can be used for visual 

analysis, proof-reading segmentation results, domain-specific clustering and classification according to specific taxonomies. 
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urely data-driven frameworks, however, is that they often disre- 

ard specific domain knowledge and taxonomies [8] . As a result, 

ools for domain-specific proofreading of segmented images, clas- 

ification according to taxonomies, filtering, visual exploration, and 

ubsequent computation are still lacking. For this reason, many ap- 

lications require the use of descriptors that, by design, preserve 

ome domain-specific characteristics. To better exploit the capabil- 

ties of novel learning frameworks we thus advocate not to dismiss 

esigning features a priori. Instead, we believe that it is necessary 

o research the development of methods integrating such designed 

eatures into powerful descriptive models. One benefit of taking 

 hybrid design+data-driven approach is that domain knowledge 

an be integrated into the design process. This potentially leads to 

odels that are easier to explain, and, thus, result in increased dis- 

rimination performance for human analysis. In addition, since fea- 

ures are designed, the training effort s in terms of the amount of 

ata and computational power required can be eased. 

Inspired by these considerations, we propose a novel visual 

nalysis pipeline based on discrete differential geometry concepts, 

hose recent findings provide very powerful theoretical formula- 

ions for describing 2D and 3D shapes [9,10] . The framework is 

ased on a 2D/3D shape descriptor that can be used in various ap- 

lication domains to complement or enhance generic deep learn- 

ng networks, such as U-Net [11] . The descriptor, dubbed InShaDe , 

s based on the concept of discrete curvature along closed, resam- 

led contours (see Fig. 1 for an overview of the proposed pipeline). 

n 2D, discrete curvature is computed using vertex and edge os- 

ulating circles. Interleaving the resulting edge and vertex curva- 

ures produces a high-resolution curvature vector. These curvature 

ectors are naturally invariant under rigid body transformations 

translations and rotations). Invariance under parametric shifts is 

nsured by using energy-based elliptic Fourier descriptors. Cellular 

hapes in 2D tissue samples are sliced, implying that their appar- 

nt size may be smaller than the real radius [12] . We therefore 

lso propose to achieve optional invariance under uniform scaling 

y replacing components in the curvature vectors by standard (z- 

scores. This manuscript is an extended version of the conference 

ontribution [13] recently presented at the Eurographics Workshop 

n Visual Computing for Biology and Medicine (EG VCBM 2020) 

eld in Tübingen. The conference paper presented: 

(i) a robust geometry processing pipeline for computing 2D in- 

variant shape descriptors exploiting shifted linear interpola- 

tion and discrete differential geometry schemes, and 

(ii) visual mapping schemes from 2D cellular contours to shape 

descriptor embeddings based on modern dimension reduc- 
tion schemes such as UMAP [14] . d

106 
This manuscript extends the original pipeline by: 

ii) extending the shape descriptors to 3D shapes represented by 

triangle meshes, and 

v) augmenting the shape descriptors by additional features based 

on sparse coding to improve analysis and classification perfor- 

mance. 

In addition, we study the use of the proposed pipeline for 

roofreading and visual, unsupervised classification of various his- 

ology images. We also present results for various 2D and 3D data 

ets stemming from histology and neuroscience. 

. Related work 

Our work is concerned with shape feature extraction from 

losed contours and surfaces and with the analysis of histopathol- 

gy images and electron microscopy stacks. These are very broad 

opics and a full coverage of the state-of-the-art is beyond the 

cope of this paper. For a comprehensive overview of all related 

elds, we refer the reader to various surveys on 2D shape analy- 

is [3,15] , digital histopathology analysis [16–18] , and recent deep 

earning methods for cellular analysis [19] . 

In the following, we discuss the methods that are most closely 

elated to our approach. 

.1. Shape feature descriptors 

During the last two decades, significant research efforts have 

een carried out on both the theoretical and the practical aspects 

f the shape-based image retrieval problem [3] . For an overview of 

he seminal methods for shape-based invariant feature extraction 

or object recognition, we refer also to Yang et al. [20] . 

In general, there are two main modeling strategies for repre- 

enting shapes: region-based methods and boundary-based ones. 

egion-based techniques use moment descriptors to describe 

hapes, like geometrical moments [21] , Zernike moments [22,23] , 

egendre moments [24] , and Tchebichef moments [25] . Although 

egion-based approaches are global in nature and can be applied 

o generic shapes, boundary-based techniques appear to be more 

fficient for handling objects that can be described by their object 

ontours. In this latter category, a number of boundary-based tech- 

iques have been proposed, including Fourier descriptors [26] , cur- 

ature scale space [27] , and wavelet descriptors [28] . Our descrip- 

or combines the features of curvature analysis and Fourier analy- 

is, similarly to the technique proposed by El Ghazal et al. [29,30] . 

ifferently from them, our method is based on recent findings in 

iscrete differential geometry [31] , thus resulting in a more robust 
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according to the harmonic frequencies [63] . 
ormulation with respect to the sampling strategy and better clas- 

ification results. Moreover, Osjanikov et al. applied the concepts 

f invariant features in the 3D world to the problem of non-rigid 

hape search and retrieval in large databases [32] . 

Complementing advances for the general classification prob- 

em, machine learning strategies exploiting the existence of large 

mounts of data have led to significant advances [33,34] . Many cur- 

ent efforts attempt to work directly on raw data images [35,36] , 

y designing deep neural networks in which the modeling is hid- 

en in the network design and training strategy and the fea- 

ure computation and filtering of information is automatically per- 

ormed by the network. At the same time and in an attempt to 

implify classification and automatic shape generation, techniques 

o reduce the depth of networks by introducing meaningful pa- 

ameterizations or embeddings of input shapes are gaining inter- 

st, since such parameterizations can simplify the automatic clas- 

ification or shape generation (model-based or “shallow” learning) 

nd reduce the number of training examples [37] . Our work goes 

owards that direction, since we propose a simplified contour de- 

cription that can be used either for supporting machine learning 

rameworks or for supervised visual analysis. In this work, we fo- 

us on the latter aspect. 

.2. Histology analysis 

Digital pathology and microscopy-image analysis is widely used 

n the biomedical domain for comprehensive studies of cell mor- 

hology or tissue structure. In most cases, analysis is carried out 

hrough manual assessment, which is labor-intensive and prone 

o inter-observer variations. Computer-aided systems have recently 

ttracted significant interest since they can dramatically reduce the 

anual effort s and increase reproducibility [17,38,39] . 

Among the various parts composing a computer-aided diagnos- 

ic system, nucleus or cell detection and segmentation play a key 

ole to describe the molecular and morphological information un- 

erlying the investigated samples [17,40] . In the past few decades, 

any effort s have been devoted to automated nucleus/cell detec- 

ion and segmentation, and an independent field named compu- 

ational pathology emerged simultaneously to the rapid prolifer- 

tion of deep learning (DL) models for quantitative analysis of 

patial patterns in digitized whole-slide images (WSIs) of cancer- 

us tissue [41] . To this end, various techniques for the detection, 

xtraction, recognition of pathological patterns at various scales 

ave been recently established [42–44] . Various medical studies 

ave since demonstrated the potential of DL models in detect- 

ng neoplastic tissue and recognizing diagnostically relevant struc- 

ures [44,45] . 

One of the most successful and widely used architecture is U- 

et, introduced in 2015 by Ronneberger et al. [11] . U-Nets operate 

n the entire image and jointly segment and provide per-pixel la- 

els, leading to an improvement in spatial segment and label co- 

erence. The same authors also demonstrate that U-Nets improve 

ccuracy on several bio-image segmentation tasks, even when the 

ata set is relatively small [11] . In the context of nuclear segmen- 

ation of histopathology images, Chidester et al. [4] enhance U- 

ets by enforcing rotation-equivariance to groups, similar in style 

o group-equivariant CNNs (GCNNs) [46] . 

Moreover, in order to attract efforts to particular tasks in med- 

cal imaging, various challenge contests and public data sets have 

een published [41,47] . However, as of this writing, such methods 

re still far from being accepted in fully automated clinical work- 

ows [48] . Proofreading efforts from domain scientists are, thus, 

till required to double-check labeling consistency and segmenta- 

ion accuracy [8] . 

Consequently, the work presented herein provides a visual anal- 

sis framework that supports digital histologists to efficiently carry 
107 
ut investigations on labeling and segmentation quality. Our input 

ata is the automatic segmentation obtained from networks of the 

-Net family [4] . The proposed framework then allows for visual 

nalysis in a reduced parameter space obtained by performing di- 

ension reduction on our Fourier-based contour shape descriptor. 

To properly capture the visual variance of nuclear shapes under 

imension reduction, autoencoders [49] provide a convenient way 

o effectively uncover latent feature spaces. It is thus no surprise 

hat their use is increasing in popularity [50,51] . For instance, Xu 

t al. propose Stacked Sparse Autoencoders [50] to learn high-level 

eatures from pixel intensities. They are then applied to high res- 

lution breast cancer histopathology images. Hou et al. [51] mod- 

fy the general autoencoder scheme by applying adaptive convolu- 

ional filters to match the size of the nuclei to be represented. In 

his work, we use k-sparse autoencoders [52] to produce feature 

ectors that describe the inner visual features of nuclei. We then 

se these feature vectors to augment our proposed shape descrip- 

or, resulting in a description of the exterior (shape descriptor) and 

nterior (auto-encoder) of each nucleus. 

.3. Shape analysis in neuroscience 

Recent advances in imaging technology have led to the avail- 

bility of 3D sparse and dense reconstructions of brain cells at 

igh resolution. This, in turn, has fueled the development of var- 

ous methods for shape analysis in the context of automatic clas- 

ification to aid studying the variability associated with different 

tructures and conditions [53,54] . Likewise, the availability of high- 

esolution imaging data has also triggered shape analysis stud- 

es of brain structures at the nanometer scale [54–56] . For in- 

tance, Queisser et al. [57] propose a method to reconstruct the 

D view of cell nuclear envelopes from laser scanning confocal 

icroscopy data. Wittmann et al. [58] later use this method to 

how how synaptic activity induces significant modifications in 

he geometry of the cell nucleus. To study heterogeneities in nu- 

lear shapes obtained through optical projection tomographic mi- 

roscopy, Nandukumar et al. [59] use conformal mapping to extract 

otation-invariant shape descriptors. Finally, Agus et al. [60,61] per- 

orm classification of nuclear brain cells through implicit and ex- 

licit shape representations of cell nuclei obtained from electronic- 

maging data. They demonstrate an improvement in terms of 

lassification accuracy over previous approaches based on simple 

pherical or ellipsoidal fittings. 

In this paper, we improve existing work [61] by introducing fea- 

ure vectors based on the spherical harmonics spectrum of mean 

urvatures. This reduces the amount of data serving as the descrip- 

or from three complex vectors to a single real-valued vector, re- 

ulting in faster implementation and processing times. 

. Methodology overview 

Fig. 1 schematically summarizes the InShaDe framework. As can 

e seen, we use two separate yet similar pipelines for 2D and 

D closed nuclear envelopes that use different microscope imag- 

ng techniques as data source. The two methods have important 

imilarities: 

• they use the curvature signal (planar curvature in the 2D case, 

mean curvature in the 3D case), 
• they involve parametrization (circular parametrization in the 

2D case, and spherical parametrization in the 3D case), 
• they involve Fourier analysis (Elliptic Fourier Analysis in the 2D 

case, and Spherical Harmonics decomposition in the 3D case), 

It is worth noticing that the Spherical Harmonics framework is 

a 3D generalization of the Elliptic Fourier Analysis [62] , 
• they use the same strategy for computing energy descriptors 
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Overview of InShaDe 2D The input to the InShaDe 2D pipeline 

re segmented nuclear envelopes of cells obtained by applying an 

-Net [4] on microscopic histopathology images (see Fig. 1 top). 

e then extract closed contours ( Section 4.1 ) from each segmen- 

ation mask and perform the following processing steps (see also 

ig. 1 , top): 

(1) contour smoothing ( Section 4.2 ), 

(2) geodesically uniform resampling ( Section 4.3 ), 

(3) discrete curvature computation ( Section 4.4 ), 

(4) opt. feature scaling using standard (z-)scores ( Section 4.5 ), 

(5) embedding to constant dimensions ( Section 4.6 ), 

(6) elliptic Fourier analysis (“EFA”, Section 4.7 ). 

Contour smoothing serves to reduce pixelation noise, whereas 

eodesically uniform resampling removes sampling biases and is a 

re-requisite to computing discrete curvatures using discrete dif- 

erential geometry formulations using osculating circles. Embed- 

ing the resulting descriptors in constant dimensions helps in re- 

oving noise and spurious frequencies during the EFA stage, but 

s also necessary to allow for easy comparison between shapes us- 

ng, e.g., cosine or Euclidean metrics. The Fourier analysis is used 

o remove shift (i.e., choice of origin) from the parameterization 

f the closed curve. So far the resulting descriptor is invariant un- 

er translation and rotation (3) and invariant under parameteri- 

ation shift (6). In addition, the optional feature scaling step (4) 

nsures invariance under uniform scaling. In the result section, we 

urthermore show how the final descriptor can be used in combi- 

ation with dimension reduction schemes for visualizing clusters 

f nuclear shapes with similar geometric characteristics. Overview 

f InShaDe 3D The input of the InShaDe 3D pipeline are closed 

riangular meshes extracted from image stacks obtained through 

erial Section Electron Microscopy acquisition of samples from ro- 

ent brains [54] . These shapes represent the envelopes of brain cell 

uclei and are obtained from images through a processing pipeline 

nvolving automatic segmentation tools as well as manual proof- 

eading tools [64] . We then process the 3D meshes by performing 

he following operations (also see Fig. 1 , bottom): 

(1) discrete mean curvature computation ( Section 5.1 ), 

(2) spherical parameterization using Willmore flow 

( Section 5.2 ), 

(3) spherical harmonics decomposition ( Section 5.3 ), 

(4) computation of invariant energy coefficients ( Section 5.4 ). 

We use discrete mean curvature (1) as the basis of our embed- 

ing and to represent the features of 3D shapes. In contrast to pre- 

ious formulations of shape decomposition [60,61] , the proposed 

mbedding is based on a single scalar- and real-valued function on 

he spherical domain. The result is a simpler numerical formula- 

ion involving only the real part of Spherical Harmonics (SPH) as 

ell as a significantly lower number of coefficients. From the co- 

fficients of a truncated SPH decomposition, we then compute in- 

ariant energy coefficients. In the result section ( Section 6.4 ), we 

how how the obtained descriptor can be used for shallow classi- 

cation of nuclei representing brain cells from different layers of 

omatosensory cortex of adult rodents. 

. InShaDe 2D 

In this section, we provide details for the various processing 

teps for computing the descriptor for closed shapes extracted 

rom 2D images. 

.1. Contour extraction & chordal parameterization 

Given a segmentation mask, we extract a closed contour en- 

eloping each nucleus using isocontouring (specifically Marching 
108 
quares, which is a special case of the Marching Cubes algo- 

ithm [65] ). We reject open contours (i.e., the nucleus intersects 

he image boundary) and contours falling into the lowest 5% with 

espect to their number of samples. Let C := { p i } N 1 , a closed curve 

ith N vertices p i . We let �i := p i +1 − p i , the i th edge, consis-

ent with Bobenko [31] , and abbreviate l i := ‖ �i ‖ 2 (edge length). 

e then obtain an initial chordal parameterization t ( C ) with t 1 := 

 ( p 1 ) = 0 and t i +1 := t ( p i +1 ) = ‖ �i ‖ 2 + t i ∀ i > 1 . 

.2. Contour smoothing 

The discrete nature of binary segmentation masks may lead to 

ixelation artifacts in the extracted contour. To prevent the result- 

ng high spikes in curvature, we pre-smooth contours iteratively, 

sing a superscript � (k ) to denote quantities at iteration k . The pro- 

ess is shown in Fig. 2 . Specifically, we replace each vertex with a 

ength-weighted average of the bisector of adjacent edges, 

 

(k +1) 
i 

= 

l (k ) 
i 

(
p 

(k ) 
i +1 

+ p 

(k ) 
i 

)
+ l (k ) 

i −1 

(
p 

(k ) 
i 

+ p 

(k ) 
i −1 

)
2 

(
l (k ) 
i 

+ l (k ) 
i −1 

) . (1) 

As shown by Gottschalk [66] , this sum of length-weighted edge 

isectors computes the barycenter of the points on the piecewise 

inear curve segment p i −1 , p i , p i +1 . Since it is a 2-stage convex

ombination of p i −1 , p i , p i +1 , it is numerically stable and robust. 

imilar to virtually all smoothing operators, this does not yet pre- 

erve area. We therefore compute the area a (0) enclosed by the 

urve prior to smoothing and the area a (k ) after each iteration. We 

hen scale the curve by 

 

(k ) 
i 

← p 

(k ) 
i 

√ 

a (0) 

a (k ) 
. (2) 

.3. Geodesically uniform resampling 

In order to remove sampling bias and to employ discrete dif- 

erential geometry formulations for vertex and edge curvature, we 

erform geodesically uniform resampling. We do so by placing 

quidistant samples ˜ p on the piece-wise linear curve C, thereby 

ielding a new piece-wise linear curve ˜ C that is Arc-length param- 

terized with respect to a unit scale u . Starting at a point p 1 = ̃

 p 1 

nd u = 1 , we intersect the edges of ˜ C with a unit circle around

 1 . This yields between zero and two intersection. If we find two 

ntersections, we select one intersection as ˜ p 2 and keep track of 

he last edge, ˜ �1 = ̃

 p 2 −˜ p 1 . We then continue intersecting linear 

egments with unit spheres, but when deciding on 

˜ p i , we chose 

he intersection that maximizes 
〈˜ �i , 

˜ �i −1 

〉
, with 

˜ �i defined anal- 

gously to ˜ �1 . This enforces progress along the curve and prevents 

umping back and forth on the curve. For our data, we did not en- 

ounter the case of finding less than two circle-curve intersections. 

 total of zero intersections would correspond to extremely small 

ontours that cover less than a few pixels after processing; and we 

emove the bottom 5% shortest curves. One crossing would arise if 

art of the contour degenerates into a double line segment; March- 

ng Squares does not extract such pathological curves. 

Once the best intersection 

˜ p ˜ N “laps” past ˜ p 1 , we use ˜ p ˜ N = ̃

 p 1 

nstead to close the loop. This means that the last edge ˜ �˜ N −1 may 

e shorter than unit length. In order to resolve this issue, we now 

alculate the length L of the curve. Knowing that ‖ ̃  �i ‖ 2 = u for

ll but the last edge, we have L = 

(˜ N − 2 
)
u + ‖ ̃  �˜ N ‖ 2 . To obtain an

 for which u −1 L is approximately integral, we round u −1 L to the

earest integer L ′ and update u ← L ′ −1 
L . 

We then revert to placing samples along the original curve 

with the updated spacing u . We repeat this process until the 

ounding error ρ = | u −1 L − L ′ | (using the old u and the updated

 

′ ) becomes negligibly small. While we do not have a proof of 
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Fig. 2. Contour smoothing: we apply iterative contour smoothing to the closed contours (here, N = 271) extracted from histology images. The higher the number of iteration 

steps, the smoother the contours: in the example, 2, 5,10, 20 steps respectively. 

Fig. 3. Discrete curvatures: following discrete differential geometry [31] we com- 

pute discrete curvatures by considering vertex osculating circles (left), and edge os- 

culating circles (right). 
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onvergence of this heuristic at the time, we note that the rest 

f our method is orthogonal to this Arc-length parameterization. 

his means that, in the future, as more robust methods become 

vailable, this step can be exchanged. In all of our experiments, 

hree to five iterations reduced ρ to less than 10 −4 . Given any 

umber x ∈ R 

+ , rounding to the nearest integer changes x by 0.25 

n average. We therefore expect that | 1 − u | ≈ 0 . 25 L −1 , which we

ee confirmed in our experiments with typical contour lengths 

f more than 100 pixel widths (for reference, L = 100 → | 1 − u | ≈
 . 5 × 10 −3 ). The result of this step is a new piece-wise linear curve˜ 

 that is Arc-length parameterized with respect to a close-to-unit 

cale u . 

.4. Discrete curvatures 

For a discrete Arc-length parameterized curve, there are two 

efinitions of discrete curvature based on osculating circles 

31] (Sec. 2.3 therein). By defining the turning angle at vertex p i 

s 

i ≡ arccos 〈 �i , �i −1 〉 , (3) 

nd by embedding the planar curve in the z = 0 plane (see also 

ig. 3 ), we obtain, assuming for now an Arc-length parameteriza- 

ion with ‖ �i ‖ = 1 for all i , the (unsigned) vertex curvature : 

v = 2 

| sin ϕ i | 
‖ 

p i +1 − p i −1 ‖ 2 

= 2 

‖ 

�i × �i −1 ‖ 2 

‖ 

�i + �i −1 ‖ 2 

. (4) 

or the edge curvature we use the standard equation [31] : 

e = tan 

φi 

2 

+ tan 

φi +1 

2 

. (5) 

he choice to use unsigned vertex curvature was made to be con- 

istent with the unsigned edge curvature. Using such a discrete 

ifferential geometry approach results in much more robust and 

table curvature estimates than by using an intermediate interpo- 

ating spline. 

A reason may be that splines tend to over- and undershoot near 

ertices, and are thus not representative of the curvature in these 

oints. Since one of our goals for the final shape descriptor is op- 

ional scale-invariance, we still have to scale curvatures back from 

ur arbitrary unit length u to u = 1 in case scale-invariance is not 
109 
esired. This is achieved by dividing each κv and κe by u 2 . Fi- 

ally, we interleave vertex and edge curvatures to obtain a high- 

esolution, coherent descriptor. After this step, we also abandon 

he notion of curvature “living” on vertices and edges and tran- 

ition to the notion that the shape descriptor computed so far is a 

ector in a high-dimensional vector space. We also adopt the no- 

ion that this vector represents a 1D periodic signal on a uniform 

rid on the 2D circle. This interpretation is crucially supported by 

he fact that all edges have the same length prior to computing 

urvature. The descriptor computed so far is invariant under trans- 

ation and rotation, but neither parametric shift nor scale. We now 

stablish the optional scale-invariance followed by shift-invariance. 

.5. Feature scaling 

Given a sequence of curvatures, { κi } 2 ̃  N 
i =1 

, we compute standard 

cores (also called z-scores) by mapping 

i ← 

κi − μκ

σκ
, (6) 

here 

κ = 

1 

2 ̃

 N 

2 ̃  N ∑ 

i =1 

κi and σκ = 

1 

2 ̃

 N − 1 

2 ̃  N ∑ 

i =1 

( κi − μκ ) 
2 (7) 

re the empiric mean and variance, respectively. Such a scaling 

s commonly employed in statistics as well as in training convo- 

utional neural networks. However, normally standard scores are 

omputed using global moments derived from the entire data set. 

his, in turn, does not provide full scale-invariance, since vectors 

ith pre-dominantly small components will stay small. In con- 

rast, by computing individual standard scores we enforce the op- 

ional scale-invariance of our descriptor. Assuming that the curva- 

ure components of each vector are normal-distributed results in 

he expectation that all but 0.2% of the data is represented by z- 

cores in the range [ −3 , 3] . 

.6. Constant dimensionality 

Resampling the contour to a constant dimensionality as de- 

icted in Fig. 4 allows us to control the number of elliptic har- 

onics in our Elliptic Fourier Analysis in a way to agree with the 

yquist sampling constraint. It is also a pre-requisite for easy com- 

arison of shape descriptors using, e.g., cosine and Euclidean met- 

ics. 

As an added side-benefit, it also allows us to eliminate remain- 

ng traces of noise on the curve. In this paper, we perform this 

esampling step based on shifted-linear interpolation [67] for the 

ollowing reasons: (i) shifted linear interpolation achieves perfor- 

ances that compare favourably to cubic interpolation at a much 

ower computational cost, (ii) shifted-linear interpolation is still 

onvex, albeit with respect to shifted samples. It is thus free of 

scillations and the amount of foreign frequencies introduced by 

esampling can be computed easily. 
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Fig. 4. Resampling to constant dimension: to reduce noise and spurious frequencies during the Fourier analysis and to enforce constant dimensionality of our descriptor, 

we apply uniform resampling through shifted linear interpolation [67] . In this example, we show resampling with 64, 32 and 16 points respectively. 
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The basic idea of shifted-linear interpolation is to sample the 

riginal signal at positions other than the original underlying sam- 

ling grid, followed by standard linear interpolation. Blu et al. 

rove, somewhat surprisingly, that there is a data-independent and 

hus constant shift τ ≈ 0 . 21 that results in L 2 −optimal reconstruc- 

ion of the unknown original signal given only the known sam- 

les [67] . Samples κ ′ 
i 

at shifted positions t ′ 
i 

are obtained using the 

nfinite impulse response scheme described by Blu et al., 

′ 
i = − τ

1 − τ
κ ′ 

i −1 + 

1 

1 − τ
κi . (8) 

t should be noted, however, that linear interpolation on κ ′ is lit- 

rally shifted “to the right” by τ , meaning that a sample κ ′ (t) cor- 

esponds to κ(t − τ ) . The resulting interpolation thus becomes a 

hifted discrete convolution of the hat kernel 

(t) := 

{
1 − | t| if | t| < 1 

0 otherwise , 
(9) 

ith the shifted discrete signal κ ′ : 

(t) = 

∑ 

i 

κ ′ 
i 
(t − t i − τ ) . (10) 

.7. Elliptic fourier analysis (EFA) 

To achieve shift-invariance (i.e., invariance under choice of para- 

etric origin), we consider the Fourier spectrum of each given 

urve. In particular, we compute elliptic Fourier descriptors [62] , 

imilarly to what was proposed by Khazhdan et al. [63] and what 

as been successfully used in various applications [12,60,61] . 

For a piecewise linear, periodic function κ(t) t ∈ [0 , 2 π ] repre-

enting the curvature of a contour, its Fourier elliptic expansion 

s obtained through linear combination of elliptic harmonics func- 

ions which provide a complete orthonormal basis for the decom- 

osition 

( t ) = a 0 + 

∞ ∑ 

n =1 

(
a n cos 

(
2 πnt 

T 

)
+ b n sin 

(
2 πnt 

T 

))
. (11) 

In order to compute the coefficients for the curvature function 

( t ) representing closed contours, we normalize the parameteri- 

ation t to the interval [0 , 2 π ] . As we are concerned with closed

ontours, the assumption of periodicity, t = 0 ≡ 2 π is naturally 

upported. We then consider the classic method proposed by 

uhl and Giardina [68] for piecewise linear contours. This method 

ssentially equates the discrete time derivative of Eqn. (11) , at 

ocations p i , 

˙ i := 

∂κ

∂t 

∣∣∣∣
t i 

, thus , (12) 

˙ i = 

∞ ∑ 

n =1 

(
−a n 

2 πn 

T 
sin 

(
2 πnt i 

T 

)
+ b n 

2 πn 

T 
cos 

(
2 πnt i 

T 

))
, 
i
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ith a Fourier expansion of the time derivative of the curvature, 

˙ i = 

∞ ∑ 

n =1 

(
αn cos 

(
2 πnt i 

T 

)
+ βn sin 

(
2 πnt i 

T 

))
. (13) 

oting that in Eqn. (13) , the coefficients αn and βn can be 

omputed as 

n = 

2 

T 

N ∑ 

i =1 

˙ κi 

(
sin 

(
2 πnt i 

T 

)
− sin 

(
2 πnt i −1 

T 

))
and 

n = 

2 

T 

N ∑ 

i =1 

˙ κi 

(
cos 

(
2 πnt i 

T 

)
− cos 

(
2 πnt i −1 

T 

))
, (14) 

uhl and Giardina derive the following for the n th harmonic, by 

quating the two different derivative expressions in Eqn. (12) and 

13) : 

 n = − 1 

πn 

N ∑ 

i =1 

˙ κi 

(
cos 

(
2 πnt i 

T 

)
− cos 

(
2 πnt i −1 

T 

))
, 

 n = - 
1 

πn 

N ∑ 

i =1 

˙ κi 

(
sin 

(
2 πnt i 

T 

)
− sin 

(
2 πnt i −1 

T 

))
. (15) 

We would like to remind here that, according to the Nyquist 

heorem, the number N s of contour samples after smoothing and 

esampling limits the number N h of harmonics necessary to re- 

onstruct the contour curvature without adding noise 
(
N h ≤ N s 

2 

)
. 

inally, in order to obtain shift-invariance, we compute harmonic 

nergies through the Euclidean norm of the harmonic coeffi- 

ients [63] , resulting in the following Curvature Fourier Descriptor 

with 

 n = 

√ 

a 2 n + b 2 n , (16) 

hich provides a vector of shape features that can be used for var- 

ous machine learning applications. Like the more commonly em- 

loyed traditional Fourier transform, the elliptic Fourier transform 

esults in a space-agnostic spectrum, thereby making our descrip- 

or invariant under parameter shift (translation of the underlying 

omain). In this paper, we chose the elliptic Fourier transform over 

he traditional Fourier transform since its additional expressiveness 

esulted in better results. Fig. 5 demonstrates both rotation- and 

hift-invariance. 

Sorted curvatures We also consider another, much simpler 

cheme for obtaining shift-invariance, namely, to sort the individ- 

al (unsigned) curvatures from highest to lowest (see also Fig. 6 ). 

he feature vector obtained in this way can be further augmented 

ith energy-based coefficients to obtain a composite feature vec- 

or. We would like to note that, in our experience, sorted descrip- 

ors are outperformed by spectral descriptors if used in stand- 

lone fashion. Sparse-coding based image descriptors 

Finally, we consider a compact descriptor of images represent- 

ng cellular structures obtained through sparse coding. To provide 
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Fig. 5. Invariant descriptor: the discrete curvature formulation of InShaDe descriptor is by design invariant to rotations (middle row), while the derive frequency-based 

energy descriptors are invariant also with respect to shift (bottom row). 
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dditional shape cues for this case, we place the segmented nu- 

lei on a black background, as shown in Fig. 7 , left. Sparse cod-

ng methods are typically composed of two steps. Firstly, an offline 

earning process for finding a dictionary W that sparsely represents 

he image data { I i } N i =0 
, and, secondly, an encoding step that maps a

iven input image I to a compressed feature vector ˆ x using W , nor- 

ally through a pursuit algorithm for minimizing the constrained 

east squares problem 

ˆ 
 = arg min 

x 
‖ 

I − W x ‖ 

2 
2 , s.t. ‖ 

x ‖ 0 < k. (17) 

or obtaining the codebook (see also Fig. 7 , center) and creating 

he approximated sparse representation of nuclei images ( Fig. 7 , 

ight), we use the K-sparse autoencoder proposed by Makhzani 

nd Frey [52] . The technique uses linear activation functions and 

ied weights. In contrast to other autoencoders, only the k largest 

odes are used while the others are set to zero. The resulting code 

-vector gives us additional cues that, albeit not rotation invari- 

nt, can be combined with the InShaDe descriptor (see also Fig. 6 , 

ight). Section 6 evaluates various descriptors obtained by compos- 

ng the three different feature vectors: sorted curvatures, energy 

oefficient and sparse coding weights. 
111 
. InShaDe 3D 

Our 3D pipeline is a natural adaptation of the 2D case. From 

 mathematical perspective, the Laplace-Beltrami operator on ei- 

her 1- or 2-manifold induces a Fourier space. That is, the eigen- 

unctions of the Laplace-Beltrami operator constitute the ”classic”

ourier space in the 2D case and Spherical Harmonics for the 3D 

pherical case. Albeit we use the elliptic Fourier transform for its 

uperior performance in the 2D case [12] , the two pipelines share 

he same mathematical foundations. We then compute discrete dif- 

erential geometric attributes of the manifold and express them 

n this Fourier space. It is imaginable to generalize this even fur- 

her by utilizing manifold harmonics [69] , at the likely expense 

f higher computational complexity. The bottom half of Fig. 1 de- 

icts the pipeline schematically for easy comparison with the 2D 

ipeline ( Fig. 1 , top). The details of the processing steps are pro-

ided in this section. 

.1. Mean curvature 

According to the differential geometry theory of surfaces, for 

very twice-differentiable surface we can find the tangent plane 
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Fig. 6. Synthetic descriptors: In addition to the proposed InShaDe energy-based shape descriptors, we considered other representations based on sorted local curvatures (top 

right) and sparse coding of the foreground segment against a black background (bottom right). 

Fig. 7. Sparse coding: given images of segmented cell nuclei against a black back- 

ground (on the left some examples), we use k-sparse autoencoders to find a dictio- 

nary codebook (center) that can be used for computing a compressed representa- 

tion of the original images (on the right some examples). 
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Fig. 8. InShaDe 3D processing: starting with a triangular mesh of a closed ob- 

ject, we compute mean curvature H, and we use Willmore flow to obtain a confor- 

mal spherical parametrization of the original mesh. The result is a scalar function 

H ( θ, φ) over the spherical domain that we further decompose using spherical har- 

monics. 
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or a point on the surface. We can then proceed to define a 

uadratic form, that is a polynomial containing only terms of de- 

ree two, using the two tangent directions x, y [70 , chapter 19 

herein]. This quadratic form, sometimes called the shape tensor 

escribes extrinsic invariants of the surface, such as principal cur- 

atures, at the point where manifold and tangent plane touch. This 

orm is called the second fundamental form II , 

f ( x, y ) ≈ 1 

2 

[
dx dy 

]
II 

[
dx 
dy 

]
. (18) 

he second fundamental form approximates the surface z = f (x, y ) 

ith z = 0 the plane tangent to the surface (informally, z is the 

height over tangent plane”) in a neighborhood around the touch- 

ng point. Therefore, the idea of the second fundamental form is to 

easure, in R 

3 , how a surface curves away from its tangent plane 
112 
t a given point. The eigenvectors of the 2 × 2 matrix II are called 

rincipal directions , and the eigenvalues are called principal curva- 

ures , denoted κ1 , κ2 [9] . Given the principal curvatures, the mean 

urvature H = 

κ1 + κ2 
2 provides a meaningful and natural description 

f 3D surfaces, and it can be computed on triangular mesh using 

 discretization of the Laplace-Beltrami operator [9] . In this work, 

e compute the mean curvature at each vertex of a closed trian- 

le mesh. Given a parameterization (s, t) of the triangle mesh, we 

hus obtain a discrete, scalar function H(s, t) (see also Fig. 8 ). 
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2 https://github.com/HBKUVisCommunity/inshade/ . 
3 https://github.com/nitronoid/flo . 
.2. Spherical parametrization 

As hinted at in the last section, our 3D pipeline relies on a sur- 

ace parameterization. We use a spherical parameterization, which, 

espite its apparent simplicity, is much harder to obtain than cir- 

ular parameterizations of planar shapes. From a geometrical point 

f view, the second fundamental form can be used for classify- 

ng surface points according to the signs and values of principal 

urvatures κ1 and κ2 . Of particular interest are so-called umbilic 

“locally spherical”) points for which κ1 = κ2 . A measure for “local 

phericity” can thus be defined based on κ1 , κ2 , such as the Will- 

ore energy of a surface S , 

 = 

1 

4 

∫ 
S 
( κ1 − κ2 ) 

2 d A . (19) 

he geometric flow associated with this energy, 

˙ 
 = −∇ S E ( S ) , (20) 

ill evolve any genus-0 surface S to a sphere, providing a way to 

btain a spherical parameterization. In this work, we use the dis- 

rete Willmore flow formulation proposed by Crane et al. [71] that 

as also previously used by Agus et al. [61] . This spherical parame- 

erization maps each vertex of the 3D input shape to a correspond- 

ng point ( θ, φ) on the unit sphere S 2 , thereby also providing a 

arameterization for the discrete scalar function H ( θ, φ) . 

.3. Spherical harmonics decomposition 

The Spherical harmonic basis provides a Fourier basis for func- 

ions defined over a sphere. We can thus approximate a generic 

unction defined over a closed surface as a finite linear combina- 

ion of spherical harmonics Y m 

l 
(θ, φ) up to a given maximum fre- 

uency L: 

 ( θ, φ) ≈
L ∑ 

l=0 

l ∑ 

m = −l 

w 

m 

l Y m 

l ( θ, φ) , (21) 

here the weights w 

m 

l 
can be found through least-square error 

inimization with respect to the samples computed on the orig- 

nal 3D shape. To this end, we used a method similar to [61] ,

ith the main difference that, since the mean curvature signal 

s scalar, we only consider the real part of the spherical har- 

onics. As a result, the weight coefficients are also real. Specif- 

cally, given the real part of spherical harmonics R m 

l 
(θ, φ) = 

 (Y m 

l 
(θ, φ)) , a spherical parameterization of the surface S , �S = 

( θi , φi ) = ( θ (v i ) , φ(v i ) ) ∈ S 
2 , ∀ v i ∈ S 

}
, and the mean curvature 

alues computed across the surface H S = { H i := H(p i ) , ∀ p i ∈ S} ,
he spherical harmonic decomposition is obtained by computing 

he coefficients w = { w 

m 

l 
, 0 ≤ l ≤ L, −l ≤ m ≤ l} that minimize the

quare error: 

 = arg min 

w 

∑ 

i 

∥∥∥∥∥H i −
∑ 

l 

∑ 

m 

w 

m 

l R 

m 

l (θi , φi ) 

∥∥∥∥∥
2 

2 

, (22) 

eading to the linear system 

 

T R · w = R 

T H S . (23) 

e solve this system using LDL T factorization, a robust, symmetric 

ivoting variant of the Cholesky decomposition [72 , chapter 4.1.7 

herein], in combination with Tikhonov regularization [61] . This 

egularization add a diagonal matrix T depending on the Spher- 

cal Harmonics order and weighted by a small numeric value 

(see [61] for details). Hence, the final linear system has the fol- 

owing form. 

R 

T R + νT 

)
· w = R 

T H S . (24) 

e set the Tikhonov regularization weight to ν = 10 −5 in all ex- 

eriments reported in this paper. 
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.4. Energy coefficients 

Similarly to the 2D formulation we use the harmonic energies, 

o gain rotation-invariance. Energies are defined as the Euclidean 

orm of the Spherical Harmonic coefficients w for each harmonic 

requency separately. Specifically, the 3D curvature Fourier descrip- 

or � is defined by 

l := 

√ 

l ∑ 

m = −l 

(
w 

m 

l 

)2 
. (25) 

hese coefficients provide a compact descriptor of genus-0 shapes, 

nd can be used for the analysis of nuclear envelopes extracted 

rom Serial Section Electron Microscopy stacks. 

. Results 

We implemented our general shape descriptor pipelines and 

ested them on several challenging use cases. In this section, we 

rst provide details on our implementation ( Section 6.1 ) and then 

rovide an evaluation on general shape analysis, on the analysis 

f histopathological images, and nuclear shapes extracted from Se- 

ial Section Electron Microscopy (SSEM) stacks. We separate the 

valuation of the two pipelines: for the 2D framework, we report 

n consistency evaluation performed on classic shape collections 

ommonly used in literature for testing shape retrieval methods 

 Section 6.2 ). We also provide results obtained with our pipeline 

n various histology samples for medical diagnostics and neuro- 

cience investigations ( Section 6.3 ). For the 3D framework, we re- 

ort on the usage of the pipeline for the classification of neural 

ells reconstructed from a rodent brain sample ( Section 6.4 ). In 

oth evaluations, we involve expert domain scientists, for provid- 

ng a qualitative evaluation of the framework, and for getting sug- 

estions for designing a full visual analytics framework for histol- 

gy images. 

.1. Implementation notes 

The code used to generate the results presented in this paper 

or the InShaDe 2D pipeline is available in GitHub 2 (Python scripts 

 Jupyter notebooks). After further testing and cleaning, we plan 

o also release the C++ code for the InShaDe 3D pipeline. 

InShaDe 2D We implemented the 2D geometry processing 

ipeline in Python using the following building blocks & modules: 

-U-Net [4] for automatic segmentation, sklearn, skimage for con- 

our processing and dimension reduction, interactive matplotlib for 

isualization. For testing the pipeline, we developed simple inter- 

ctive widgets in which users can compare the clustering visualiza- 

ion in the parameter space to the reconstructed cellular shapes in 

he histology images. In order to attenuate the amplitudes of high 

requencies, we used a frequency equalization scheme weighting 

f the InShaDe coefficients according to the square root of their 

rder 
(
w (k ) = 

√ 

k 
)
. Our geometry processing pipeline can be used 

n combination with different dimension reduction schemes and 

lustering methods. In this work we use the recent Uniform Mani- 

old Approximation and Projection (UMAP) method, which is based 

n Riemannian geometry and algebraic topology [14] . For cluster- 

ng, we used HDBSCAN [73] or k-Means [74–76] (depending on the 

ase). 

InShaDe 3D 

We implemented the InShaDe 3D pipeline in C++, using con- 

ormal curvature flow based on spin transformations 3 . We fur- 

hermore used the Eigen library [77] for the LDL T solver arising 

https://github.com/HBKUVisCommunity/inshade/
https://github.com/nitronoid/flo
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Fig. 9. Shape retrieval experiments: we evaluate the InShaDe 2D pipeline through 

classical shape collections commonly used for testing shape retrieval methods: 

MPEG-7 (left), and Animals (right). 
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Fig. 10. Sparse coding: we used k-sparse autoencoders for encoding MPEG-7 (top 

row) and Animals (bottom row) shape images. Left: dictionary W . Center: shape 

examples. Right: corresponding images reconstructed from sparse codes with k = 

256 coefficients. The reconstructed images clearly represent the main contents of 

the original images. 
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n the SPH least squares optimization. For the SPH functions we 

sed boost and libigl for geometry processing. We then fed the 

arameters derived from the SPH decomposition to standard ma- 

hine learning methods (e.g., support vector machines, SVMs) us- 

ng Python’s sklearn to classify the nuclei. 

.2. Consistency validation 

We first performed a consistency validation of the InShaDe de- 

criptor. For this, we used MPEG-7 and Animals [78] , which are 

mong the most popular data sets for evaluating and comparing 

he accuracy of shape retrieval methods [78] . The MPEG-7 shape 

ollection is composed of 1400 binary images containing objects of 

0 different classes [79] (see Fig. 9 left), while the Animals shape 

ollection (see Fig. 9 right) is an even more challenging data set 

ontaining 20 0 0 binary images grouped in 20 classes of 100 ani- 

als each one. 

To test the InShaDe 2D descriptor we considered three different 

ssessment criteria: 

(1) Retrieval accuracy . of a basic SVM scheme, trained on an 

augmented data set. We triple the size of the input data 

set by adding randomly rotated and shifted copies of orig- 

inal images. Moreover, we use a hyperparameter optimiza- 

tion scheme to find the best SVM linear parameters with re- 

spect to cross-correlation accuracy, and we test the obtained 

model over the original collection. We also show the accu- 

racy of shape retrieval in the form of a confusion matrix to 

highlight the accuracy differences between classes. 

(2) Bull’s Eye accuracy . which is commonly used to score shape 

retrieval tasks when the number of objects is limited: First, 

a similarity distance between objects represented by feature 

vectors is defined. For this, we use the L 1 norm (Manhattan 

Distance), d(x , y ) = 

∑ 

i | x i − y i | . For any object O of class C,

find a given K O nearest neighbors with respect to d ( K O = 4 

in our case). After that, count how many objects N O in the 

set of K O nearest neighbors share the same class C O of object 

O . Finally, the Bull’s Eye score is defined as B = 

∑ 

O 
N O 
K O 

. 

(3) Qualitative visual assessment of the reduced parameter space 

obtained by projecting the feature vectors on a 2D plane 

through dimension reduction techniques and observing 

how objects cluster together. In our experiments we used 

UMAP [14] . 

For the composition of the feature vector we consider three dif- 

erent contributions: the sorted local curvature signal �, the ellip- 

ic Fourier analysis energy coefficients �, and the weight values of 

-sparse autoencoding [52] (see the examples in Fig. 10 ). The pur- 

ose of using sparse coding features is not to precisely reconstruct 

he original image, but rather to extract the important information 
114 
sing very few parameters. The reconstructed images, using only 

56 coefficients, clearly represent the main contents of the origi- 

al images. 

We investigate all possible composition permutations: sorted 

ocal curvatures alone ( �), Fourier energy coefficients alone ( �), 

parse coding weights alone ( �), local curvatures and energy co- 

fficients ( ��), local curvatures and sparse coding weights ( ��), 

nergy coefficients and sparse coding weights ( ��), local curva- 

ures together with energy coefficients and sparse coding weights 

 ���). For merging heterogeneous feature vectors, we perform 

re-normalization of the various feature vectors. 

Fig. 11 shows the Bull’s Eye score obtained for both shape col- 

ections on top of four retrievals for various feature vector com- 

ositions at varying number of coefficients. The highest accuracy 

as obtained for 240 coefficients and with the descriptor ���

composing sorted curvatures, energy coefficients, and sparse co- 

fficients). Considering the feature coefficients alone, sparse cod- 

ng descriptors outperform sorted curvatures and energy descrip- 

ors: we suspect that this is due to the fact that sparse coding is 

ble to provide a valid description of both the boundary shape and 

he inner part of the objects. Nonetheless, incorporating the energy 

oefficients proved to be beneficial since the composed descrip- 

ors can take into account transformations like rotations and shifts. 

he obtained values are in line with current state of the art meth- 

ds (see tables in [78] ): for example the obtained Bull’s Eye score 

n MPEG-7 data set is 0.87 (versus 0.863 for Hierarchical String 

ats [80] and 0.876 for Fourier Transform Group Feature [81] ), 

hile for the Animals data set the Bull’s Eye rate is 0.54 (ver- 

us 0.436 Hierarchical String Cats [80] ). Better performances can 

e obtained through post-processing retrieval schemes that are or- 

hogonal to our method and can be incorporated successively: for 

xample the Online to Offline O2O scheme [78] applied on top of 

ifferent descriptors can achieve Bull’s Eye score up to 0.99 for the 

PEG-7 data set and 0.66 for the Animals data set. In our experi- 

ents, we also noticed a slight degradation of accuracy for feature 

imensions higher than 500, indicating that the curse of dimen- 

ionality can affect the proposed descriptor. 

We also compared the CPU computation times per shape be- 

ween the various descriptors on the MPEG-7 dataset (the average 

umber of vertices per shape is 1917) and Animals (the average 

umber of vertices per shape is 961). For timing measurements, 

e used a workstation equipped with an Intel i9-9900 CPU (8 

ores, 3.1 Ghz), 64 GB of RAM, and an Nvidia RTX 2080 GPU with 

GB RAM. In Fig. 12 , we report the processing times per shape 

s function of number of coefficients, and for both datasets (left: 
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Fig. 11. Bull’s Eye score for shape collections: various descriptors are compared with respect to the Bull’s Eye accuracy on top of 4 retrievals for varying number of 

coefficient. On the left, MPEG7 results, while on the right Animals results. We compare simple and composed descriptors based on sorted curvatures, elliptic Fourier energy 

coefficients, and sparse coefficients. The highest Bull’s Eye accuracy scores are 0.54 for Animals and 0.87 for MPEG7, and they are obtained for the composed descriptor ���

containing sorted curvatures, energy coefficients, and sparse coefficients. 

Fig. 12. Processing time for descriptors: we compared the CPU processing time of InShaDe 2D energy descriptor with the sparse coding scheme computed through k-sparse 

autoencoders [52] with respect to the number of coefficients. We report the processing time per shape for MPEG-7 (on the left), and Animals (on the right). 
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PEG-7, right: Animals). For the k-sparse autoencoder, we report 

he training time for 500 epochs using the total images of the 

ataset for training but averaging the times reported by the num- 

er of images. The input image resolution is 256 × 256 for MPEG-7 

nd 640 × 432 for Animals. It is worth noticing that, according to 

he number of coefficients, the memory resources needed for using 

-sparse autoencoder are proportional to the size of input images 

nd the size of output sparse descriptor and can easily reach the 

imits of available RAM in many systems. Moreover, the InShaDe 

ipeline can be further accelerated through GPU-friendly imple- 

entations that would be able to manage batches of images in 

arallel. 

Figs. 13 and 14 show the UMAP projection of the composed de- 

criptor for the various shapes for both MPEG-7 and Animals data 

ets as a visual reference (separated in groups of at most 12 labels 

o reduce clutter). 
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It appears evident that the proposed descriptor is, in most 

ases, able to discriminate the shapes of MPEG-7 data set. The 

lusters for the Animals data set appear more confused, thus con- 

rming the retrieval rates in this work and prior literature. 

Fig. 15 depicts a typical failure case of our scheme on the An- 

mals data set. A leopard is considered very similar to a cow, a 

at and another cow. The middle row shows the local curvature 

ignals computed over the shape contour, while the bottom row 

hows the composed feature vector containing the sorted curva- 

ures (left), the energy coefficients (middle), and the sparse coeffi- 

ients (right). 

Fig. 16 shows the confusion matrix for linear SVM classification 

btained for our composite descriptor ���. In terms of accuracy, 

e obtain results aligned with state of the art methods ( 88 . 4%

or our descriptor on the MPEG-7 data set versus 66% for Cur- 

ature based Fourier descriptor [29] , 78% for blurred shape mod- 
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Fig. 13. MPEG-7 UMAP clustering : we test UMAP dimension reduction on the composed descriptor ��� for MPEG-7 collections (256 feature elements per descriptor for 

a total of 768 features). The Bull’s Eye score obtained for this collection was 0.898. In order to reduce visual cluttering, the various shapes are separated in 6 groups of 

maximum 12 labels. 

Fig. 14. Animals UMAP clustering : we test UMAP dimension reduction on the composed descriptor ��� for Animals collection. The Bull’s Eye score obtained for this 

collection was 0.543. In order to reduce visual cluttering, the various shapes are separated in 3 groups of maximum 7 labels. 
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ls [82] , 78% Morphological Pattern Spectrum [83] and 90% for Zer- 

icke moments with geometric features [79] ). It is important here 

o note that the composition of shape features and image features 

ignificantly improved retrieval accuracy in agreement with prior 

ork [79] ( 88 . 4% for the composed descriptor versus 87 . 5% for the

parse coding descriptor and 78% of the simple energy shape de- 

criptor proposed in the conference paper [13] ). Given that the re- 

ults show the proposed descriptor to be consistent for classifying 

hapes of natural objects, we will now proceed to analyze its per- 

ormance for the analysis of biomedical images. 
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.3. Histopathology analysis 

For the analysis of histopathology images, we use public do- 

ain data from the MoNuSeg contest [47] , and the very re- 

ent PanNuke data set [41] . The former contains 30 images 

rom seven organs with unclassified annotations of more than 

0k individual nuclei. The latter contains more than 220K la- 

eled nuclei from 19 different tissue types and, as of writ- 

ng, is the largest open pan-cancer histology data set for nu- 

lei instance segmentation and classification. Finally, we apply the 
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Fig. 15. Bull’s Eye testing : Here, we show a typical failure case using the L1 Bull’s Eye score for the descriptor ��ω on the Animals data set. Top row, left to right: a 

leopard is considered similar to a cow, a cat, and another cow. We also show the curvature signal of each curve (middle row) and composite descriptor (bottom row). 

Fig. 16. Shape retrieval experiments : a simple Support Vector Machine classifier using our descriptor is able to obtain classification accuracy on par with standard geometry- 

based classification methods ( 88 . 4% for the MPEG-7 and 55% for Animals over the complete shape collection). We also show the full confusion matrix obtained on the testing 

data (left: MPEG-7, right: Animals collection). 
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Fig. 17. Examples of combining the InShaDe pipeline with dimension reduction and clustering for visual classification in histology: Color-coding of shape clusters in the 

MoNuSeg data set [47] result in recognizable spatial patterns. Similar shape features according to UMAP do not necessarily relate to intuitive discrimination through visible 

attributes such as length or thickness or smoothness. 
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ipeline to a whole slide image representing a paediatric appendix 

pecimen. 

Fig. 17 shows examples of images from the MoNuSeg data 

et [47] classified by our framework: we reduce the dimensions of 

he feature descriptors using UMAP, followed by k-Means for clus- 

ering. We then color-code contours by cluster. We notice that cells 

ecognized as having similar shape features according to UMAP do 

ot necessarily relate to intuitive discrimination through visible at- 

ributes such as length or thickness or smoothness. However, they 

o not only form feature clusters (same color) but also tend to 

orm spatial clusters. The latter fact can provide additional visual 

nformation to digital pathologists for diagnosis through spatial ag- 

regation of such clusters. While further investigation is needed 

o understand and evaluate the clinical value and to find explain- 

ble taxonomies, initial feedback from pathologists confirmed that 

n many cases nuclear features and clusters can provide decisive 

nformation for recognizing specific conditions. Histopathology shal- 

ow classification 

We also tested whether our descriptor could be used for shal- 

ow classification of nuclear cells for diagnostic purposes. To this 

nd, we tested various composed descriptors ( �, �, ��, and 

��) with varying number of features ( 64 , 128 , 256 ), and we

rained a linear SVM classifier on PanNuke data set [41] for dis- 

riminating between three classes of nuclei: neoplastic cells, in- 

ammatory cells, and others. Fig. 18 , left, shows the accuracy per- 

ormance of the various descriptors considered in this work. The 

ighest accuracy (0.601) is obtained for the composite descriptor 

�� with 256 features per component. However, the improve- 

ent of the composed descriptor with respect to the sparse coding 

escriptor is almost imperceptible (0.578 for the descriptor �). In 

his case, sparse coding captures not just the shape but also tex- 

ure information, which might be helpful for classification. Thus, 

he improvement brought by InShaDe is less pronounced compared 

o Fig. 11 , where the input images only contain shape and not tex- 

ure. In this case, the proposed shape descriptor cannot adequately 

iscriminate the various cell classes according to the proposed tax- 

nomy. It is still far from being sufficiently accurate for reliable 

lassification of individual nuclei. However, this preliminary accu- 

acy performance was obtained with a simple SVM classifier, and it 

an be improved by considering more sophisticated classifiers, like 

NNs. In general, the dimension reduction plots show that cells of 

ame type do not cluster together when using the InShaDe descrip- 

or (see in Fig. 18 right some examples). Nonetheless, the presence 

f outliers in the parameter space can provide pathologists visual 

ints for proofreading the labeling of nuclei or evaluating the accu- 
118 
acy of contours (see an example in Fig. 18 right, in which a group 

f images is processed together to obtain a parametric scatter plot 

o be used for proof-reading patches). 

Fig. 19 shows an example for the visual analysis of whole slide 

mages (WSIs). We trained an SVM model on InShaDe feature vec- 

ors derived from PanNuke data. Then, we used the SVM to classify 

uclei in a large-scale, 80 , 986 × 99 , 328 -pixel WSI of a paediatric

ppendix specimen. All nuclei are classified as either neoplastic 

red), inflammatory (blue), or other (green). Inflamed nuclei clus- 

er together, providing a clear indication of specific affected areas. 

eoplastic nuclei are very rare and do not form structured clus- 

ers. They are therefore considered classification errors by the do- 

ain scientists. Histopathologists can use the processing pipeline 

or preliminary analysis targeted at the individuation of inflamma- 

ory areas. We believe (a hypothesis supported by the domain sci- 

ntists in our team) that spatial aggregation of classes, i.e., density 

stimations of the nuclei distribution in space (also see Fig. 19 ), 

ould become a valuable diagnostic tool in discriminating and in- 

ividuating different tissue regions. Since a full study into the use- 

ulness of such spatial density estimates is beyond the scope of 

his work, it is left as a future research direction. 

Qualitative evaluation 

We tested our InShaDe processing pipeline also on histology 

mages of rodent brain samples stemming from neuroscience. Two 

xpert neuroscientists aided this study by providing a qualitative 

valuation of the framework as applied to images obtained with 

ifferent staining techniques. As a general outcome, the domain 

cientists particularly appreciated the fact that they could try to 

ap specific features in the shape features space to specific pat- 

erns in the histology images. 

Specifically, Fig. 20 , left, shows the outcomes of Nissl staining 

f mice brain sections. clustering was obtained with k-Means. The 

issl staining is not specific for particular cell types and is com- 

only used for cell counting, since it provides an excellent contrast 

etween the cellular and extracellular space. On the other hand, it 

oes not provide a very good contrast between the cytoplasm and 

he cell nucleus. In the example reported, the contrast allowed the 

utomated algorithm to efficiently segment cell profiles, but only 

ew nuclei were segmented correctly (mostly in light blue, some of 

hem highlighted with blue arrows). In this case, the usage of the 

arameter space for highlighting the contour shapes in the image 

pace provides visual hints for recognizing particular features, like 

lurred segmentations of soma mixed with dendrites, appearing as 

rregular and elongated shapes (see red arrows in Fig. 20 top right). 

o far, neuroscientists consider the framework potentially useful 
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Fig. 18. Accuracy on PanNuke data set : we trained a linear SVM model on our descriptor and we compared the accuracy with respect to different feature vectors obtained 

by composing energy coefficients and/or sparse coding coefficients (left). The maximum obtained accuracy over 3-classes is 0.601. PanNuke represents the largest open 

pan-cancer histology data set for nuclei instance segmentation and classification [41] . InShaDe can be used for proof-reading the quality and the accuracy of labelling (right). 

Fig. 19. Visual analysis of WSI : the InShaDe processing pipeline is applied to the 

analysis of Whole Slide Images (WSI). A paediatric appendix specimen (top left 

inset) is analyzed by a linear SVM model trained on InShaDe features from Pan- 

Nuke data. Histopathologists can identify inflammatory areas (blue) against irrele- 

vant background (green). Spurious cancer cells (red) do not form structures and are 

correctly interpreted as classification error. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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or proofreading the quality of the staining, and filtering some in- 

ormation even in case of wrong staining. 

Finally, Fig. 20 , right, shows a portion of somatosensory cor- 

ex from an ultrastructural work on ageing [84–86] . Nuclei were 

tained with toluidine blue on semithin sections prepared for elec- 

ron microscopy in order to count cells. The extracted contours 

ere clustered through k-Means. In this case, the shape feature 

pace enabled scientists to distinguish immediately between blood 

essels (in red, with some of them highlighted by arrows), and nu- 

lei from different kind of neurons (pyramidal neurons mostly in 

ink, highlighted by arrows and with different distribution accord- 

ng to the layer). 
119 
.4. Evaluation of 3D pipeline 

For the evaluation of the InShaDe 3D pipeline, we used two col- 

ections of 3D reconstructions of brain cells nuclei, extracted from 

econstructions of nanometric scale electron microscopy stacks, ob- 

ained after imaging a volume of brain parenchyma from layer II/III 

see Fig. 21 left)and layer VI (see Fig. 21 right) somatosensory cor- 

ex of a P14 rat [54] . The nuclear shapes were manually assigned to 

nown cell types, namely neurons, astrocytes, microglia, pericytes, 

nknown cells (most likely oligodendrocytes), and endotelium cells 

or both collections. We used InShaDe 3D feature vectors as the in- 

ut for a kernel SVM with radial basis functions. To assess the clas- 

ification performance, we considered four cases for SPH decompo- 

ition with order L max = 8 , 16 , 24 , 32 , corresponding to the number

f rotation-invariant energy descriptors (see also Section 5.1 ). For 

ach case, we performed a grid-search to configure the two hy- 

erparameters in the SVM model: the constant γ of the Gaussian 

adial basis function, and the weight C for the soft margin regular- 

zation function. 

We chose a grid logarithmic in C (ranging from 10 −2 to 10 10 ) 

nd γ (ranging from 10 −9 to 10 3 ). We then trained the model on 

5 nuclear shapes for the layer VI shape collection, and 82 shapes 

or the layer II/III shape collection. We performed a 5-fold cross- 

alidation using sklearn’s StratifiedShuffleSplit function. This par- 

itions the input data into five image sets while maintaining the 

elative ratio of classes in each set. Four sets were used for train- 

ng and validation (using an 80/20 split) and the remaining set 

as used for a blind test. Fig. 22 , left, summarizes the best cross- 

ccuracy among the five folds for the SVM models trained on dif- 

erent shape collections and varying feature dimensions. 

We also compared the performances of this new formula- 

ion with respect to our previous framework WISH [61] (also see 

ig. 22 right). The InShaDe accuracy is similar to WISH, with a best 

core of 83% versus 84% for the layer VI data set. It is worth not-

ng that this is despite the new formulation proposed here contain- 
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Fig. 20. Visual analysis of mouse brain sections : our visual analysis pipeline is used for a neuroscience investigation. Top: a brain section fixed with paraformaldehyde 

is stained with Cresyl Violet, which highlights Nissl substance in the cytoplasm of neurons. Only few nuclei are segmented correctly (in light blue and highlighted with 

blue arrows on the right) and in various cases soma are mixed with dendrites (in red and highlighted with red arrows). Bottom: toluidine blue is used in an attempt to 

discriminate pyramidal neurons nuclei (in pink and highlighted by pink arrows) from blood vessels (in red and highlighted with red arrows) and artifacts. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 21. Data sets : we tested the InShaDe 3D pipeline on two collections of brain 

cells nuclei extracted from layer II/III (left) and layer VI (right) of somatosensory 

cortex of a P14 rat. 
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Fig. 23. Processing time for SH computation : we compare the processing time 

for coefficients computation between InShaDe 3D and WISH [61] . The simplified 

formulation results in a dramatic reduction of processing times. 

6

F

a

w

ng fewer coefficients (one real-valued vector here as opposed to 

hree complex vectors [61] ) and is easier to compute numerically. 

n Fig. 23 we report the average processing times of the Spheri- 

al Harmonics coefficients for varying orders of components. It is 

vident that the simplified formulation results in a dramatic re- 

uction of computation times. These timings were measured on 

 Razor Stealth laptop equipped with an Intel i7-8565U CPU (4 

ores, 1.8GHz), 16GB RAM and connected through USB-C to an e- 

PU NVIDIA Titan RTX with 24GB RAM. Moreover, the spherical 

arametrization step is identical between the two pipelines In- 

haDe and WISH, and the mean curvature signal is obtained as 

ree by-product from the usage of Willmore Flow [87] . Given the 

vailability of shape collections extracted from different layers, we 

ested whether models trained on one collection could be gener- 

lized for inference on the shapes of another collection. The re- 

ulting performance was poor, in particular for neurons (below 

0% ). This confirms the hypothesis from domain scientists [54] that 

uclear envelopes exhibit different shape features according to 

he layer from which they are extracted. To confirm this point, 

ig. 24 shows the full shape collection under different dimension 

eduction schemes. It appears that it is not possible to cluster to- 

ether cells extracted from different layers (II & III vs VI). From 

hese preliminary results, it appears evident that: 

• it is difficult to find models using InShaDe 3D descriptors that 

can generalize the classification of cell types regardless of the 

layers from which they are extracted; 
• neurons of different layers appear to form separate clusters, 

suggesting a shape variability depending on the area from 

which they are extracted [88] . This is an interesting hypothe- 

sis worthy of further investigations which we plan to carry out 
in the future. 

ig. 22. Accuracy for 3D nuclei classification: we trained SVMs with InShaDe 3D features

nd layer VI. Left: cross accuracy of the SVM model for layer III collection, layer VI colle

ith respect to WISH [61] on the same data. Despite the simplified formulation, the accu

121 
.5. Discussion 

We summarize the main outcomes of this study as follows. 

• Relationships between shape parameter space and image space : 

in various cases we notice that spatial clusters of cells exhibit 

closer shape features in the reduced parameter space. Further 

investigation is needed to understand whether and in which 

cases spatial patterns or clusters in the image space correspond 

to patterns or clusters in the parameter space, and to associate 

shape clusters to specific taxonomies. In this context, we would 

like to remind that performing clustering on parameter space 

obtained after dimension reduction is still considered a com- 

plex task prone to producing unreliable results [89] . Therefore, 

we plan to explore different automatic and manual dimension 

reduction techniques to support domain scientists during their 

analysis. 
• Coupling with image descriptors: we integrated the InShaDe 2D 

with sparse coding for decomposing the inner part of nuclei 

as function of specific texture patterns with different physi- 

cal and molecular characteristics. Sparse coding features out- 

perform the proposed descriptor (we suspect that the reason 

is related to the fact that they can also describe shape bound- 

ary features), while composed descriptors provide slightly bet- 

ter discrimination capabilities for standard evaluation datasets 

because they recover invariance with respect to transforma- 

tions. However, the composed descriptors are not reliable yet 

for fine-grain diagnosis on histopathology images. Spatial ag- 

gregation (i.e., class density estimation) could be used to allevi- 

ate this problem, but future research is needed. We also suspect 
 on nuclei shape collections from somatosensory cortex of a juvenile rat in layer III 

ction and full collection. Right: we compare the accuracy performance of InShaDe 

racy is similar. 
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Fig. 24. Dimension reduction: dimension reduction projections of InShaDe 3D features for all collection shapes. From top to bottom: PCA, t-SNE, and UMAP. Neurons from 

different layers tend to form clearly separate clusters. 
that we have hit a performance wall for engineered and model- 

based descriptors. Therefore, we plan to integrate model-based 

descriptors into more general deep learning architectures. 
• Caveats due to staining techniques: depending on the structure 

to be identified within a cell, or the type of tissue, a large 

plethora of immunohistochemical staining techniques are avail- 

able. The proposed analysis framework can provide effective 

proof-reading tools for checking the quality of staining methods 

and semi-automatically individuating the structures of interest. 
• Taxonomy-based visual analytics system: a real challenge in the 

analysis of histology images is the difficulty to individuate cor- 

rect taxonomies of nuclei in order to simplify understanding 

and diagnosis. A visual analytics framework incorporating con- 

tour analysis, image analysis, and expert domain knowledge 

would help digital pathologists in labeling and proof-reading, 
122 
and would provide fast ways for creating labeled data for more 

sophisticated artificial intelligence frameworks.To this end, our 

processing pipeline provides encouraging results and can be 

easily integrated in such systems. 
• 2D Arc-length parameterization : while we have yet to observe 

our Arc-length parameterization algorithm to diverge, we do 

not have a formal proof of convergence at the time of writing. 

We believe it works so well since changes in u happen very 

gradually and the original curve remains untouched. Each repa- 

rameterization attempt therefore slides vertices around the in- 

put curve. While formal analysis is hindered by the fact that 

our method is discontinuous at original vertices, we believe a 

full treatise to be an interesting direction for future work. 
• Benefits of scale-invariance: for the MPEG-7 and animals data 

sets, utilizing the optional scale-invariance boosts performance 
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by up to 10% in many of our experiments. This should come as 

no surprise, since, e.g., the outline of a butterfly stays the out- 

line of a butterfly under magnification and minification. Con- 

sequently, deep learning-based pipelines have made rescaling 

a main step of their data augmentation stage, in an attempt 

the achieve de-facto rather than by-design scale-invariance. 

What is surprising, however, is that scale-invariance added only 

marginal and in many cases statistically insignificant improve- 

ments for cell nuclei classification. We believe that this is due 

to the “apparent size” problem, in which cell nuclei always ap- 

pear smaller than the original size due to slicing. It seems that 

having plenty of slices under different angles at the classifiers 

disposal is more important than to remove scale-variance. A full 

analysis of this problem is beyond the scope of this paper and 

offers an interesting future research direction. 
• Limitations of 3D pipeline: the encouraging results obtained with 

our 3D formulation are counterbalanced by two important lim- 

iting bottlenecks. Firstly, the process for producing nuclear sur- 

faces from electron microscopy image stacks is still time con- 

suming and requiring highly specialized human effort s. Even 

though important progresses in automatic segmentation of EM 

stacks has recently been made [19] , custom models for auto- 

matic extraction of nuclei are not available to our knowledge. 

We plan to focus future effort s towards this direction. Secondly, 

the spherical parameterization task is complex and can be un- 

stable. One of its limitations is that it cannot be applied to ar- 

bitrary closed shapes but only genus-0 and (if the flow is ap- 

propriately regularized) genus-1 surface (that is, surfaces either 

homeomorphic to spheres or torii with at most 1 hole). To over- 

come these limitations, we plan to investigate more general in- 

variant formulations based on manifold harmonics [90] . 

. Conclusion 

We have presented a general shape processing framework 

ooted in a novel differential-geometry-based descriptor of closed 

ontours and surfaces. Our descriptor provides an embedding into 

 fixed-dimensional feature space that can be utilized for vari- 

us applications, which range from serving as input feature for 

eep and shallow learning techniques to supporting dimension 

eduction schemes for providing a visual reference for clustering 

ollection of shapes. While our methods are of general use, our 

ork is motivated by the study of cellular nuclear envelopes ex- 

racted from histopathological images and serial section electron 

icroscopy stacks. In this context, we have shown the capabili- 

ies of the proposed framework for visual analysis and unsuper- 

ised classification. Our results are very encouraging and we iden- 

ify several major areas of future work in the previous section. In 

articular, we plan to develop, on top of our pipeline, a taxonomy- 

ased visual analytics system to simplify study and diagnosis. 
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